Lawrence Berkeley National Laboratory

LBL Publications

Title

Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles

Permalink https://escholarship.org/uc/item/3bm2j2fh

Journal Journal of Materials Chemistry A, 7(20)

2050-7488

ISSN

Authors Besli, Münir M Shukla, Alpesh Khushalchand Wei, Chenxi <u>et al.</u>

Publication Date 2019-05-21

DOI

10.1039/c9ta01720h

Peer reviewed

Journal of Materials Chemistry A

Thermally-Driven Mesopore Formation and Oxygen Release in Delithiated NCA Cathode Particles

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-ART-02-2019-001720
Article Type:	Paper
Date Submitted by the Author:	15-Feb-2019
Complete List of Authors:	Besli, Münir; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Shukla, Alpesh; Lawrence Berkeley National Laboratory, National Center of Electron Microscopy, Molecular Foundry Wei, Chenxi; University of Science & Technology of China; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource Metzger, Michael; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Alvarado, Judith; Lawrence Berkeley National Laboratory, Energy Technologies Area Boell, Julian; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Nordlund, Dennis; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource Schneider, Gerhard; Aalen University, Materials Research Institute Hellstrom, Sondra; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Johnston, Christina; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Christensen, Jake; Robert Bosch LLC Research and Technology Center North America, RTC2.4 Christensen, Jake; Robert Bosch LLC Doeff, Marca; Lawrence Berkeley National Laboratory, Liu, Yijin; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource Kuppan, Saravanan; Robert Bosch LLC Research and Technology Center North America, RTC2.4

SCHOLARONE[™] Manuscripts

Journal of Materials Chemistry A Materials for Energy and Sustainability Full paper submission

Journal of Materials Chemistry A is a weekly journal in the materials field. The journal is interdisciplinary, publishing work of international significance on all aspects of materials chemistry related to energy and sustainability. Articles cover the fabrication, properties and applications of materials.

2017 Impact Factor of *Journal of Materials Chemistry A*: **9.931** For more information go to <u>www.rsc.org/materialsA</u>

The following paper has been submitted to *Journal of Materials Chemistry A* for consideration as a **Full paper**.

The Editorial Board stress a very high quality and novelty standard is needed for acceptance.

Journal of Materials Chemistry A wishes to publish original research that demonstrates significant **novelty and advance**, either in the chemistry used to produce materials or in the properties/applications of the materials produced. Work submitted that is outside of these criteria will not usually be considered for publication. The materials should also be related to the theme of materials for energy and sustainability.

We ask referees to examine manuscripts very carefully, and recommend rejection of articles which do not meet our high novelty, quality and impact expectations. Please note that **the rejection rate for JMC A is currently ~80%** of submitted manuscripts. **Routine or incremental** work, however competently researched and reported, should not be recommended for publication if it does not meet our expectations with regard to novelty and impact.

It is the responsibility of authors to provide fully convincing evidence for the homogeneity and identity of all compounds they claim as new. Evidence of both purity and identity is required to establish that the properties and constants reported are those of the compound with the new structure claimed.

Thank you for your effort in reviewing this submission. It is only through the continued service of referees that we can maintain both the high quality of the publication and the rapid response times to authors. We would greatly appreciate if you could review this paper in **ten days**. Please let us know if that will not be possible.

Once again, we appreciate your time in serving as a reviewer. To acknowledge this, the Royal Society of Chemistry offers a **25% discount** on its books: <u>http://www.rsc.org/Shop/books/discounts.asp</u>. Please also consider submitting your next manuscript to *Journal of Materials Chemistry A*.

Best wishes,

Dr Sam Keltie Executive Editor Royal Society of Chemistry

Professor Anders Hagfeldt Deputy Editor-in-Chief EPFL, Switzerland **Professor Nazario Martin** Editor-in-Chief Complutense University of Madrid, Spain

*2017 Journal Citation Reports®, (Clarivate Analytics, 2018)

February 14th, 2019

Robert Bosch LLC 384 Santa Trinita Avenue Sunnyvale, CA 94085 USA Telephone +1 510 367 3553 Saravanan.Kuppan@us.bosch.co m www.bosch.us

Dear Editor,

Please find enclosed a manuscript entitled '**Thermally-Driven Mesopore Formation and Oxygen Release in Delithiated NCA Cathode Particles'** by Münir M. Besli, Alpesh Khushalchand Shukla, Chenxi Wei, Michael Metzger, Judith Alvarado, Julian Boell, Dennis Nordlund, Gerhard Schneider, Sondra Hellstrom, Christina Johnston, Jake Christensen, Marca M. Doeff, Yijin Liu and Saravanan Kuppan.

Presently, the challenges faced by batteries are twofold. Firstly, they are expected to possess high energy and power density for powering zero emission electric vehicles. Secondly, they are also expected to be inexpensive and, more importantly, safe for deployment in electric vehicles and consumer applications. Despite the increasing number of new cathode materials, layered Nirich oxides such as LiNi_{1-x-y}Co_xAl_yO₂ (NCA) is one of the most promising cathode materials. Although Ni-rich oxides like NCA (or NCM) show high reversible capacities, a significant drawback of these materials is their intrinsic instability in the delithiated (i.e., charged) state and the release of oxygen, especially at elevated temperatures. Additionally, this degradation phenomenon is accompanied with a phase change from the layered phase to the rock salt phase. Hence, a premise for safe operation of Li-ion batteries is to fully understand morphological changes and oxygen release happening upon thermal abuse of delithiated NCA materials.

With this in mind, this paper strives to exhibit the sophisticated thermo-mechanical interplay of the chemically delithiated NCA cathode. Using a variety of techniques reaching from thermogravimetric analysis combined with mass spectrometry (TGA-MS), temperature-controlled X-ray diffraction (T-XRD), hard and soft X-ray absorption spectroscopy (XAS), *in*-situ two-dimensional nanoscale full-field transmission X-ray microscopy (2D-FF-TXM), and focused ion beam milling scanning electron microscopy (FIB-SEM) we present a systematic approach to investigate the thermal decomposition, fracture generation, and oxygen evolution of chemically delithiated NCA particles upon heating. Furthermore, we observe, for the first time, numerous mesopores throughout the analyzed particles upon heating. Using a machine learning algorithm, we show, how intergranular cracks are changing upon mesopore creation.

We believe this work will be highly relevant to both the research community and industry. Our results suggest a complicated mechanism involving the development of mesopores, cracks, and phase transformation within chemically delithiated NCA particles upon thermal abuse.

Furthermore, our work reveals that oxygen evolution causes mesopores upon heating, creating a pathway for the evolving oxygen to be released from the bulk and surface, and act as a compensation for the internal pressure build up upon oxygen evolution. To the best of our knowledge, this has not been reported in the literature yet.

orted in the literature yet.

With these novel findings, and the fact that the performance of NCA is dependent on the materials structure and its chemistry, we trust that *Journal of Materials Chemistry A* would be the most appropriate platform for publishing this manuscript.

