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Efficient numerical schemes for multiscale crowd dynamics with

emotional contagion

Li Wang∗ Martin Short † Andrea L. Bertozzi ‡

September 1, 2015

Abstract

In this paper, we develop two efficient numerical methods for a multiscale kinetic equation
in the context of crowd dynamics with emotional contagion [2]. In the continuum limit, the
mesoscopic kinetic equation produces a natural Eulerian limit with nonlocal interactions. How-
ever, such limit ceases to be valid when the underlying microscopic particle characteristics cross,
corresponding to the blow up of the solution in the Eulerian system. One method is to couple
these two situations – using Eulerian dynamics for regions without characteristic crossing and
kinetic evolution for regions with characteristic crossing. For such a hybrid setting, we provide
a regime indicator based on the macroscopic density and fear level, and propose an interface
condition via continuity to connect these two regimes. The other method is based on a level set
formulation for the continuum system. The so-derived level set equation shares similar forms
as the kinetic equation, and it successfully captures the multi-valued solution in velocity, which
implies that the multi-valued solution other than the viscosity solution should be the physi-
cally relevant ones for the continuum system. Numerical examples are presented to show the
performance of these new methods.

1 Introduction

Multiscale phenomena find applications in a broad range of scientific problems such as gasses
out of thermodynamic equilibrium, turbulence in fluids, and radiative transfer with variational
collision rate. In most of these situations, the majority of the domain can be characterized by
the macroscopic model, except in some small regions where microscopic effect are important such
as near the boundaries or shock layers. Moreover, the macroscopic model gives the most efficient
description, as it resides in physical space and requires the lowest computational cost; compare
this to the mesoscopic kinetic model that resides in phase space, and the microscopic model that
records the evolution of each individual. Therefore, it is desirable to use the macroscopic model
whenever possible, and to restrict the use of the kinetic model to only those locations where it is
necessary.

To this aim, domain decomposition technology has been widely explored, especially in the context
of neutron transport with a macroscopic diffusion limit [20, 19, 1, 38], the Boltzmann equation with
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a Eulerian or Navier-Stokes limit [5, 28, 27], and the hyperbolic relaxation system with multiple
relaxation times [25, 11]. At the same time, a hybrid scheme has gained popularity in multiscale
kinetic equations as well for its automatic detection of different regimes; consult [15, 12, 13] and
also [18] for a recent extension to better regime indicator and higher order coupling.

In this paper, we consider the contagion dynamics of panicking, moving crowds modeled in [2],
whose kinetic description in one dimension takes the form

ft + (qf)x = γ ((q − q∗)f)q , (1.1)

where f(t, x, q) is the probability density depending on time t, position x, and local fear level q.
The quantity q∗(t, x) is the “average” fear level for location x at time t, and is computed as the
mean fear level of individuals weighted by their distance from x:

q∗(t, x) =

∫ ∫
κ(|x− y|)f(t, y, q)qdqdy∫ ∫
κ(|x− y|)f(t, y, q)dqdy

.

Here κ(r) is the interaction kernel that decays with r and integrates to one. The continuum limit
of (1.1) reads

ρt + (ρq̃)x = 0, (ρq̃)t +
(
ρq̃2
)
x

= γρ(q∗ − q̃) (1.2)

under the mono-kinetic distribution assumption (which will be specified later). Here ρ(t, x) and
q̃(t, x) are the macroscopic density and bulk fear defined as

ρ(t, x) =

∫
f(t, x, q)dq, ρq̃(t, x) =

∫
f(t, x, q)qdq. (1.3)

The continuum equation (1.2) can be considered as a pressureless Euler equation augmented with a
nonlocal alignment that acts as a regularization. There exists a critical threshold above which the
system admits a global smooth solution [2, 37], which leads to a flocking in the long time limit for
initial data with compact support [37]. Such critical threshold phenomenon is typical for nonlocal
PDE, see for example [33] for a scalar conservation law. It is also shown in [2] that if the initial
data is below a threshold, the solution has finite time blow up, which in analogy with the agent
based model means the particle characteristics can cross. In this case, the continuum model fails
and the kinetic model is necessary.

We develop here a hybrid method where a kinetic solver is switched on wherever the macroscopic
description ceases to be valid. The microscopic and macroscopic variables are linked through the
local equilibrium. However, unlike the Boltzmann equation with its hydrodynamic limit whose
local equilibrium is a well-defined Maxwellian, the equilibrium here is a delta function in the
velocity space, which makes any regime indicator that depends on it very sensitive to the way the
delta function is approximated. To this end, we propose a uniform indicator that works for both
transitions from kinetic to continuum and continuum to kinetic. It depends on the distance of q̃
and q∗ that follows an asymptotic property of (1.1). A threshold on the magnitude of ρ is also
placed to avoid mislabeling near the center of the shock.

