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Héctor A. Inda Dı́az

All rights reserved.



“The important thing is not to stop questioning. Curiosity has its own reason for exis-

tence. One cannot help but be in awe when he contemplates the mysteries of eternity, of life,

of the marvelous structure of reality. It is enough if one tries merely to comprehend a little of

this mystery each day”

— Albert Einstein

I want to especially thank my Ph.D. advisor, Travis O’Brien. Travis, you have been an

extraordinary advisor, colleague, teacher, and friend. This work could not exist without your

help and support.

This dissertation is dedicated to my parents and my brothers, whose example has set my path

and guided me along with it. Wherever you are, you are always with me.

I dedicate this work to you, Miriam. Your love and unconditional support have given me the

strength to get here. Thank you for sharing with me this journey; everything is better with

you in my life.

iii



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 What is an Atmospheric River? . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Detecting Atmospheric Rivers and Estimating Their Size . . . . . . . . . . . . 3

1.3 Atmospheric Rivers in Lower Latitudes . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of Dissertation and Main Objectives . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Constraining and Characterizing the Size of Atmospheric Rivers: A

Perspective Independent From the Detection Algorithm . . . . . . . . 9

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Principal Component Analysis of IVT (PC Method) . . . . . . . . . . . 15

2.4.2 Estimating AR Size from Composites and Background IVT Field (BG

and SO Methods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Estimation of the Background . . . . . . . . . . . . . . . . . . . . . . . 18

Statistical Overlapping of IVT With the Background Field PDF (SO) . 18

K-S Statistics Between AR Composite and the Background CDF (BG) 19

2.4.3 Lagrangian Tracers for Area Estimation (LT) . . . . . . . . . . . . . . 20

2.4.4 ClimateNet Method (CN) . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.5 AR Size Calculation Methods Summary . . . . . . . . . . . . . . . . . 24

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 AR Length and Width . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



2.5.2 AR Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 AR Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Change in Size of Atmospheric Rivers Under Future Climate Scenarios 36

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Atmospheric River Confidence Index and AR Tracking . . . . . . . . . 41

3.2.2 Composite of AR Objects . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 AR Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Estimation of AR Size from the Atmospheric River Confidence Index . 43

3.2.5 Definition of the Background IVT Field . . . . . . . . . . . . . . . . . . 45

3.2.6 Statistical Estimation of AR Size (SO and BG Methods) . . . . . . . . 46

3.2.7 Implementation of PC, BG, and SO in CMIP5/6 Dataset . . . . . . . . 48

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Background IVT Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Mean AR Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 North America Landfalling Atmospheric Rivers . . . . . . . . . . . . . 54

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 Relationship Between Atmospheric Rivers and the Dry Season Ex-

treme Precipitation in Central-Western Mexico . . . . . . . . . . . . . 63

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 AR probability from ERA-20C and TECA-BARD . . . . . . . . . . . . 68

4.3.2 Extreme Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



4.3.3 Atmospheric State Composites . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 AR-associated extreme precipitation . . . . . . . . . . . . . . . . . . . 71

4.5 Long-term Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Extreme Precipitation and AR Events Composite . . . . . . . . . . . . . . . . 73

4.7 Di↵erence between composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendices

Appendix A Supporting information for Chapter 2 . . . . . . . . . . . . . . . . . . 90

A.1 Principal Components Size Estimation Method (PC) . . . . . . . . . . . . . . 90

A.2 Statistical methods (SO and BG) . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Sensitivity analysis: BG and SO methods . . . . . . . . . . . . . . . . . . . . . 94

A.4 Lagrangian tracers method (LT) sensitivity analysis . . . . . . . . . . . . . . . 95

A.5 ARTMIP algorithms used in Chapter 1 analysis . . . . . . . . . . . . . . . . . 97

Appendix B Supporting information for Chapter 3 . . . . . . . . . . . . . . . . . . 99

B.1 Calculation of ARCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.1 Global ARTMIP ARDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.2 Classification of ARDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1.3 CMIP5/6 and ARDTs Missing Data . . . . . . . . . . . . . . . . . . . 100

B.2 AR Size Supplementary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix C Additional Plots for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 102

C.1 Long-term Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.2 AR-Precipitation Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



C.3 AR+No Precipitation Composite . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.4 Precipitation+no AR Composite . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.5 Time Correlation between AR and Extreme Precipitation Events . . . . . . . . 118

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



List of Figures

1.1 (a) Plain view of a mean AR and its associated surface front. IVT [kg m�1s�1]

is show in color-filled contours; IWV [cm] is shown in solid black contours. (b)

Mean AR vertical cross-section. Green dotted contours are water vapor mixing

ratio [g kg�1], blue contours are normal to cross-section isotachs [m s�1], and

orange filled contours represent the AR core. Water vapor flux corresponds to

the transport along an AR, bounded by IVT = 250 kg m�1s�1, and by the

surface and 300 hPa levels. Figure from the AMS Glossary of Meteorology.

Ralph et al. (2017a). ©American Meteorological Society. Used with

permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 AR area calculated from di↵erent methods in ARTMIP, ordered by median area

(01-28). Algorithm names are included in the supporting information in Table

A.1 for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 AR area calculated from di↵erent methods in ARTMIP, ordered by median

area (01-28). Colored background: AR area calculated in this work using the

ClimateNet ARTMIP campaign (CN), Lagrangian Tracers method (LT), Prin-

cipal Component Analysis of IVT (PC), KS-test between the IVT of AR and

the background IVT field (BG), and the statistical overlapping of the condi-

tional probability distribution of IVT given distance to the center of AR and

the background IVT probability density function (SO) . . . . . . . . . . . . . 12

2.2 Principal component analysis method. White lines represent the PC of the AR,

and the white contour is the area estimated from the ellipse whose axes are the

PC. The red lines represent directions along and across AR used to sample IVT

for SO and BG methods (dashed/solid represent the first/second PC). . . . . . 16

viii



2.3 Conditional probability distribution of IVT given the distance to the center of

the AR. Red colors represent the transverse direction (across AR), black colors

represent the longitudinal direction (along AR). The 0.5 conditional probability

C is represented in solid thick lines. The shading corresponds to probabilities

between 0.16 and 0.84. According to the statistical overlapping method, the

AR is delimited by those distances where the dashed line (background IVT

p � 0.84) intersects the 0.16 CPD contour (marked in red and black dots).

For example, for the Northwest Pacific composite (WP) in panel (a), these

intersections occur at approximately from -1,500 and 1,200 km along the AR,

and -600 and 400 km across the AR. The triangles mark these distances of

overlapping with the background. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Colored lines show the CDF of IVT for the AR composite, at di↵erent dis-

tances from the AR center (CDF(d)); less transparent dashed lines represent a

farther distance to the AR center. The black solid line shows the CDF of the

background. The KS-test evaluates where the composite IVT and the back-

ground are statistically indistinguishable (for the two-tailed test) or where the

composite IVT CDF is statistically lower than the background CDF (for the

one-tailed test). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 (a) Initial position (black), after five days backward advection (orange), and

five days forward advection from the orange tracer locations (blue).The cyan

contour shows the region with most (68%) of the tracers after the the five-

day forward advection. (b) IVT (filled contours) and PDF of the tracers’ final

position (contours). Thicker cyan contour at p = 0.68 area is used to estimate

the AR size in the Lagrangian tracers method (LT). . . . . . . . . . . . . . . . 23

ix



2.6 (a-c) PDF of AR length (dashed lines) and width (solid lines) using the prin-

cipal components method (PC), at 25, 50, and 75% of the AR life cycle. WP

composite in blue lines, EP composite in orange lines. (d-f) PDF of AR area

for the PC method in solid lines, and the LT method in dashed lines. Lines

colors are the same as in (a-c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 (a) PDFs of AR area (PDFs are not normalized for visualization). PDFs from

the PC and LT methods are calculated using data from WP and EP at 50% life

cycle. The lowest to highest obtained values from the BG (SO) methods are

represented in the shaded gray area (between solid gray lines) for comparison.

(b) PDF of AR orientation with respect to the equator from the PC method

at 50% of the AR life cycle for the WP (blue line), EP (orange line), and the

North Pacific ClimateNet (green line) composites. . . . . . . . . . . . . . . . . 28

2.8 Summary of results and graphical comparison for the di↵erent size estimation

methods. In color contours we superimpose (with transparency of 0.1%) the

IVT field of all the AR objects available at 50% life cycle for (a) Western

Pacific and (b) Eastern Pacific. Each AR object is rotated to the median angle

of orientation, and the distance to the center is calculated to make this plot.

The dotted “fan” represents two standard deviations for the AR orientation

with respect to the equator. The red and gold lines represent the length and

width estimated using the SO and BG methods respectively. gray dashed lines,

represent the results of the PC method for the 5th, 50th and 95th percentile.

The cyan solid line represents the results of the LT method. It is the 0.68

probability contour of the final position for all the AR cases gathered and

rotated to the same frame of reference. . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Principal component analysis method. White lines represent the PC of the AR,

and the white contour is the area estimated from the ellipse whose axes are the

PC. The red lines represent directions along and across AR used to sample IVT

for SO and BG methods (dashed/solid represent the first/second PC). . . . . . 45

x



3.2 (a) Raw sampling of IVT vs distance to the AR centroid. (b) Conditional

probability distribution of IVT and distance to the AR centroid along the AR

composite (white contours show CPD across AR composite). The orange con-

tour represents the 0.16 probability contour. Vertical dashed line shows how

we would sample to generate the cumulative density function at a given dis-

tance. (c) Illustration of the statistical overlapping method. Blue line shows an

sketched background IVT PDF. The orange line is the CPD=0.16 (from panel

b). (d) Illustration of two CDF at di↵erent distances from the AR composite

center. CDF are obtained sampling vertically from the CPD (panel b). Circle

markers represent a closer distance to the composite center than the triangle

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 (a) Background IVT value of the PDF at +1 standard deviation (IVT�+1) his-

torical and future simulations. Filled markers represent historical simulations,

empty markers future simulations. Below the markers, we show the percentage

of change in IVT�+1 . (b) IVT�+1 calculated every five years for the complete

1950-2100 period. (c) CDF of the background IVT field. Solid lines and shad-

ows represent the mean across CMIP5/6 models and the spread between models. 50

3.4 AR width from SO, SO250, BG, and PC methods. Historical and future runs

are represented by filled and empty markers, respectively. The results from PC

represent the median width. Light gray rectangles show the range between the

historical and future IVT�+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 AR length from SO, SO250, BG, and PC methods. Historical and future runs

are represented by filled and empty markers, respectively. The results from PC

represent the median length. Light gray rectangles show the range between the

historical and future IVT�+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



3.6 AR area from SO, SO250, BG, and PC methods. Historical and future runs

are represented by filled and empty markers, respectively. The results from PC

represent the median area. Light gray rectangles show the range between the

historical and future IVT�+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Fractional size change between historical and future simulations (area/width/length),

calculated with five di↵erent methods (SO, SO250, BG, PC, and ARCI). PC and

ARCI results represent the median area, length, and width. . . . . . . . . . . . 53

3.8 AR width and mean IVT from five methods (SO, SO250, BG, PC, and ARCI).

Historical and future runs are represented by filled and empty markers, respec-

tively. Results from PC represent the median width. Gray contours show lines

of constant AR cross-section water transport in 103 m3s�1. . . . . . . . . . . . 54

3.9 Joint PDF of the final AR centroid position (at 90%-100% life cycle), generated

using all CMIP5/6 models. Solid thick contours represent future simulations

(RCP-8.5 and SSP-8.5). Filled contours represent historical simulations. . . . . 55

3.10 Fractional change between historical and future simulations of AR area in width

and length at 95% life cycle, calculated with five methods (SO, SO250, BG,

PC, and ARCI), for the North America landfalling ARs. Width and length

fractional changes are represented by filled and empty markers, respectively.

Results from PC and ARCI represent the median length and width. . . . . . . 56

3.11 Fractional change between historical and future simulations in width/length

at 90%-100% life cycle for Northamerica landfalling ARs, calculated with five

methods (SO, SO250, BG, PC, and ARCI). Width and length fractional changes

are represented by filled and empty markers, respectively. Result from PC and

ARCI represent the median length and width. . . . . . . . . . . . . . . . . . . 56

xii



4.1 (a) Percentage of annual total precipitation from CPC Global Unified Gauge-

Based Analysis of Daily Precipitation. Thick black contour used to indicate

what is considered as Central-Western Mexico throughout this work. (b) ERA5

reanalysis IVT in color contours. Vectors represent the 750 hPa wind velocity.

2020-01-01 is one of the times when the precipitation in CWM resembled the

winter Californian AR-associated rainfall. . . . . . . . . . . . . . . . . . . . . . 65

4.2 Orography of CWM. Loc1 and Loc2 are show in circle and triangle markers,

respectively. The Sierra Madre Occidental is the mountain range that runs

through Northwestern and Central-Western Mexico. . . . . . . . . . . . . . . 70

4.3 Fraction of the total precipitation extreme precipitation (>98th percentile) as-

sociated with ARs. (a) ERA-20C 1900-2010. (b) Livneh 1950-2010. . . . . . . 71

4.4 Fraction of AR-associated to total extreme (>98th) precipitation frequency. (a)

ERA-20C 1900-2010. (b) Livneh 1950-2010. . . . . . . . . . . . . . . . . . . . 72

4.5 Long-term mean for 1900-2010 in December. (a) Integrated water vapor (IWV),

(b) integrated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d)

geopotential height at 650 hPa. The vectors in panel (b) represent the direction

of IVT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in January. Contours variables are specified on the top-right of each plot.