Sincerely yours,

Saravanan Kuppan

Thermally-Driven Mesopore Formation and Oxygen Release in Delithiated NCA Cathode Particles

Münir M. Besli^{a,b}, Alpesh Khushalchand Shukla^c, Chenxi Wei^d, Michael Metzger^a, Judith Alvarado^e, Julian Boell^a, Dennis Nordlund^d, Gerhard Schneider^{b,f}, Sondra Hellstrom^a, Christina Johnston^a, Jake Christensen^a, Marca M. Doeff^{e,*}, Yijin Liu^{d,*}, Saravanan Kuppan^{a,*}

^aRobert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, United States

^bDept. of Mech. Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany

^cNational Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

^dStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States

^eLawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, University of California, Berkeley, California 94720, United States

^fMaterials Research Institute, Aalen University, Aalen 73430, Germany

*Correspondence and requests for materials should be addressed to M.D. (mmdoeff@lbl.gov), Y.L. (liuyijin@slac.stanford.edu), and S.K. (saravanan.kuppan@us.bosch.com)

Key Words

NCA; cathode; lithium-ion battery; intergranular crack; transmission X-ray microscopy; chemical delithiation; mesopores; thermal stability

Abstract

The structural integrity of layered Ni-rich oxide cathode materials are one of the most essential factors that critically affect the performance and reliability of lithium-ion batteries. Prolonged battery operation often involves repeated phase transitions, builds up mechanical stresses, and could provoke thermal spikes. Such sophisticated chemo-thermo-mechanical interplay can cause performance degradation through structural disintegration of the cathode active materials (CAMs). Herein, we systematically investigate the thermal decomposition, fracture, and oxygen evolution of chemically delithiated Li_{0.3}Ni_{0.8}Co_{0.15}Al_{0.05}O₂ (NCA) particles upon heating from 25 °C to 450 °C using a number of advanced X-ray and electron probes. We observed a continuous reduction of the Ni oxidation state upon heating, as well as the release of oxygen from the NCA lattice that undergoes the thermally induced phase transformations. The release of oxygen also created numerous mesopores throughout the analyzed particles, which could significantly affect the chemical and mechanical properties of the electrode. In addition, intergranular and intragranular fracturing at elevated temperatures also contribute to the degradation of the NCA cathode under these conditions. Our investigation of the mechanical integrity at elevated temperatures provides a fundamental understanding of the thermally driven chemomechanical breakdown of the NCA cathode active materials.

Introduction

In order to enable high energy density and long cycle life batteries for electric vehicles or off-grid power storage systems, intensive research has been conducted on advanced and improved cathode materials. Among the vast number of novel cathode materials, layered Ni-rich oxides,

LiNi_{1-x-v}Co_xAl_vO₂ (NCA) or LiNi_{1-x-v}Co_xMn_vO₂ (NCM), in particular, are the most promising for nextgen Lithium-ion batteries (LIBs).¹ Despite their high capacities of 220 mAh/g and the potential to reach even higher capacities of > 250 mAh/g when cycled to 4.6 $V_{1,2,3}$ layered Ni-rich oxides still face some major limitations. A significant drawback of high Ni content layered oxides is their intrinsic instability in their delithiated state, which occurs because of the effect of cation mixing:⁴⁻ ⁹ The similar radii of Li ions (0.76 Å) and Ni²⁺ ions (0.69 Å) enable Li⁺/Ni²⁺ site exchange, e.g. the occupation of 3b Li⁺ layer sites by Ni^{2+,8} This lattice disordering leads to the obstruction of Li diffusion pathways through electrostatic repulsion by Ni cations^{10,11} and contraction of Li slabs,¹¹ ultimately resulting in reduced capacity, cycling instability, and limited rate capability.⁹ A further major drawback of layered Ni-rich oxides in the delithiated state is the release of oxygen¹²⁻¹⁴ through reduction of Ni⁴⁺ in the delithiated material especially at elevated temperatures. In comparison to cathode materials with lower Ni content (e.g., NCM111), layered Ni-rich oxides (e.g., NCA, NCM523, 622 or 811) release more oxygen at lower onset temperatures accompanied with greater heat generation;^{15–17} thus, Ni-rich cathodes are thermally less stable.¹⁸ Several X-ray diffraction studies have shown that heat induced oxygen release in NCA and NCM takes place through structural changes of the material.^{19–21} The layered oxide (R3m) transitions first to a spinel (Fd $\overline{3}$ m) then to a rock salt (Fm $\overline{3}$ m) phase with rising temperature.^{17,19,22} More oxygen is released during the transition from spinel to rock salt than for the first phase change. It is important to note that, due to the hierarchically complex nature of the secondary particles, these phase transitions take place over a broad temperature range and co-exist within the particles with heterogeneous spatial distributions. Hence, it is of utmost importance to fully understand

morphological changes happening upon thermal degradation of delithiated NCA materials in order to enable a safe operation of lithium-ion batteries.

For this work, we systematically studied the morphological defects in secondary delithiated Li_{0.3}Ni_{0.8}Co_{0.15}Al_{0.05}O₂ (Li_{0.3}NCA) particles that have gone through a serious temperature excursions. Our comprehensive study employs thermogravimetric analysis combined with mass spectrometry (TGA-MS), temperature controlled X-ray diffraction (T-XRD), hard and soft X-ray absorption spectroscopy (XAS), in-situ two-dimensional nanoscale full-field (FF) transmission Xray microscopy (TXM), and focused ion-beam-scanning electron microscopy (FIB-SEM). It aims to simplify the multitude of simultaneous influences on the secondary NCA particle fracturing during electrochemical cycling by investigating only the isolated temperature effect on the materials' morphology while simultaneously analyzing structural changes, oxygen evolution, and oxidation state changes. Our experimental results suggest that the charged NCA cathode undergoes complex structural and chemical evolution at elevated temperatures, involving the development of microporosity, particle cracking, local phase transformation, and oxygen evolution. Such an interconnected chemo-thermo-mechanical interplay has bearing upon the performance of the materials under a variety of operating conditions, including, but not limited to thermal abuse.

Results and discussion

TGA-MS

Thermogravimetric analysis combined with mass spectrometry (TGA-MS) was carried out using chemically delithiated Li_{0.3}Ni_{0.8}Co_{0.15}Al_{0.05}O₂ powder (here referred to as Li_{0.3}NCA) in the absence

of any binder, carbon additive, or electrolyte. Electrode components other than the active material were excluded from our analysis to avoid complications from their contributions to the Li_{0.3}NCA thermal behavior and morphological changes. Figure 1 shows the heating profile from 25 °C to 450 °C (grey curve), the associated mass loss (black curve) and the evolution of O_2 , H_2O_1 , and CO_2 (red, blue, purple, respectively). Overall, the sample lost ~12 wt% of its initial mass during heating to 450 °C. The MS data reveals that the weight loss mainly coincides with the release of O₂. At the transition from 200 to 250 °C and 250 to 300 °C only minor quantities of O₂ and H₂O are released, which account for 1.5 and 2.0 wt% mass loss, respectively. The majority of O_2 gas is released at the transition from 300 to 400 °C. This major O₂ evolution corresponds to a weight loss of approx. 6 wt% of the sample mass, which can be easily quantified due to the absence of other mass signals in this temperature range. Various onset temperatures of significant oxygen release have been reported in the literature such as 130 °C for NCM811,¹⁷ 180 °C for charged Li_{0.33}NCA¹⁹ and around 200 °C for charged Li_{0.1}NCA.²³ Our results indicate an onset temperature for oxygen release of 200 °C for Li_{0.3}NCA. A high level of dryness of the investigated sample can be assumed, since the MS data shows no H₂O release at around 100 °C, which would be attributed to physisorbed water. It was shown previously that LiOH powder decomposes to Li₂O via 2 LiOH \rightarrow Li₂O + H₂O at 400 °C in Ar.²⁴ LiOH surface contaminants or –OH groups on NCA's oxide surface may, however, decompose at a lower temperature. Hence, the H₂O release at the 200 to 250 °C and 250 to 300 °C transitions could originate from LiOH impurities or –OH groups on the surface of the sample.²⁵ There are no quantifiable amounts of CO₂ released during heating to 450 °C. Li₂CO₃ was shown to decompose only at 700 °C.²⁴ Thus, it is not possible to make a statement about the presence of Li₂CO₃ impurities on the NCA surface.