On the other hand, since the failure of the continuum system lies in the blow up of density
that comes from the formation of a shock in fear, it is desirable to design a scheme which is able
to capture the multi-valued fear instead of the viscosity solution. This is also suggested by the
particles system, as crossing of particle characteristics implies a multi-valued fear level. The study
of numerical methods for computing multi-valued solutions is pervasive in different contexts, such
as [26, 23, 16, 9, 10] and references therein. The methods basically fall into two categories: one is a
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particle method and the other is a level set method. The particle method is easy to implement and
free of numerical dissipation, but designing a robust recovery method of the point values from its
particle approximation is a challenging task, and the computational cost is sometimes very high (in
our case it is O(N2) with N being the number of particles). Here we take the level set formulation,
and derive a level set equation for computing the multi-valued fear level. To compute the density,
we derive another evolution equation based on a new function, which follows the same spirit as in
[24]. This level set equation is of similar form as the kinetic equation, but a local level set method
can be utilized to significantly reduce the computational cost in phase space.

The rest of the paper is organized as follows. In the next section we give a brief review of the
contagion dynamics and provide a simple derivation to link the different levels of model hierarchy.
Section 3 is devoted to the hybrid algorithms and contains the regime indicator, interface condition,
and discretization. In Section 4, we develop a level set formulation for the continuum system, and
in Section 5, we present several numerical examples to show the performance of these two schemes.
Finally, the paper is concluded in Section 6.

2 Contagion dynamics with continuum limit

In this section, we briefly review the contagion dynamics in one dimension wherein the particle
velocity is proportional to its fear level (we use fear and velocity interchangeably from now on),
and provide a formal relationship between different levels of models. More precisely, the agent
based model reads

dxi
dt

= qi,
dqi
dt

= γ(q∗i − qi), q∗i =

∑N
j=1 κi,jqj∑N
j=1 κi,j

, (2.1)

where xi(t) and qi(t) are the position and fear level for each particle, and κi,j = κ(|xi − xj |)
is parametrized by an interaction distance R that characterizes the space dependent interaction.
Parameter γ describes the interaction strength and it may vary with particle for more general cases.

Now we present a formal derivation of the kinetic formulation via a mean field limit [7] and pass
to a continuum description under a mono kinetic velocity distribution assumption. Denote the
empirical distribution density

fN =
1

N

N∑
i=1

δ(x− xi(t))δ(q − qi(t)), (2.2)

then under the condition that the particles remain in a fixed compact domain (xi(t), qi(t)) ∈ Ω ⊂ R2

for all i and up to the time we consider, there exists a subsequence {fNk}k such that fNk converges
to f in the weak∗-limit in space and velocity and point-wisely in time as k →∞. Now consider a
test function ψ ∈ C1

0 (R2d), we have

d

dt

〈
fN , ψ

〉
=

d

dt

〈
1

N

N∑
i=1

δ(x− xi(t))δ(q − qi(t)), ψ

〉
=

1

N

N∑
i=1

ψxqi + ψqγ(q∗i − qi)

=
〈
ψxq, f

N
〉

+
γ

N

N∑
i=1

ψq

(∑N
j=1 κi,jqj∑N
j=1 κi,j

− qi

)
. (2.3)
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Further,

1

N

N∑
j=1

κ(|xi − xj |) =

〈
κ(|xi − xj |),

1

N
δ(y − xj)

〉
= κ ∗ ρfN (xi),

1

N

N∑
j=1

κ(|xi − xj |)qj =

〈
κ(|xi − xj |),

q

N

N∑
j=1

δ(y − xj)δ(q − qj)

〉
= κ ∗mfN (xi),

where we have used the definitions

ρfN (x) =
1

N

N∑
i=1

δ(x− xi), mfN (x) =

〈
q,

1

N

N∑
j=1

δ(x− xj)δ(q − qj)

〉
=

1

N

N∑
j=1

δ(x− xj)qj .

Therefore (2.3) reads

d

dt

〈
fN , ψ

〉
=
〈
ψxq, f

N
〉

+ γ

〈
fN ,

κ ∗mfN

κ ∗ ρfN
ψq − qψq

〉
,

which leads to

fNt + (qfN )x = γ
(
(q − q∗)fN

)
q
, q∗ =

∫ ∫
κ(|x− y|)f(y, q)qdqdy∫ ∫
κ(|x− y|)f(y, q)dqdy

(2.4)

via integration by parts. Then letting N →∞, we formally have the limiting kinetic equation

ft + (qf)x = γ ((q − q∗)f)q . (2.5)

To further reduce the dimension, we take the moments of (2.5), which enables us to write the
evolution of the macroscopic quantities: the mass density ρ(t, x) and bulk fear level q̃(t, x) defined
in (1.3), and pressure P (t, x) given by

P (t, x) =

∫
(q − q̃)2f(t, x, q)dq. (2.6)

The resulting continuum equation reads

ρt + (ρq̃)x = 0, (ρq̃)t +
(
ρq̃2 + P

)
x

= γρ(q∗ − q̃). (2.7)

