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Abstract 

Transcriptomics, which encompasses assessments of alternative splicing and

alternative polyadenylation, identification of fusion transcripts, explorations

of noncoding RNAs, transcript annotation, and discovery of novel transcripts,

is  a  valuable  tool  for  understanding  cancer  mechanisms  and  identifying

biomarkers. Recent advances in high-throughput technologies have enabled

large-scale gene expression profiling. Importantly, RNA expression profiling

of tumor tissue has been successfully used to determine clinically actionable

molecular alterations. The WINTHER precision medicine clinical trial was the

first  prospective  trial  in  diverse  solid  malignancies  that  assessed  both

genomics  and  transcriptomics  to  match  treatments  to  specific  molecular

alterations. The use of transcriptome analysis in WINTHER and other trials

increased the number of  targetable -omic  changes compared to genomic

profiling alone. Other applications of transcriptomics involve the evaluation

of  tumor  and  circulating  noncoding  RNAs  as  predictive  and  prognostic

biomarkers, the improvement of risk stratification by the use of prognostic

and predictive multigene assays, the identification of fusion transcripts that

drive tumors, and an improved understanding of the impact of DNA changes

as  some genomic  alterations  are  silenced  at  the  RNA level.  Finally,  RNA

sequencing  and  gene  expression  analysis  have  been  incorporated  into

clinical  trials  to  identify  markers  predicting  response  to  immunotherapy.

Many issues regarding the complexity of the analysis, its reproducibility and

variability, and the interpretation of the results still need to be addressed.
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The integration of transcriptomics with genomics, proteomics, epigenetics,

and  tumor  immune  profiling  will  improve  biomarker  discovery  and  our

understanding  of  disease  mechanisms  and,  thereby,  accelerate  the

implementation of precision oncology. 

Keywords: gene  expression,  precision  oncology,  noncoding  RNA,  RNA

sequencing transcriptomics

Abbreviations

cDNA: complementary DNA

CNV: copy-number variation

CUP: cancer of unknown primary

EGOG: Eastern Cooperative Oncology Group

GTEx: Genotype-Tissue Expression

INFORM: Individualized Therapy for Relapsed Malignancies in Childhood 

mRNA: messenger RNA

NGS: next-generation sequencing

PIPseq: Precision in Pediatric Sequencing 

RNAi: RNA interference 

RNA-seq: RNA sequencing

rRNA: ribosomal RNA

RT-qPCR: reverse transcriptase quantitative polymerase chain reaction

siRNA: short interfering RNA

tRNA: transfer RNA

WIN: Worldwide Innovative Network
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 Background

Recent advances in technology have improved our understanding of

carcinogenesis  and  led  to  the  discovery  of  novel  therapeutic  targets.

Precision  oncology  combines  data  from tumor  genomic  profiling,  cell-free

DNA assays, proteomic and immune profile analyses, and assessments of

other  markers  to individualize treatment according to unique patient  and

tumor  characteristics.1,2 Artificial  intelligence  and  innovative  clinical  trial

designs, including adaptive and N-of-1 trials, hold promise to accelerate the

collection,  analysis,  and application  of  data on  predictive  biomarkers  and

novel targeted agents.3,4 Until recently, precision oncology focused mainly on

genomic  profiling  of  tumors.5,6 Advances  in  next-generation  sequencing

(NGS) technologies have enabled the time- and cost-efficient incorporation of

genomics into daily clinical practice. Several precision oncology trials have

demonstrated the clinical significance of genomics in identifying molecular

alterations  that  are  successfully  targeted  by  novel  treatments.3,4,6-9

Comprehensive gene panels are currently being used to identify molecular

therapeutic  targets  and  prognostic  and  predictive  biomarkers  and

prospective  clinical  trials  are  assessing  the  value  of  molecular  testing  in

treatment selection across various tumor types.10-19 

Despite  this  significant  progress  in  the  implementation  of  precision

oncology, several challenges need to be addressed in clinical research and

practice. First, it is critical to enhance our knowledge of tumor biology, the

mechanisms of carcinogenesis, and driver alterations to improve our ability
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to identify robust prognostic and predictive biomarkers. Additionally, to date,

only a few molecular alterations have been successfully targeted by novel

agents.20-23 Many  of  these  alterations  are  rare,  and  a  large  number  of

patients  need  to  be  screened  to  identify  a  single  potential  therapeutic

target.24 Indeed, the proportion of patients who are matched to therapy in

precision  oncology  trials  generally  ranges  from  5%  to  50%  and  often

depends  on  whether  the  study  is  conducted  in  a  specialized  clinic  with

access to novel agents, off-label drug use, timely molecular profiling, and the

expertise  of  clinical  trial  leaders  in  genomics.3-7,24-31 Therefore,  our

understanding  of  cancer  complexity  dictates  that  additional  precision

oncology  methodologies  need  to  be  incorporated  to  enhance  patient-

treatment matching and prevent the development of treatment resistance. 