Figure 1: TGA-MS data of Li_{0.3}NCA powder. Delithiated samples were heated to 300 °C in 50 °C steps with a 10 °C/min rate (grey). Temperature was hold for 10 minutes at each step. After

reaching 300 °C, samples were heated in 100 °C steps up to 450 °C. Sample mass loss (black) and evolution of H_2O , CO (or N_2), O_2 and CO_2 gases (blue, cyan, red, and purple) were monitored during the heating process.

Temperature controlled XRD

An *in-situ* temperature controlled XRD study was carried out to systematically investigate the absolute thermal behavior of delithiated NCA. T-XRD allows information to be obtained on the bulk structural changes during thermal stress. Figure 2 shows a series of T-XRD patterns of Li_{0.3}NCA continuously heated to 450 °C and subsequently cooled to 25 °C. No significant changes to the rhombohedral structure ($R\overline{3}m$) of delithiated NCA were detected below 150 °C, and the obtained diffraction patterns are in good agreement with XRD data reported in literature.^{19,26} Upon further heating, we observed a phase transition from the layered to the disordered spinel phase (R3m to Fd3m) starting at about 200 °C completed at about 250 °C. This phase transformation is indicated by the conjoining of the (108) and (110) peaks and decrease in the intensity ratio between the (003) and (104) peaks of the rhombohedral structure. These changes indicate that a significant number of cations (Ni, Co and Al) have migrated from the transition metal layer to the Li layer upon heating to about 250 °C. Subsequently, a second phase transitioning from the spinel to the NiO-type rock salt phase (Fd3m to Fm3m) takes place at temperatures above 250 °C as marked by the decrease in $(311)_s$ and $(511)_s$ spinel peak intensities. This phase transition is accompanied by a major oxygen loss, correlating with the biggest oxygen loss observed in our TGA-MS results (Figure 1). The intensities of the spinel phase peaks reached a maximum at about 300 °C, then declined to a very low level at 450 °C indicating that the spinel to rock salt phase transition continued until 450 °C under these conditions. This is in very good

agreement with the TGA-MS data since the majority of O₂ releases at an onset temperature of 300 °C. We observed a majority of rock salt phase with minor spinel phase present at 450 °C and after cooling to 25 °C.

Figure 2: Temperature controlled XRD patterns of $Li_{0.3}NCA$ powder upon heating to 450 °C. Li_{0.3}NCA powder was heated from 25 °C to 450 °C in 50 °C increments. At each increment, the temperature was held and XRD spectrum was collected. Visible peak ratio variations and shifts indicate a phase transition from layered (R3m) to spinel (Fd3m) and spinel to NiO-type rock salt (Fm3m).

Soft and hard XAS analysis

Soft X-ray absorption spectroscopy (XAS) probes the changes in the oxidation state of elements as a function of the depth and, hence, is a vital tool for understanding changes in the valence state of various elements within the surface and sub-surface region. The depth profiling from surface to sub-surface can be achieved by varying the detection modality, namely the electron and fluorescence yield. The smaller mean free path length of electrons offers surface sensitive information (Auger Electron Yield, ~2 nm (AEY), Total Electron Yield ~5 nm (TEY)); whereas, the larger escape depth of photons (Fluorescence Yield, ~50 nm (FY)) offers sub-surface details of the sample.²⁷ The transition metal L-edge spectra (Ni and Co) are based on dipole allowed transitions starting at the $p_{1/2}$ and $p_{3/2}$ energy levels into the empty 3d orbitals (eg^{*}). Due to spin-orbit coupling of the core hole, the L-edge spectrum is split into two well separated energy bands namely, the L₃ edge $(2p_{3/2})$ and the L₂ edge $(2p_{1/2})$. Furthermore, 2p-3d interactions and crystal field effects result in the splitting of these bands into multiplet structures. The shape, energy position, and branching ratio $(L_{3,high}/L_{3,low})$ of the multiplets contain information about the valence state, the spin state, and symmetry of the metal coordination of the samples. Therefore, any changes observed to the multiplet before and after the heat treatment process indicates the valence state changes during the heating process. Figure 3c shows the normalized Ni L-edge spectra obtained using sub-surface (FY) and surface (TEY) sensitive modes. A significant change was observed in the Ni L-edge spectrum before and after heat treatment. The calculation of $L_{3,high}/L_{3,low}$ ratios shows Ni valence reduction at both probing depths as depicted in Figure 3d. In order to quantify this reduction, we have measured several Ni containing oxide standards, namely NiO, NCM111, NCM622, NCM811 and NCA and linked the calculated L_{3,high}/L_{3,low} ratio to

their respective oxidation state (see supplementary Figure S1). After linear fitting of the ratios to the oxidation states, the resulting correlation allows us to estimate the oxidation state of Ni in $Li_{0.3}$ NCA heated to 450 °C using the calculated $L_{3,high}/L_{3,low}$ ratios of the TEY signals to +2.06. This indicates a very severe reduction of Ni in the layered oxide to the level of rock salt (NiO) and also suggest that there is probably not much Li in the rock salt structure. Figure 3b shows the normalized Co L-edge XAS spectra. In contrast to the Ni L-edge spectra, the TEY and FY modes show very minor changes, which illustrates that Co ions are less prone to reduce than the Ni ions during heating. However, a small peak that appears in the TEY and FY spectra for heat-treated Li_{0.3}NCA (marked with a plus sign) indicates slight reduction of Co³⁺ to Co²⁺. Figure 3a also shows the O K-edge spectra of the $Li_{0.3}$ NCA before and after heat treatment. The intense absorption peak around 527.2 eV is associated with the lattice oxygen (metal-oxygen bond) in the layered oxide (oxygen 1s \rightarrow metal 3d orbitals hybridized with O 2p). The broad peak features above 534 eV correspond to the O $2p \rightarrow Ni$ 4sp transitions and other empty orbitals in this energy region. The peak observed at 532.3 eV (marked with an asterisk) in the surface sensitive mode (TEY) is associated with Li₂CO₃, which is often found on surfaces of layered Ni-rich oxide materials.^{28,29} Since Li₂CO₃ is mostly found on the outmost surface of the particle, the corresponding peak appears only in TEY mode (5 nm). During the delithiation process, the native Li_2CO_3 layer on the pristine NCA surface is washed away, resulting in an amplification of the lattice oxygen peak at 527.2 eV. As seen in the Ni L-edge spectra, there is a significant change observed in the O K-edge spectra in both the surface and sub-surface regions upon heat treatment. We note the remarkable decrease in the lattice oxygen peak at 527.2 eV and evolution of the peak at 539.2 eV, which is attributed to the formation of divalent Ni at the surface and sub-surface. These observations indicate that NiO is formed at the surface and sub-surface upon heat treatment, consistent with the TGA-MS and T-XRD results.