Left column: IWV, IVT, mean sea level pressure, geopotential height at 850

and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column: anomalies

with respect to the long-term mean for the same variables. . . . . . . . . . . . 75

4.7 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in January. Contours variables are specified on the top-right of each plot.

Left column: IWV, IVT, mean sea level pressure, geopotential height at 850

and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column: anomalies

with respect to the long-term mean for the same variables. . . . . . . . . . . . 76

xiii



4.8 (a) IVT and IWV and (b) their anomalies. pr noar composites for January at

Loc1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Di↵erences in the mean state of the atmosphere between ar pr and pr noar

composites for January at Loc1. (a) IVT magnitude in filled contours, vec-

tors represent the direction of IVT, and white dashed contours denote changes

in IWV. (b) Filled contours show mean sea level pressure di↵erences, thick

yellow contours show geopotential height at 850 hPa, and black contours the

geopotential height at 500 hPa. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 (a) IVT and IWV and (b) their anomalies. ar nopr composites for January at

Loc1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Di↵erences in the mean state of the atmosphere between ar pr and ar nopr

composites for January at Loc1. (a) IVT magnitude in filled contours, vec-

tors represent the direction of IVT, and white dashed contours denote changes

in IWV. (b) Filled contours show mean sea level pressure di↵erences, thick

yellow contours show geopotential height at 850 hPa, and black contours the

geopotential height at 500 hPa. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Time of events for each composite (ar, ar pr, ar nopr, pr noar, and pr). Each

subfigure shows a year in the 1900-1905 period. Blue circle markers represent

ar, orange squares ar pr, green triangles ar nopr, red stars pr noar, and purple

crosses pr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.1 (a) Original integrated vapor transport (IVT) field; (b) IVT after application

of the Gaussian filter in Equation (A.1) with �y = 15� tropical filter (IVT’). . 91

A.2 Illustration of the steps in the PC calculation. The top sub-figures show the

original IVT field in filled contours, with a white circle marker as the first

guess of AR location (from the tracking algorithm). The bottom sub-plots

show the filtered IVT field in color-filled contours, the AR core ellipse and the

principal components ellipse in transparent white contours, and the direction

of the eigenvectors in red lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



A.3 Illustration of three cases where the PC calculation is more complicated. AR

objects with high curvature and merging ARs are particularly challenging. IVT

field is shown in color-filled contours and the direction of the eigenvectors in

red lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.4 Summary of the results and graphical illustration of the di↵erent size estimation

methods. In color contours, we superimpose (with transparency of 0.1%) the

IVT field of all the AR objects available at 50% life cycle for (a) Western Pacific

and (b) Eastern Pacific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.5 Illustration of one AR object IVT sampling along the principal components’

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.6 (a) Raw sampling of IVT vs distance to the AR centroid. (b) Conditional

probability distribution of IVT and distance to the AR centroid along the AR

composite (white contours show CPD across AR composite). The orange con-

tour represents the 0.16 probability contour. Vertical dashed line shows how

we would sample to generate the cumulative density function at a given distance. 94

A.7 (a) Illustration of the statistical overlapping method. Blue line shows an

sketched background IVT PDF. The orange line is the CPD=0.16 (from panel

b). (c) Illustration of two CDF at di↵erent distances from the AR composite

center. CDF are obtained sampling vertically from the CPD (panel b). Circle

markers represent a closer distance to the composite center than the triangle

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xv



A.8 WP (a) and EP (b) sensitivity background for the one-tailed KS-test method

(BG). AR area is shown in blue (left vertical axis). AR length and width are

shown in orange and green, respectively (right vertical axis). p is the statistical

significance level for the one-tailed KS-test. The results presented in the main

text of this work are generated using p = 0.95. WP (c) and EP (d) sensitivity

test for the statistical overlapping method (SO). �� and �+, are the PDF value

of the IVT background and the CPD value of the IVT composite with distance,

respectively. AR area is shown in blue (left vertical axis). AR length and width

are shown in orange and green, respectively (right vertical axis). The results

presented in the main text of this work are generated using �� = 0.16 and

�+ = 0.84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.9 Sensitivity test for the Lagrangian tracers method (LT). Colored contours show

AR area, ↵ is the multiplication factor of the scaling velocity
p
2ui from equa-

tion (A.2), and p-value is the final tracer position PDF value at which we define

the AR size. Black contours represent -2, -1, 1, and 2 standard deviations of the

AR area calculated using the LT method (from main text Figure 1). The black

star represents ↵ = 1.0 and p = 0.68, which are the values used to calculate

the main work results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Fractional change between historical and future simulations in background

IVT�+1 vs fractional change in median AR area. Each CMIP5/6 model is

represented by a di↵erent marker, colors represent the size estimation method. 101

C.1 Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) inte-

grated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopo-

tential height at 650 hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.2 Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) inte-

grated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopo-

tential height at 650 hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xvi



C.3 Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) inte-

grated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopo-

tential height at 650 hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.4 Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) inte-

grated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopo-

tential height at 650 hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.5 Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) inte-

grated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopo-

tential height at 650 hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.6 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in November. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 106

C.7 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in December. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 107

C.8 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in January. Black contours variables are specified on the top-right of each

plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 108

xvii



C.9 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in February. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 109

C.10 State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in March. Black contours variables are specified on the top-right of each

plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 110

C.11 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in November. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 111

C.12 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in December. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 112

C.13 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in January. Black contours variables are specified on the top-right of each

plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 113

xviii



C.14 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in February. Black contours variables are specified on the top-right of

each plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 114

C.15 State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in March. Black contours variables are specified on the top-right of each

plot. Left column: IWV, IVT, mean sea level pressure, geopotential height

at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:

anomalies with respect to the long-term mean for the same variables. . . . . . 115

C.16 State of the atmosphere during AR landfalling and without extreme precipita-

tion at Loc1 in January. Black contours variables are specified on the top-right

of each plot. Left column: IWV, IVT, mean sea level pressure, geopotential

height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right col-

umn: anomalies with respect to the long-term mean for the same variables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.17 State of the atmosphere during extreme precipitation without AR landfalling

conditions at Loc1 in December. Black contours variables are specified on

the top-right of each plot. Left column: IWV, IVT, mean sea level pressure,

geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa.

Right column: anomalies with respect to the long-term mean for the same

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.18 Time of event for each composite (ar, ar pr, ar nopr, pr noar, and pr). Each

subfigure shows a year in the 1900-2010 period to be able to clearly look at the

overlap of events across composites. Blue circle markers represent ar, orange

squares ar pr, green triangles ar nopr, red stars pr noar, and purple crosses pr. 118

xix



List of Tables

2.1 Methods for AR size estimation used in this work. . . . . . . . . . . . . . . . . 24

2.2 Summary of AR size statistics by method. . . . . . . . . . . . . . . . . . . . . 30

2.3 Summary of AR geometry statistics by method. . . . . . . . . . . . . . . . . . 32

3.1 Details of CMIP5/6 models used in the Tier 2 experiment. . . . . . . . . . . . 40

3.2 Fractional change in AR size from historical to future simulations. Mean (stan-

dard deviation) across models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Atmospheric state composites. Composites are created monthly. The number

of events at each location is the total number of events for all November-March

months. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1 List of ARTMIP algorithms used to generate Figures 1.2 and 2.1 . . . . . . . . 98

B.1 Global ARTMIP Tier 2 CMIP5/6 experiment ARDT algorithms used to cal-

culate the atmospheric river confidence index (ARCI). . . . . . . . . . . . . . . 99

xx



Abstract

Atmospheric rivers (ARs) are large and narrow filaments of poleward horizontal water

vapor transport. AR carry over 90% of moisture from the tropics to higher latitudes but cover

only between 2% and 10% of the earth’s surface. When ARs are forced upwards frequently

lead to heavy precipitation. ARs are associated with up to half of the extreme events in

the top 2% of the precipitation and wind distribution across most mid-latitude regions. ARs

can lead to hydrological hazards, and a better understanding of AR can help in the study,

forecasting, and communication of flooding. Because of its direct relationship with horizontal

vapor transport, extreme precipitation, and overall AR impacts over land, the AR size is

an important characteristic that needs to be better understood. Furthermore, most of the

ARs research work focuses on midlatitudes and polar regions. It is not until recently that

ARs in tropical latitudes are starting to generate interest within the scientific AR community.

We develop and implement five size estimation methods independent of the AR detection

algorithms and use them to characterize the size of ARs. We create North American landfalling

ARs composites using ERA5 reanalysis data in the 1980-2017 period. To study how AR size

changes with future climate scenarios, we use data from the Coupled Model Intercomparison

Project 5 and 6 (CMIP5/6) to create historical and future AR composites in the 1950-2100

period. We apply our size estimation methods to study how AR size responds to climate

change. Additionally, we use data from the ERA-20C reanalysis to study the relationship

between lower latitude ARs and the extreme precipitation in Central-Western Mexico (CWM)

during the dry-season (November-March) in the 1900-2010 period.

North American landfall ARs (NALFARs) that originate in the Northwest Pacific (WP)

(100�E-180�E) have larger sizes and are more zonally oriented than those from the North-

east Pacific (EP) (180�E-240�E). ARs become smaller through their life cycle, mainly due to

reductions in their width. They also become more meridionally oriented towards the end of

their life cycle. NALFARs become smaller through their life cycle, mainly due to reductions

in their width. They also become more meridionally oriented towards the end of their life

cycle. Overall, the size estimation methods developed in this work provide a range of AR
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areas (between 7x1011m2 and 1013 m2) that is several orders of magnitude narrower than

the current estimation by the AR detectors from the Atmospheric River Tracking Method

Intercomparison Project (ARTMIP).

From a global AR size analysis, we show an increase between 10% and 21% in the back-

ground IVT field among CMIP5/6 models. According to our results, AR width is more

sensitive to climate change and has a larger contribution than length to the change in the

AR area. We find a mean AR area of 3.15x106 (2.32x106-3.98x106) km2 for historical runs,

and 3.42x106 (2.73x106-4.11x106) km2 for future runs. Most size estimation methods and

CMIP5/6 models show positive trends in AR area, length, and width, between historical and

strong radiative forcing future simulations (CMIP5: RCP-8.5, CMIP6: SSP-858). Regardless

of the individual sign in AR size change, the mean AR cross-section water vapor transport

increases between 8% and 37% for future simulations. Additionally, our results suggest that

NALFARs are more likely to penetrate further inland under climate change.

Regarding landfalling ARs in CWM, our results suggest that more than 25% of the ex-

treme dry-season precipitation is associated with AR-like events, with up to 75% in December

and January. This AR-associated precipitation is associated with an enhanced mean vertically

integrated water vapor (IWV) and horizontal vapor transport (IVT) fields (30 kg m�2 and

IVT 400 kg m�1s�1, respectively). The meteorological state of the atmosphere shows “ideal”

conditions for orographic precipitation due to landfalling ARs: high plume of horizontal vapor

transport perpendicular to the mountain range. These events are associated with a weakening

of the westward equatorial IVT and a tropospheric wave pattern, observable in the mean sea

level pressure and geopotential height anomalies.

We believe that the size estimation methods developed in this work provide statistical

constraints for AR size and geometry, and how they change in future climates. These results

could help as a reference for tuning existing ARDTs or designing new AR detection algorithms.

Furthermore, we demonstrate the relationship between ARs and winter rainfall in CWM. This

relationship leaves the question open of how similar are these tropical ARs to the more studied

higher latitude ARs and how they will respond in a warming world.
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Chapter 1

Introduction

Atmospheric rivers (ARs) are long, narrow filaments of poleward water vapor transport

from the tropics. They were first described by Newell and Zhu (1994) and Zhu and Newell

(1998) as high tropospheric water vapor flux with a filamentary structure or “tropospheric

rivers”. AR carry over 90% of moisture from the tropics to higher latitudes but cover only

⇠10% of the total earth circumference at a given latitude (Zhu and Newell, 1998) (between

2 and 10 percent of the earth’s surface (O’Brien et al., 2021)). ARs are associated with up

to half of the extreme events in the top 2% of the precipitation and wind distribution across

most mid-latitude regions (Waliser and Guan, 2017). Moreover, landfalling ARs are associated

with about 40-75% of extreme wind and precipitation events over 40% of the world’s coastlines

(Waliser and Guan, 2017). Midlatitude continental regions around the world (western North

America, South America, Europe, and South Africa) have large amounts of precipitation and

with hydrological impacts associated with ARs (Neiman et al., 2002, 2008; Ralph et al., 2004,

2005; Leung and Qian, 2009; Guan et al., 2010; Viale and Nuñez, 2011; Warner et al., 2012;

Neiman et al., 2013; Ralph et al., 2013; Lavers and Villarini, 2013b; Rutz et al., 2014; Ramos

et al., 2015; Gimeno et al., 2016; Waliser and Guan, 2017; Blamey et al., 2018; Viale et al.,

2018; Ramos et al., 2019; Huang et al., 2021).

ARs can have both positive and negative e↵ects in continental regions. Their absence

can lead to droughts (Dettinger, 2013), whereas numerous ARs can lead to flooding and

other hydrological hazards (Ralph et al., 2006; Dettinger, 2011; Ralph and Dettinger, 2011;

Lavers and Villarini, 2013a). ARs have significant consequences on the hydrological cycle of

regions like California and contribute to the accumulation of the snowpack and the reservoir

level and water availability (Dirmeyer and Brubaker, 2007; Guan et al., 2010; Kim et al.,

2013; Goldenson et al., 2018; Eldardiry et al., 2019). Ultimately, a better understanding of
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AR can help in the study, forecasting, and communication of flooding, droughts, and water

management (Lavers et al., 2016b,a; Ralph et al., 2019b). Landfalling ARs provide water

resources to over 300 million people (Paltan et al., 2017), having a substantial hydrological

and socioeconomic impact. For some regions, fewer than average ARs could mean drought,

whereas a higher number or intensity of ARs can produce floods and other hazards (Dettinger,

2011).