Transcriptomic  analyses  have  been  included  in  precision  oncology

trials only recently and infrequently (Table 1).7,32-34 Transcriptomics refers to

the study of all the RNA transcripts in a cell population, typically by using

high-throughput  technologies,  namely  microarrays  and  RNA  sequencing

(RNA-seq).35 In contrast to analysis of DNA sequencing data, the assessment

of RNA status and measurement of transcripts can correlate gene expression

with biologic activity and cellular status (Table 2).32-34,36-64 Gene expression,

in  turn,  is  influenced  by  genetic  and  epigenetic  factors,  such  as  DNA

methylation and histone modifications. Early results of clinical trials suggest

that transcriptomic analysis can increase the number of patients matched to

drugs.7 Therefore,  transcriptomics  is  a  potentially  valuable,  though
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underused, technique for unraveling the underlying mechanisms of cancer

and moving towards the implementation of precision oncology.
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History

Early methods to assess gene expression included Northern blotting,

reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and

sequencing of short nucleotide arrays (expressed sequence tags) that were

generated  from  complementary  DNAs  (cDNAs).  However,  these  methods

were  developed  to  evaluate  limited  numbers  of  transcripts  and  are

inadequate for comprehensive RNA profiling. Subsequently, serial analysis of

gene expression65 and DNA microarrays enabled the analysis of large-scale

gene  expression  arrays.57,66-68 With  microarrays,  investigators  can  quickly

assess  the  expression  levels  of  thousands  of  genes  simultaneously.

Comprehensive profiling of tumor samples, normal tissues, and cancer cell

lines  yielded a  large volume of  transcriptomic  data.  Dedicated databases

were developed to store gene expression datasets that were made publicly

available  to  allow  their  use  by  other  investigators.69,70 Examples  of  the

implementation of gene expression analysis in clinical practice include the

commercially  available  MammaPrint  and  Oncotype  DX  assays,  which  are

used to  assess  prognosis  and/or  select  treatment  in  patients  with  breast

cancer.51,71 

Transcriptome biology 

Dynamic nature of the transcriptome 
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In  multicellular  organisms,  the  same  genes,  and  thus  the  same

genome, are found in almost every cell. Not every gene is transcriptionally

active  in  every  cell,  however,  and  different  patterns  of  gene  expression

appear in different types of cells.  In addition, multiple RNA variants can be

produced  by  a  single  gene owing  to  alternative  splicing,  RNA  editing,  or

alternative  transcription initiation  and  termination  sites.  The  total

transcriptional activity, that is, the full range of RNA molecules expressed, is

reflected  in  the  transcriptome  of  an  organism.  The  transcriptome can  be

represented as the percentage of the genetic code that is transcribed into

RNA molecules,  which  is  estimated to be less than 5% of  the genome in

humans.72 In contrast to the genome, the transcriptome changes in response

to  cellular  cues.  Indeed,  an  organism's  transcriptome  varies  dynamically

depending  on  many  factors,  including  environmental  conditions  and

developmental stage. 

Epitranscriptomics 

Epitranscriptomics,  also  known  as  RNA  epigenetics,  describes  the

diverse  posttranscriptional  modifications  occurring  in  cellular  RNA.  This

dynamic processing occurs during RNA maturation under the regulation of

RNA-binding proteins.  Τo date, more than 150 types of RNA modifications

have  been  identified,  including  RNA methylation  and  editing.73 While  the

exact role  of  these modifications  is  still  under investigation,  studies have

shown that it extends from maintaining the structure of RNA to regulating
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critical cell systems and that disruptions in RNA processing are associated

with  various  diseases,  including  cancer.74,75 Research  focusing  on  specific

modifications  has  revealed  associations  between  deregulation  of  RNA

processing  and  cancer  progression,  aggressive  tumor  behavior,  and

deregulated  cellular  processes.76,77 Given  the  oncogenic  nature  of  these

modifications, their regulators could be targeted for novel therapies.  

Functional uses of transcriptomics

Identification of therapeutic targets

Transcriptomic data have been incorporated into many different tumor

molecular profiles to increase the number of targetable molecular alterations

and  provide  additional  therapeutic  options  to  patients  with  advanced

cancer.7,32-34,78,79 In  one  study,  gene  expression  profiling  of  longitudinally

collected  primary  breast  tumors  and  metastatic  lesions  identified  several

highly targetable genes.78 Administration of therapeutic agents against these

alterations  in  patient-derived  xenograft  models  led  to  a  statistically

significant antitumor response vs. controls. In another study of 1049 children

and young adults  with  de novo acute megakaryocytic  leukemia,  RNA-seq

revealed  druggable  targets.79 Importantly,  in  our  WINTHER  precision

medicine  clinical  trial,  which  prospectively  assessed  both  genomics  and

transcriptomics  in  diverse  solid  malignancies,  the  use  of  transcriptomic

analysis increased the number of targetable -omic changes by a third over

NGS.7 
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Detection of gene fusions

Conventional  cytogenetic  analyses,  including  fluorescence  in  situ

hybridization and RT-qPCR, have been widely used for fusion gene detection.

