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Abstract

Building on previous research of Chi and Chi (2022), the current paper revisits estimation in 

robust structured regression under the L2E criterion. We adopt the majorization-minimization 

(MM) principle to design a new algorithm for updating the vector of regression coefficients. Our 

sharp majorization achieves faster convergence than the previous alternating proximal gradient 

descent algorithm (Chi and Chi, 2022). In addition, we reparameterize the model by substituting 

precision for scale and estimate precision via a modified Newton’s method. This simplifies and 

accelerates overall estimation. We also introduce distance-to-set penalties to enable constrained 

estimation under nonconvex constraint sets. This tactic also improves performance in coefficient 

estimation and structure recovery. Finally, we demonstrate the merits of our improved tactics 

through a rich set of simulation examples and a real data application.

Keywords

Integral squared error criterion; MM principle; Newton’s method; penalized estimation; distance 
penalization

1 Introduction

Linear least squares regression quantifies the relationship between a response and a set of 

predictors. As such, it has been the most popular and productive technique of classical 

statistics. The growing complexity of modern datasets necessitates special structures on 

the vector of regression coefficients. A typical example is sparse regression for high-

dimensional data, where the number of predictors exceeds the number of responses. In 
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this setting, assuming the coefficient vector is sparse not only improves a regression model’s 

interpretability but also improves its prediction accuracy. The most popular vehicle for 

dealing with sparse regression is the least absolute shrinkage and selection operator (Lasso) 

(Tibshirani, 1996). Other examples of structured regression include isotonic regression 

(Barlow and Brunk, 1972), convex regression (Seijo and Sen, 2011), and ridge regression 

(Hoerl and Kennard, 1970).

Traditional structured regression estimates parameters by constrained least squares. 

Unfortunately, least squares estimates are extremely sensitive to outliers. A single outlier 

can ruin estimation accuracy. Consequently, robust structured regression has gained 

considerable traction in recent years. Numerous authors have contributed to the current 

body of techniques. To mention a few, Alvarez and Yohai (2012) propose a family of 

robust estimates for isotonic regression that replaces the least squares criterion with the 

M-estimation criterion (Huber, 1992). Blanchet et al. (2019) employ absolute error loss in 

robust convex regression. This is also an instance of an M-estimator. Nguyen and Tran 

(2012) suggest an extended Lasso method incorporating a stochastic noise term to account 

for corrupted observations in robust sparse multiple regression. Alfons et al. (2013) add a 

Lasso penalty to the least trimmed squares (LTS) loss to produce a robust sparse estimator 

that trims outliers by effectively minimizing the sum of squared residuals over a selected 

subset. Lozano et al. (2016) adopt the minimum distance criterion to design a log-scaled 

loss function and propose the minimum distance Lasso method for robust sparse regression. 

Other robust sparse regression methods can be found in Wang et al. (2007); She and Owen 

(2011); Wang et al. (2013).

The above works investigate robust structured regression on a case-by-case basis. Yang et 

al. (2018) develop a family of trimmed regularized M-estimators with a wider focus but 

with the need to select the degree of trimming. Recently, Chi and Chi (2022) derive yet 

another general framework for robust structured regression that simultaneously estimates 

regression coefficients as well as a precision parameter, which plays the same role as 

the trimming parameter in Yang et al. (2018). Chi and Chi (2022) use the L2E criterion 

(Scott, 1992) to quantify goodness-of-fit and a convex penalty to enforce structure. Their 

algorithmic framework solves the corresponding optimization problem by block descent. 

Although the computational framework presented in Chi and Chi (2022) is general, there is 

room for some nontrivial improvements. First, the proposed proximal gradient algorithm for 

updating both the regression coefficients and the precision parameter at each block descent 

iteration can be slow to converge. Second, the box constraint on the precision parameter 

introduces two additional hyper-parameters that must be specified. Finally, while Chi and 

Chi (2022) focused on convex penalties and constraints, the framework that they introduced 

is not inherently limited to convex options and warrants extension to important nonconvex 

alternatives that impose desirable structures.

The limitations in Chi and Chi (2022) just discussed motivate the current paper and its 

new contributions. First, we derive a majorization-minimization algorithm to accelerate 

the estimation of the regression coefficients. Second, we reparameterize the precision 

parameter to eliminate the box constraint. A simple one-dimensional approximate Newton’s 

method quickly solves the resulting smooth unconstrained problem for updating precision. 
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Finally, we demonstrate improved statistical performance by imposing nonconvex penalties. 