1.1 What is an Atmospheric River?

ARs were first described ARs in the late 1990s as “tropospheric rivers” (Newell and Zhu,

1994; Zhu and Newell, 1998). Since then, there has been a growing interest in studying ARs

in the last few decades. Until 2018, there was no “o�cial” definition of what an AR is. An

exact definition is still a topic of research and debate. In 2018, a definition was submitted

to the AMS Glossary of Meteorology (GoM)1: “A long, narrow, and transient corridor of

strong horizontal water vapor transport that is typically associated with a low-level jet stream

ahead of the cold front of an extratropical cyclone. The water vapor in atmospheric rivers

is supplied by tropical and/or extratropical moisture sources. Atmospheric rivers frequently

lead to heavy precipitation when forced upward—for example, by mountains or by an ascent

in the warm conveyor belt. Horizontal water vapor transport in the midlatitudes occurs

primarily in atmospheric rivers and focuses on the lower troposphere. Atmospheric rivers are

the largest ‘rivers’ of fresh water on earth, transporting on average more than double the flow

of the Amazon River” (Ralph et al., 2019a). This definition is an outcome of two meetings:

a 2015 workshop that gathered more than 25 experts in ARs, warm conveyor belt (WCB),

and tropical moisture exports (TMEs) (Dettinger et al., 2015); and the First International

Atmospheric Rivers Conference (IARC) in August 2016 (Ralph et al., 2017b), that brought

together more than 100 individuals from across the globe for four days to discuss AR dynamics,

observations, impacts, climate change implications, and applications (Ralph et al., 2019a).

Observational work using dropsonde measurements deployed from aircraft across 21 land-

1https://glossary.ametsoc.org/wiki/Atmospheric_river
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falling atmospheric rivers along the US West Coast provided an insight into the ARs struc-

ture: vertically integrated water vapor (IWV) higher than 20 kg m�2 (IWV�2 cm), wind

speed greater than 15 ms�1, concentrated mainly in the lower 3 km of the troposphere, with

a horizontal cross-section of ⇠850 km. Figure 1.1 shows the structure of an average midlat-

itude AR. Width is defined by the vertically integrated water vapor transport (IVT) �250

kg m�1s�1 (from the surface to 300 hPa), and depth corresponds to the altitude below which

75% of IVT occurs. IVT and IWV are the most common variables used to describe and detect

ARs, calculated as:

IWV = �1

g

Z pt

Pb

qdp ⇡ �1

g

NX

k=1

qk�pk, (1.1)

IVT =

�����
1

g

Z pt

pb

q~udp

���� ⇡

������
1

g

NX

k=1

~uk qk,�pk

����� (1.2)

where p is pressure, ~u is the horizontal wind vector at a given pressure, Pb and Pt are the bottom

and top pressure in the atmosphere, and q is the specific humidity. In Ralph et al. (2017a) and

the GoM, Pb and Pt are the surface pressure and 300 hPa. In model and reanalysis data, we

can calculate IVT and IWV using the native vertical grid levels of the model, where index k

corresponds to model levels going from the surface (k = 1) to the top of the model atmosphere

(k = N), and�pk is the di↵erence in level pressures, estimated at level k. Calculating IVT and

IWV in the model levels helps reduce the error in calculating the vertical integrals, particularly

in continental regions where the topography can allow levels below ground to exist in isobaric

coordinates.

1.2 Detecting Atmospheric Rivers and Estimating Their

Size

Detecting and defining the boundaries of AR is a particularly complicated task. The

Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international
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Figure 1.1: (a) Plain view of a mean AR and its associated surface front. IVT [kg m�1s�1] is show in
color-filled contours; IWV [cm] is shown in solid black contours. (b) Mean AR vertical cross-section. Green
dotted contours are water vapor mixing ratio [g kg�1], blue contours are normal to cross-section isotachs [m
s�1], and orange filled contours represent the AR core. Water vapor flux corresponds to the transport along an
AR, bounded by IVT = 250 kg m�1s�1, and by the surface and 300 hPa levels. Figure from the AMS Glossary
of Meteorology. Ralph et al. (2017a). ©American Meteorological Society. Used with permission.

e↵ort to understand and quantify uncertainties in atmospheric river (AR) science based on the

choice of detection/tracking methodology and whether and how our scientific understanding

of ARs may depend on the detection algorithm.

AR detection and tracking are heavily influenced by how researchers have quantitatively

defined this phenomenon and how are AR detectors (ARDTs) designed. For example, the

use of 250 kg m�1s�1 minimum threshold for IVT does not account for size but only for the

concentration of flow and moisture levels. These di↵erent rules and algorithm thresholds have

resulted in significant uncertainty in estimating the AR size, with areas varying over several

orders of magnitude among di↵erent detection methods (see Figure 1.2). ARTMIP has (at

this moment) 30 di↵erent algorithms. The di↵erent ARTMIP ARDTs are designed to answer

di↵erent questions, producing di↵erences in AR climatology (Shields et al., 2018; Rutz et al.,

2019; Lora et al., 2020). However, there is still an overlap among the di↵erent ARDTs (Payne

et al., 2020). Together with horizontal vapor transport, AR size (width, length, and area)

is an important characteristic that needs to be better understood, and a robust connection

between AR size and their impacts over land and intensity scale still has to be studied and

determined. Ralph et al. (2019a) introduced a scale to categorize AR strength based on vapor

4



Figure 1.2: AR area calculated from di↵erent methods in ARTMIP, ordered by median area (01-28). Algo-
rithm names are included in the supporting information in Table A.1 for reference.

transport intensity and landfall duration and show that there are beneficial and hazardous

impacts associated with AR events. AR size can impact the area of influence of AR at the time

of landfalling. Moreover, if ergodicity relates AR size and duration, AR size could directly

relate to its benefits and hazards. Therefore, in addition to integrated vapor transport (IVT)

and AR duration, the question “how large are atmospheric rivers?” represents a key aspect

of research in the atmospheric river research community. The first two core chapters of this

dissertation (Chapters 2 and 3) focus on AR size, its evolution during its lifecycle, and how

AR size responds to climate change scenarios.

1.3 Atmospheric Rivers in Lower Latitudes

Due to the significant impact of ARs in midlatitudes hydro-climatology, there is an exten-

sive amount of work and ARs literature in these regions. On the other hand, the occurrence

of ARs in low latitudes is less studied within the AR research community. Furthermore,

there is not much literature regarding tropical ARs. Lately, they are starting to gain interest

within the AR community (De Luna et al., 2020; De Luna, 2021). In Chapter 4, we study the

relationship between extreme precipitation during the dry season (November-March) in Cen-

tral Western Mexico (CWM) and low latitude ARs. This anomalous rainfall during the can
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have significant impacts on the regional agricultural production. Di↵erent crops like beans,

co↵ee, and corn, are sensitive to changes in the environment, and modifications of climate

conditions could a↵ect the productivity and quality of the crops (Cruz López, 2011; Porter

and Semenov, 2005). Furthermore, changes in wind speed, direction, and moisture transport

could have an impact on the regional weather and the oceanic state. These extreme rainfall

events produce increased river discharges associated with changes in chlorophyll concentration,

turbidity, temperature, and salinity of coastal ecosystems (Domı́nguez-Hernández et al., 2020;

Romero-Rodŕıguez et al., 2020). Although there are numerous possible e↵ects related to these

anomalous winter precipitation in CWM, there is still a lack of documentation about these

events and their impacts. Moreover, no research links these events with ARs. In Chapter 4

we study this relationship and raise the question, what is the state of the atmosphere during

these low latitude ARs? How much of the dry season precipitation in CWM is associated with

ARs?

1.4 Outline of Dissertation and Main Objectives

This dissertation’s core chapters (Chapters 2 through 4) can be divided in two main

scopes: AR size estimation and its response to climate change (Chapters 2 and 3), and land-

falling ARs in Western Central Mexico and their relationship with the dry season (November-

March) extreme precipitation.

In Chapter 2, we take a novel approach in AR size estimation. Our research works

toward developing and implementing five di↵erent AR size estimation methods independent

from the ARDTs algorithms. Since we do not develop a new ARDT, and the methods de-

veloped in this chapter are not directly related to any existing ARDT, we argue that they

collectively provide a robust and objective way to estimate AR size. Our methods provide a

lower range of AR sizes than the ARTMIP collection of ARDTs.

We analyze the wet season (November-April) of North American landfalling ARs and

create a composite for the 1980-2018 period to objectively estimate the size of ARs using the

IVT from ERA5 reanalysis data Copernicus Climate Change Service (2017). We also analyze
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the evolution of AR size (width, length, area) and geometry (aspect ratio, angle with respect

to the equator) thought the AR lifecycle. All the content in Chapter 2 (with format changes)

is published in Journal of Geophysical Research: Atmospheres as:

Inda-Dı́az, H. A., O’Brien, T. A., Zhou, Y., & Collins, W. D. (2021). Constrain-

ing and characterizing the size of atmospheric rivers: A perspective independent from the

detection algorithm. Journal of Geophysical Research: Atmospheres, 126, e2020JD033746.

https://doi.org/10.1029/2020JD033746

In Chapter 3, we focus on how the AR size changes between historical and future

climate scenarios using the data from the ARTMIP tier 2 experiment and the Coupled Model

Intercomparison Project 5 (CMIP 5) and CMIP 6. To do this, we develop and calculate the

atmospheric river confidence index (ARCI), a quantity representing the fraction of ARDTs

that agree with the presence of an AR in a given grid cell. As a first approach, We use the ARCI

to estimate ARs areas. Then, using the AR centroid given by ARCI, we implement and apply

three AR size estimation methods from Chapter 2 as part of the Toolkit for Extreme Climate

Analysis (TECA)2. We study how the background IVT field and the AR size respond to the

future climate scenarios: the representative concentration pathway 8.5 (RCP8.5, CMIP5) and

shared socioeconomic pathways 5-8.5 experiments (SSP5-8.5, CMIP6).

In Chapter 4 we explore the association between dry season (November-March) extreme

precipitation in Central Western Mexico (CWM) and atmospheric rivers. The study of ARs in

lower latitudes is still a new research area, with few works studying tropical ARs. Moreover,

a large part of the ARTMIP ARDTs are designed to study ARs in higher latitudes and

filter out tropical IVT. We use reanalysis data from the ECMWF Atmospheric Reanalysis of

the Twentieth Century ERA-20C3 to extract IVT and precipitation in the 1900-2010 period,

and the Bayesian AR Detector TECA-BARD v1.0.1, (O’Brien et al., 2020a) to calculate the

probability of AR presence in CWM. In this fashion, we calculate how much of the dry season

rainfall in CWM is associated with ARs. Moreover, we calculate composites of the general

state of the atmosphere at the time of AR landfall on the coast of CWM.

2https://github.com/lbl-eesa/teca
3https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
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Lastly, in Chapter 5 we present a recapitulation of the main conclusions of this work and

the possible future research paths and recommendations.
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Chapter 2

Constraining and Characterizing the Size of At-

mospheric Rivers: A Perspective Independent

From the Detection Algorithm

The full content of this Chapter is published in Journal of Geophysical Research: Atmo-

spheres (with some style and journal format modifications) as:

Inda-Dı́az, H. A., O’Brien, T. A., Zhou, Y., & Collins, W. D. (2021). Constraining and

characterizing the size of atmospheric rivers: A perspective independent from the detection

algorithm. Journal of Geophysical Research: Atmospheres, 126, e2020JD033746. https:

//doi.org/10.1029/2020JD033746

2.1 Abstract

Atmospheric rivers (ARs) are large and narrow filaments of poleward horizontal water

vapor transport. Because of its direct relationship with horizontal vapor transport, extreme

precipitation, and overall AR impacts over land, AR size is an important characteristic that

needs to be better understood. Current AR detection and tracking algorithms have resulted

in large uncertainty in estimating AR sizes, with areas varying over several orders of mag-

nitude among di↵erent detection methods. We develop and implement five independent size

estimation methods to characterize the size of ARs that make landfall over the west coast of

North America in the 1980-2017 period and reduce the range of size estimation from ARTMIP.

ARs that originate in the Northwest Pacific (WP) (100�E-180�E) have larger sizes and are

more zonally oriented than those from the Northeast Pacific (EP) (180�E-240�E). ARs become

smaller through their life cycle, mainly due to reductions in their width. They also become
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more meridionally oriented towards the end of their life cycle. Overall, the size estimation

methods proposed in this work provide a range of AR areas (between 7x1011m2 and 1013 m2)

that is several orders of magnitude narrower than current methods estimation. This method-

ology can provide statistical constraints in size and geometry for the design and tuning of AR

detection and tracking algorithms; and an objective insight for future studies about AR size

changes under di↵erent climate scenarios.