Figure 3: (a-c) Soft XAS O K-edge, Co L-edge and Ni L-edge spectra for pristine (Li₁NCA), delithiated (Li_{0.3}NCA), and delithiated + heat-treated NCA powders in TEY (5 nm) and FY (50 nm) modes. (d) Calculated Ni $L_{3,high}/L_{3,low}$ ratios for all samples shown in TEY and FY mode. Peak marked with an asterisk in (a) is associated with Li₂CO₃. Plus sign in (b) is indicating slight reduction in Co.

In addition to the surface analysis, we conducted hard X-ray absorption spectroscopy (XAS), which correlates the changes in the absorption edge to the changes in the average oxidation state of the absorbing atoms in the bulk material.^{19,30,31} For example, a forward shift (higher eV) in edge energies indicates an increased valence state of the atom being probed. Since the core electrons are more strongly bound to the nucleus in the higher valence state, their photo-ionization requires higher photon energies, whereas a backward shift (lower eV), in contrast, indicates a decreased valence state. Figure 4 shows the normalized Ni K-edge X-ray absorption

near edge structure (XANES) spectra for pristine, delithiated (+ heat-treated) NCA, and also NiO (shown as a reference). While Ni is divalent in NiO and trivalent in pristine NCA, the oxidation state of Ni in delithiated NCA is estimated to be close to 3.7+, under the assumption, that most of the charge compensation is done by Ni.³² Using the edge position defined by the Photoelectron Energy Origin (E_0) ,³³ we quantified the changes happening for delithiated heat-treated NCA (450) °C), in relation to pristine NCA (Li₁NCA) and delithiated NCA (Li_{0.3}NCA). Additionally, the linear relationship between the Ni K-edge energy and state of charge (SOC) makes it possible to use the determined Ni oxidation state as a proxy for pseudo SOC estimations as reported in literature.^{34–} ³⁸ While the edge energy for heat-treated Li_{0.3}NCA is 8340.98 eV, the edge energies of pristine NCA and Li_{0.3}NCA are 8342.10 eV and 8343.95 eV, respectively. Edge energies were derived from the 1st inflection point of each spectra. The entire Ni K-edge clearly shifts from higher to lower energies in the order of delithiated, pristine, and delithiated + heat-treated NCA, indicates a strong reduction in the Ni oxidation state upon heating. This strong edge shift (2.97 eV) between Li_{0.3}NCA and heat-treated Li_{0.3}NCA illustrates that the average oxidation state of Ni decreases significantly to compensate for the oxygen released from the delithiated Li_{0.3}NCA during thermal excursion. The XANES result is in complete agreement with our TGA-MS, T-XRD and previous works.^{19,39,40} It has also been demonstrated that the oxygen release and crystal structure phasechange are correlated.¹⁹ Furthermore, it is believed that the phase transitioning from layered to rock salt predominantly affects the surface of secondary NCA particles while the core of the material still remains as a layered oxide.⁴¹ However, recently Zhang et al. have shown phase transitions can occur below the surface. Using transmission electron microscopy (TEM) they demonstrated how rock salt domains within the core of the material initiate degradation phenomena such as intragranular cracks.^{42,43} Hence, it is of utmost importance to understand the interplay of the observed effects such as oxygen evolution, phase transition and reduction in further detail. In order to do so, we have conducted a series of imaging measurements to obtain chemical and morphological insight into decrepitation of secondary particles.

Figure 4: Normalized Ni K-edge XANES spectra of (black) delithiated Li_{0.3}NCA, (blue) pristine NCA, (red) delithiated and heat-treated NCA, (green) NiO obtained in transmission mode. Retrieved data reflects the oxidation state of the bulk material. The edge position of NiO is used as a

reference for Ni²⁺. The inset shows the edge energies derived from the 1st inflection point of the spectra.

2D-FF-TXM

Two-dimensional full-field transmission X-ray microscopy (2D-FF-TXM) was used to visualize the lateral spatial distribution of the Ni oxidation state over an isolated secondary Li_{0.3}NCA particle upon *in-situ* thermal treatment to 450 °C. Using the beamline 6-2c of the Stanford Synchrotron Radiation Lightsource (SSRL), a series of 2D Ni K-edge XANES maps were collected as a function of the temperature (see Figure 5a-h). Note that the 2D projections of spherical particle represent the averaged oxidation state over the depth of the spherical particle. The spatial distribution of the Ni valence state exhibits continuous overall reduction with increasing temperature as indicated by the evolution of the color-coded maps in Figure 5a-h. The heterogeneity in the maps, on the other hand, highlights the complexity of the reaction at the mesoscale,⁴⁴ where the grain boundaries and defects are populated. For better capturing the dynamic evolution of the thermally driven chemical evolution, we calculated the differential 2D Ni K-edge energy maps, as shown in Figure 5i-o. Two critical temperature transitions are apparent on the calculated differential maps, namely the 200 - 250 °C and the 300 - 350 °C regions (Figure 5I and 5n). These differential maps show dark blue coloring and represent a strong negative shift of the Ni K-edge energy, which indicates a significantly higher degree of reduction that happened when transitioning from 200 to 250 °C and from 300 to 350 °C. To confirm our interpretation of the visualized maps (Figure 5a-o), we plotted the probability distribution of the Ni K-edge energy and the differential energies of the XANES maps in Figure 5p and 5q, respectively. Figure 5p confirms a monotonic reduction of Ni upon heating while highlighting two of the major shifts toward lower

energies that appear upon heating from 200 to 250 °C and from 300 to 350 °C. Similar to this, the probability distributions in the differential maps offer comparable information. It is interesting to point out that there are positive components in the probability distribution of the differential maps, which could be attributed to the thermally driven lithium redistribution within the secondary particle, a phenomenon that has been reported in NCM compounds.⁴⁵ The highlighted temperature transitions are in very good agreement with our TGA-MS and T-XRD data. The TGA-MS shows the most significant oxygen evolution at the same temperature transitions at which the XRD data shows a phase change. Also in accordance with our XAS data, a clear reduction of Ni is visible upon heat treatment that seems to be happening homogenously throughout the particle.

Figure 5: *In-situ* 2D Ni K-edge XANES mapping over an arbitrarily selected NCA particle upon thermal treatment. Panels a-h show the evolution (reduction) of the Ni oxidation state. The corresponding energy distributions of panels a-h are shown in panel p, highlighting two critical temperature transitions (200 - 250 °C and 300 - 350 °C), which is in good agreement with oxygen evolution observed in Figure 1 and phase transitions in Figure 2. Panels i-o show the differential Ni K-edge energy maps, suggesting that the internal redistribution of Li occurs concurrently with the overall Ni reduction. The corresponding energy distributions of panels i-o are shown in panel

q.

Particle morphology

In a final step, we investigated morphological changes upon heating on a single particle level using scanning electron microscopy (SEM) and focused ion-beam-scanning electron microscopy (FIB-SEM). Several delithiated, as well as delithiated and heated treated particles (450 °C), were subjected to a surface SEM study and FIB-SEM tomography to highlight morphological changes throughout the particle and visualize the impact of oxygen evolution on the core, sub-surface, and surface of the particle. Figure 6 shows a representative example of the conducted surface SEM study for a delithiated NCA particle.

Figure 6: (a) Surface of a delithiated NCA particle. (b) Magnified area of the same particle surface shown in (a). While small defects, introduced by the chemical delithiation process are visible, no other morphological changes are present.