Specifically, we adopt distance-to-set penalties to improve estimation accuracy subject to 

structural constraints. These improvements do not compromise robustness.

The rest of this paper is organized as follows. In Section 2, we review the L2E criterion, 

the majorization-minimization (MM) principle, and distance penalization. In Section 3, we 

set up the optimization problem for robust structured regression under the L2E criterion. In 

Section 4, we introduce strategies that improve the estimation techniques of Chi and Chi 

(2022). In Sections 5 and 6, we provide a rich set of simulation examples and a real data 

application to demonstrate the empirical performance of our new algorithms. We end with a 

discussion in Section 7.

2 Background

2.1 The L2E Criterion

Although traditionally used in nonparametric estimation, the L2E criterion, also known 

as the integrated squared error (ISE), can be exploited in parametric settings for robust 

estimation. Suppose the goal is to estimate a density function f (x | θ), where the true 

parameter θ∗ is unknown. The L2E criterion seeks to estimate θ by minimizing the L2 

distance between f (x | θ) and f (x | θ∗); thus

θ = argminθ f(x ∣ θ) − f x ∣ θ∗
2dx

= argminθ f(x ∣ θ)2dx − 2 f(x ∣ θ)f x ∣ θ∗ dx + f x ∣ θ∗
2dx .

(1)

The third integral in formula (1) does not depend on θ and can be excluded from the 

minimization. The second integral is the expectation of f (x | θ) and can be approximated by 

an unbiased estimate, namely its sample mean. Therefore, an approximate L2 estimate of θ 
is

θL2E = argminθ f(x ∣ θ)2dx − 2
n i = 1

n
f xi ∣ θ , (2)

where n denotes the sample size. The L2E represents a trade-off between efficiency and 

robustness. It is less efficient but more robust than the maximum likelihood estimate (MLE) 

(Scott, 2001; Warwick and Jones, 2005). Chi and Chi (2022) discuss in detail how the L2E 

estimator imparts robustness in structured regression.

2.2 The MM Principle

The majorization-minimization principle (Lange et al., 2000; Lange, 2016) for minimizing 

an objective function h(θ) involves two steps, a) majorization of h(θ) by a surrogate function 

g(θ | θk) anchored at the current iterate θk and then b) minimization of θ g θ ∣ θk  to 

construct θk+1. The surrogate function g(θ | θk) must satisfy the two requirements:
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ℎ θk = g θk ∣ θk , tangency  (3)

ℎ(θ) ≤ g θ ∣ θk  for all θ, domination.  (4)

Under these conditions, the iterates enjoy the descent property h(θk+1) ≤ h(θk) as 

demonstrated by the relations

ℎ θk + 1 ≤ g θk + 1 ∣ θk ≤ g θk ∣ θk = ℎ θk ,

reflecting conditions (3) and (4). Ideally, the MM principle converts a hard optimization 

problem into a sequence of easier ones. The key to success is the construction of a tight 

majorization that can be easily minimized. In some problems it is possible to construct a 

sharp majorization within a limited class of majorizers. Figure 1 depicts a sharp quadratic 

majorization that is best among all quadratic majorizations that share the same tangency 

point. Sharp majorization accelerates the convergence of a derived MM algorithm (de 

Leeuw and Lange, 2009). In practice, majorization can be done piecemeal by exploiting the 

convexity or concavity of the various terms comprising the objective.

2.3 Distance Penalization

To estimate a parameter vector θ subject to a set constraint θ ∈ C, it is often convenient to 

employ a squared Euclidean distance penalty (Chi et al., 2014; Xu et al., 2017). For a closed 

set C, the penalty is defined as

1
2dist(θ, C)2 = min

β ∈ C
1
2 θ − β 2

2 . (5)

The beauty of this penalty is that it is majorized at the current iterate θk by the spherical 

quadratic

1
2 θ − PC θk 2

2, (6)

where PC(θ) denotes the Euclidean projection of θ onto C (Bauschke and Combettes, 2011). 