However,  these methods are designed to discern the presence of specific

known  gene  fusions,  not  identify  novel  ones.  Newer  techniques  and

algorithms have been developed for the performance of wide-scale RNA-seq

to detect novel gene fusions.38-40

MicroRNA sequencing

Transcription is the process by which individual genes are copied into

RNA  molecules  to  build  the  transcriptome.  The  translation  of  these  RNA

molecules into proteins constructs the proteome. The RNA content of a cell

includes coding and noncoding RNA.  The coding RNA, which makes up the

transcriptome, consists of messenger RNAs (mRNAs). The noncoding RNAs

primarily  include  ribosomal  RNAs  (rRNAs),  which  are  components  of

ribosomes  (the  structures  on  which  protein  synthesis  takes  place),  and

transfer RNAs (tRNAs), which are small molecules that are involved in protein

synthesis by carrying amino acids to the ribosome and ensuring that they

are linked together  in  the  order  specified by the  nucleotide  sequence of

the mRNA that is being translated into a protein. In addition to rRNAs and

tRNAs,  short  regulatory  non-coding  RNAs,  including  piwi-associated  RNAs,

endogenous  short-interfering  RNAs,  and  microRNAs  (Figure  1),  have
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received  significant  attention  due  to  their  role  as  regulators  of  gene

expression.

Regulation by microRNAs 

Over the past decade, several studies have focused on revealing the

microRNA  (miRNA)  repertoire.80-83 These  small  non-protein-coding  RNA

molecules (18-25 nucleotides) are capable of controlling gene expression by

binding to mRNA targets, thus interfering in the final protein output. MiRNAs

have been recognized as major  regulators  of  biological  features including

proliferation,84,85 migration,86 and  apoptosis.87 MiRNA  profiling  has  been

successfully used to molecularly classify tumors,88,89 to assess the prognosis

of patients with different tumor types,90-92 and to predict the development of

resistance to treatments.93-95 MiRNAs and miRNA mimics are currently being

evaluated  in  clinical  trials  as  therapeutic  agents  (NCT02369198,

NCT01829971, NCT02580552). Intriguing data have emerged from the study

of circulating miRNAs. Studies show that miRNAs, encapsulated in exosomes,

are  released  from cells  and  can  be  detected  in  biological  fluids.96,97 The

noninvasive assessment of circulating miRNAs is an appealing approach for

disease monitoring and diagnosis. Several studies are investigating the role

of circulating miRNAs as cancer diagnostic and prognostic biomarkers.98

Noncoding RNA sequencing

In  addition  to  miRNAs,  gene  expression  profiling  can  reveal  other

molecular elements, including other noncoding RNAs. Noncoding RNAs are
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transcribed from non-protein-coding regions of the genome and have a wide

range of regulatory functions.99,100 Depending on their transcript size, they

are categorized as small (< 200 bp) or long noncoding RNAs (lncRNAs; > 200 

bp, up to ∼100 kb). Noncoding RNAs have been shown to play an important

role  in  cancer,  and  noncoding  RNA  expression  profiling  has  diagnostic,

prognostic,  and  predictive  value  in  patients  with  solid  and  hematologic

malignancies.36,101 Recent studies show that circulating noncoding RNA levels

in body fluids (eg, serum, urine) differ between individuals with and without

cancer.101-104 These  data  suggest  that  noncoding  RNAs  could  be  used  as

diagnostic biomarkers in cancer screening. Other investigators have shown

that  profiling  of  noncoding  RNAs  has  prognostic  utility  in  patients  with

cancer.36,101 Finally,  studies are currently  evaluating the role of  circulating

noncoding RNAs in predicting response or resistance to various treatments.

Preliminary data suggest that this approach might provide useful  insights

with  which  to  identify  patients  who  are  likely  to  have  a  response  to

therapy.105-108 The clinical appeal of the use of noncoding RNAs and miRNAs

as biomarkers is that they can be obtained noninvasively via liquid biopsies.

However, the clinical utility of these approaches has yet to be prospectively

defined and validated.  

Prognostic gene expression signatures

Several studies have evaluated the presence of prognostic biomarkers

through transcriptomic analysis. Gene expression signatures are alterations

in  the  expression  of  single  genes  or  sets  of  genes  with  a  validated
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association with disease prognosis, therapeutic benefit, or cancer diagnosis.

Despite  recent  technological  advances,  robust  molecular  prognostic

biomarkers are still lacking in clinical practice. As a result, there is a great

need to improve risk assessment in patients with cancer in order to identify

patients at high risk of recurrence or death. When identified, these patients

might be treated more aggressively or with different therapeutic strategies. 

To improve risk stratification, prognostic multigene assays have been

developed and validated in lung,109 breast,51,57,110 colon,111,112 and other tumor

types.113-117 These gene expression signatures provide prognostic information

independently of clinicopathologic features and have been shown to improve

the stratification of patients based on risk of recurrence. However, only a

few,  such  as  Oncotype  DX  in  breast  cancer,  are  recommended  in

international patient management guidelines for use in clinical practice to

predict  whether a patient  is  likely  to have a recurrence of  the disease.71

Future  studies  might  reveal  the  prognostic  value  of  additional  gene

expression signatures in different tumor types. 

Predictive gene expression signatures

Other studies have employed transcriptome analysis to identify gene

expression  signatures  that  can  predict  response  to  specific  cancer

therapies.118,119 However, only a small number of predictive signatures have

been validated in  prospective randomized clinical  trials.  Therefore,  only  a

few gene expression signatures with verified clinical validity are used in daily
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practice. For instance, the validated predictive models Oncotype DX is often

used in patients with hormone-receptor–positive, human epidermal growth

factor receptor type 2–negative, early-stage breast cancer to predict benefit

from adjuvant chemotherapy.71 It is critical that these signatures are robust,

highly reproducible, and validated in diverse populations beyond the tightly

controlled environment of clinical trials. 