None of the analyzed delithiated NCA particles showed mesopores on the surface even in images taken at higher magnifications as shown in Figure 6b. Chemical delithiation is widely used to prepare delithiated cathode materials similar to electrochemically charged cathode, it often involves strong chemical oxidants e.g., nitronium tetrafluoroborate (NO₂BF₄) with very high potentials (~5.1 V vs. Li⁺/Li).³⁵ Under these conditions, delithiated secondary NCA particles are fully intact but show slight intergranular cracking similar to electrochemically delithiated NCA.^{46,47} In contrast to particles that were only delithiated, delithiated and heat-treated (450 °C) particles show extensive mesopores on their surface. Figure 7 shows the surface of a heat-treated, delithiated particle.

Figure 7: (a) Surface of a delithiated and heat-treated NCA particle. (b) Magnified area of the same particle surface shown in (a). Besides small morphological changes introduced by chemical delithiation, an extensive amount of uniformly distributed mesopores are visible on the surface.

The observed evolution of mesopores upon heat treatment strongly suggest that oxygen escapes the surface via mesopores under thermal abuse conditions (more images are shown in supplementary Figure S2). This is significantly different from electrochemical cycling-induced surface degradation of layered Ni-rich oxides involving reaction of the cathode surface with the electrolyte and surface oxygen loss. The latter has been shown to cause stronger electrolyte decomposition than purely potential driven electro-oxidation of electrolyte, since singlet oxygen is released from the cathode surface at ~80% delithiation of layered oxides reacts readily with electrolyte.^{12,48–50} Potential induced oxygen loss starts at the surface and sub-surface region, while the bulk mainly stays intact.^{51–53} In this so-called core-shell model, the degradation of layered oxide materials is initiated by a transition from a layered phase to a spinel phase. Ultimately, the surface of the secondary particle transforms to the rock salt phase, the sub-surface to a spinel phase, while the majority of the core remains in the layered phase.^{51,53–56} In the absence of electrolyte, as in our study, the observed mesopores clearly show the evolution of oxygen from the surface as a result of thermal abuse.

In order to see if mesopores from oxygen release are also present in the core of thermally treated and delithiated secondary NCA particles, we milled many secondary particles using a focused ionbeam. Figure 8 shows a representative SEM image showing the cross-section of a milled particle.

Journal of Materials Chemistry A

Figure 8: (a) Cross-sectional SEM image for a secondary NCA particle after focused ion-beam milling. Cross-section of particle indicates a homogenous distribution of mesopores within the particle core. (b) High magnification of the cross-section shown in (a).

Particle cross-sectioning highlights that mesopores are present ubiquitously throughout the bulk of the particle (see supplementary Figure S3 and Video S2). Upon closer observation it is found that many mesopores seem to be connected and form some kind of intragranular cracks. Furthermore, these cracks are predominantly parallel to each other within the primary grain (see supplementary Figure S3f). Most likely, these intragranular cracks propagate along the (003) plane as observed by Pengfei et al. in overcharged NCM111.⁵⁷ While reduction of Ni upon phasetransitioning and the accompanying oxygen release has been widely reported in the literature, ^{12,50,51,56,58,59} the evolution of mesopores in entire particles has not been reported yet to the best of our knowledge. All FIB-SEM images reported here were obtained on delithiated NCA that was heated to 450 °C. We repeated the experiment using different temperatures in order to find out the critical temperature at which the mesopores development is initiated. Four batches of delithiated NCA material were individually heated to 150 °C, 250 °C, 350 °C or 450 °C, using a similar temperature program as for the TGA-MS and XRD experiments and observed in the SEM. Our SEM investigations showed that the evolution of pores starts at 350 °C (see supplementary Figure S4). This is in good agreement with our TGA-MS results (Figure 1) and 2D-FF-TXM results (Figure 5).

Besides the observed evolution of mesopores throughout the bulk of the particle, upon thermal treatment, crack volumes for delithiated particles seem to shrink due to the evolution of mesopores (see supplementary Figure S5). To see how mesopores affect the intergranular crack

volume, we look at 2D slices of the NCA particles with fixed cross-sectional area before and after heat treatment (see Figure 9) and compare black area (cracks) to white area (solid phase). A machine-learning based segmentation was deployed using Trainable Weka Segmentation.⁶⁰ Several 2D slices of delithiated NCA particles and heat-treated NCA particles were used to train the machine-learning algorithm. The algorithm was then used to calculate the crack area in the 2D slices (shown in black) resulting from a change in the volume fractions of intergranular cracks and mesopores for delithiated particles and heat-treated delithiated NCA particles. Although we just obtain quantitative information about the crack area in a 2D slice of the NCA particles, it is reasonable to assume that a larger crack area also implies a larger crack volume fraction, as long as we compare two slices with same cross-sectional area. Interestingly, when comparing delithiated and heat-treated delithiated NCA particles with similar cross-sectional areas, the total crack volume of heat-treated NCA particles is smaller than that of the delithiated particles (Figure 9c and d). This indicates that mesopore evolution results in increased void volume within primary particles and thus decreased crack volume within the secondary agglomerate. The expansion of primary grains has been quantified for milled particles with very similar total cross-sectional areas (Figure 9) and shows a significant reduction of the total crack area from 5.8% (delithiated particle) to 3.6% (heat-treated delithiated particle). This calculation was repeated two more times for pairs of delithiated, and delithiated and heat-treated secondary NCA particles with similar crosssectional area. On average, calculated crack area for delithiated particles resulted in 5.33%, while delithiated particles showed a crack area of 3.99% after heat-treatment. Even though the crack area change cannot be directly translated into a change in the crack volume fraction, we attempted to calculate the volume fraction that is associated with the mesopores by using an

'apparent crack volume' obtained from the 2D binary maps in Figure 9c, d and the mass loss shown in Figure 1. The details of the calculation can be found in the supplementary information. While the result is quite sensitive to the density of the different NCA phases after heat treatment, we can get an idea of the mesopore volume. Assuming that the NCA particles after heat treatment consists of a delithiated layered phase, a disordered rock salt phase, intergranular cracks and mesopores, the mesopore volume fraction would be between 10 and 20%.

Figure 9: (a-b) Cross-sections of a delithiated and heat-treated delithiated NCA particle of similar total cross-sectional areas used to determine crack area using a machine learning algorithm, respectively. (c-d) Binary maps for the calculated crack area for the respective particle shown in (a) and (b).

Conclusion

In this paper, we have employed a variety of techniques to thoroughly probe chemical and morphological changes of chemically delithiated NCA cathode active material that was continuously heated to 450 °C. Our findings indicate oxygen evolution, phase transitioning, and continuous reduction of surface, sub-surface, and bulk Ni, and inter- as well as intragranular cracking and the creation of mesopores upon heating. While our work is in good agreement with what has been reported previously in the literature for the thermal degradation of delithiated NCA, it further reveals that oxygen evolution causes mesopores upon heating to temperatures above 350 °C, creating a pathway for release of lattice oxygen from the bulk and surface. To the best of our knowledge, this has not been reported before. Furthermore, observed mesopores seem to 'connect' along parallel intragranular cracks which follow the crystallographic lattice during propagation. These mesopores most probably are part of the compensation of the internal pressure build up due to oxygen evolution. However, internal pressure build up further decreases the volume of intergranular cracks suggesting that mesopores lead to a volume expansion of primary grains. While the chemical and morphological changes appear at temperatures higher than 200 °C, delithiated NCA shows good short term stability for temperatures up to 200 °C.