When C is both closed and convex, PC(θ) consists of a single point. For nonconvex sets, 

PC(θ) sometimes consists of multiple points. When PC(θ) is single valued, the distance 

penalty (5) has gradient θ − PC(θ)

The proximal distance method of constrained optimization minimizes the penalized 

objective ℎ(θ) + ρ
2dist(θ, C)2 (Xu et al., 2017; Keys et al., 2019). The tuning constant ρ 

controls the trade-off between minimizing the loss h(θ) and satisfying the constraint θ ∈ C. 

Under suitable regularity conditions, the constrained solution can be recovered in the limit 

as ρ tends towards infinity (Chi et al., 2014; Keys et al., 2019). Therefore, a large value 

of ρ, say 108, is chosen in practice to enforce the constraint. The MM principle suggests 
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majorizing the distance penalty by the spherical quadratic (6) and applying the proximal 

map θk + 1 = proxρ−1ℎ PC θk  to generate the next iterate. The proximal distance principle 

applies to a wide array of models, including sparse regression, nonnegative regression, and 

low-rank matrix completion. It is accurate in estimation and avoids the severe shrinkage 

of Lasso penalization with well-behaved constraint sets (Xu et al., 2017). Landeros et al. 

(2020) extend distance penalization to fusion constraints of the form Dβ ∈ C involving a 

fusion matrix D such as a discrete difference operator. Although the advantages of proximal 

maps are lost, this extension brings more constrained statistical models under the umbrella 

of distance penalization.

3 L2E Robust Structured Regression

Consider the classical linear regression model y = Xβ + τ−1ϵ, where y ∈ ℝn is the response 

vector, X ∈ ℝn × p is the design matrix of predictors, and ϵ ∈ ℝn is the noise vector with 

independent standard Gaussian components. The regression coefficients β ∈ ℝp and the 

precision τ ∈ ℝ+ are the parameters of the model. Collectively, we denote the parameters by 

θ = β⊤, τ ⊤
. The density of the ith response yi amounts to

f yi ∣ θ = τ
2πe− τ2ri

2

2 ,

where ri = yi − xi
⊤β is the ith residual. A brief calculation shows that equation (2) gives rise to 

the L2E loss

ℎ(θ) = f y ∣ θ 2dy − 2
n i = 1

n
f yi ∣ θ = τ

2 π − τ
n

2
π i = 1

n
e− τ2ri

2

2 . (7)

Structured regression introduces set constraints on the regression coefficient vector β. 

Consequently, L2E aims to solve the constrained optimization problem

min
β ∈ ℝp, τ ∈ ℝ+

ℎ β, τ , subject to β ∈ C. 
(8)

For example, C = β ∈ ℝp:β1 ≤ β2 ≤ ⋯ ≤ βp  leads to a robust isotonic regression problem. 

Sparsity can be imposed directly by taking C = β ∈ ℝp: β 0 ≤ k  for some positive integer 

k or indirectly by taking C = β ∈ ℝp: ∥ β ∥1 ≤ t  for t > 0. Alternatively, we can rewrite 

problem (8) as the non-smooth optimization problem

min
β ∈ ℝp, τ ∈ ℝ+

ℎ β, τ + ϕ β ,
(9)

where the penalty ϕ(β) is either the 0/∞ indicator of the constraint set C denoted by ιC β  or 

a better behaved but still non-smooth substitute such as the Lasso. Although we emphasize 
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structured regression, the formulations (8) and (9) also include unstructured multivariate 

regression where C = ℝp and ϕ(β) ≡ 0.

Solving problem (8), or equivalently solving (9), is challenging for two reasons. First, both 

problems are nonconvex owing to the nonconvexity of the L2E loss (7). Second, the penalty 

term ϕ(β) may be non-differentiable. Fortunately, the block gradients of the L2E loss with 

respect to β and τ, ∇βℎ(β, τ) and ∂
∂τ ℎ β, τ , are Lipschitz. This key property motivates a block 

descent algorithm (Chi and Chi, 2022) that alternates between reducing the objective with 

respect to β and τ, holding the other block fixed. Chi and Chi (2022) also impose the bounds 

0 < τmin ≤ τ ≤ τmax < ∞ on τ.