Classification of cancer of unknown primary

Transcriptomics holds promise as an additional tool for the accurate

classification of cancer of unknown primary (CUP). Several investigators have

explored gene expression profiles and revealed biomarkers indicative of the

origin of the tumor in patients with CUP.52-56,120 In one study, transcriptome

analysis of 16 674 tumors corresponding to 22 tumor types revealed a 154-

gene expression signature that aided the identification of  tumor origin.120

Independent  validation of  the signature was successfully  performed using

9626  primary  tumors.  In  another  study,  a  cancer  type  classifier  was

developed  using  gene  expression  data  from  more  than  10  000  tissue

samples from 30 tumor types.56 The accuracy of the classifier was high (77%-

88%)  and varied  according  to  the  primary  tumor  type,  the  purity  of  the

tumor sample, and the site of tumor tissue (primary or metastatic). Finally,

computational  algorithms  have  been  employed  to  mine  RNA  expression

datasets and identify diagnostic classifiers.55 Gene expression profiling can

be incorporated into diagnostic algorithms for patients with CUP to increase

rates  of  accurate  classification  and  improve  understanding  of  patients’
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prognoses. However, in randomized trials, treating CUP according to tissue-

of-origin signatures did not effectively improve outcomes.121,122  

Assessment of tumor heterogeneity

Investigators exploring the intratumor heterogeneity of renal tumors

(primary and corresponding metastatic sites) demonstrated that tumors are

not  only  genomically  but  also  transcriptomically  heterogeneous.123

Specifically,  they  showed  that  gene  expression  signatures  suggestive  of

good and poor prognoses can be identified within the same tumor. Others

explored  tumor  heterogeneity  between  foci  of  multifocal  or  multicentric

invasive lobular breast carcinoma and observed heterogenous transcriptional

profiles in expression analysis of 730 genes.124 More recently, studies have

incorporated single-cell RNA-seq methods to explore tumor heterogeneity in

detail.59,125-127

Prediction of response to immuno-oncology

Despite unprecedented improvement in patient outcomes by the use

of immune checkpoint inhibitors, mechanisms of resistance significantly limit

the benefit from these treatments.  Several  genomic alterations are being

evaluated as predictive biomarkers for immunotherapy.128-132

In recent studies, RNA-seq and gene expression analysis have been

incorporated  to  predict  responsiveness  to  immunotherapy.  In  1  study,

analysis  of  the  genome  and  transcriptome  of  melanoma  tissue  samples

identified  biomarkers  that  predicted  response  to  anti-PD-1  therapy.133 In
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addition, transcriptomic profiles suggested that innate tumor resistance to

anti-PD-1  immunotherapy  was  associated  with  mesenchymal  and

inflammatory  tumor  phenotypes.133 In  a  study  of  metastatic  melanoma

tumors, gene expression profiling showed that tumors with  PTEN loss had

lower expression of inflammation-related genes, suggesting that  PTEN loss

could  be  associated  with  resistance  to  immunotherapy.134 Other  studies

identified gene expression profiles associated with response or resistance to

immunotherapeutic agents.135,136 Transcriptome analysis has also been used

to  study  how  the  tumor microenvironment  evolves  after  treatment  with

immunotherapy,137 as  well  as  tumor  immune  heterogeneity136 and  tumor

immune classification.138

Transcriptomic silencing

Gene expression silencing is a mechanism of transcriptional regulation

in mammalian cells. It is mediated by RNA interference (RNAi), in which a

small  noncoding RNA associates  with RNA-induced silencing complex and

degrades target mRNAs.139 Gene silencing is seen with exogenous (e.g., viral,

bacterial)  and endogenous  (e.g.,  transgene,  transposon)  sequences.  In

addition,  RNAi is  involved in the regulation of  gene expression and other

biologic processes. Transcriptomic silencing is used in combination with gene

expression profiling to identify novel biomarkers and therapeutic targets.140

For instance, in 1 study of 9873 prostate tissue samples, gene expression

profiling  revealed  295 genes  that  had high  mRNA expression  in  prostate

cancer  samples.  An  RNAi-based  cell  viability  assay  was  incorporated  to
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demonstrate  the  role  of  gene  silencing  in  prostate  cancer  cell  lines  and

silencing  of  a  candidate  gene  (ERGIC1)  led  to  inhibition  of  ERG  mRNA

expression  and  decreased  proliferation  of  ERG-positive  prostate  cancer

cells.140 These data suggested that ERG could be tested as a candidate drug

target. 