2.2 Introduction

Atmospheric rivers (ARs) are long and narrow filaments of poleward water vapor trans-

port from the tropics (Newell et al., 1992; Zhu and Newell, 1998; Ralph et al., 2018), that carry

over 90% of the meridional moisture transport from the tropics to higher latitudes but may

occupy only about 10% of the total longitudinal length (Zhu and Newell, 1998). AR have been

associated as a main source of precipitation around midlatitude continental regions around

the world (Ramos et al., 2015; Neiman et al., 2008; Lavers and Villarini, 2013b; Waliser and

Guan, 2017; Viale et al., 2018). ARs are associated with up to half of the extreme events

in the top 2% of the precipitation and wind distribution across most mid-latitude regions

(Waliser and Guan, 2017). Moreover, landfalling ARs are associated with about 40-75% of

extreme wind and precipitation events over 40% of the world’s coastlines (Waliser and Guan,

2017). ARs can have both positive and negative e↵ects in continental regions. Their absence

can lead to droughts (Dettinger, 2013), whereas numerous ARs can lead to flooding and other

hydrological hazards (Ralph et al., 2006; Dettinger, 2011; Ralph and Dettinger, 2011; Lavers

and Villarini, 2013a). Ultimately, ARs have important consequences in the hydrological cy-

cle of regions like California. They contribute to the accumulation of the snowpack and the

reservoir level and water availability (Dirmeyer and Brubaker, 2007; Guan et al., 2010; Kim

et al., 2013; Goldenson et al., 2018; Eldardiry et al., 2019).

Along with horizontal vapor transport, AR size (length and width) is an important char-

acteristic that needs to be better understood. Nevertheless, a robust connection between AR

size and their impacts over land and intensity scale still has to be studied and determined.
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Ralph et al. (2019a) introduced a scale to categorize AR strength based on vapor transport

intensity and landfall duration and show that there are beneficial and hazardous impacts as-

sociated with AR events. If ergodicity relates AR size and duration, AR size could be directly

related to the benefits and hazards associated with them. Therefore, in addition to integrated

vapor transport (IVT) and AR duration, the question “how large are atmospheric rivers?”

represents a key aspect of research in the atmospheric river research community.

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) has made

an international e↵ort to understand whether and how our scientific understanding of ARs may

depend on the detection algorithm. The di↵erent ARTMIP detection and tracking algorithms

are designed to answer di↵erent questions, and they produce di↵erences in AR climatology

(Shields et al., 2018; Rutz et al., 2019; Lora et al., 2020); therefore, there are di↵erences in

their detected shape and size. It has become clear that AR detection and tracking are heavily

influenced by how researchers have quantitatively defined this phenomenon, for example, the

use of 250 kg m�1s�1 minimum threshold for IVT, which does not account for size but only for

the concentration of flow and moisture levels. These di↵erent rules and algorithm thresholds

have resulted in large uncertainty in estimating the AR size, with areas varying over several

orders of magnitude among di↵erent detection methods (see Figure 2.1).

The definition of the boundaries and size quantification of ARs are ongoing research ques-

tions, and therefore a great uncertainty among methods is expected. Some recommendations

made after the formal AR definition in the Glossary of Meteorology in 2018 were “to keep the

definition as short as possible and to leave specifications of how the boundaries of an AR are

to be quantified open for future and specialized developments” (Ralph et al., 2018).

The research described in this manuscript works toward the development and implemen-

tation of five independent AR size estimation methods. Since we do not develop a new AR

detection algorithm, and the methods described here are not directly related to any existing

AR detection or tracking algorithm, we argue that they collectively provide a robust and ob-

jective way to estimate AR size with a lower range of AR sizes than ARTMIP. The methods

presented in this work does not preclude the possibility that the parameter choices are made
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Figure 2.1: White background: AR area calculated from di↵erent methods in ARTMIP, ordered by median
area (01-28). Colored background: AR area calculated in this work using the ClimateNet ARTMIP campaign
(CN), Lagrangian Tracers method (LT), Principal Component Analysis of IVT (PC), KS-test between the
IVT of AR and the background IVT field (BG), and the statistical overlapping of the conditional probability
distribution of IVT given distance to the center of AR and the background IVT probability density function
(SO): see Sections 2.4.1-2.4.4 for details. For BG and SO methods, triangles represent the composite of AR
with Northeast Pacific origin (EP) and circles represent the composite of AR with Northwest Pacific origin
(WP). Blue, orange, and green markers account for the 25, 50, and 75% of the AR life cycle, respectively.
For the BG method, we show the results from the two-tailed and one-tailed KS-test. For the SO method, we
show the results using IVTBG1 and IVTBG2 , that correspond to a p � �+ at 179.5 and 193.9 kg m�1s�1s,
respectively. (Algorithm names are included in the supporting information Table S1 for reference).

by the same group people. Nevertheless, we used statistical quantities to estimate ARs size

and objectively tested these methods’ sensitivity to the chosen parameters. For this work,

we analyze the winter (November-April) North American coast landfalling ARs and create a

composite for the 1980-2018 period, to objectively estimate the size of ARs using the IVT

from ERA5 reanalysis data (Copernicus Climate Change Service, 2017).

2.3 Data

In this work, we use the AR detection results from three di↵erent ARTMIP meth-

ods (Shields et al., 2018; Rutz et al., 2019): CASCADE_BARD_v1 (O’Brien et al., 2020b),

Lora_global (Lora et al., 2017), and Mundhenk_v3 (Mundhenk et al., 2016). Employing

these three di↵erent detection algorithms allows us to broadly sample ARs in the North Pa-
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cific Ocean. Each of these methods generates a binary flag: 1 for “AR conditions exist” and 0

for “AR conditions do not exist”; for each latitude-longitude grid point. AR binary flags were

calculated using thermodynamic and dynamical fields from the Modern-Era Retrospective

Analysis for Research and Applications Version 2 (MERRA-2) reanalysis (Gelaro et al., 2017)

as a part of the ARTMIP Tier 1 experiment (Shields et al., 2018). In the methods section,

we describe how we use these binary flags to create the AR composite.

The column-integrated water vapor (IWV) and IVT, are the two main variables used to

define and characterize ARs (Ralph et al., 2018). For this work, we focus on IVT and calculate

it using the vertically integrated eastward and northward water vapor flux [q̇x, q̇y] (kg m�1s�1)

provided by the ERA5 reanalysis. IVT is defined as

IVT =
q
q̇2x + q̇2y , (2.1)

where

q̇x = �1

g

Z pt

pb

q u dp, (2.2)

q̇y = �1

g

Z pt

pb

q v dp, (2.3)

q is the specific humidity [kg kg�1], u and v the zonal and meridional wind velocity [m s�1] over

the pressure surface p, Pb is 1000 hPa, Pt is 200 hPa, and g is the gravitational acceleration.

We also use u and v for the Lagrangian in subsection 2.4.3. ERA5 data have a temporal

resolution of 1 hour and a horizontal resolution of 0.25 degrees. We focus our work on the

1980-2017 period.

Following (O’Brien et al., 2020b), in order to avoid the large contiguous regions of high

IVT near the tropics associated with the intertropical convergence zone (ITCZ), we spatially

filter the IVT field as

IVT0 = IVT · (1� e
�y2

2�y2 ), (2.4)

where IVT’(x, y) is the filtered IVT field, x and y are the longitude and latitude, respectively,
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and �y is half-width at half-maximum of the filter. We use �y = 15�, which e↵ectively damps

the IVT to zero within the ITCZ. Hereon we refer to the filtered field as IVT for simplicity.

This analysis focuses on 37 wet seasons (November-April) in the 1980-2017 period over

the North American coast. We focus on landfalling ARs and e↵ectively restrain the study

domain to the North Pacific Basin (0�N-90�N, 100�E-240�E).

Furthermore, since this work’s primary focus is to study the size of ARs, we only utilize

output from the three ARTMIP algorithms to obtain a broad and robust sample of AR

occurrences (time and approximate location). With the exception of the areas shown in

Figure 2.1, we explicitly avoid using the exact shape or size determined by any detection and

tracking algorithm.

2.4 Methods

We apply the AR life cycle tracking algorithm from Zhou et al. (2018) to the AR binary

flag data (from the three detection methods used in this work) and record each detected AR

position and timestamp. To ensure we sample over the highest possible number of ARs and

avoid double-sampling events, we start by taking all the ARs detected from one tracking

method. We add the AR events from the second tracking method that are not detected by

the first, and finally, we add the ones from the third method that are not in the first or the

second. It is essential to note that we only record the AR time stamp and center coordinates

of each object through its life cycle (calculated using Equations 2.7 and 2.8), and we do not

infer the shape or size of ARs from these detection algorithms. Our size-estimating methods

later use the recorded AR center as a first guess on the time and location of an AR.

In this fashion, we create a 1980-2017 wet season (November-April) dataset of North

American coast landfalling AR objects. Each object corresponds to one instantaneous snap-

shot of an AR and contains its center’s timestamp and location through its life cycle. The

dataset is divided into two parts, based on AR origin location (Northwest Pacific “WP” 100�E-

180�E vs. Northeast Pacific “EP” 180�E-240�E); and classified by its life cycle stage, at 25%,

50%, and 75% of the AR total life cycle. All subsequent analyses and methods in this work
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are applied separately for each of these six sub-datasets.

2.4.1 Principal Component Analysis of IVT (PC Method)

Recognizing that ARs are associated with ridge-like structures in the IVT field, the

principal components (PC) method is designed to estimate AR size by modeling AR shapes

as Gaussian. For each object, we apply principal component analysis (PCA) to the high IVT

cluster closest to the AR object’s center (or first guess) and compute the weighted covariance

matrix Cw (Price, 1972) of latitude and longitude

Cw =
⌃nx

i=1⌃
ny
j=1IVTij(xij � x)T (yij � y)

⌃nx
i=1⌃

ny
j=1IVTij

, (2.5)

where xij and yij are the longitude and latitude of the ERA5 grid, x, y are the spatial zonal

and meridional mean, and the weight is given by the IVTij at each grid point. Cw is a 2x2

matrix, such that

Cw

0

@~s0

~s1

1

A =

0

@�0 ~s0

�1 ~s1

1

A , (2.6)

where the eigenvectors ~s0,~s1 are the principal components of the IVT field, and �0,�1 are

the eigenvalues. The principal components represent the directions of maximum variance of

the IVT field near the AR. The largest eigenvalue represents the direction that explains the

largest IVT variance, hence the longest AR axis (along the AR, ~s0), while the smallest would

represent the shortest AR axis (across the AR, ~s1).

To filter the IVT field that is far from one AR object, we use a 2-step iterative method.

First, we find the IVT cluster closest to the first guess location and define the AR “core” as

the points where IVT is greater than 0.5 times the local maximum IVT. We apply PCA to

the AR core and use the eigenvalues and eigenvectors to create a 2D Gaussian function using

Equation (2.11). Then, we filter all the points from the original ERA5 IVT field where the

core Gaussian function is less than 10�3 (we found this value worked well for the ARs objects

analyzed in this work). We then apply PCA to the filtered IVT field and use the results to
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estimate the size of the AR object.

We define the length (width) of the AR as twice the magnitude of ~s0 (~s1), and its area

as the ellipse whose axes are the principal components ~s0 and ~s1 (white solid lines and ellipse

in Figure 3.1). The AR orientation ✓ is defined as the angle between ~s1 and the equator.

Estimating the area of an AR as an ellipse is an idealization that allows us to simplify the

problem and avoid the introduction of more rules and thresholds that would essentially result

in a new detection algorithm. We realize that this will a↵ect the calculation of areas with

more highly irregular AR shapes. However, in a case-by-case inspection, we find that this is a

good approximation for the average AR in this work. Moreover, an overlap plot of all the AR

events (Figure 2.8) shows that, on average, this is an adequate idealized model representation

of ARs, which becomes particularly relevant for the statistical methods described in section

2.4.2. We utilize fastKDE (O’Brien et al., 2014, 2016) to calculate probability density functions

(PDF) of length, width, area, and orientation, using all the AR objects in our six sub-datasets

(https://github.com/LBL-EESA/fastkde/releases/tag/v1.0.18). The method described

in this section –applying PCA to the IVT field and define length and width– is labeled PC

throughout this work.

Figure 2.2: Principal component analysis method. White lines represent the PC of the AR, and the white
contour is the area estimated from the ellipse whose axes are the PC. The red lines represent directions along
and across AR used to sample IVT for SO and BG methods (dashed/solid represent the first/second PC).
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2.4.2 Estimating AR Size from Composites and Background IVT

Field (BG and SO Methods)

To estimate the AR length and width, we use two di↵erent statistical methods for de-

termining the distance at which the AR composite becomes indistinguishable from the back-

ground IVT field (from now on referred only as background for simplicity). We create an

AR composite from a total of 1,150 (980) AR objects for the WP (EP) in the 1980-2017 wet

seasons. We randomly sub-sample 300 AR objects (from each region) to ensure independence

between each AR object used to create the composite and increase the statistical robustness

of these methods.

The statistical overlapping method (SO) looks at the overlapping between the background

PDF and the composite as a function of the distance to the AR center. On the other hand,

the background method (BG) uses a Kolmogorov–Smirnov test (KS-test) to look at the dif-

ference between the background cumulative distribution function (CDF) and the conditional

probability distribution (CPD) of the composite IVT given the distance to the AR center. We

describe both methods in §2.4.2 and §2.4.2. For the SO and BG methods, we calculate the

AR composite area by modeling the shape of ARs as ellipses, whose axes are the length and

width calculated by each method.

We define the AR center coordinates (x, y) for every AR object within the composite as

the IVT-weighted center of mass:

x =
⌃nx

i=1⌃
ny
j=1IVTijxij

⌃nx
i=1⌃

ny
j=1IVTij

, (2.7)

y =
⌃nx

i=1⌃
ny
j=1IVTijyij

⌃nx
i=1⌃

ny
j=1IVTij

. (2.8)

We then sample IVT along the direction of the principal components (see Section 2.4.1)

through all the domain (represented by the red lines in Figure 3.1), and calculate the distance
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d of each point along this line to the AR center

d = ||(x0, y0)� (x, y)||, (2.9)

where (x0, y0) represent the coordinates of the points along each of the principal components’

direction. In this fashion, we create a joint distribution of IVT and d for the AR composite,

and utilize fastKDE to calculate the CPD of IVT given d: P (IVT | d).