Experimental procedures

Chemical delithiation

Pristine NCA ($Li_1Ni_{0.8}Co_{0.15}Al_{0.05}O_2$) cathode active material, of commercial grade, was chemically delithiated to $Li_{0.3}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ through oxidation with a 0.1 M solution of nitronium tetrafluoroborate (NO_2BF_4) in acetonitrile. The delithiated NCA powder was subsequently dried

in a vacuum oven at room-temperature. The Li ratio in NCA is governed by the ratio of NCA to NO₂BF₄ during the oxidation reaction and the elemental stoichiometry was subsequently determined via inductively coupled plasma – optical emission spectroscopy (ICP-OES) to Li_{0.30}Ni_{0.8}Co_{0.15}Al_{0.05}O₂.

Materials characterization

Thermogravimetric analysis of delithiated NCA powder was performed on a TA Instruments TGA 5500 instrument coupled to a TA Instruments Discovery benchtop quadrupole mass spectrometer for evolved gas analysis. 25.5 mg of delithiated NCA powder was weighed in a stainless steel crucible and transferred to the TGA-MS instrument with minimal exposure to ambient air. After sample insertion, the furnace was purged with Ar for 30 min at 25 °C to minimize trace amounts of ambient air during the measurement. The active material sample was heated from 25 °C to 450 °C at 10 °C/min with 10 min hold times at several discrete temperatures. Mass spectrometer was operated in multiple ion detection mode and recorded m/z of 2, 18, 19, 28, 32, 44 ions with a < 10 s time resolution. Note that the $Li_{0.3}NCA$ powder was stored in a glovebox and the sample was transferred to the TGA-MS instruments in a closed container without exposure to ambient air.

Temperature controlled XRD analysis was performed on a Panalytical X'Pert Pro diffractometer with monochromatized Cu K_{α} radiation equipped with an Anton Parr HTK 1200 hot stage. Scans were collected between 15 and 75° (2 θ) at a rate of 0.0001°/s and a step size of 0.022°. Delithiated NCA powder was heated in air at a rate of 5 °C/min and the XRD patterns were

recorded at a temperature step size of 50 °C with each temperature holding for 10 minutes before data collection.

Hard XAS data on Ni K-edge was collected in transmission mode using a Si (220) monochromator at SSRL beamline 4-1. Pristine NCA, as-prepared delithiated NCA as well as delithiated + heattreated NCA and NiO powders were dispersed on Kapton films for the measurement. Higher harmonics in the X-ray beam were rejected by detuning the Si (220) monochromator by 40% at the Ni edge. Energy calibration was accomplished by using the first inflection points in the spectra of Ni metal foil reference at 8332.8 eV. XANES data were analyzed by Sam's Interface for XAS Package (SIXPACK),⁶¹ with the photoelectron energy origin (E0) determined by the first inflection point of the absorption edge jump.

For soft XAS measurements, a thin layer of the samples was spread onto a conductive carbon tape which was then attached to an aluminum sample holder inside an Ar-filled glovebox. Measurements for O K-edge, Co L-edge and Ni L-edge were carried out at the 31-pole wiggler beamline 10-1 at SSRL with a spherical grating monochromator with 20 mm entrance and exit slits, a 0.2 eV energy resolution and a 1 mm² beam spot. Data were collected at room temperature under ultrahigh vacuum (10⁻⁹ Torr) in a single load using the total electron yield (TEY) and fluorescence yield (FY) mode detectors.

2D-FF-TXM imaging was performed at the 54 pole wiggler beamline 6-2c at the SSRL. Detailed beamline configuration can be found in a previous report⁶². Delithiated NCA powder was carefully dispersed in cylindrical quartz capillaries (100 μ m in diameter and 10 μ m in wall thickness) and carefully mounted to the beamline sample holder. Slow and steady helium gas

flow was applied to the capillaries to prevent air exposure. The X-ray energy was tuned to Ni Kedge and then focused onto the sample by an elliptically shaped capillary condenser providing illumination for a FOV of approx. $30 \times 30 \ \mu\text{m}^2$. 2D transmission images (0.5 s exposure time, 5 repetitions, binning 2, 1,024 x 1,024 pixels) were collected from 8,313 to 8,394 eV with a minimum step size of 1 eV. To remove distortions caused by the flux and beam instabilities, concurrent acquisition of reference images at each energy was also performed through an open area of the sample (outside the capillary) with the same imaging configuration. The repetitions in exposures were carried out to enhance the dynamic range of the existing charge-coupled device and, subsequently, improve the signal to noise ratio in the data. 2D-FF-TXM images were first acquired at room temperature, upon heating, images were acquired in 50 °C intervals from 100 °C to 350 °C and lastly at 450 °C.

FIB-SEM of delithiated and delithiated + heat-treated particles was performed using a Helios G4 dual-beam FIB. Heat-treatment protocol was adjusted to the same protocol used in our other experiments. Sectioning of particles was performed using gallium ions at 30 kV and were imaged using electrons at 5 kV. The currents used for ion and electron beams were 26 pA and 0.1 nA, respectively. Secondary electron as well as backscattered electron detectors were used for imaging. Serial-sectioning and SEM imaging was done every 10 nm and the images were aligned and reconstructed to create a 3D volume of entire secondary particles.

Acknowledgements

The synchrotron experiments of this research were carried out at the SSRL, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S.

Department of Energy Office of Science by Stanford University. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. We thank Drs. Erik Nelson and Matthew Latimer for assisting with the synchrotron experiments. The engineering support from D. Van Campen, D. Day and V. Borzenets for the TXM experiment at beamline 6-2C of SSRL is gratefully acknowledged. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

- S. T. Myung, F. Maglia, K. J. Park, C. S. Yoon, P. Lamp, S. J. Kim and Y. K. Sun, ACS Energy Lett., 2017, 2, 196–223.
- W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim and J. Cho, *Angew. Chemie Int. Ed.*, 2015, **54**, 4440–4457.
- 3 M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek and S. A. Hackney, *J. Mater. Chem.*, 2007, **17**, 3112–3125.
- 4 T. Ohzuku, A. Ueda and M. Nagayama, *J. Electrochem. Soc.*, 1993, **140**, 1862–1870.
- 5 S. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C. A. J. Fisher, T. Hirayama and Y. Ikuhara, *J. Electrochem. Soc.*, 2011, **158**, A357–A362.
- 6 Y. Cho, P. Oh and J. Cho, *Nano Lett.*, 2013, **13**, 1145–1152.
- 7 M. Jo, M. Noh, P. Oh, Y. Kim and J. Cho, *Adv. Energy Mater.*, 2014, **4**, 1301583.
- J. Zhao, W. Zhang, A. Huq, S. T. Misture, B. Zhang, S. Guo, L. Wu, Y. Zhu, Z. Chen, K. Amine, F. Pan, J. Bai and F. Wang, *Adv. Energy Mater.*, 2017, **7**, 1601266.
- P. Yan, J. Zheng, D. Lv, Y. Wei, J. Zheng, Z. Wang, S. Kuppan, J. Yu, L. Luo, D. Edwards, M. Olszta, K. Amine, J. Liu, J. Xiao, F. Pan, G. Chen, J. G. Zhang and C. M. Wang, *Chem. Mater.*, 2015, 27, 5393–5401.
- E. M. Erickson, F. Schipper, T. R. Penki, J.-Y. Shin, C. Erk, F.-F. Chesneau, B. Markovsky and
 D. Aurbach, *J. Electrochem. Soc.*, 2017, **164**, A6341–A6348.