RNAi-mediated  gene  silencing  is  an  appealing  approach  for  use  in

cancer treatment because it can silence oncogenes and other driver genes

involved in cancer cell proliferation, the cell cycle, and tumor progression. In

this vein, clinical trials are currently evaluating the clinical benefit from the

use  of  short  interfering  RNA  (siRNA)-based  treatments  in  patients  with

cancer. PROTACT is a phase II  trial  assessing the clinical utility of siG12D

LODER in combination with chemotherapy in patients with locally advanced

pancreatic cancer (NCT01676259). In this study, SiG12D LODER, a miniature

biodegradable  polymeric  matrix  that  encloses  siRNAs  targeting  G12D-

mutated  KRAS,  is  implanted  in  the  tumor  via  endoscopic  ultrasound.

Published data from another phase I/IIa trial evaluating the administration of

SiG12D LODER as first-line treatment (in combination with chemotherapy) in

15  patients  with  locally  advanced  pancreatic  cancer  showed  that  this

therapeutic approach was safe and well tolerated.141 Another phase I trial is

evaluating  the  administration  of  a  liposomal  agent  consisting  of  siRNAs

against  EphA2  that  are  encapsulated  into  1,2-dioleoyl-sn-glycero-3-

phosphatidylcholine  liposomes  in  patients  with  advanced  cancer

(NCT01591356). Both trials are currently recruiting patients. 
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In  addition,  RNA-seq,  along  with  NGS, has  revealed  transcriptomic

silencing  of  DNA  mutations  in  advanced  cancers,  which  has  important

implications for resistance to targeted therapeutics. In a study of 45 patients

with  cancer,  86  pathogenic  DNA alterations  were  identified,  including  17

(19.8%) alterations that were not observed at the RNA level.142 Among these

patients,  31%  (14/45)  had  1  or  more  DNA  alterations  that  were  not

expressed at the RNA level.  Examples of genes that had pathogenic DNA

alterations not seen at the RNA level included ALK, KDR, and GNAS. On the

other hand, alterations involving other genes, including  TP53,  PIK3CA, and

FGFR3,  showed  100%  concordance  between  DNA  and  RNA. This  study

concluded that a significant number of patients had DNA alterations that are

silenced at the RNA level and that transcriptomic silencing merits additional

investigation as a mechanism of therapeutic resistance.

Interrogation of gene expression levels

Gene  amplification  has  frequently  been  described  as  a  mechanism

leading  to  carcinogenesis.  Even  though  gene  amplification  would  be

expected  to  correlate  with  overexpression,  there  are  cases  where  these

phenomena  are  not  associated.64 In  order  to  characterize  a  gene

amplification  as  a  “driver”  alteration,  overexpression  is  required.  Gene

expression  profiling  alone  or  in  combination  with  copy-number  variation

(CNV)  analysis  is  used  to  identify  candidate  driver  genes  for  molecular

therapeutic targeting.34,143,144 In one study, investigators analyzed gene CNV

and mRNA expression data from The Cancer Genome Atlas  project.  They
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identified 42 candidate cancer driver genes and validated their oncogenic

activity via siRNA knockdown.143 In another study, transcriptome and CNV

analysis enabled the identification of targetable molecular alterations as well

as  prognostic  and  diagnostic  biomarkers.34 Importantly,  some  studies

suggest that the variability in normal transcript levels between tissues and

between individuals means that cancer transcript expression levels must be

compared to their normal-tissue counterparts for accuracy.7 

Novel  bioinformatic  approaches  in  large  datasets  are  essential  for

exploring  and  describing  the  association  of  gene  amplification  and

expression with  mechanisms of  carcinogenesis.  Launched by the National

Institutes of Health in 2010, the Genotype-Tissue Expression (GTEx) Program

aims  to  explore  the  association  between  genetic  variants  and  gene

expression145 and consists of a tissue bank with multiple tissue samples for

each donor along with whole-genome and RNA-seq data from approximately

960 deceased adult donors. This Program provides publicly available data to

the  research  community,  which  investigators  can  use  in  studies  of

mechanisms of gene regulation,  genetic variation and its association with

gene expression and disease risk,  and novel  methods of  gene expression

analysis.145,146

Machine learning 

Machine learning, a subfield of artificial intelligence, has been playing

an increasingly  central  role  in  biomedical  and pharmaceutical  sciences,147

primarily owing to the need to develop new tools to analyze the influx of
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complex, heterogeneous, and multidimensional biological datasets. Machine

learning  approaches  can  be  used  to  detect  key  genomic  and  epigenetic

features that can help classify patients who may have different responses to

a drug.  For  this  purpose,  multiple  feature-selection algorithms have been

proposed,  including  filters  (e.g.,  Markov  blanket  filtering),  wrappers  (e.g.,

gradient-based-leave-one-out  gene  selection),  and  embedded  techniques

(e.g.,  block  diagonal  linear  discriminant  analysis).  Next,  a  variety  of

established machine learning algorithms, including artificial neural networks,

support  vector  machines,  and  decision  trees,  can  build  predictive  drug

response  models  based  on  the  features.  As  an  example,  a  multilayer

perceptron  neural  network  can  be  trained  to  generate  an  output  (e.g.,

whether the patient responds to targeted treatments) in response to a set of

input variables (e.g., genetic variations). Most recent developments focus on

deep  learning  methods,  a  subset  of  machine  learning  based  on  artificial

neural  networks.  Currently,  deep  learning  approaches  hold  significant

promise as they are capable of unsupervised learning using data that are

unstructured  or  unlabeled,148 potentially  addressing  some of  the  inherent

limitations of machine learning.149

Transcriptomics in clinical trials 

The  WINTHER  trial  was  one  of  the  first  studies  to  incorporate

transcriptional analysis, in addition to genomics, in order to match patients

with  solid  tumors  to  therapeutic  agents  (Table  1).7 WINTHER  was  an
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international clinical trial directed by the Worldwide Innovative Network for

Personalized Cancer Medicine (WIN Consortium) and involved centers in 5

countries.  The  rationale  for  the  trial  was  the  need  to  expand  the

identification  of  predictive  biomarkers  beyond  genomic  aberrations.