Estimation of the Background

We estimate the PDF and CDF of the background by randomly sampling IVT from

ERA5 reanalysis data through the North Pacific Ocean in the period of study. Since the

definition of ‘background’ is somewhat ambiguous, we calculate two separate backgrounds:

IVTbk1 , where the grid cells inside an AR are masked at the time of sampling (AR grid cells

not used to calculate the background); and IVTbk2 , where ARs are not masked at the time

of IVT sampling. Despite the fact that IVTbk2 includes high-IVT points inside some ARs,

we remark that both backgrounds are statistically indistinguishable with a confidence level

of 95% according to a two-sample KS-test. The CDF of the background is higher than 0.84

(p � �+, where �+ is the value of CDF at +1 standard deviation) at 179.5 kg m�1s�1s and

193.9 kg m�1s�1s for IVTbk1 and IVTbk2 respectively, which are later used for the SO and BG

methods (§2.4.2 and §2.4.2) and referred to in the text label in Figure 2.1.

Statistical Overlapping of IVT With the Background Field PDF (SO)

One way to estimate the AR composite’s length and width is by looking at the overlap

of the background PDF and the composite IVT conditional probability distribution given the

distance to the center of AR (CPD(d)). We define the statistical boundary of the AR com-

posite as the distance where the CPD(d)=0.16 contour is greater or equal to background IVT

value at CDF=0.16. In other words, where CPD(d) at -1 standard deviation (�1) intersects

with the background PDF at +1 standard deviation (�+) (where the lower boundary of the

shading contour intersects the dotted line in Figure 2.4). With this method, we determine the
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AR extent by determining the distance d where the overlap between the composite PDF and

the background PDF is less than two standard deviations. This method is referred to as SO

throughout this work.

Figure 2.3: Conditional probability distribution of IVT given the distance to the center of the AR. Red colors
represent the transverse direction (across AR), black colors represent the longitudinal direction (along AR).
The 0.5 conditional probability C is represented in solid thick lines. The shading corresponds to probabilities
between 0.16 and 0.84. According to the statistical overlapping method, the AR is delimited by those distances
where the dashed line (background IVT p � 0.84) intersects the 0.16 CPD contour (marked in red and black
dots). For example, for the Northwest Pacific composite (WP) in panel (a), these intersections occur at
approximately from -1,500 and 1,200 km along the AR, and -600 and 400 km across the AR. The triangles
mark these distances of overlapping with the background.

K-S Statistics Between AR Composite and the Background CDF (BG)

The KS-test is used to determine at which distance the CDF of the composite IVT is

indistinguishable from the background CDF. This method assumes that the IVT distribution

within ARs di↵ers from the background.

From the CPD(d), we calculate the CDF of the composite IVT at di↵erent distances along

and across the AR composite (CDF(d)). We compare the CDF(d) against the background

CDF (2.4) and apply two-tailed and one-tailed KS-tests (KS1 and KS2, respectively). For the

KS1, we define the AR boundaries at the distance where the background CDF is significantly

lower than the background at the 95% confidence level. For the KS2, the AR boundaries are

delimited by those distances at which the KS-statistic reaches a minimum value, i.e. where

the CDF(d) and the background CDF are most similar. Figure 2.4 shows how the CDF(d)

(colored dashed lines) converges to the background CDF (solid black line) far from the center
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of the AR composite (d = 0 km, represented by the most transparent dashed lines). Both

Figure 2.4: Colored lines show the CDF of IVT for the AR composite, at di↵erent distances from the AR
center (CDF(d)); less transparent dashed lines represent a farther distance to the AR center. The black solid
line shows the CDF of the background. The KS-test evaluates where the composite IVT and the background
are statistically indistinguishable (for the two-tailed test) or where the composite IVT CDF is statistically
lower than the background CDF (for the one-tailed test).

BG and SO methods provide a robust statistical estimation of the AR composite size. In

the supporting information, we show a test of the sensitivity of the SO method to changes

in the background PDF and to changes in the CPD(d) overlapping values; we also test the

sensitivity of the BG method to changes in the statistical level of significance for the one-tailed

BG method (Text S1 and Figures S1(a-b)).

2.4.3 Lagrangian Tracers for Area Estimation (LT)

Previous work by (Garaboa-Paz et al., 2015) suggests that ARs relate to attracting La-

grangian Coherent Structures (LCS) in the 2D and 3D flow fields. With this in mind, we

hypothesize that Lagrangian tracers can be used to estimate AR area from a fluid dynamics

point of view. The association of ARs with LCS implies that tracers inside the AR are more

likely to preserve spatial coherence through backward and forward trajectory integration. Fur-

thermore, tracers near the boundaries and outside of the AR, compared with those inside the
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AR, would be more likely to disperse and end up at a final location farther from its initial

location.

To do so, we use a 2D passive Lagrangian tracer advection model. Tracers are advected

over pressure surfaces using 2D velocity fields from ERA5 reanalysis following a stochastic

advection equation

dxi = (ui +
p
2ui wi)dt, (2.10)

where i represents the zonal or meridional directions, u the 2D velocity over pressure surfaces,

ui is the root mean square of the local velocity near the tracer (Sawford, 1991; Gri↵a et al.,

1995; Rodean, 1996; LaCasce, 2008), and wi is a random perturbation with zero mean and

unit variance (i.e., a Wiener process). This random nudging in the tracer position at each step

helps represent di↵usion, turbulence, and other processes not resolved by the model. In the

supporting information Text S2 and Figure S2, we show a test of the sensitivity of AR area

to changes of the scaling velocity
p
2ui. We solve Equation (2.10) using the Euler method

with a time-step of 1 hour (same as the ERA5 resolution, thus avoiding the need for time

interpolation). The model uses bilinear interpolation in space to estimate the velocity at the

tracer location.

We select the tracers’ initial positions in the vicinity of a given AR by randomly selecting

2000 points from the entire study domain (-80S to 80N, 180W to 180E), with a probability

given by a 2D Gaussian function centered in the AR

g(x, y) = exp(�(a(x� x)2 + 2b(x� x)(y � y) + c(y � y)2)), (2.11)

where

a =
cos2(✓)

2�2
0

+
sin2(✓)

2�2
1

, (2.12)

b =
sin(2✓)

4�2
0

� sin(2✓)

4�2
1

, (2.13)

c =
sin2(✓)

2�2
0

+
cos2(✓)

2�2
1

, (2.14)
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�0 and �1 are the eigenvalues of the covariance matrix in Equation (2.5), x and y are the

longitude and latitude of the AR center, and ✓ is the angle between the along the AR axis

(~s1 from Equation (2.5)) and the equator. We observe that for fewer than 500 tracers, the

AR area might not be correctly resolved since, for larger ARs, there might be regions inside

the AR without initial tracers. We find that, in general, 2,000 is a su�cient number of initial

tracers and allows a spatial distribution that concentrates in the vicinity of the IVT blob and

extends further from it. Our results do not vary for larger number of tracers. In this fashion,

we ensure that the initial position of tracers is distributed inside and outside of the AR, but no

tracers (or a negligible number) are far from the AR (the tracers initial position distribution

is represented by the black dots in Figure 2.5 (a)). Additionally, we simulate 50 tracers for

each initial position, resulting in 50 di↵erent trajectories due to the random term in Equation

(2.10). This is equivalent to repeating the experiment 50 times, thus increasing the statistical

robustness of the results. We find similar results using a higher number of repetitions.

The area estimation is done as follows. Starting from the initial position (black dots),

we compute trace trajectories five days backward in time (resulting in the orange dots in

Figure 2.5 (a)). We then use these new locations to calculate the forward in time five days

trajectory (resulting in the blue dots in Figure 2.5 (a)). We compute this process for all

pressure levels between the surface and 500 hPa and record the tracers’ final position at each

level. We choose five days because we need a timescale longer than the boundary layer and

convective timescales, and we want a timescale as long as possible without exceeding the

Rossby timescale by too much. Moreover, other works have found that few ARs have a longer

duration than five days (Payne and Magnusdottir, 2016; Zhou et al., 2018).

We gather the final tracers from all levels and calculate the bivariate PDF of the final

tracer latitudes and longitudes. We estimate the AR area as the size of the largest contiguous

contour of PDF=0.68 (the PDF of the final position within two standard deviations), cor-

responding to the thicker green contour if Figure 2.5 (b). In the Appendix A we present a

sensitivity test of AR area relative to PDF value changes.
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Figure 2.5: (a) Initial position (black), after five days backward advection (orange), and five days forward
advection from the orange tracer locations (blue).The cyan contour shows the region with most (68%) of the
tracers after the the five-day forward advection. (b) IVT (filled contours) and PDF of the tracers’ final position
(contours). Thicker cyan contour at p = 0.68 area is used to estimate the AR size in the Lagrangian tracers
method (LT).

2.4.4 ClimateNet Method (CN)

We use ClimateNet Climate Contours (https://www.nersc.gov/research-and-development/

data-analytics/big-data-center/climatenet/, http://labelmegold.services.nersc.

gov/climatecontours_gold/tool.html), which is a guided user interface for annotating cli-

mate events, facilitating the collection of hand-labeled weather datasets (Prabhat et al., 2021).

We use the data generated using the ClimateNet labeling tool during the 3rd ARTMIP

workshop (http://www.cgd.ucar.edu/projects/artmip/meetings.html) in October 2019.

Half a day out of a 2.5-day workshop was devoted to this task, including over 15 workshop

participants who labeled 660 time slices of data during the session (O’Brien et al., 2020a).

A total of 1822 AR detections were made over the whole globe, and 378 were made in the

North Pacific Ocean region (which will be referred to as global and NP, respectively) using

an Atmospheric Model Intercomparison Project (AMIP) simulation performed with the Com-

munity Atmosphere Model (version 5) running at 25-km resolution (Wehner et al., 2014). We

calculate the area and orientation of each of these hand-labeled ARs. Unlike the methods

described in Sections 2.4.1-2.4.3, this method does not distinguish between the AR-genesis

location or life cycle.
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2.4.5 AR Size Calculation Methods Summary

To help the reader keep track of the various methods used in this work, Table 2.1 sum-

marizes a description for each method and the short names used throughout this work.

Table 2.1: Methods for AR size estimation used in this work.

Acronym Description Section
PC Principal components analysis of atmospheric river inte-

grated vapor transport field.
§2.4.1

SO Statistical overlapping of AR composite conditional prob-
ability distribution of IVT given the distance to the AR
center and the PDF of the background IVT field.

§2.4.2

BG Comparison of the IVT CDF of AR composite with the
CDF of the background IVT field.

§2.4.2

LT PDF of Lagrangian tracers final position near an AR after
backward and forward 5 days advection.

§2.4.3

CN Hand-labeled ARs using CLIMANET contours labeling
tool by a group of experts at the 2019 ARTMIP work-
shop.

§2.4.4

A deeper insight into the design of the PC, SO, and BG methods is shown in Sections

A.1 and A.2.

2.5 Results

We focus on the size of North American landfalling ARs. Our results are consistent

among methods: with AR areas within the 1011 to 1012 m2 range in four of the five methods:

PC, LT, BG, and SO; and between 1011 to 1013 m2 for CN. Our results have a narrower range

of AR area than the ARTMIP ensemble (Figure 2.1), with order-of-magnitude consistency

with the majority of the algorithms used in ARTMIP. The novel statistical methods in this

study (PC, SO, BG, and LT) are in good agreement with the manually labeled AR sizes from

the ClimateNet method. Table 2.2 contains a summary of the length, width, and area for all

four methods, depending on the AR genesis location and life cycle. Figure 2.8 shows a visual

representation of the size results for PC, LT, BG, and SO methods for WP and WP at 50%
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life cycle.

2.5.1 AR Length and Width

Figure 2.6 (a-c) shows the PDF of length and width calculated by PC. The PDF ex-

hibits the typical “long and narrow” AR shape, from 2.3 to 4.5 times longer than the width

(Table 2.3). According to PC, ARs have a median width of 844 km (90% of the cases were

between 520 and 1386 km), and length of 3842 km (90% between 2495 and 5816 km) for the

AR with WP origin; and median width of 814 km (90% of the cases were between 6477 and

1476 km), and length of 3413 km (90% between 2321 and 5400 km) for the ARs with EP

Origin.

According to PC, WP has larger and wider ARs than EP. The di↵erences in length

are statistically significant at a 99% confidence level, however di↵erences in width are not.

Concerning the life cycle, the WP composite has the smallest AR size at 25% and the largest

at 50% of its life cycle, nevertheless only the di↵erences in length are statistically significant.

The EP composite length does not change much through the life cycle. However, the width

decreases monotonically through its life cycle, with di↵erences statistically significant at a

99% confidence level.

Consistently with PC, BG, and SO methods show larger ARs originating in the WP.

According to BG, the ARs composite length (width) at 50% life cycle is 4019 (1121) km

for the WP and 3275 (501) km for the EP. The SO’s composite length (width) at 50% life

cycle is 2751 (916) km for the WP and 2107 (646) km for the EP. It is possible that the

EP and WP ARs’ size di↵erences might come from the landfall condition and that focusing

on landfall means that we are preferentially looking at that type of AR, since this work is

focused specifically on landfalling ARs. The di↵erence in size between WP and EP ARs and

of non-land-falling ARs could be explored in future work.

The lengths determined by the BG and SO methods exhibit little variation throughout

the life cycle. In contrast, AR width decreased by a factor of 0.67 (WP) and 0.60 (WP)

for BG, and 0.85 (WP) 0.69 (EP) for SO. These results suggest that the AR area di↵erence
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through the life cycle is mainly due to changes in width.