An appealing property of block descent is that the objective function is guaranteed to 

decrease at each iteration. Chi and Chi (2022) apply proximal gradient descent to decrease 

the objective in each block update. Because the proximal gradient updates are based on 

a loose loss majorization, the algorithm is slow to converge. To ameliorate this fault, we 

propose new strategies for updating β and τ in the next section.

4 Computational Methods

4.1 Updating the Regression Coefficients

Consider the problem of updating the regression coefficients β. Because the contribution 

−e−τ2ri
2/2 to the L2E loss (7) is differentiable and concave with respective to ri

2, we can 

exploit the concave majorization

f(u) ≤ f uk + f′ uk u − uk

in the form

−e−τ2ri
2/2 ≤ − e−τ2rki

2 /2 + τ2

2 e−τ2rki
2 /2 ri

2 − rki
2 (10)

around the tangency point rki
2 . By omitting irrelevant multiplicative and additive terms, this 

produces the surrogate function

f β ∣ βk, τ = 1
2 i = 1

n
e−τ2rki

2 /2 yi − xi
⊤β 2 = 1

2 y − Xβ 2
2

(11)

for the L2E loss (7), where rki = yi − xi
⊤βk is the ith residual at iteration k, y = W ky, 

X = W kX, and W k ∈ ℝn × n is a diagonal weight matrix with the ith diagonal entry e−τ2rki
2 /2.

The next proposition demonstrates that the surrogate (11) is the sharpest quadratic 

majorization in the residual variables ri. It does not claim that the majorization (11) is 

the sharpest multivariate quadratic majorization in the full variable β. Despite this fact, the 

majorization yields substantial gains in computational efficiency over the looser proximal 

gradient majorization pursued by Chi and Chi (2022).
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Proposition 4.1.—Let f (r) = −e−ar2 with a > 0. Then the symmetric quadratic function 

g(r) = − e−ark
2 + ae−ar2 r2 − rk

2  is the sharp quadratic majorizer of f (r).

Proof. Van Ruitenburg (2005) proves that a univariate quadratic function g(r) majorizing a 

univariate differentiable function f (r) and touching it at two points is sharp. In the present 

case, g(r) touches f (r) at the points r = ±rk. ⬜

For an L2E loss with penalty ϕ(β), the next MM iterate is

βk + 1 = argminβ ∈ ℝp 1
2 y − Xβ 2

2 + ϕ(β) .

In the setting of distance penalization with a fusion penalty, the surrogate reduces to the least 

squares criterion

1
2

y
ρPC Dβk

− X
ρD

β
2

2

,

which is amenable to minimization by the QR algorithm or the conjugate gradient algorithm. 

The computational complexity of the β update is dominated by this least squares problem. 

Indeed, computation of the current residuals, the matrix Wk, the product y, and the product 

X require, respectively, operation counts of O(np), O(n), O(n), and O(np). Updating β using 

proximal gradient descent requires similar steps. Evaluation of the proximal map of ϕ(β) 

reduces to penalized least squares with an identity design matrix. Hence, with a diagonal 

design matrix X, the computational cost per iteration of the current MM algorithm is 

essentially the same as that of the proximal gradient descent algorithm in Chi and Chi 

(2022). The numbers of iterations until convergence of the two algorithms are vastly 

different however. Additionally, the distance penalized MM algorithm is more flexible in 

allowing nonconvex and fusion constraints.

4.2 Updating the Precision Parameter

There are two concerns in updating τ, namely the slow convergence of proximal gradient 

descent and the presence of box constraints on τ. To attack the latter concern, we 

reparameterize by setting τ = eη for any real valued η. Because the stationary condition 

for minimizing the loss h(β, eη) with respect to η is intractable, we turn to a variant of 

Newton’s method. The required first and second derivatives are

∂
∂η ℎ β, eη = eη

2 π − eη
n

2
π i = 1

n
wi + e3η

n
2
π i = 1

n
wiri

2

∂2

∂η2 ℎ β, eη = eη
2 π + 4e3η

n
2
π i = 1

n
wiri

2 − eη
n

2
π i = 1

n
wi − e5η

n
2
π i = 1

n
wiri

4,
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where wi = e−e2ηri
2/2 and ri is the ith residual. The Newton increment only points down-hill 

when ∂2

∂η2 ℎ β, eη  is positive. This prompts discarding the negative contributions and relying 

on the approximation

∂2

∂η2 ℎ β, eη ≈ d = eη
2 π + 4e3η

n
2
π i = 1

n
wiri

2 .