Now we assume that the particle distribution is mono-kinetic in velocity space, i.e.,

f(t, x, q) = ρ(t, x)δ(q − q̃(t, x)), (2.8)

then the pressure vanishes and (2.7) is rewritten as

ρt + (ρq̃)x = 0, (ρq̃)t + (ρq̃2)x = γρ(q∗ − q̃), q∗ =

∫
κ(|x− y|)ρ(y)q̃(y)dy∫
κ(|x− y|)ρ(y)dy

, (2.9)

which can be considered as a pressure-less Euler equation with a nonlocal alignment. Note that, at
least formally, in the limit of zero interaction radius and infinite interaction rate, that is, γ → ∞
and R → 0, system (2.9) reduces to the classical pressureless Euler equation modeling sticky
particles in gas dynamics [6, 3], whose solution admits a δ−singularity that has been well-understood
analytically [22, 8, 3, 31, 32, 36] and numerically [4]. Here in (2.9), the nonlocal alignment can be
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considered as a regularization to the δ−singularity and may lead to a uniformly bounded solution
for any time T under some appropriate assumption [33]. Consequently, the momentum equation in
(2.9) is equivalent to the following non-conservative form

q̃t + q̃q̃x = γ(q∗ − q̃). (2.10)

For smoothed Riemann initial data, the readers are refereed to [2] for two formal theorems regarding
the critical threshold behavior of the solutions. The more detailed analysis of system (2.9) is still
lacking.

To end this section, we would like to mention the interesting results in [34] for self-organized
dynamics, whose model in one dimension is the same as ours. In that paper, the authors focus on
the long-time behavior (or so-called flocking behavior) that characterizes a long time “equilibrium”
when all particles form into one cluster with the same speed. On the contrary, in this paper we
are interested in capturing the transient behavior, especially when the particle characteristics can
cross, whose long time behavior is not flocking. Moreover, we would like to treat different kinds of
initial data, not just those with compact support as is considered in [34] (in analogy with the agent
based model, compact support means a finite number of agents).

3 Hybrid scheme via kinetic formation

The high dimensionality makes the kinetic equation expensive to compute, while the continuum
system fails to capture the multi-value solution in the presence of the crossing of characteristics.
It is therefore desirable to construct a hybrid scheme that automatically becomes a kinetic solver
whenever the particles tend to cross and stays as a macroscopic solver when particles are kept a
certain distance away.

3.1 Regime indicators

Our first task is to provide a formal justification of the mono-kinetic distribution that links the
kinetic equation (2.5) with continuum system (2.9). Consider a space homogeneous toy model

ft =
1

ε
[(q − q∗)f ]q ,

∫
R
f(0, q)dq = 1, (3.1)

where q∗ is any constant. The following proposition highlights the relaxation of the kinetic solution
f towards the mono-kinetic distribution (2.8) at the fast ε time scale.

Proposition 1. Let f(t, q) > 0 be the solution to the initial value problem of the space homogeneous
equation (3.1). Assume f(t, q) decays faster than 1

|q|2 as |q| → ∞. Then f converges to δ(q − q̃(t))
and δ(q − q∗) formally as t→∞, where q̃ =

∫
f(t, q)qdq. Therefore, q̃(t)→ q∗.

Proof. Denote the variance

F(t) =

∫
R

(q − q̃(t))2f(t, q)dq, (3.2)

then

dF
dt

=

∫
R

(q − q̃)2ft + 2(q̃ − q)q̃tfdq =

∫
R

(q − q̃)2ftdq =
1

ε

∫
R

(q − q̃)2[(q − q∗)f ]qdq

= −2

ε

∫
R

(q − q∗)(q − q̃)fdq = −2

ε

∫
R
q(q − q̃)fdq,
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where the second and last equalities use the fact that
∫
R qfdq = q̃, and the forth one uses integration

by parts. Notice that∫
R
q2fdq −

∫
R
qq̃fdq =

∫
R
q2fdq

∫
R
fdq −

(∫
R
fqdq

)2

≥ 0

thanks to the Cauchy-Schwartz inequality, we have dF
dt ≤ 0. As a matter of fact, we have

dF
dt

= −2

ε

∫
R
q(q − q̃)fdq = −2

ε

∫
R

(q − q̃)2fdq = −2

ε
F ,

thus F → 0 as t → ∞, and thus the equilibrium solution is f = δ(q − q̃). Similarly, let G(t) =∫
R(q − q∗)2f(t)dq, then

dG
dt

=

∫
R

(q − q∗)2ftdq =
1

ε

∫
R

(q − q∗)2 [(q − q∗)f ]q dq = −2

ε

∫
R

(q − q∗)2fdq = −2

ε
G.

Hence f converges to δ(q − q∗), and together with the above result leads to q̃(t)→ q∗.

Now we return to the space inhomogeneous case

ft + qfx =
1

ε
[(q − q∗)f ]q , (3.3)

where similar arguments can apply to show

Proposition 2. Let f(t, x, q) > 0 be the solution to the initial value problem of the space inhomo-
geneous equation (3.3). Assume f(t, x, q) decays faster than 1

|q|2 as |q| → ∞. Then as ε tends to

0, we formally have f converging to ρ(t, x)δ(q − q∗(t, x)) and ρ(t, x)δ(q − q̃(t, x)) with ρ(t, x) and
q̃(t, x) defined in (1.3) and q∗(t, x) defined in (2.9).

Proof. The proof is similar to that in Proposition 1. Again denote

F(t, x) =

∫
R

(q − q̃(t, x))2f(t, x, q)dq, (3.4)

then

dF
dt

= −2

ε

∫
(q − q̃)(q − q∗)fdq −

∫
qfx(q − q̃)2dq

= −2

ε

∫
(q − q̃)2fdq −

∫
qfx(q − q̃)2dq

= −2

ε
F −

∫
qfx(q − q̃)2dq.