2.5.2 AR Area

Figure 2.6 (d-e) show the PDFs of the AR area, calculated by PC method (solid lines) and

LT (dashed lines). For the WP ARs, the area has a median of 2.47x1012m2 and 2.75x1012m2

for PC and LT, respectively. For the EP ARs, the area has a median of 2.23x1012m2 and

2.33x1012m2 for PC and LT, respectively. The WP composite has larger areas than the EP at

a 99% confidence level. EP ARs do not show a significant di↵erence in the area through the

life cycle, while WP ARs attain maximum area at their mid-life cycle for both the PC and

LT methods.

The one-tailed KS-test (one-tailed BG) estimates the AR composite area as 3.67x1012m2

and 1.40x1012m2 for WP and EP, respectively (at 50% life cycle). SO estimates a composite

area of 1.75x1012m2 and 8.74x1011m2 for WP and EP, respectively (at 50% life cycle), with

more extensive (both width and length) AR from WP when compared with the EP AR.

BG results show a decrease the AR composite area decreases through the life cycle by

a factor of 0.68 and 0.54 for the WP and EP, respectively (decrease of ⇠0.83 and ⇠0.62

according to SO). These changes come mainly from di↵erences in width.

CN results show a median area of 3.34x1012m2 (90% of data between 6.15x1011 and

7.70x1012m2) in the North Pacific region. Figure 2.7(a) shows larger AR areas for the global

analysis 4.29x1012m2 (90% of data between 9.43x1011 and 1.09x1013m2). All the other methods

(PC, LT, BG, and SO) are consistent with the CN area result, which are in fact hand-labeled

AR by experts, demonstrating that these methods give reasonable estimates for AR size. If

so, our results using ClimateNet might be on the larger side in terms of AR area, which could

be related to the specific shapes the user can determine, or where the user exactly locates

the AR “boundary” polygon at the time of labeling, however, these details are outside of the

scope of this study.

The sensitivity tests presented in Section A.3 show that for the SO method, variations in

the overlapping background PDF and composite CPD values from (PDF, CPD)=(0.05,0.95)
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Figure 2.6: (a-c) PDF of AR length (dashed lines) and width (solid lines) using the principal components
method (PC), at 25, 50, and 75% of the AR life cycle. WP composite in blue lines, EP composite in orange
lines. (d-f) PDF of AR area for the PC method in solid lines, and the LT method in dashed lines. Lines colors
are the same as in (a-c).

(minimum overlapping) to (PDF, CPD)=(0.5,0.5) (large overlapping) result in area changes

from 2.84x1011 to 9.9712 m2. The one-tailed BG sensitivity test to the significance level

(p = 0.8 to p = 0.99) shows a change in AR area from 2.2612 to 1.4812 m2. For BG and SO,

AR length shows more sensitivity to variations in the parameters than width.

The LT sensitivity test shows that using 0.68 as the PDF contour to define AR size,

variations in the scaling velocity (from 0.125 times to 4 times
p
u) result in an area changes

from 1.5312 to 4.1612 m2. Variations in the PDF value used (ranging from 0.4 to 0.93) result

in area changes between one and two orders of magnitude (Section A.3). All the sensitivity
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analysis described here are computed for the WP at 50% life cycle. We find similar results for

di↵erent stages of the life cycle and for EP.

Figure 2.7: (a) PDFs of AR area (PDFs are not normalized for visualization). PDFs from the PC and LT
methods are calculated using data from WP and EP at 50% life cycle. The lowest to highest obtained values
from the BG (SO) methods are represented in the shaded gray area (between solid gray lines) for comparison.
(b) PDF of AR orientation with respect to the equator from the PC method at 50% of the AR life cycle for
the WP (blue line), EP (orange line), and the North Pacific ClimateNet (green line) composites.

2.5.3 AR Orientation

Figure 2.7(b) shows the PDF of the AR orientation with respect to the equator ✓, calcu-

lated using PC and CN methods. PC method results show that ARs originating in the WP

are more zonally orientated than those originating in the EP. WP ARs have a median ✓ of

13.7� (with 90% of the data between 7.7� and 99.8�). EP ARs have a median ✓ of 49.1� (with

90% of the data between 10.4� and 142.6�). CN results show a median ✓ of 26.5� (with 90%

of the data between 6.9� and 157.2�) for the North Pacific AR.

With respect to the AR life cycle, both WP and EP show an increase in the median ✓:

28� to 37� for the WP, and 46� to 53� for the EP. Table 2.2 summarizes the results of length,

width, and area of the AR composite from all the methods in this work. AR geometrical

characteristics (aspect ratio and orientation) are summarized in Table 2.3.
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2.6 Discussion and Conclusions

Figure 2.8 (color contours) shows the superimposition of IVT from all the AR objects in

this study for WP and EP at 50% AR life cycle. We present Figure 2.8 as a summary of the

PC, SO, BG, and LT methods. We aim to illustrate the methods together and make them

more clear to the reader. To generate this plot, we rotated all the AR objects to the same

frame of reference. The angle of orientation ✓ of each AR represents the median angle with

respect to the equator, and the dotted angle is the -1 and +1 standard deviations of ✓. EP ARs

are not only more zonally oriented, but they also have greater variance in ✓ than WP ARs.

The dashed gray lines represent the 5th, 50th, and 95th percentile of the PC method. The

golden and red bars represent the SO and BG length and width. The solid cyan line represents

the LT method and was created by rotating the final position of all tracers to the same system

of reference of the plot and then calculating the bivariate PDF (cyan contour corresponds to

p=0.68). We can see that BG, SO, PC and LT are very consistent in estimating the AR width.

On the other hand, AR length seems to have more variability among methods (in Appendix

A, we show that AR length shows to be more sensitive than width to parameter variations).

The results from LT show an asymmetric contour with an elongated tail to the southwest end

of the AR. They suggest that an AR detection algorithm based on “fluid dynamics” could be

helpful to determine the AR boundaries independently of thresholds or parameter choices and

other variables such as IVT. This is worthy of exploring in future works.

In previous works, two main areas of AR-genesis have been identified: over the subtropical

Northwest Pacific and the Northeast Pacific (Sellars et al., 2017; Zhou et al., 2018). Here, we

find robust evidence of a statistically significant di↵erence in size of landfalling ARs, depending

on their region of genesis, with longer and broader ARs from the Northwest Pacific relative

to those originating over the Northeast Pacific. This result may be related to the dynamical

process driving the AR formation. It has previously been suggested that WP ARs have a

stronger association with a thermally driven jet over the North Pacific Ocean; while EP ARs

are thought to be more associated with extratropical cyclone activity and to the commonly
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Table 2.2: Summary of AR size statistics by method.

Northwest Pacific Northeast Pacific

0.25 0.5 0.75 0.25 0.5 0.75

Method Length [km]

PC 3553 3842 3757 3366 3413 3425
5-95% 2168-5984 2495-5816 2608-5562 2239-5596 2321-5454 2315-5400

BG 2783 2932 2813 2431 1640 1764

SO 2422 2650 2532 1986 1944 1580

Method Width [km]

PC 823 844 838 845 814 809
5-95% 520-1386 530-1405 510-1366 513-1550 477-1476 454-1516

BG 664 912 769 465 882 355

SO 850 812 771 625 582 394

Method Area [1012 m2]

PC 2.32 2.60 2.49 2.26 2.24 2.19
5-95% 1.02-5.29 1.23-5.22 1.26-4.98 1.03-5.30 1.03-5.09 0.97-5.22

LT 2.55 2.91 2.74 2.35 2.34 2.32
5-95% 1.52-4.54 1.49-4.47 1.59-3.88 1.26-4.32 1.25-3.97 1.09-4.01

BG 1.45 2.10 1.70 0.88 1.13 0.49

SO 1.61 1.69 1.53 0.97 0.89 0.48

CN 3.34
5-95% 0.61-7.70

known phenomenon “Pineapple Express” (Li and Wettstein, 2012; Cordeira et al., 2013; Zhang

et al., 2019a; Zhou and Kim, 2019; Zhang and Ralph, 2021). We also found evidence WP ARs

tend to have more zonal orientation than those originating in the EP, which we believe could

also relate to the dynamical feature driving the AR. This di↵erence in AR size and orientation

between the EP and WP may have implications for where moisture transport occurs.

PC, BG, and SO methods agree on the typical “long and narrow” shape from the AR

literature, with a median aspect ratio of approximately 4 (length/width). Other detection

algorithms could use these findings as geometrical constraints in the future. The AR orien-

tation di↵erence between WP and EP could also directly a↵ect the precipitation associated

with landfalling AR, depending on the relative angle to the coastal mountain range, and hence

the orographic lifting (Hu et al., 2017). More meridionally oriented AR towards the end of
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Figure 2.8: Summary of results and graphical comparison for the di↵erent size estimation methods. In color
contours we superimpose (with transparency of 0.1%) the IVT field of all the AR objects available at 50%
life cycle for (a) Western Pacific and (b) Eastern Pacific. Each AR object is rotated to the median angle of
orientation, and the distance to the center is calculated to make this plot. The dotted “fan” represents two
standard deviations for the AR orientation with respect to the equator. The red and gold lines represent
the length and width estimated using the SO and BG methods respectively. gray dashed lines, represent the
results of the PC method for the 5th, 50th and 95th percentile. The cyan solid line represents the results
of the LT method. It is the 0.68 probability contour of the final position for all the AR cases gathered and
rotated to the same frame of reference.

the life cycle might modify the e↵ects of orographic lifting and AR impacts over the coast.

Furthermore, the steepening of the AR orientation with life cycle supports the hypothesis

that most–if not all–ARs are intrinsically related to midlatitude cyclones. During the growth

phase of the AR, the AR would form along the southern portion of a midlatitude cyclone, in

the location of the dominant moisture source; the predominantly westerly flow would cause

developing ARs to have a more zonal orientation. As the AR matures and its moisture is

entrained into the cyclone, more of the vapor transport would occur along the eastern flank

of the cyclone, giving the AR a steeper, more meridional orientation. If there is a relation-

ship between size, duration, propagation speeds, and orientation, this could influence the AR

landfalling conditions and its impacts, which is a question worthy of further investigation.

It is worth noting that the AR width at the end of life cycle (75%) obtained from SO

and BG, (355 and 394 km respectively) is in good agreement with airborne and satellite

observations from the 1997/1998 winter ARs, where they find an average width scale based in

IWV of 417.3 km (Ralph et al., 2004). Moreover, our result on orientation of EP ARs at the end

of the life cycle (53.6�) agrees with the 17-case composite observation from dropsondes, where
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Table 2.3: Summary of AR geometry statistics by method.

Northwest Pacific Northeast Pacific

0.25 0.5 0.75 0.25 0.5 0.75

Method Aspect ratio [width/length]

PC 4.2 4.5 4.4 3.9 4.2 4.3
5-95% 2.3-7.6 2.3-7.7 2.6-7.3 2.3-7.1 2.3-7.4 2.4-7.5

BG 4.1 3.2 3.6 5.2 1.8 4.9

SO 2.8 3.2 3.2 3.1 3.3 4.0

Method Orientation [deg]

PC 28.9 29.5 35.7 49.9 53.1 53.6
5-95% 8.1-80.2 7.3-89.2 8.5-111.8 9.5-136.5 12.3-130.1 12.1-149.6

CN 26.5
5-95% 6.9-157.2

(Ralph et al., 2004) find an average wind direction of the low-level jet of 216.7� (corresponding

to 53.3� from our methodology’s frame of reference).

We also observe a monotonic decrease in AR width through the life cycle, which could be

associated with a systematic loss of moisture, or it could be associated with frontogenesis and

sharpening of the frontal zone. These results could be explored in future studies, especially

ones using a tracer technique.

The sensitivity tests suggest that for the statistical size estimation methods (SO and BG),

length is more sensitive to the choice of parameters than width. We hypothesize that this is

related to the di�culty of statistically distinguishing the AR “tail” (or southwest end or AR)

from the high water vapor and IVT in the vicinity of the ITCZ. We observe (in a case by case

exploration) that sometimes the IVT field does not have a clear boundary with respect to the

ITCZ, resulting in a noisier CPD in the left side of the AR composite for large probability

contours (C > 0.9). It is possible that this would also have an impact in the detection and

tracking algorithms and their ability to objectively determine the AR boundary.

Furthermore, this raises the question about a possible link between AR size and duration,

and how the size of AR might be directly related to hydrological impacts over landfalling

regions. Do we need to explicitly include size in addition to IVT intensity and duration in

the categorization scale for AR (Ralph et al., 2019a) and their impacts? We often assume

32



ergodicity, but if larger ARs have systematically slower/faster propagation speeds, then the

AR size-life cycle (and possibly landfalling duration) relationship would not be ergodic. Our

future research will work toward answering these questions.

In Figure 2.1, we can observe a high spread in the size of AR among AR detection

methods (white background part). Our results show values with much less spread (colored

background part) relative to the current methods. It is important to notice that some of these

conclusions could be reached by analysis of existing ARTMIP data, with the caveat that such

conclusions would depend on the heuristic AR detection algorithms employed in ARTMIP.

The novel analytical contributions introduced in this manuscript –use of PCA of the IVT field,

statistical estimation of AR composite size (BG and SO methods), and the use of Lagrangian

tracers to determine AR size– allow us to reach these conclusions and can provide a statistical

constraint on AR size for other detection methods. This could also allow us to incorporate

size into the ARs categorization in coastal regions and their impacts.