Therefore,  a  double  biopsy  of  tumor  (primary  or  metastatic)  and  normal

tissue from each patient was performed after study enrollment. Tissue was

used for DNA analysis by NGS of 236 cancer-related genes. In addition, the

study included gene expression analysis of matched tumor and normal tissue

pairs. Transcriptional data were evaluated for treatment selection if genomic

data generated no recommended treatment option. The selection of targeted

therapy  using  transcriptomic  analysis  occurred  in  a  stepwise  process  as

follows: gene expression analysis was performed on tumor tissue and paired

normal  samples  from  individual  patients.  Bioinformatic  analysis  was

performed, and the differential expression of these genes in tumor versus

analogous  normal  tissue  was  used  to  select  treatment.  Details  for  each

overexpressed or under-expressed mRNA were provided, including gene fold

changes,  expression  intensity,  and  type  of  molecular  abnormality.  Each

alteration was evaluated as a potential match with a targeted agent on the

basis of a knowledge database. The WINTHER database included information

on the gene expression “targeting” and efficacy of both registered drugs and

drugs  evaluated  in  clinical  trials.  Treatment  selection  was  based  on  the

recommendations  of  a  clinical  management  committee.  Finally,  the  trial

evaluated the use of an exploratory matching score. The score, which was
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calculated in a post hoc, blinded fashion, was derived by dividing the number

of molecular alterations that could be associated with a therapeutic agent by

the total number of alterations (for DNA analysis) or by adding the reciprocal

of the ranks of each matched drug received by the patient according to the

WINTHER algorithm (for RNA analysis). 

Of 303 patients who consented, 107 (35%) patients received 1 or more

agents  and were evaluable  for  analysis.  Patients  were heavily  pretreated

with a median of 3 prior therapies. Among the 107 evaluable patients, 15%

had stable disease for 6 months or longer, and 11% had partial or complete

responses.  Having 2  or  fewer previous therapies,  an Eastern Cooperative

Oncology Group (ECOG) performance status  of  0,  and a  higher matching

score were independently associated with longer progression-free survival.

ECOG  performance  status  of  0  and  a  higher  matching  score  were  also

associated  with  longer  overall  survival  on  multivariate  analysis.  The

WINTHER  trial  demonstrated  that  transcriptomic  analysis  can  be  an

indispensable  tool  for  the  navigation  of  treatment  in  selected  patients.

However, the analysis was complex and required bioinformatic expertise. 

Other  clinical  trials  focusing  on  pediatric  patients  have  matched

therapies to molecular alterations identified by transcriptomic analysis.32-34 In

1  study,  gene  expression  profiling  was  performed  in  20  patients  with

refractory  pediatric  sarcoma  to  identify  overexpressed  genes  and

deregulated  pathways  that  could  be  therapeutically  targeted.32 The

actionable  targets  most  commonly  identified  were  TOP2A  and  FGFR1
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upregulation. Nine of the 20 patients received a targeted therapy. Patients

who  received  targeted  treatments  had higher  overall  (P =  0.0014)  and

progression-free (P = 0.0011) survival rates compared to patients who did

not. 

The  Individualized  Therapy  for  Relapsed  Malignancies  in  Childhood

(INFORM) study used RNA sequencing in addition to whole-exome and low-

coverage whole-genome sequencing in prospectively recruited children with

high-risk relapsed or refractory malignancies.33 An expert multidisciplinary

panel  prioritized  the  identified  molecular  alterations  using  a  customized

prioritization algorithm. The algorithm used a 7-step priority scale, ranging

from “very low” to “very high,” based on the biological relevance, type of

alteration,  and  potential  druggability.  Investigators  created  an  internal

database comprising genes considered to be potential therapeutic targets.

Treatment was selected on the basis of physician choice. In the initial report

of 52 patients, candidate targetable molecular alterations were identified in

26 (50%) of the patients, 10 of  whom received the respective treatment.

Even though patients were heavily pretreated, clinical responses were noted.

The  investigators  recently  reported  updated  results  of  the  INFORM

study. Of 1,300 patients who were enrolled at 72 centers, 525 were included

in the analysis.150 A “very high-” or  “high-” priority  actionable target was

identified in 8% and 14.8% of patients, respectively. Patients who received

targeted  treatment  had  longer  progression-free  survival  compared  to

patients  who  received  non-targeted  therapy  (204.5  vs.  114  days,  P  =
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0.0095), although no difference was noted in overall survival between the 2

groups. Patients who received treatment matched to a “very high-” priority

target had higher time-to-progression ratios (time to progression before/time

to  progression  after  enrollment  in  INFORM)  compared  to  the  remaining

patients. 