Thus in the limit ε → 0, we have F = 0. Therefore, the dependence of f on q is a delta function
δ(q− q̃(t, x)). Then by conservation of mass, we have f → ρ(t, x)δ(q− q̃(t, x)). The convergence of
f toward ρ(t, x)δ(q − q∗(t, x)) similarly follows.

The above propositions provide insight on the situation wherein continuum system (2.9) is a
good approximation to the kinetic model (2.5), that is, when γ is large enough. This is consistent
with Theorem 4 in [2]. Moreover, since q̃ approaches q∗ at the same time when f converges to the
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mono-kinetic distribution, it suggests a mechanism to label the solutions in different regimes. That
is, one can check

|q̃(t, x)− q∗(t, x)| > ε0 (3.5)

for every x. If it holds, then this point falls into the kinetic regime, otherwise it is labeled as a
continuum point. A reasonable choice of ε0 is

ε0 = max
x
|q∗(0, x)− q̃(0, x)|. (3.6)

Notice however, when the continuum model is no longer valid and q̃(x) is very different from q∗(x),
there could still be q̃(x) = q∗(x) at some points (such as their intersection). Therefore, to avoid
mislabeling such points as continuum regime, we propose another criteria to accompany (3.5) :

ρ(x) > ρmax. (3.7)

This means that if the density is beyond a threshold, which in analogy with the agent based model
means two particles are too close, we need to switch on the kinetic solver. Here the choice of ρmax

is problem dependent. The indicator (3.5) (3.7) will be used for both the transition from kinetic to
continuum or continuum to kinetic regimes.

Remark 3. Since the mono-kinetic distribution ρ(t, x)δ(q−q̃(t, x)) can be considered as a local equi-
librium, a natural criteria from kinetic to continuum would be ‖f(t, x, q)−ρ(t, x)δ(q−q̃(t, x))‖q < ε1
for some small constant ε1. However, one can only approximate the δ−function, which makes such
a measure very sensitive to the way we do the approximation. So, we will not use this criteria but
stick to (3.5) (3.7) for both transitions.

3.2 Space and velocity discretization

In this section, we summarize numerical discretization of both kinetic equation (2.5) and continuum
system (2.9), and postpone the interface condition to the next section. In fact, the choice of
discretization is not unique, and most shock capturing methods for hyperbolic systems will apply.

Divide the spatial and velocity domain into a number of cells [xj− 1
2
, xj+ 1

2
] and [qk− 1

2
, qk+ 1

2
],

where j, k ∈ Z. Each cell is centered at xj or qk with a uniform length ∆x or ∆q. Denote
fnj,k = f(tn, xj , qk), then a first order upwind scheme of (2.5) reads

∂tfj,k +
ηj+ 1

2
,k − ηj− 1

2
,k

∆x
+ γ

ξj,k+ 1
2
− ξj,k− 1

2

∆q
= 0, (3.8)

where

ηj+ 1
2
,k =

|qk|+ qk
2

fj,k +
qk − |qk|

2
fj+1,k

:= η+
j,k + η−j+1,k, (3.9)

ξj,k+ 1
2

=

∣∣∣q∗j − qk+ 1
2

∣∣∣+
(
q∗j − qk+ 1

2

)
2

fj,k +

(
q∗j − qk+ 1

2

)
−
∣∣∣q∗j − qk+ 1

2

∣∣∣
2

fj,k+1

:= ξ+
j,k + ξ−j,k+1. (3.10)

Here we have used edge-values for the velocity discretization [29] and qk+ 1
2

=
qk+qk+1

2 .
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To be consistent with the kinetic equation, we use a kinetic vector splitting method [14, 35, 21]
for the continuum system. That is, multiplying (3.8) by (1, q)T and integrate with respect to q, we
have

∂tUj +
Fj+ 1

2
− Fj− 1

2

∆x
= Sj , (3.11)

where

Uj = ( ρj , ρj q̃j )T , (3.12)

Fj+ 1
2

=

∫
(1, q)T

q + |q|
2

ρjδ(q − q̃j)dq +

∫
(1, q)T

q − |q|
2

ρj+1δ(q − q̃j+1)dq

=

(
q̃j + |q̃j |

2
ρj +

q̃j+1 − |q̃j+1|
2

ρj+1, q̃j
q̃j + |q̃j |

2
ρj + q̃j+1

q̃j+1 − |q̃|j+1

2
ρj+1

)T
:= F+

j + F−j+1, (3.13)

Sj =
(

0, γρj(q
∗
j − q̃j)

)T
. (3.14)

The extension to high resolution in space is straightforward using a slope limiter. More precisely,
denote

ηj+ 1
2
,k = η+

j+ 1
2
,k

+ η−
j+ 1

2
,k
, (3.15)

then

η+
j+ 1

2
,k

= η+
j,k +

∆x

2
σ+
j,k, σ+

j,k =
η+
j+1,k − η

+
j,k

∆x
ϕ

(
η+
j,k − η

+
j−1,k

η+
j+1,k − η

+
j,k

)
, (3.16)