We speculate that di↵erent algorithms within ARTMIP detect di↵erent parts of the AR

since each algorithm defines di↵erent rules and relatively-unconstrained thresholds, as it has

been shown before by Lora et al. (2020). For example, since algorithms 01 to 04 are outside

the range of areas estimated in this study, we can confidently argue that these algorithms

are not detecting the same part of ARs as our methods or as algorithms 11-28. The AR

research community may need to define more than one term, with di↵erent definitions de-

pending on what particular meteorological feature of AR is being studied. We acknowledge

that di↵erent algorithms are created with di↵erent objectives and study goals in mind. How-

ever, future studies could benefit from the definition of three potential new terms: “AR core”

(algorithms 1-4), “dynamical envelope” (LT method and maybe 9-17 methods), and “thermo-

dynamic envelope” (PC, BG, SO, CN and algorithms 18-28). Although the dynamical and

thermodynamical envelopes are indistinguishable here, they may not be in studies of future

AR size. This could help understanding what is the extent of the consistency in AR detection

among di↵erent algorithms, particularly with respect to size. The importance of changes in

AR statistics in the future has been demonstrated before. Previous studies have shown that
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AR frequency will increase by ⇠50% globally, AR intensity will increase by ⇠25%, and that

the ARs will be ⇠25% longer and ⇠25% wider (Espinoza et al., 2018; Massoud et al., 2019).

In future simulations using CMIP5/CMIP6 models, AR detection algorithms project a global

increase in AR frequency and sizes, specially along the western coastlines of the Pacific and

Atlantic oceans, and it has been demonstrated that the choice of the detection algorithm can

have a major impact on the results of the climate change AR studies (O’Brien et al., 2021).

We will continue to examine the relation between AR size and duration. Moreover, the

direct relationship we found between AR origin location and size, the life cycle and size,

motivates us to apply our methodology to understand how the AR size would change under

global warming scenarios. Current detection methods may require adjusting the parameters

and thresholds when studying di↵erent climate scenarios, making the objective study of change

in AR size a challenging problem for future projections. Our approach could provide an

objective insight for future works into the possible changes and hydrological impacts due to

AR size and climate change.
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Chapter 3

Change in Size of Atmospheric Rivers Under

Future Climate Scenarios

Abstract

There has been a growing interest in atmospheric rivers research over the last few decades.

It has been observed that AR detectors (ARDTs) are heavily influenced by how researchers

quantitatively define this phenomenon. In particular, AR size depends highly on the numerical

definition of AR embedded in the design of ARDTs, producing significant uncertainty in the

AR size estimation. We use data from the ARTMIP Tier 2 CMIP5/6 experiment to calculate

the AR confidence index and create global composites of AR objects. Then, we estimate the

AR composite size using four independent methods to understand how AR size responds to

future simulations with strong radiative forcing (CMIP5: RCP-8.5, CMIP6: SSP-858).

Our results show an increase in the background IVT field between 10% and 21% from

historical to future simulations, with a broader inter-model variability of ⇠27%. The mean AR

area is 3.15x106 (±0.83x106 km2) and 3.42x106 km2 (±0.70x106 km2) for historical and future

runs, respectively. We find that AR width is more sensitive than AR length and contributes

more to the change in the AR area. Increases in AR size dominate across models and methods.

However, the methods that compare to the background IVT show both positive and negative

changes in AR size. Regardless of the sign in AR size di↵erence, the mean AR cross-section

water vapor transport increases between 8% and 37%. We also find that North American

landfalling ARs are more likely to penetrate further inland for future simulations.

We provide an objective insight into the change in AR size with climate change from an

independent perspective of the ARDTs design and algorithms, which could help as a reference

for tuning and constraining existing ARDTs or designing new AR detection algorithms.

36



3.1 Introduction

Over the last few decades, there has been an increased interest in the study of atmospheric

rivers (ARs). They were first described by Newell and Zhu (1994) as high tropospheric water

vapor flux with a filamentary structure or “tropospheric rivers”. The definition of ARs is still

a topic of research and debate. In 2018 a definition was submitted to the AMS Glossary1: “A

long, narrow, and transient corridor of strong horizontal water vapor transport that is typically

associated with a low-level jet stream ahead of the cold front of an extratropical cyclone. The

water vapor in atmospheric rivers is supplied by tropical and/or extratropical moisture sources.

Atmospheric rivers frequently lead to heavy precipitation where they are forced upward—for

example, by mountains or by an ascent in the warm conveyor belt. Horizontal water vapor

transport in the midlatitudes occurs primarily in atmospheric rivers and is focused in the lower

troposphere. Atmospheric rivers are the largest ‘rivers’ of fresh water on Earth, transporting

on average more than double the flow of the Amazon River” (Ralph et al., 2019a).

AR carry over 90% of moisture from the tropics to higher latitudes (Zhu and Newell,

1998), but cover only between 2 and 10 percent of the earth’s surface (O’Brien et al., 2021).

Midlatitude continental regions around the world have large amounts of precipitation asso-

ciated with ARs Ramos et al. (2015); Neiman et al. (2008); Lavers and Villarini (2013b);

Waliser and Guan (2017); Viale et al. (2018); Neiman et al. (2002); Ralph et al. (2004, 2005);

Leung and Qian (2009); Guan et al. (2010); Warner et al. (2012); Neiman et al. (2013); Ralph

et al. (2013); Rutz et al. (2014); Huang et al. (2021); Viale and Nuñez (2011); Gimeno et al.

(2016); Blamey et al. (2018); Ramos et al. (2019). ARs can lead to hydrological hazards, and a

better understanding of AR can help in the study, forecasting, and communication of flooding

(Lavers et al., 2016b,a; Ralph et al., 2019b, 2006; Dettinger, 2011; Ralph and Dettinger, 2011;

Lavers and Villarini, 2013a). Moreover, ARs have significant consequences on the hydrolog-

ical cycle of regions like California and contribute to the accumulation of the snowpack and

the reservoir level, and water availability Dirmeyer and Brubaker (2007); Guan et al. (2010);

1https://glossary.ametsoc.org/wiki/Atmospheric_river
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Kim et al. (2013); Goldenson et al. (2018); Eldardiry et al. (2019); Dettinger et al. (2011);

Gershunov et al. (2017).

Detecting and defining the boundaries of AR is a particularly complicated task. The

Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international

e↵ort to understand and quantify uncertainties in atmospheric river science based on the

choice of detection/tracking methodology. ARTMIP has (at the time of writing this disser-

tation) 30 di↵erent algorithms or atmospheric river detectors (ARDTs). Di↵erent ARTMIP

detection and tracking algorithms are designed to answer di↵erent scientific questions, and

they are heavily influenced by how researchers quantitatively define this phenomenon. As

a consequence, it has been observed that they can reproduce di↵erences in AR climatology

(Shields et al., 2018; Rutz et al., 2019; Lora et al., 2020). In particular, Inda-Dı́az et al.

(2021) shows that the quantification of AR size has a significant uncertainty and variability

among di↵erent ARDTs, with areas varying over several orders of magnitude among di↵erent

detection methods.

Di↵erent studies have analyzed the AR changes in future simulations, with a general

agreement that global increases in atmospheric moisture will increase the intensity of ARs

(Payne et al., 2020). Aquaplanet simulations with increasing sea surface temperature (SST)

show that AR integrated water vapor (IWV) is especially sensitive to SST, with Increases of

6.3–9.7% per degree warming. IWV transport by ARs increases relatively uniformly with tem-

perature and at consistently lower rates than IWV, as modulated by systematically decreasing

low-level wind speeds (McClenny et al., 2020). Lavers et al. (2015) found that multimodel

mean integrated vapor transport (IVT) increases by 30–40% in the North Pacific and North

Atlantic storm tracks, mainly due to higher atmospheric water vapor content. Future climate

change AR studies also show di↵erences in AR-related precipitation and hydrological cycle

(Gao et al., 2016; Rhoades et al., 2021; Gershunov et al., 2019). O’Brien et al. (2021) show

that most ARDTs project a global increase in AR frequency, count, and sizes, especially along

the western coastlines of the Pacific and Atlantic oceans, and that the choice of ARDTs is

the dominant contributor to the uncertainty in projected AR frequency when compared with
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model choice.

Despite the intrinsic di↵erences and the main objectives researchers have in mind when

developing ARDTs, there is an important degree of overlapping between ARDTs (Lora et al.,

2020; Payne et al., 2020). Inda-Dı́az et al. (2021) show that the quantification of AR size

has a large uncertainty associated with the ARDTs and their numerical definition of AR,

which could a↵ect our understanding of AR size change in future climates. This uncertainty

motivates this work, in which we aim to study the changes in AR size under future climate

scenarios from a perspective independent of the ARDTs. Following the methodology of Inda-

Dı́az et al. (2021), we define and calculate the atmospheric river confidence index (ARCI),

and use it along three statistical methods from Chapter 2 to estimate the AR size in data

from the Coupled Model Intercomparison Project 5 (CMIP 5) (Taylor et al., 2012) and CMIP

6 (Eyring et al., 2016; O’Neill et al., 2016) (referred as CMIP5/6 hereafter).

3.2 Data and Methods

We use data from the ARTMIP Tier 2 CMIP5/6 experiment. This dataset was gener-

ated using the outputs from general circulation models associated with the six members from

CMIP5 (CCSM4, CSIRO-Mk3-6, CanESM2, IPSL-CM5A-LR, IPSL-CM5B-L, and NorESM1-

M) and three members from CMIP6 (BCC-CSM2-MR, PSL-CM6A-LR, MRI-ESM2-0). The

model selection was based on data available on the native model vertical grid to reduce the

error in calculating the vertical integrals in IVT and IWV and reduce the di↵erences in AR

detection over continental regions, where levels below ground are present in isobaric coordi-

nates. Table 3.1 summarizes the models used in the ARTMIP Tier 2 CMIP5/6 experiment.

CMIP5/6 specific humidity q and horizontal wind velocity ~u = (u, v) at 6-hourly intervals

are used, with a horizontal resolution varying across models between⇠100km to⇠300 km. The

historical runs (his) span over the 1950-2005 (CMIP5) and 1950-2011 (CMIP6) periods. The

future runs (fut) span over the 2006-2100 (CMIP5) and 2015-2100 (CMIP6), for which we use

the representative concentration pathway 8.5 (RCP8.5, CMIP5) and the shared socioeconomic
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Table 3.1: Details of CMIP5/6 models used in the Tier 2 experiment.

Models

MIP Era Model Name Institution ⇠Res. [km]

CMIP5 CCSM4 NCAR 120
CMIP5 CSIRO-Mk3-6 CSIRO 207
CMIP5 CanESM2 CCCMA 310
CMIP5 IPSL-CM5A-LR IPSL 296
CMIP5 IPSL-CM5B-LR IPSL 296
CMIP5 NorESM1-M NCC 242
CMIP6 BCC-CSM2-MR BCC 124
CMIP6 IPSL-CM6A-LR IPSL 198
CMIP6 MRI-ESM2-0 MRI 124

pathways 5-8.5 experiments (SSP5-8.5, CMIP6).

Vertically integrated water vapor transport (IVT) and vertically integrated water vapor

(IWV) are calculated from CMIP5/6 models as:

IWV = �1

g

NX

k=1

qk�pk (3.1)

��!
IVT = �1

g
h

NX

k=1

ukqk�pk,
NX

k=1

vkqk�pki, (3.2)

where index k corresponds to model levels going from the surface (k = 1) to the top of the

model atmosphere (k = N), and �pk is the di↵erence in level pressures, estimated at level k.

IVT is the magnitude of the vapor transport flux vector: IVT =
���
��!
IVT

���. More details on the

Tier 2 experiment design and the CMIP5/6 data used are described by O’Brien et al. (2021).

We use AR detection data from the six global ARDTs in ARTMIP Tier 2 experiment:

ARCONNECT_v2 (Shearer et al., 2020), Guan_Waliser_v2 (Guan and Waliser, 2015; Guan et al.,

2018), Lora_v2 (Lora et al., 2017; Skinner et al., 2020), Mundhenk_v3 (Mundhenk et al.,

2016),and TECA-BARD v1.0.1 (O’Brien et al., 2020b), and Tempest (Ullrich and Zarzycki,

2017; McClenny et al., 2020). These six ARDTs are applied to the common CMIP5/6 dataset

of IWV and IVT to produce a binary flag that determines whether an AR is present or not

present in each grid cell for every time in the study period. Table B.1 summarizes the ARDTs
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used in this work, their contributors, and main references. Section B.1.2 briefly describes the

classification of these ARDTs based on their treatment of thresholds to detect ARs.

3.2.1 Atmospheric River Confidence Index and AR Tracking

We define and calculate the atmospheric river confidence index (ARCI) as the average

of the ARDTs binary detection. We calculate ARCI from the six global ARDTs in Tier 2

experiment. An ARCI=0 means that no ARDT detected an AR, whereas an ARCI=1 means

all six algorithms agree on the presence of an AR in a specific grid cell. ARCI gives of a degree

of agreement in AR detection between di↵erent methods. In this work we use it estimate the

presence of ARs in a general area (ARCI Tracking), as well as the first size estimation method

(object in the field with ARCI±2/3). This is described below.

We use the object-based tracking algorithm developed by Zhou et al. (2018) to the track

objects with ARCI�2/3 in the CMIP5/6 dataset (which can also be thought as AR objects).

This methodology defines the AR object as enclosed two-dimensional (longitude and latitude)

instantaneous area of ARCI�2/3. The algorithm utilizes the spatial connection between AR

objects of consecutive time steps and defines an AR event in three dimensions (longitude,

latitude, and time) as a series of spatiotemporally connected AR objects. At the same time,

the AR life cycle represents the spatiotemporal evolution of AR objects within an AR event,

which allows us to track and study an AR object throughout its life cycle.

We do not directly use the data from the ARDTs to estimate the AR size or shape,

instead we use ARCI as an approximation of the general location of AR objects in the field.