- 11 K. Kang and G. Ceder, *Phys. Rev. B*, 2006, **74**, 094105.
- R. Jung, M. Metzger, F. Maglia, C. Stinner and H. A. Gasteiger, *J. Electrochem. Soc.*, 2017,
 164, A1361–A1377.
- 13 S. M. Bak, K. W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K. B. Kim, K. Y. Chung and X. Q. Yang, *Chem. Mater.*, 2013, **25**, 337–351.
- 14 H. Konishi, M. Yoshikawa and T. Hirano, *J. Power Sources*, 2013, **244**, 23–28.
- 15 I. Belharouak, W. Lu, D. Vissers and K. Amine, *Electrochem. commun.*, 2006, **8**, 329–335.
- 16 I. Belharouak, W. Lu, J. Liu, D. Vissers and K. Amine, *J. Power Sources*, 2007, **174**, 905–909.
- S. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S. Cho, K. Kim, K. Y. Chung, X. Yang and K.
 Nam, *Appl. Mater. Interfaces*, 2014, 6, 22594–22601.
- 18 H. J. Noh, S. Youn, C. S. Yoon and Y. K. Sun, *J. Power Sources*, 2013, **233**, 121–130.
- K.-W. Nam, S.-M. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, L. Wu, Y. Zhu, K.-Y. Chung and X.-Q.
 Yang, *Adv. Funct. Mater.*, 2013, 23, 1047–1063.
- 20 W.-S. Yoon, O. Haas, S. Muhammad, H. Kim, W. Lee, D. Kim, D. A. Fischer, C. Jaye, X.-Q. Yang, M. Balasubramanian and K.-W. Nam, *Sci. Rep.*, 2015, **4**, 6827.
- 21 S. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S. Cho, K. Kim, K. Y. Chung, X. Yang and K. Nam, *ACS Appl. Mater. Interfaces*, 2014, **6**, 22594–22601.
- 22 B. Xu, C. R. Fell, M. Chi and Y. S. Meng, *Energy Environ. Sci.*, 2011, **4**, 2223–2233.

- Y. Huang, Y.-C. Lin, D. M. Jenkins, N. A. Chernova, Y. Chung, B. Radhakrishnan, I.-H. Chu, J. Fang, Q. Wang, F. Omenya, S. P. Ong and M. S. Whittingham, *ACS Appl. Mater. Interfaces*, 2016, 8, 7013–7021.
- H. Beyer, S. Meini, N. Tsiouvaras, M. Piana and H. A. Gasteiger, *Phys. Chem. Chem. Phys.*, 2013, 15, 11025–11037.
- R. Jung, R. Morasch, P. Karayaylali, K. Phillips, F. Maglia, C. Stinner, Y. Shao-Horn and H.
 A. Gasteiger, *J. Electrochem. Soc.*, 2018, **165**, A132–A141.
- 26 K. W. Nam, W. S. Yoon and X. Q. Yang, *J. Power Sources*, 2009, **189**, 515–518.
- J. Stohr, *NEXAFS Spectroscopy*, Springer-Verlag Berlin Heidelberg, 1992.
- W.-S. Yoon, K. Y. Chung, J. McBreen, D. A. Fischer and X.-Q. Yang, *J. Power Sources*, 2006, 163, 234–237.
- J. Xu, E. Hu, D. Nordlund, A. Mehta, S. N. Ehrlich, X. Q. Yang and W. Tong, ACS Appl.
 Mater. Interfaces, 2016, 8, 31677–31683.
- 30 Z. Gong and Y. Yang, *J. Energy Chem.*, 2018, **27**, 1566–1583.
- Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio and I. Nakai, J. Solid State Chem.,
 2001, 156, 286–291.
- 32 M. Balasubramanian, X. Sun, X. Q. Yang and J. McBreen, *J. Electrochem. Soc.*, 2000, **147**, 2903–2909.
- 33 K. Saravanan, A. Jarry, R. Kostecki and G. Chen, *Sci. Rep.*, 2015, **5**, 8027.

- A. Manthiram, B. Song and W. Li, *Energy Storage Mater.*, 2017, **6**, 125–139.
- 35 S. Kuppan, Y. Xu, Y. Liu and G. Chen, *Nat. Commun.*, 2017, **8**, 14309.
- W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey and D. A.
 Fischer, J. Am. Chem. Soc., 2005, 127, 17479–17487.
- C. Rumble, T. E. Conry, M. Doeff, E. J. Cairns, J. E. Penner-Hahn and A. Deb, J. Electrochem. Soc., 2010, 157, A1317–A1322.
- 38 J. Xu, F. Lin, M. M. Doeff and W. Tong, *J. Mater. Chem. A*, 2017, **5**, 874–901.
- 39 E. Hu, Y. Lyu, H. L. Xin, J. Liu, L. Han, S. M. Bak, J. Bai, X. Yu, H. Li and X. Q. Yang, *Nano Lett.*, 2016, **16**, 5999–6007.
- 40 S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S.-J. Cho, K.-B. Kim, K. Y. Chung, X.-Q. Yang and K.-W. Nam, *ACS Appl. Mater. Interfaces*, 2014, **6**, 22594–601.
- S. Hwang, S. M. Kim, S.-M. Bak, B.-W. Cho, K. Y. Chung, J. Y. Lee, W. Chang and E. A.
 Stach, ACS Appl. Mater. Interfaces, 2014, 6, 15140–15147.
- H. Zhang, F. Omenya, M. S. Whittingham, C. Wang and G. Zhou, *ACS Energy Lett.*, 2017, 2, 2598–2606.
- 43 L. Mu, R. Lin, R. Xu, L. Han, S. Xia, D. Sokaras, J. D. Steiner, T. C. Weng, D. Nordlund, M. M. Doeff, Y. Liu, K. Zhao, H. L. Xin and F. Lin, *Nano Lett.*, 2018, **18**, 3241–3249.
- C. Wei, S. Xia, H. Huang, Y. Mao, P. Pianetta and Y. Liu, *Acc. Chem. Res.*, 2018, **51**, 2484–2492.

- C. Wei, Y. Zhang, S.-J. Lee, L. Mu, J. Liu, C. Wang, Y. Yang, M. Doeff, P. Pianetta, D.
 Nordlund, X. Du, Y.-C. Tian, K. Zhao, J.-S. Lee, F. Lin and Y. Liu, *J. Mater. Chem. A*, 2018, 6, 23055–23061.
- P. C. Tsai, B. Wen, M. Wolfman, M. J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana and Y.
 M. Chiang, *Energy Environ. Sci.*, 2018, **11**, 860–871.
- 47 C. Tian, Y. Xu, D. Nordlund, F. Lin, J. Liu, Z. Sun, Y. Liu and M. Doeff, *Joule*, 2018, **2**, 464–477.
- J. Wandt, A. T. S. Freiberg, A. Ogrodnik and H. A. Gasteiger, *Mater. Today*, 2018, **21**, 825–833.
- 49 R. Jung, M. Metzger, F. Maglia, C. Stinner and H. A. Gasteiger, *J. Phys. Chem. Lett.*, 2017,
 8, 4820–4825.
- 50 B. Strehle, K. Kleiner, R. Jung, F. Chesneau, M. Mendez, H. A. Gasteiger and M. Piana, *J. Electrochem. Soc.*, 2017, **164**, A400–A406.
- 51 S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, *Adv. Energy Mater.*, 2014, **4**, 1300787.
- 52 F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin and M. M. Doeff, *Nat. Commun.*, 2014, **5**, 3529.
- F. Lin, D. Nordlund, I. M. Markus, T. C. Weng, H. L. Xin and M. M. Doeff, *Energy Environ. Sci.*, 2014, 7, 3077–3085.
- A. Manthiram, K. Chemelewski and E.-S. Lee, *Energy Environ. Sci.*, 2014, **7**, 1339–1350.