Our modified Newton’s iterates are defined by

ηk + 1 = ηk − tkdk
−1 ∂

∂η ℎ β, eηk ,

where tk is a positive stepsize parameter chosen via Armijo backtracking started at tk = 1. 

Little backtracking is needed because replacing ∂2

∂η2 ℎ β, eη  by the larger value d diminishes 

the chances of overshooting the minimum of h(β, eη).

Our modified Newton’s method enjoys the same computational complexity as proximal 

gradient descent. The dominant computational expense in updating η in both algorithms 

comes from computing the residuals ri. This step requires O(np) operations. Once all ri are 

updated, computing the derivatives only requires an additional O(n) operations. In summary, 

our new strategy converges in fewer iterations, removes the box constraint on τ, and enjoys 

the same computational cost per iteration as proximal gradient descent.

Algorithm 1 summarizes our algorithm for minimizing the penalized loss (9). As in Chi and 

Chi (2022), we set the maximum numbers of inner iterations for updating β and η to be Nβ 
and Nη, respectively, at each outer iteration. Extreme values Nβ and Nη tend to slow overall 

convergence. In our simulation studies, we set Nβ = Nη = 100. In the algorithm the notation 

W+ signifies that W depends on the previous inner iterate β+.
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Algorithm 1 Block descent with MM and approximate Newton for problem (9) 

Initialize: β0 ∈ ℝp, τ0 ∈ ℝ+, Nβ, and Nη. 
1 : for k = 1, 2, ⋯ do  

2: β+ βk − 1

3:   for i = 1, ⋯, Nβ do  
4: y = W +y
5:  X = W +X

6: β+ = argminβ ∈ ℝp 1
2 ∥ y − Xβ ∥2

2 + ϕ(β)

7:  endfor

8:  βk β+

9: η+ log τk − 1

10: for i = 1, ⋯, Nη do

11:  η+ = η+ − tidi
−1 ∂

∂η ℎ βk, eη+

12:  endfor 

13:  τk eη+

  14: end for                                                                                                        

We close this section by stressing the importance of the weight matrix W+ in the success 

of L2E regression. The diagonal entry e−τ2r+i
2 /2 of W+ depends on the ith residual from 

the previous inner iterate β+ and downweights case i if its residual is large. The converged 

weights also conveniently flag outliers. We will exploit this bonus later in Section 6.

5 Numerical Experiments

To compare the estimation accuracy and computational efficiency of Algorithm 1 

(abbreviated MM) and proximal gradient descent (abbreviated PG), we consider isotonic 

regression and convex regression. To highlight the advantages of distance penalization over 

competing model selection methods, we consider sparse regression and trend filtering. For 

the sake of brevity, we relegate two of the examples to the supplement. Readers wishing to 

implement our version of L2E regression should visit the eponymous L2E R package (Liu et 

al., 2022) on the Comprehensive R Archive Network (CRAN).

5.1 Robust Isotonic Regression

Classical isotonic regression involves minimizing the least squares criterion

y − β 2
2 =

i = 1

n
yi − βi

2

subject to β belonging to the set C1 = β ∈ ℝn:β1 ≤ ⋯ ≤ βn . Independent standard normal 

errors are implicit in this formulation. Here the design matrix X = In, and the mean function 

of the model is monotonically increasing and piecewise constant. In the L2E version of the 

problem, we impose the 0/∞ penalty ϕ(β) = ιC1(β). The MM update of β succumbs to the 
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gpava function in the isotone R package (de Leeuw et al., 2010). As mentioned earlier, the 

MM β update enjoys the same per-iteration computational cost as the PG β update (Chi and 

Chi, 2022).

In our simulation, 1000 responses are generated by sampling points xi evenly from 

[−2.5, 2.5] and setting yi = xi
3 + si + εi, where the εi are i.i.d. standard normal deviates, 

and the si shift the underlying cubic signal. The responses define mean vector β ∈ ℝ1000. 