η−
j+ 1

2
,k

= η−j+1,k −
∆x

2
σ−j+1,k, σ−j,k =

η−j,k − η
−
j−1,k

∆x
ϕ

(
η−j+1,k − η

−
j,k

η−j,k − η
−
j−1,k

)
, (3.17)

where ϕ is the slope limiter function such as the Van Leer function [29]

ϕ(θ) =
|θ|+ θ

1 + |θ|
. (3.18)

Similarly for the continuum system (3.11), the flux is computed as Fj+ 1
2

= F+
j+ 1

2

+ F−
j+ 1

2

, where

F±
j+ 1

2

are defined in the same manner as that in (3.16) (3.17). That is,

F+
j+ 1

2
,k

= F+
j,k +

∆x

2
σ+
j,k, σ+

j,k =
F+
j+1,k − F

+
j,k

∆x
ϕ

(
F+
j,k − F

+
j−1,k

F+
j+1,k − F

+
j,k

)
, (3.19)

F−
j+ 1

2
,k

= F−j+1,k −
∆x

2
σ−j+1,k, σ−j,k =

F−j,k − F
−
j−1,k

∆x
ϕ

(
F−j+1,k − F

−
j,k

F−j,k − F
−
j−1,k

)
. (3.20)

For kinetic equation (3.8), to construct a second order scheme in velocity, we add a flux limiter
[30]. Then (3.8) is modified as

fn+1
j,k = fnj,k −

∆t

∆x

(
ηn
j+ 1

2
,k
− ηn

j− 1
2
,k

)
− γ∆t

∆q

(
ξn
j,k+ 1

2

− ξn
j,k− 1

2

)
− γ∆t

∆q

(
Cn
j,k+ 1

2

− Cn
j,k− 1

2

)
. (3.21)
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Here Cj,k+ 1
2

is the corrector defined as

Cj,k+ 1
2

=
1

2
|sj,k+ 1

2
|
(

1− ∆t

∆q
|sj,k+ 1

2
|
)
W̃j,k+ 1

2
, (3.22)

where sj,k− 1
2

= q∗j −qk− 1
2
, Wj,k− 1

2
= fj,k−fj,k− 1

2
, and W̃j,k− 1

2
= Wj,k− 1

2
ϕ

(
W

j,k− 1
2

W
j,k− 1

2

)
. The subscript

k is k − 1 if sj,k− 1
2
> 0 and k + 1 if sj,k− 1

2
< 0. ϕ is again the VanLeer function (3.18).

3.3 Interface condition

This section is concerned with the connection between two cells of different type. Denote j = J
such that j < J is in the kinetic regime and j ≥ J is in the continuum regime, then we propose
the following interface condition.

• To compute fJ−1 via (3.8), we need to prescribe fJ at the last time step. Since fJ falls into
the continuum regime, this can be done simply by using the local equilibrium. Namely

fJ(q) = ρJδ(q − q̃J). (3.23)

• To compute ρJ and q̃J via (3.11), we need ρJ−1 and q̃J−1 from the last step. This is done by
taking the moments of fJ−1 thanks to the relationship (1.3). More precisely, we have

ρJ−1 =

∫
fJ−1(q)dq, ρJ−1q̃J−1 =

∫
qfJ−1(q)dq. (3.24)

Remark 4. This simple choice of interface condition is inspired by the fact that density and
macroscopic velocity should undergo a continuous transition. Similar conditions have been used in
[18] for rarefied gas dynamics. However, if we want to deal with the cases when γ has a discontinuous
or sharp transition in magnitude, different interface conditions may need to be used to take into
account the possible interface layer, and this is beyond the scope of the current paper.

Now the final algorithm is in order. At time tn, denote by Cn the collection of cells that are in
the continuum regime, i.e., [xj− 1

2
, xj+ 1

2
]j∈Cn is in continuum regime, and by Kn the collection of

cells in the kinetic regime, where Cn ∪Kn = X = {1, 2, ...Nx}. We have (ρnj , q̃
n
j ) for j ∈ Cn, and

fnj for j ∈ Kn.

• Compute q∗j for all j and q̃j , ρj for j ∈ Kn via a discrete version of (1.3).

• Find the set Kn+1 of all j such that |q∗j − q̃j | > ε0 or ρj > ρmax, which is the new kinetic

regimes. Then the new continuum regime is Cn+1 = X\Kn+1.

• For j ∈ Kn+1\Kn, compute fnj = ρjδ(q − q̃nj ), where δ is approximated using (5.1).

• Evolve (ρn+1
j , q̃n+1

j ) for j ∈ Cn from (3.11) and use interface condition (3.24) when necessary.

• Evolve fn+1
j for j ∈ Kn+1 from (3.8) and use interface condition (3.23) when necessary.
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4 A level set method

As explored in [2], the solution to the nonlinear hyperbolic system (2.9) often develops shocks in
finite time. Viscosity solutions selected by scheme (3.11)–(3.14) (or other shock capturing schemes)
are not appropriate in treating this particular dynamic. Instead, multivalued solutions that are
determined by the fear level and corresponding crossing waves are the physically relevant ones. In
this section, we develop a level set method that is capable of capturing the multivalued solution
for the continuum system.