The clinical utility of molecular analysis in pediatric tumors was also

demonstrated  in  the  Precision  in  Pediatric  Sequencing  (PIPseq)  Program

study.34 In this study, whole-exome and RNA sequencing were performed in

101 patients with solid and hematologic malignancies. Molecular alterations

(variant  calls,  copy  number  variations  [CNV],  fusions,  and  overexpressed

genes) were initially reviewed by a multidisciplinary molecular tumor board

comprising molecular pathologists, pediatric oncologists, medical geneticists,

bioinformaticians,  and  cancer  biologists.  The  final  report  included  the

following  clinically  relevant  alterations:  driver  mutations,  gain-  or  loss-of-

function  molecular  alterations  in  oncogenes and tumor suppressor genes,

respectively,  and  fusions  known  or  expected  to  be  oncogenic  drivers.

Investigators included “clinically meaningful” molecular alterations, used for

diagnosis,  prognosis,  treatment  (as  therapeutic  targets),  refinement  of  a

therapeutic plan, and/or health maintenance interventions. On the basis of

the level of evidence for clinical actionability,151 a tiered report of all clinically

relevant alterations was provided to the referring physician for  treatment

selection.  Transcriptomic  analysis  identified  diagnostic,  prognostic,  and

predictive molecular alterations in 37 (57%) of 65 patients. Overall, 15 (23%)
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patients received targetable therapeutic agents on the basis of sequencing

findings. These studies serve as proof of concept showing that the use of

comprehensive  gene expression  profiling  in  daily  practice  is  feasible  and

provides  useful  diagnostic,  prognostic,  and  predictive  data.  Targeted

therapeutic  agents  can  be  matched  to  molecular  alterations,  providing

clinical  responses  even  in  heavily  pretreated  patients.  Finally,  future

prospective trials validating the clinical utility of this approach are warranted

and should also address the cost, time burden, and inconsistent analysis of

transcriptomic data. Ongoing clinical trials are exploring the importance of

transcriptomics in cancer therapy. 

Challenges and limitations

The  main  challenges  associated  with  transcriptomic  analyses  are

related to the handling of tissue samples and the application of advanced

computational  methodologies.  For  example,  RNA-seq  protocols  include

sample preparation,  RNA isolation and selection,  and cDNA synthesis  and

sequencing  followed  by  bioinformatic  analysis.  Formalin-fixed,  paraffin-

embedded tissue samples can include RNA that is degraded, fragmented,152

or  contaminated.153 Contamination  caused  by  errors  during  sample

preparation  or  by  inadequate  equipment  sterilization  can  lead  to  the

presence  of  sequence  data  from  a  different  sample.  Additionally,  tumor

samples can be contaminated by normal cells that infiltrate or surround the

tumor.  Experimental  methods  (cell  sorting  or  laser  capture  micro-
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dissection)154 and bioinformatics algorithms aim to eliminate contamination

effects.155 Novel methods have been developed to address the issue of low

levels of RNA in archival tissue. Additionally, methodologic artifacts are often

encountered in transcriptome analysis and require careful assessment. 

Another challenge involves the application of advanced computational

methodologies. High-level bioinformatic infrastructure is required to conduct

complex analyses of profiling data.  For instance, in the WINTHER trial, RNA

analysis  required  the  systematic  development  of  an  algorithm  by

bioinformaticians.7 Therefore, the implementation of transcriptomic analysis in

clinical workflows may be more complicated than that of genomic analysis. In

addition, reproducibility issues need to be addressed. RNA profiling can be used

to compare tumor tissue with normal tissue from the same organ, such as in the

WINTHER trial;  however, some investigators believe that peripheral blood or

buccal swab samples could also be used for comparison. This difference may

introduce variability in the interpretation of the results. 

Overall,  investigators  who  used  transcriptomics  in  clinical  trials

developed  diverse  and  complex  algorithms  for  characterizing  the

actionability  of  molecular  alterations.7,33,34 Consequently,  the  use  of

transcriptomics in clinical practice is arduous and expensive. For instance, in

the INFORM study, the average cost per patient for the molecular analysis,

including tissue sample shipment, data processing and storage, labor, and

general costs, was approximately €7,000.33 The time from tissue processing

to start of analysis ranged from 0 to 112 days.33 Therefore, transcriptomic
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analysis  requires  significant  optimization,  validation  and  cost  decrease  in

order to be optimally implemented in clinical practice.  Standardization of

bioinformatic  analysis  through  expert  consensus  would  make  the  use  of

transcriptomic analysis in routine clinical practice more consistent.