Outliers are introduced at consecutive responses by setting si = 14 for i = 251, 252, · 

· ·, 250+m, where m is the number of outliers; all other responses have si = 0. The 

shift of 14 makes the contaminated responses match the maximum observed value in the 

uncontaminated responses. Each method is tested over 100 replicates and initialized by β0 = 

y, τ0 = MAD(y)−1 for PG, and η0 = − log[MAD(y)] for MM, where MAD(y) is the reciprocal 

of the median absolute deviation of the responses.

Figure 2 displays boxplots of the MSEs and run times in seconds in fitting the isotonic 

regression model under different numbers of outliers. We include the results from ordinary 

least squares (abbreviated LS) as a baseline. As anticipated, the estimation accuracy of LS 

degrades as the number of outliers increases. In contrast, both MM and PG exhibit much 

more modest increases in estimation error, with MM less sensitive to outliers than PG. Note 

that the optimization problems of PG and MM differ slightly. We put a box constraint on 

τ for PG but reparameterize τ as τ = eη for MM to eliminate the box constraint on τ. For 

sufficiently large box constraints, the solutions to the two problems coincide, but differences 

in the algorithms will still produce different algorithm iterate trajectories. As discussed 

in Section 3, the L2E optimization problem is nonconvex and may exhibit multiple local 

minima. Thus, PG and MM may converge to different minima and produce different MSEs.

The right panel of Figure 2 shows the significant speed advantage of MM over PG. Run 

times of PG increase rapidly as the number of outliers increases, while run times of MM 

are far more stable against the number of outliers. MM is less computationally efficient than 

LS, which avoids computation of case weights. The difference in run time between PG and 

MM is directly attributable to MM’s reduced number of outer iterations until convergence. 

For the same experiment, Figure 3 depicts boxplots of the mean number of outer block 

descent iterations, the mean number of inner iterations for updating β per outer iteration, 

and the mean number of inner iterations for updating τ per outer iteration. Note that in our 

implementation, we terminate the inner iterations for updating β and τ if certain convergence 

conditions are satisfied. Readers may refer to the L2E package for details. It may seem 

paradoxical that PG takes fewer inner iterations than MM to update β. However, recall that 

PG is fitting a less snug surrogate than MM. PG also takes far more inner iterations than 

MM to update τ. This reflects the speed of our approximate Newton method.

The robust isotonic simulations also illustrate the ability of L2E regression to handle outliers 

under various contamination levels. To explore this tendency, we fix the number of outliers 

at m = 100, vary the shifts si over the grid {2, 5, 8, 14, 20}, adopt the same initialization as 

the previous experiment, and run 100 replicates for each scenario. Figure 4 summarizes the 

estimation and computation performance of PG, MM, and LS under different contamination 
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levels. When the data are only slightly contaminated (si = 2), the two robust methods, PG 

and MM, fail to detect the outliers and achieve estimation accuracy comparable to LS. 

However, as the level of contamination si grows, the MSE of LS increases rapidly, while 

the MSE of MM behaves robustly and quickly declines. Interestingly, the MSE of PG 

decreases gradually as the shift grows. These results suggest that both PG and MM need 

a certain level of contamination to successfully detect outliers. MM is more responsive to 

the contamination than PG even if the data are modestly contaminated. This is yet another 

advantage of MM over PG.

The right panel of Figure 4 illustrates how PG’s run times increase as the contamination 

level increases. The run times of MM, however, are stable with contamination level and 

consistently shorter than those of PG, though longer than those of LS. Figure 5 explains the 

difference in the computational performance between PG and MM. The numbers of inner 

iterations for updating β and τ for both PG and MM are insensitive to contamination level. 

MM’s number of outer block descent iterations is always small, while PG’s number of outer 

iterations increases. This difference explains the speed advantage of MM.

5.2 Robust Sparse Regression

Sparse linear regression minimizes the penalized least squares criterion

1
2 y − Xβ 2

2 + ϕ(β),

with ϕ(β) promoting sparsity. Typical choices of ϕ(β) includes the Lasso and the nonconvex 

MCP penalty (Zhang et al., 2010). In the L2E framework, each MM update solves a 

ϕ-penalized least squares problem. The ncvfit function in the R package ncvreg is ideal for 

this purpose (Breheny and Huang, 2011). In the distance penalty context, the constraint set is 

C2 = β ∈ ℝp: ∥ β ∥0 ≤ k , where the positive integer k encodes the sparsity level. The MM 

update of β relies on the proximal distance principle and reduces to least squares.