Recall the continuum system

ρt + (ρq̃)x = 0, (4.1)

q̃t + q̃q̃x = γ(q∗ − q̃), q∗ =

∫
κ(|x− y|)ρ(y)q̃(y)dy∫
κ(|x− y|)ρ(y)dy

. (4.2)

First we form a level set function Φ(t, x, p) such that the multivalued q̃(t, x) can be realized as its
zero level set, i.e.,

Φ(t, x, p) = 0 at p = q̃(t, x) or Φ(t, x, q̃(t, x)) ≡ 0. (4.3)

The remaining derivation follows that in [9, 26, 24]. Taking the time derivative of (4.3), one has

∂tΦ + ∂pΦ∂tq̃ = 0,

which becomes ∂tΦ + ∂pΦ (−q̃q̃x + γ(q∗ − q̃)) = 0 thanks to (4.2). Then the level set equation in
the phase space follows

∂tΦ + ∂pΦ (−ppx + γ(p∗ − p)) = 0. (4.4)

Taking the spatial derivative of (4.3), one has ∂xΦ + ∂pΦ∂xq̃ = 0, thus

∂xq̃ = −∂xΦ

∂pΦ
. (4.5)

Plugging (4.5) into (4.4) leads to

∂tΦ + p∂xΦ + γ∂pΦ(p∗ − p) = 0, (4.6)

where p∗(t, x) depending on the density will be defined later (see (4.11)). For smooth initial data
q̃0(x), the initial condition for Φ is

Φ(0, x, p) = p− q̃0(x); (4.7)

while for discontinuous q̃0(x) such as Riemann initial data, Φ(0, x, p) should be chosen as the signed
distance function to the interface p = q̃0(x) [26]. Now, we need to derive the evolution equation
for density ρ. Since q̃ is multivalued, ρ can be multivalued too. Denote ρ(t, x) ≡ ρ̂(t, x, q̃(t, x)), as
ρ(t, x) solves (4.1), ρ̂ satisfies the following equation

∂tρ̂+ ρ̂∂xq̃ + q̃∂xρ̂+ ∂pρ̂ (∂tq̃ + q̃∂xq̃) = 0.

Then plug (4.5) and (4.2) into the above equation, we have

∂tρ̂+ p∂xρ̂+ γ(p∗ − p)∂pρ̂ = ρ̂
Φx

Φp
, (4.8)
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where we have again used p = q̃. Here the drawback of equation (4.8) is that Φp can be zero, which
makes its right hand side singular. Notice, however, that the physically relevant density should not
be multivalued, so, inspired by [24], we consider it to be the projection of its value in phase space
onto the curve Φ = 0, i.e.,

ρ̄(t, x) =

∫
ρ̂(t, x, p)δ(Φ(p))|Φp|dp. (4.9)

Similarly the total fear is defined as

Q̄(t, x) =

∫
pρ̂(t, x, p)δ(Φ(p))|Φp|dp, (4.10)

and thus

p∗(t, x) =

∫
(κ ∗ ρ̂) pδ(Φ(p))|Φp|dp∫
(κ ∗ ρ̂) δ(Φ(p))|Φp|dp

. (4.11)

Now, we define a new quantity

g(t, x, p) = ρ̂(t, x, p)|Φp(t, x, p)|. (4.12)

As always, we need to write down the evolution equation for g. To this end, taking the derivative
of (4.6) with respect to p, we obtain the following equation for Φp:

∂tΦp + p∂xΦp + γ(p∗ − p)∂pΦp = −Φx + γΦp. (4.13)

Then g defined in (4.12) solves

∂tg + p∂xg + γ(p∗ − p)∂pg
= |Φp| (∂tρ̂+ p∂xρ̂+ γ(p∗ − p)∂pρ̂) + ρ̂ (∂t|Φp|+ p∂x|Φp|+ γ(p∗ − p)∂p|Φp|)

= ρ̂
Φx

Φp
|Φp|+ ρ̂ (−Φx + γΦp) sgn(Φp)

= γρ̂|Φp| = γg (4.14)

where the second equality uses (4.8) and (4.13). The initial condition for g reads as follows

g(0, x, p) = ρ0(x)|Φp(0, x, p)|, (4.15)

and if Φ(0, x, p) takes the form (4.7), then g(0, x, p) = ρ0(x).

To summarize, one can solve (4.6) and (4.14) with initial conditions (4.7) and (4.15), respectively.
Then q̃ takes the zero level set of Φ(t, x, p), and ρ̄(t, x) and Q̄(t, x) are computed via

ρ̄(t, x) =

∫
g(t, x, p)δ(Φ(p))dp, Q̄(t, x) =

∫
pg(t, x, p)δ(Φ(p))dp. (4.16)

Remark 5. It is interesting to point out that g solves the same equation as the kinetic probability
density f , which suggests some similarity between the kinetic formulation and level set formulation,
as both of them lift the dimension of the problem by one and unfold the multiple values. In fact,
this relation has been observed in the literature of computing multivalued physical observables
for geometrical optics, such as [24, 17, 23]. The advantage of the level set approach is that the
high dimensionality from the phase space can be compensated for by using the local level set
method (consult e.g., [16]), which reduces the computational complexity to that comparable to a
computation in the physical space. By contrast, the kinetic formulation is amenable to the hybrid
construction in Section 3 thanks to its close relation with the macroscopic quantities.
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5 Numerical examples