Conclusions and future perspectives

Tumor genomic profiling approaches provide average signatures and a

snapshot of the tumor state at the time of biopsy but often do not reflect the

complete tumor biology, all tumor components, or the intrinsic heterogeneity of

individual cell populations. Innovative emerging techniques, including single-cell

transcriptome profiling technologies, will  improve our understanding of tumor

biology in individual patients and will provide a plethora of translational discovery

opportunities.59,125,156 However,  understanding  tumor  complexity  and

heterogeneity, as well as the dynamic expression of the genome, requires the

incorporation of several newer methodologies. The future of precision medicine

lies  in  the  integration  of  genomics,  transcriptomics,  proteomics,  and

epigenetics  in  order  to  fully  elucidate  tumor  immune and  -omic  profiles,

optimize  comprehensive  tumor  molecular  profiles,  and  inform  treatment

decisions.  By  focusing  on  the  role  of  transcriptomics  in  identifying

appropriate  targeted  therapies,  clinical  trials  can validate  and enrich  the

available data demonstrating that the use of transcriptomics can increase

the number of patients treated with matched targeted therapy and lead to

favorable outcomes, hence providing the next frontier for precision medicine.
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Table 1:  Examples of precision medicine trials using transcriptome analysis: Design and outcomes

Year
First/Last 
authors Trial name Trial type

No. of
pts

consen
ted

Proportion
of pts.

matched Biomarker(s) Outcome Institute(s) Comments
20197

Rodon/
Kurzrock

WINTHER Prospective, 
navigational

303 35% NGS, transcriptomics Higher matching scores 
correlated with longer PFS 
(P = 0.005) and OS (P = 
0.03)

5 countries 
(Spain, Israel, 
France, Canada, 
USA)

First trial on solid tumors
to include 
transcriptomics

201832

Weidenbusch
/
Burdach

PROVABES Prospective 20 45% Gene expression 
profiling

Matched treatment was 
associated with improved 
OS (P = 0.001) and PFS (P =
0.0011) 

Germany Refractory pediatric 
sarcomas

201633

Worst/ 
Fleischhack

INFORM Prospective 57 18% Whole-exome, RNA 
sequencing

Feasibility of use of 
comprehensive
molecular analysis to guide 
treatment

20 centers, 
Germany

Pediatric solid and 
hematologic 
malignancies

201634

Oberg/
Kung

PIPseq Retrospective 
review of 
prospectively 
recruited pts

101 16% Whole-exome, RNA 
sequencing

Potentially targetable 
genomic alterations were 
identified in 38/101 (38%) 
pts

Columbia 
University 
Medical Center, 
USA

Pediatric solid and 
hematologic 
malignancies

Abbreviations: NGS = next-generation sequencing, PFS = progression-free survival, OS = overall survival, pts = 

patients
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Table 2: Functional implications of transcriptomics

Implication Description Examples/References

Identification of 
therapeutic targets

Identify actionable molecular alterations 
using RNA-seq and navigate to therapy 
based on the result

WINTHER trial7,32-34

Detection of gene 
fusions

Detect a hybrid gene formed from 2 
different genes as a result of chromosomal 
rearrangements 

Targeted RNA-seq for fusion gene 
detection37-41

Transcript 
annotation

Discover novel transcripts Annotating genomes42,43

Regulation by 
miRNA sequencing

Explore the role of miRNA in mRNA 
regulation 

miRNA role in mechanisms of 
tumorigenesis and as prognostic and 
predictive biomarkers44-47

Influence of 
noncoding RNA 
sequencing

Explore the role of noncoding RNA 
molecules in mRNA regulation

Noncoding RNA molecules as 
diagnostic, prognostic, and predictive 
biomarkers36,48

Use of prognostic 
gene expression 
signatures

Identify gene expression signatures used 
to assess patient prognosis 

Oncotype DX,49,71 MammaPrint50,51

Use of predictive 
gene expression 
signatures

Identify gene expression signatures used 
to assess the benefit from treatments

Oncotype DX49,71 

Identification of 
tissue of origin for 
cancer of unknown 
primary (CUP)

Identify the primary tumor site using gene 
expression profiling

Transcriptome-based prediction of 
primary tumor in patients with CUP52-

56,120

Understanding of 
tumor 
heterogeneity

Use gene expression profiling to identify 
intrinsic cancer subtypes

Tumor classification into subtypes57-59
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Interrogation of 
biomarkers for 
immuno-oncology

Use immune cell profiling to explore 
mechanisms of immune escape and 
identify immune cell phenotypes

Transcriptomics in cancer 
immunotherapy60-62,157,158

Silencing of the 
transcriptome 

Understand genomic alterations that are 
silenced at the transcript level

Identification of discrepancies 
between DNA molecular alterations 
and RNA expression and effect on 
therapeutic resistance142

Silencing may also be exploitable for 
therapeutic purposes

Interrogation of 
expression levels

Understand differences between amplified 
and expressed genes

Gene amplification is not always 
associated with increased gene 
expression64
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Figure legend

Figure  1.  Noncoding  RNAs.  The  role  of  noncoding  RNAs  in  cancer

diagnosis, prognosis, prediction of response to cancer therapy and disease

monitoring  is  currently  under  investigation.  MicroRNAs  (miRNAs)  are

noncoding  RNAs  that  play  an  important  role  as  regulators  of  gene

expression. A primary miRNA transcript  is  cleaved by the microprocessor

complex Drosha-DGCR8 in the nucleus. The resulting pre-miRNA is exported

from the nucleus. In the cytoplasm, Dicer cleaves the pre-miRNA hairpin to

its  mature  length.  The  mature  miRNA  is  loaded  into  the  RNA-induced

silencing  complex  (RISC),  where  it  guides  RISC  to  silence  target  mRNA

through mRNA degradation or translational repression.
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