To shed light on the statistical performance of L2E regression with Lasso, MCP, and 

distance penalties, we undertake a small simulation study involving a sparse coefficient 

vector β = (1, 1, 1, 1, 1, 0, ⋯, 0)⊤ ∈ ℝ50 and a design matrix X ∈ ℝ200 × 50 whose independent 

entries are standard Gaussian deviates. The response y is simulated as y = Xβ + ϵ where 

components of ϵ are standard normal noises. We then shift the first m entries of y and the 

first m rows of X by 5 to produce observations that are outlying with respect to the responses 

and also high leverage with respect to the predictors. The number of outliers m is chosen 

from the grid {10, 20, 30, 50}. For the distance penalization, the ideal choice of the sparsity 

parameter k is 5. We employ five-fold cross-validation to select the tuning parameters for 

all three penalties. The sparsity level k for distance penalization is varied over the grid {3, 

5, 7, 9, 11, 13, 15}, and the penalty constant ρ is set to 108 to enforce the desired sparsity 

as discussed in Section 2.3. We initialize L2E estimation by setting β0 = 0 and η0 = − 

log[MAD(y)]. All performance metrics depend on 100 replicates. These metrics include: (a) 

estimation accuracy (measured by the relative error compared to the true β), (b) support 

recovery (measured by the F1 score), (c) the number of true positives, and (d) the number of 
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false positives. The F1 score (harmonic mean of precision and recall) accounts for both true 

and false positives and takes on values in [0, 1], with a higher score indicating better support 

recovery.

Figure 6 shows the performance of the Lasso, MCP, and distance penalties in robust sparse 

regression with the L2E loss under different numbers of outliers. Estimation degrades for 

all three methods as the number of outliers increases. Distance penalization consistently 

achieves a lower relative error than Lasso and MCP, except for m = 50, where all methods 

produce unacceptable estimates. In support recovery, distance penalization consistently 

delivers a much higher F1 score than Lasso and MCP. The two plots in the bottom row 

of Figure 6 highlight the difference in support recovery among the three methods. Lasso 

identifies the most true positives but suffers from the most false positives in each scenario. 

MCP selects fewer irrelevant variables compared to Lasso but misses some true positives. 

In contrast, distance penalization identifies a number of true positives comparable to Lasso 

while maintaining a much lower false positive rate.

In the second experiment, we compare the performance of the different analysis methods 

(Lasso, MCP, and distance penalization) under different noise levels. We fix the number 

of outliers at m = 20 and sample the precision parameter τ over the grid {0.3, 0.5, 1, 

1.5}. A small value of τ represents a high noise level. We use the rules of our first 

experiment to produce outliers, select tuning parameters, and initialize L2E estimation. 

Figure 7 summarizes our analysis results under different noise levels. As expected, the 

estimation errors of all three methods decrease as the value of τ increases. Distance 

penalization outperforms Lasso and MCP in estimation accuracy when the noise level is 

relatively low τ ≥ 1 . In addition, distance penalization compares favorably with Lasso 

and MCP in F1 score across different noise levels. The plots of true and false positives 

provide detailed insight into the support recovery of the different methods. All methods 

achieve a larger number of true positives as the value of τ increases, with Lasso leading the 

others. However, Lasso is plagued by an increasingly large number of false positives as the 

value of τ increases. Distance penalization achieves a smaller number of false positives, is 

less sensitive to the noise than Lasso and MCP, and stands out among the three methods 

in support recovery. This sparse regression example emphasizes the flexibility of L2E 

regression in accommodating different penalization methods and the advantages of distance 

penalization in both estimation accuracy and structure recovery.

6 Real Data Application

To illustrate the application of L2E regression in unconstrained robust multivariate 

regression and its effectiveness in detecting outliers, we now turn to the Hertzsprung-Russell 

diagram data of star cluster CYG OB1 investigated in Rousseeuw and Leroy (2005); Scott 

(2001); Scott and Wang (2021). This data set includes two variables collected from 47 stars 

in the direction of Cygnus. The predictor variable is the logarithm of the temperature at the 

star’s surface, and the response variable is the logarithm of its light intensity. Though small, 

this data set is commonly used in robust regression owing to its four known outliers – four 

bright giant stars observed at low temperatures (Vansina and De Greve, 1982).
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In this example, the penalty term ϕ(β) = 0. Therefore, the MM update of β reduces 

to a standard least squares problem solvable by many efficient algorithms. In our 

implementation, we invoke the lm function in the R package stats (R Core Team, 2020). 