We present several examples to validate our hybrid scheme and level set scheme in this section.
In what follows, we always take q ∈ [Lq1, Lq2] with Lq1 = 0, Lq2 = 3 and x ∈ [Lx1, Lx2] with
Lx1 = −50, Lx2 = 50. Let Nq and Nx be the number of points in q and x directions, respectively.
We assume Neumann boundary conditions in both q and x. The time step ∆t is chosen to satisfy
the CFL condition ∆t = 1

2 min{ ∆x
max(q) ,

∆q
γmax |q−q∗|}. The delta function in the kinetic and hybrid

scheme is approximated by

δ(q) ∼ E(q) =
1√
πR0

e
− q2

R2
0 , R0 = 0.04 (5.1)

when necessary. The interaction kernel we choose here takes the form

φ(x) =
1

x2 +R2

R

π
. (5.2)

For the level set method, equation (4.6) and (4.14) are discretized similarly to the kinetic equation,
and the delta function in computing the moments (4.16) takes the following approximation [24]

δη(φ(t, x, p)) =

{
1
2η

(
1 + cos |πφ(t,x,p)|

η

)
|φ(t, x, p)| ≤ η(t, x)

0 |φ(t, x, p)| > η(t, x),
(5.3)

where η(t, x) = 2 maxp(|φp(t, x, p)|, 1)∆p. Here p ∈ [Lq1, Lq2] with Lq1 = 0, Lq2 = 3.

5.1 Asymptotic property

We first check the asymptotic behavior of the solution in the spatially homogeneous case. Consider
equation ft = γ [(q − q∗)f ]q with non-equilibrium initial data f(0, q) = 3

4E(q − 0.6) + 1
4E(q − 1.2)

and a fixed q∗ = 1. The first three figures in Fig. 1 display the evolution of f(t, q) towards a
local equilibrium. We start with a non-equilibrium initial data and as times goes on f concentrates
on q∗. Fig. 1 on the bottom right presents the distance |q̃(t)− q∗| in time with γ = 1, 2, and 3
respectively, where we see that bigger γ gives faster convergence rate as implied in the proof of
Proposition 1.

Next we consider the spatially inhomogeneous case ft + qfq = γ((q − q∗)f)q with γ = 100 and
initial data

ρI(0, x) = sin
(
πx
10

)
+ 2, qI(0, x) = 1

2 (3− tanhx) ,
fI(x, q) = ρI(x)

(
1
4E(q − qI(x)− 0.5) + 3

4E(q − qI(x) + 0.3)
)
.

(5.4)

Fig. 2 shows the evolution of f(t, x, q). Initially fI(x, q) has two bumps in q for every x, as displayed
in the left plot of Fig. 2. As time evolves, f(t, x, q) starts to concentrate on q̃(t, x), as confirmed by
the right plot of Fig. 2 where the projection of f onto the (x, q) plane matches well with q̃(t, x).

5.2 Convergence test

In this section, we perform a convergence test to check that the interface condition proposed in
Section 3.3 will not violate the accuracy of the scheme. Consider the spatially inhomogeneous case
with smoothed Riemann initial data

ρI(x) ≡ 1, qI(x) =
1

2
(3− tanh(0.25x)) , fI(x, q) = ρI(x)E(q − qI(x)). (5.5)
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Figure 1: Solution to the spatially homogeneous equation (3.1) with non-equilibrium initial data
(see the upper left figure). The next two figures display the solution with time t = 1 and 3,
respectively. The dotted line in these three figures denotes q∗. The lower right plots the distance
|q̃(t)− q∗| versus time for γ = 1, 2 and 3.
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Figure 2: Plot of f(t, x, q) to the space inhomogeneous equation with initial data (5.4). Left: initial
configuration. Right: plot at time t = 0.05. Overlaid with the plot of macroscopic bulk fear q̃(t, x)
(dashed white line) at initial and final times.

We fix ∆q = 0.001, and take the space mesh size ∆x = 1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160 , respectively. In

each case, we choose the time step ∆t = 1
2 min{ ∆x

qmax
, ∆q

2qmaxγ
} to satisfy the CFL condition; here

13



qmax = max{q}. The output time is tmax = 0.1, and we check the error in l1 norm at t = tmax,

error∆x =‖ ξ∆x(t)− ξ2∆x(t) ‖l1 , (5.6)

where ξ can be f , ρ and Q. The results are collected in Fig. 3.
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Figure 3: Plot of relative error (5.6) versus mesh size ∆x. Here x ∈ [−50, 50], q ∈ [0, 3]. Left:
kinetic equation. Right: hybrid scheme with ρmax = 1.01, ε0 = maxx | ˜q(0, x)− q∗(0, x)|.