- P. Mukherjee, N. V Faenza, N. Pereira, J. Ciston, L. F. J. Piper, G. G. Amatucci and F.
 Cosandey, *Chem. Mater.*, 2018, **30**, 8431–8445.
- 56 K. Karki, Y. Huang, S. Hwang, A. D. Gamalski, M. S. Whittingham, G. Zhou and E. A. Stach, ACS Appl. Mater. Interfaces, 2016, **8**, 27762–27771.
- 57 P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang and C.-M. Wang, *Nat. Commun.*, 2017, 8, 14101.
- 58 H. Zhang, K. Karki, Y. Huang, M. S. Whittingham, E. A. Stach and G. Zhou, *J. Phys. Chem. C*, 2017, **121**, 1421–1430.
- 59 S. Hwang, W. Chang, S. M. Kim, D. Su, D. H. Kim, J. Y. Lee, K. Y. Chung and E. A. Stach, *Chem. Mater.*, 2014, **26**, 1084–1092.
- I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin, A. Cardona and H.
 Sebastian Seung, *Bioinformatics*, 2017, 33, 2424–2426.
- 61 S. Webb, *Phys. Scr.*, 2005, **2005**, 1011.
- Y. Liu, J. C. Andrews, J. Wang, F. Meirer, P. Zhu, Z. Wu and P. Pianetta, *Opt. Express*, 2011, 19, 540–545.

Thermally-Driven Mesopore Formation and Oxygen Release in Delithiated NCA Cathode Particles

Münir M. Besli^{a,b}, Alpesh Khushalchand Shukla^c, Chenxi Wei^d, Michael Metzger^a, Judith Alvarado^e, Julian Boell^a, Dennis Nordlund^d, Gerhard Schneider^{b,f}, Sondra Hellstrom^a, Christina Johnston^a, Jake Christensen^a, Marca M. Doeff^{e,*}, Yijin Liu^{d,*}, Saravanan Kuppan^{a,*}

^aRobert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, United States

^bDept. of Mech. Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany

^cNational Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

^dStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States

^eLawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, University of California, Berkeley, California 94720, United States

^fMaterials Research Institute, Aalen University, Aalen 73430, Germany

*Correspondence and requests for materials should be addressed to M.D. (mmdoeff@lbl.gov), Y.L. (liuyijin@slac.stanford.edu), and S.K. (saravanan.kuppan@us.bosch.com)

Figure S1: (a) Superimposed soft XAS $L_{3,high}$ and $L_{3,low}$ peaks for various cathode active materials of different Ni content. Ni content correlates with $L_{3,high}$ peak intensity. (b) Correlation of $L_{3,high}/L_{3,low}$ peak ratio with Ni oxidation state.

Figure S2: (a-d) Heat-treated $Li_{0.3}NCA$ particles of various sizes showing mesopores on the surface. Independent of particle size, mesopores are homogeneously distributed on the surface of the particles.

Figure S3: (a-c) Cross-sectional SEM images for four different particles after focused ion beam milling. Cross-sections of particles also indicate a homogenous distribution of mesopores. (d-f) High magnification of cross-sectional images corresponding to the cross-sectional images (a-c). High magnifications show how mesopores appear along intragranular cracks and throughout the entire particle.

Figure S4: SEM images of the surface of four individual delithiated NCA particle heated to (a) 150 °C, (b) 250 °C, (c) 350 °C, and (d) 450 °C. No mesopores are observed on particles that were heated to 150 or 250 °C. Evolution of mesopores seem to start at temperatures above 300 °C.

Video S1: FIB-SEM milling for a delithiated NCA particle. <u>https://drive.google.com/open?id=19p0T8S6oIhVJ10SBVdG9Jc6xfV2qeU-d</u>

Video S2: FIB-SEM milling for a delithiated and heat-treated NCA particle. https://drive.google.com/open?id=1qvTCIFQ6VG5DJDPrHSb1tH01axGldaDe

Figure S5: Cross-sectional SEM images for two different particles after focused ion beam milling. (a) Cross-sectional area for a delithiated NCA particle. (b) High magnification of the crosssectional image shown in (a). (c) Cross-sectional area for a delithiated and heat-treated NCA particle. (d) High magnification of the cross-sectional image shown in (c).

Stoichiometry	Li0.3MO2> a LiyMOz + b LixMO2 + cO2
x	0.30
у	0.30
z	1.15
RS M ox state	2.00
а	0.40
b	0.60
с	0.17
check: a*y+b*x	0.30

Volume	Vc0.3 + VNCA0.3 = Vc0.3 heat + VNCAx + Vrs + Vpore	
Vc0.3		5.33%
VNCA0.3		95%
Vc0.3 heat		3.99%
VNCAx		57%
Vrs		23%
Vpore		16%

CA0.3 * rho NCA0.3	
4.540951	g/cc-particle
ixMO2 * rho LixMO2 + Vrs * rho rs	
4.268494	g/cc-particle
6%	6%
	CA0.3 * rho NCA0.3 4.540951 xMO2 * rho LixMO2 + Vrs * rho rs 4.268494 6%

TGA mass loss %	<mark>6%</mark>
Molar Mass	g/mol
MW O2	31.998
MW Li	6.941
MW M (=NCA)	57.144
MW O	15.999
MW Li0.3MO2	91.224
MW LiyMOz	77.625
MW LixMO2	91.224
Vchange %	4%
Density	g/mL
LiMO2	4.850
Li0.3MO2	4.797
LiyMOz	6.670
LixMO2	4.800

Formula

0.3 = a*y+b*x 1 = a + b 2 = a*z + 2*(b+c) --> (2-z-2c)/(2-z) = b

VNCAx = VNCA0.3 * b * (MW NCA) Vrs = VNCA0.3 * a * (MW rs / MW N rho NCAx = ((MW NCAx / MW NCA

Legend	
yellow	Inputs
green	Outputs
NCA0.3	Delithiated NCA to x =
NCAx	Delithiated NCA after h
Vc0.3	Volume fraction of crac
Vc0.3 heat	Volume fraction of crac
Vrs	Volume fraction of rock
Vpore	Volume fraction of mes
Vchange	Volume change for NC

x / MW NCA0.3) * (rho NCA0.3 / rho NCAx) NCA0.3) * (rho NCA0.3 / rho rs) \0.3) * m NCA0.3) / ((100 - Vchange) * VNCA0.3)

0.3 heating cks after delithiation cks after delithiation + heating < salt phase (spinel formation neglected) sopores XA grain when delithiated from x = 1 to x = 0.3