We initialize β0 = 0 and η0 = − log[MAD(y)]. The left panel in Figure 8 displays the fitted 

L2E regression model. In comparison with ordinary least squares, L2E successfully reduces 

the influence of the four outliers and fits the remaining data points well. The converged 

weights wi = e−τ2ri
2/2, where ri denotes the i-th L2E residual, serve as a diagnostic tool to 

detect outliers. As discussed in Section 4, a small weight suggests a potential outlier. The 

histogram of the logarithm of weights in the right panel in Figure 8 clearly identifies the 

four outliers. These are colored in red in the scatter plot in the left panel. As a practical 

matter, we tried different initializations of β in L2E estimation. Different initial values could 

potentially lead to different estimates. A direct and simple way to compare initializations is 

to rank their converged L2E losses (7). In this real data example, the neutral initialization β0 

= 0 yields the smallest L2E loss.

7 Discussion

Because robust structured regression is resistant to the undue influence of outliers, it is 

valuable in many noisy data applications. The L2E computational framework (Chi and 

Chi, 2022) for robust structured regression has the advantage of allowing the simultaneous 

estimation of regression coefficients and precision. This paper retains the overall strategy 

of block descent but introduces several non-trivial improvements. We introduce an MM 

algorithm based on a sharp majorization to accelerate convergence. Each MM update of β 
reduces to penalized least squares and can be readily handled by existing regression solvers. 

Although this plug-and-play tactic already formed part of the proximal gradient algorithm 

in Chi and Chi (2022), our tight majorization leads to better results. We also reparameterize 

precision to avoid box constraint and update the new precision parameter by an approximate 

Newton’s method. The computational cost per iterate remains the same, but again the 

number of iterations until convergence drops considerably. Finally, we extend penalization 

to distance and nonconvex penalties. These steps lead to better statistical performance and 

model selection.

We demonstrate the merits of our refined computational framework through a rich set of 

simulation examples, including isotonic regression, convex regression, sparse regression, 

and trend filtering, and a real data application to unconstrained multivariate regression. 

Given the same penalties, our simulation results show that the new algorithms outperform 

the original ones in both computational speed and estimation accuracy. Distance penalties 

to sparsity sets, in particular, show competitive advantages in both estimation accuracy and 

model selection. The real data example illustrates the convenience of using the refined 

framework to identify outliers. Overall, the innovations introduced here make L2E an 

attractive tool for robust regression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An example of sharp quadratic majorization. The quadratic g1(θ | θ0) offers the sharpest 

majorization of the loss h(θ) and falls below every looser quadratic majorization g2(θ | θ0).

Liu et al. Page 16

Technometrics. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Simulation results for isotonic regression under different numbers of outliers. Boxplots 

depict the MSE (left panel) and run time (right panel) over 100 replicates.
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Figure 3: 
Boxplots of the mean number of outer block descent iterations (left panel), the mean number 

of inner iterations for updating β per outer iteration (middle panel), and the mean number 

of inner iterations for updating τ per outer iteration (right panel). All plots refer to the 

experiment summarized in Figure 2.
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Figure 4: 
Simulation results for isotonic regression under different contamination levels. Boxplots 

depict the MSE (left panel) and run time (right panel) over 100 replicates.
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Figure 5: 
Boxplots of the mean number of outer block descent iterations (left panel), the mean number 

of inner iterations for updating β per outer iteration (middle panel), and the mean number 

of inner iterations for updating τ per outer iteration (right panel). All plots refer to the 

experiment summarized in Figure 4.
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Figure 6: 
Simulation results for sparse regression under different numbers of outliers. Average 

performance based on 100 replicates for each method.
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Figure 7: 
Simulation results for sparse regression under different noise levels. Average performance 

based on 100 replicates for each method.
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Figure 8: 
Fitted regression models from L2E and LS for the Hertzsprung-Russell Diagram Data (left 

panel). The four known outliers are successfully detected by the L2E according to the 

histogram of the resulting weights (right panel).
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