5.3 Riemann problem

In this section, we compare our hybrid scheme and level set method with the solutions to the
kinetic and continuum systems for relatively long times after the crossing of characteristics. Here
the initial density takes the form

ρI(x) =
ρL
2

(1− tanh(20x)) +
ρR
2

(1 + tanh(20x)) , (5.7)

with ρL = 2 and ρR = 1, and initial fear is chosen as

qI(x) =
1

2
(3− tanh(x)) . (5.8)

Our meshes are ∆x = 0.05, ∆q = ∆p = 0.01. We use a moving frame with velocity s =√
ρLqL+

√
ρRqR√

ρL+
√
ρR

= 1.5858 (the formula for the shock speed obtained in [2]). The results are gath-

ered in Fig. 4, where we compare the density ρ(t, x), multivalued velocity q̃(t, x), and averaged

velocity Q(t,x)
ρ(t,x) . For the continuum system, it immediately gives q̃ρ = Q, while for the kinetic equa-

tion and level set formulation, the density ρ(t, x) and total fear Q(t, x) are calculated via (1.3) and
(4.16), respectively. Here, a good agreement is observed among the kinetic system, hybrid scheme,
and level set method, while the continuum system fails to capture the correct dynamics in the
vicinity of the shock.

To better confirm that our hybrid scheme is able to detect different regimes automatically, we
consider the following initial condition

ρI(x) =
ρL
2

(1− tanh(20(x− 30))) +
ρR
2

(1 + tanh(20(x− 30))) , (5.9)

qI(x) =
1

2
(2.6− 0.8 tanh(x+ 25)− 0.6 tanh(x− 30)) (5.10)
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Figure 4: Solution to the Riemann initial data (5.5) (5.7) using the kinetic model, continuum
model, and hybrid scheme. Upper left: plot of macroscopic density ρ(t, x). Upper right: plot of
macroscopic fear q̃(t, x). Lower left: plot of the solution f(t, x, q) to the kinetic equation, overlaid
with the contour plot of the zero level set of Φ(t, x). Lower right: plot of f(t, x, q) using the hybrid
scheme, and the red dashed curve is q̃(x) in the continuum model. Here γ = 0.1, R = 0.1, and final
time is t = 10. For the hybrid scheme, we choose ρmax = 2.1 and ε0 = 0.0489 from (3.6).

with ρL = 2 and ρR = 1, which will produce a two shock solution. Again the parameters are as
follows: γ = 0.1, R = 0.1, final time t = 10, and for the hybrid scheme, ρmax = 2.1 and ε0 = 0.0299
from (3.6). Here we use a moving mesh with speed s = 1.6, which is the speed for the left shock.
With exactly the same grid, one sees in Fig. 5 that the solution from the continuum model is inferior
to the hybrid scheme or level set method, both of which are in good match with the solution to the
kinetic equation.

Kinetic Hybrid Level set Macroscopic

Example1 1458.7 504.7 1163.7 223.7

Example2 1509.9 525.5 1163.6 219.6

Table 1: Comparison of computational times (in seconds) for the above two examples. Example1
considers initial data (5.7) (5.8), and Example2 uses (5.9) (5.10); in all cases, ∆x = 0.05, ∆q =
∆p = 0.01, t = 10.
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Figure 5: Solution to the Riemann initial data (5.9) (5.10) using the kinetic model, continuum
model, hybrid scheme, and level set method. Top: plot of macroscopic density ρ(t, x). Middle:

plot of macroscopic fear q̃(t, x) = Q(t,x)
ρ(t,x) . Lower left: the solution f(t, x, q) to the kinetic equation,

overlaid with the contour zero of the level set method. Lower right: plot of f(t, x, q) using the
hybrid scheme, with the red dashed curve being q̃(x) in the continuum model.

Concerning the computational time for different schemes with the same meshes (∆x = 0.05,
∆q = ∆p = 0.01), the cost for the hybrid scheme is comparable to the macroscopic solver and
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almost 3 times faster than the full kinetic scheme. The level set method takes a longer time, but it
can easily be accelerated using a local level set method. Model details are presented in Table 5.3.
Here the implementation is in MATLAB and all the numerical results are obtained on a desktop
computer with 12 cores and 2.67GHz CPU.

6 Conclusion

We constructed two numerical schemes for crowd dynamics with emotional contagion. Here the
kinetic description provides better resolution than the macroscopic model whose viscosity solution
becomes incorrect when the characteristics at the particle level cross. However, because of the
high dimensionality, solving the kinetic equation is often expensive and sometimes unnecessary.
Our first approach is a hybrid method that connects a continuum solver with a kinetic solver.
The criteria that distinguishes two regimes is based on the macroscopic density and average fear
level. The interface condition is proposed according to the continuity of the macroscopic quantities.
Unlike previous research on hybrid schemes for kinetic and related problems, which focus on the
Boltzmann type equation with a regular distribution (Maxwellian) as an equilibrium, our method
here provides a new way to treat the singular (delta-like) equilibrium. As such types of equilibrium
emerge in many other contexts such as biological swarming and opinion dynamics, it is desirable to
apply our method to a broader scope. Our second approach is in the level set framework, which is
inspired by the observation that the crossing of characteristics for particles results in a multi-valued
solution in the fear for the continuum system. Although the so-derived level set equations live in
a higher dimension than the macroscopic system, they can be solved just around the zero level
set, which reduces the computational cost to that comparable to the macroscopic solver. Future
research would be on deriving a more systematic expansion of the solution so that we can perform
high order coupling. Rigorous convergence towards the monokinetic distribution as well as the
convergence rate is still lacking and would be an interesting project.

Acknowledgements: This work is funded by ARO MURI grant W911NF-11-1-0332 and NSF
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