In this fashion, we reduce the variability in detection between ARTMIP members and study

only cases with a high consensus amongh ARDTs.

We define the AR object centroid as the coordinates (x, y) for every AR object as the
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ARCI-weighted center of mass:

x =
⌃nx

i=1⌃
ny
j=1IVTijxij

⌃nx
i=1⌃

ny
j=1ARCIij

, (3.3)

y =
⌃nx

i=1⌃
ny
j=1IVTijyij

⌃nx
i=1⌃

ny
j=1ARCIij

. (3.4)

It is important to notice that for the three size estimation methods from Inda-Dı́az et al.

(2021) used in this work (Sections 3.2.2 through 3.2.7), we do not use any information on

shape or size form the ARDT or ARCI. Instead, we will only use centroid location given by

Equations (3.3) and (3.4). We save and use this location as the first guess for the presence

of an AR in its vicinity. In order to maintain our analysis independent from the detection

methods, shape, size, and other quantities that could be inferred from the ARDTs are not

used.

3.2.2 Composite of AR Objects

To study the di↵erent characteristics of AR size depending of the life cycle of each AR

object, we organize our analysis in two di↵erent ways:

• Mean composite: all AR objects gathered together (no matter at which life cycle stage

they are). We acknowledge that ARs with longer life spans will contribute more to this

composite. However, since we want an estimation of the mean AR objects size, this is

the way we want to sample.

• Life cycle composite: AR objects are composited in di↵erent sub-classifications, depend-

ing on what part of their life cycle their are at the moment.

We define the AR event life cycle as the total number of time steps that an AR object exists

(i.e. the duration of the AR event) N . Furthermore, we define the life cycle stage as the ratio

of a given time step n in the AR event life cycle to the total duration N :

LC = N/n. (3.5)
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The ARCI tracking of CMIP5/6 data produces ⇠3x105 (CMIP5) and ⇠6x105 (CMIP6) AR

objects with a detection index greater than 2/3 (more or less, depending on the model).

Additionally, we organize the AR composites by CMIP5/6 model, and CMIP era (historical

vs future).

3.2.3 AR Size Estimation

In this work, we estimate the AR size using four di↵erent methods: size of objects with

ARCI�2/3, and three methods developed in Chapter 2 (Inda-Dı́az et al., 2021): the principal

component analysis of IVT, statistical overlapping, and the Kolmogorov–Smirnov test of the

AR field with the background IVT (BG). The principal characteristic of these methods is that

they are developed independently from the ARDTs’ rules and algorithms.

3.2.4 Estimation of AR Size from the Atmospheric River Confi-

dence Index

To estimate the composite AR size from such a large data set as CMIP5/6 is, we take

advantage of the Toolkit for Extreme Climate Analysis TECA2. TECA is a framework for

facilitating parallel analysis of petabyte-scale datasets, and provides generic modular compo-

nents that implement parallel execution patterns and scalable I/O. These components can

easily be composed into analysis pipelines that run e�ciently at scale at high-performance

computing (HPC) centers (O’Brien et al., 2020b). TECA has the capability to calculate

the area of contiguous grid cells with a variable above a certain threshold (blob or patches).

Using this capability, we calculate the area of all the AR objects with ARCI�2/3 in the

CMIP5/6 dataset (historical and future simulations). We can interpret this as the mean AR

size from the ARTMIP algorithms with a high detection confidence index. More technical de-

tails about the implementation and workflow of TECA can be found in O’Brien et al. (2020b)

and https://github.com/lbl-eesa/teca. For simplicity, this size estimation method will

be hereafter referred to as ARCI through this work.

2https://github.com/lbl-eesa/teca
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Principal Component Analysis of the IVT Field (PC)

Following the methodology from Inda-Dı́az et al. (2021) (Chapter 2), we apply principal

component analysis of the AR composite’s IVT field. To do this, we apply a filter to the

original CMIP5/6 IVT field to avoid the large contiguous regions of high IVT near the tropics,

associated with the intertropical convergence zone (ITCZ):

IVT0 = IVT ·

1� exp

✓
�y2

2�y2

◆�
, (3.6)

(3.7)

where IVT’ is the ITCZ filtered IVT field, x and y are the longitude and latitude, respectively,

�y is half-width at half-maximum of the filter. We use �y = 15�, which e↵ectively damps

the IVT to zero within the ITCZ (O’Brien et al., 2020b).

The first step in the PC method is to obtain a “first guess” of the location of an AR

object. This is provided by the centroid position from the tracking of AR objects (Equations

(3.3) and (3.4)). Once we have an approximation of the position of an AR, we filter out the

IVT far field from the AR object using a three step iterative method (described in detail in

Section A.1). The PC method recognizes that ARs are associated with ridge-like structures in

the IVT field. We apply principal component analysis (PCA) to the IVT field and compute

the weighted covariance matrix Cw (Price, 1972) of latitude and longitude

Cw =
⌃nx

i=1⌃
ny
j=1IVTij(xij � x0)T (yij � y0)

⌃nx
i=1⌃

ny
j=1IVTij

, (3.8)

where xij and yij are the longitude and latitude of each CMIP5/6 model grid, and the weight

is given by the IVTij at each grid point. Cw is a 2x2 matrix, such that

Cw

0

@~s0

~s1

1

A =

0

@�0 ~s0

�1 ~s1

1

A , (3.9)

where the eigenvectors ~s0,~s1 are the principal components of the IVT field, and �0,�1 are
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the eigenvalues of the covariance matrix given by Equation (3.9). The principal components

represent the directions of maximum variance of the IVT. The largest eigenvalue represents

the direction that explains the largest variance, hence the longest AR axis (along AR, ~s0). In

contrast, the smallest eigenvector represent the shortest AR axis (across AR, ~s1). We define

the AR object length and width as twice the magnitude of ~s0 (~s1), and its area as the ellipse

whose axes are the principal components ~s0 and ~s1 (white solid lines and ellipse in Figure 3.1).

Figure 3.1: Principal component analysis method. White lines represent the PC of the AR, and the white
contour is the area estimated from the ellipse whose axes are the PC. The red lines represent directions along
and across AR used to sample IVT for SO and BG methods (dashed/solid represent the first/second PC).

3.2.5 Definition of the Background IVT Field

The statistical AR size estimation methods BG and SO compare the AR composite with

the background IVT field. Defining this field is not a trivial task. In this work we estimate

the background field for each of the CMIP5/6 models using the following methodology.

From every time step in the full period of study, we randomly choose 1000 points from

the model domain with ARCI< 2/3, repeating this for the historical and future simulations

(each model and era will have their own background IVT field). This allows us to reduce

the probability of sampling from inside ARs (also, this e↵ectively reduces the chances to

sample IVT from inside ITCZ). A sample number of n=1000 for every time step represents

between⇠1% and⇠13% of the grid points (depending on the model horizontal resolution), and

ensures a total sample number N su�ciently large to calculate a smooth probability density
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function (PDF) of background IVT field (N⇠1.5x106 for a single year of data). Sampling

with n > 1000 produces IVT background fields that are statistically indistinguishable with

respect to the n = 1000 field, according to a two-tailed Kolmogorov–Smirnov (KS) test, with

a confidence level of 99%. Throughout this work, we calculate and use the IVT value at

which the background PDF is at +1 standard deviation (IVT�+1) as a proxy for the changes

in background IVT, defined in Equation (3.11).

FX(x) = P(X < x), (3.10)

IVT�+1 = x | P(IV T < x) = 0.84, (3.11)

where FX(x) is the cumulative distribution function of the background IVT field, and IVT�+1

is such that the probability of the IVT background field is less or equal to IVT�+1 is 0.84.

As we previously discussed in Section 3.2.1, we do not use the ARDTs directly to estimate

AR size but only to calculate ARCI. Nevertheless, we can notice some similes between or size

estimation methods and the classification of ARDTs regarding their treatment of thresholds

(absolute, relative, and fixed relative). This classification is made following the definition of

O’Brien et al. (2021), and is explained briefly in Appendix B Section B.1.2. We will explain

further this similarities in Section 3.2.7.

3.2.6 Statistical Estimation of AR Size (SO and BG Methods)

SO and BG methods compare the AR composites’ with the background IVT field. To do

this, we sample the original IVT field from CMIP5/6 data in the directions of the principal

components ~s0,~s1 (this corresponds to the red lines in Figure 3.1). In this fashion, we generate

a collection of sampled IVT values and their respective distance to the AR object centroid.

Figure3.2(a) shows an example of all the raw IVT sampled for one of the CMIP5/6 model/era

case (orange points represent IVT sampled across the AR object and blue points along the

AR object). We utilize fastKDE3 (O’Brien et al., 2014, 2016) to calculate the conditional

3https://github.com/LBL-EESA/fastkde/releases/tag/v1.0.18
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probability distribution (CPD) of IVT with respect to the distance to the AR centroid. Figure

3.2(b) shows the CPD of the sampled points from Figure 3.2(a), where the colored contours

represent CPD along the AR objects, and the dashed white contours are the 0.16, 0.50 and

0.84 CPD across the ARs composite.

Statistical Overlapping of AR Composite IVT with the Background Field (SO)

SO method defines the statistical boundary of the AR composite as the distance at which

the background IVT probability density function (PDF) at IVT�+1 (illustrated by the dotted

line in Figure 3.2(b)) intersects the AR composite’s CPD at minus one standard deviation

��1 (CPD=0.16) (illustrated by the orange contour in 3.2(b)). Conceptually, this can be

interpreted as the distance at which the background IVT�+1 overlaps with the AR composite

CPD=0.16. Figure 3.2(c) illustrates this idea, the blue dashed line represents the background

PDF, and the orange contour represents the composite’s CPD=0.16 contour (obtained from

the CPD in Figure 3.2(b). It is important to notice that Figure 3.2(c) is an sketched illustration

of the conceptualization of the SO method, which is why the background PDF does not have

units.

KS-test Between AR Composite’s IVT and the Background Field (BG)

In the BG method, we use a two-tailed KS-test to compare the AR composite’s cumulative

density function (CDF) to the with the background CDF, for di↵erent distances from the AR

centroid. CDF of the IVT composite is obtained sampling from the CPD in the IVT dimension

at specific distances (illustrated by the dashed vertical line in Figure 3.2(b)). BG is based

on the hypothesis that near the AR centroid, the composite’s CDF is very di↵erent from the

background (circle markers in 3.2(d)). Furthermore, the composite’s CDF must become more

similar to the background CDF as we move away from the AR centroid (triangle markers in

3.2(d)). The KS-test allows us to statistically determine the distance at which the background

CDF becomes indistinguishable from the composite’s CDF, with a 99% confidence level.
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(a)
(b)

(c) (d)

Figure 3.2: (a) Raw sampling of IVT vs distance to the AR centroid. (b) Conditional probability distribution
of IVT and distance to the AR centroid along the AR composite (white contours show CPD across AR
composite). The orange contour represents the 0.16 probability contour. Vertical dashed line shows how we
would sample to generate the cumulative density function at a given distance. (c) Illustration of the statistical
overlapping method. Blue line shows an sketched background IVT PDF. The orange line is the CPD=0.16
(from panel b). (d) Illustration of two CDF at di↵erent distances from the AR composite center. CDF
are obtained sampling vertically from the CPD (panel b). Circle markers represent a closer distance to the
composite center than the triangle markers.

3.2.7 Implementation of PC, BG, and SO in CMIP5/6 Dataset

In order to analyze the full CMIP5/6 dataset, the calculation of the background IVT,

ARCI, and the size estimation methods are implemented as TECA algorithms. This allows

an optimized workflow and an easy management of these large datasets. It is worth noticing

some analogies between the conceptualization of our size estimation methods and the ARDTs

from ARTMIP. PC applies PCA to the absolute IVT field, regardless of the background IVT

and can be thought of as analogous to absolute ARDTs. BG and SO statistically compare

the AR composite with the background IVT and can be associated with relative ARDTs. We

also include a di↵erent sub-method SO250, which estimates AR size using the SO method with

a fixed IVT�+1 of 250 kg m�1s�1, instead of a di↵erent value for each model. SO250 can be
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related to fixed relative ARDTs. ARCI calculates the AR area directly from the are of objects

with a detection confidence index �0.67, a methodology that could be consider analogous to

absolute ARDTs, however it is important to notice that ARCI already includes the detection

from both absolute and relative methods, so it is a combination of both. We must be careful

since this is only a conceptual analogy, and we are not defining new ARDTs or estimating

the AR size from the ARDTs data themselves. Nevertheless, this conceptualization is useful

when comparing to ARDTs and analyzing changes in AR size under future climates.

3.3 Results

We begin by presenting the results for the background IVT field in Section 3.3.1. Then, in

Section 3.3.2, we show the results for the mean AR size, and present an analysis of their change

between historical and future simulations. Lastly, in Section 3.3.3, we focus our analysis on the

North America landfalling ARs at the end of the life cycle (90%-100% of life cycle). In most

of the plots for this Section, the nomenclature will be consistent: each size estimation color

is assigned a di↵erent color, and each CMIP5/6 model is assigned a di↵erent marker. Filled

markers represent historical simulations, while empty markers represent future simulations

(except for Figure 3.7 where the only markers represent the fractional change in width and

length between historical and future runs).

3.3.1 Background IVT Field

This section aims to show the change in the IVT background field across models and

between historical and future simulations. Figure 3.3(a) shows a consistent increase in future

IVT�+1 between ⇠10% and ⇠21% for all CMIP5/6 methods. It is important to notice that

despite the increase in IVT�+1 in single models, we find a larger spread in the value IVT�+1

across models (⇠28% and ⇠25% for historical and future simulations, respectively). This

suggest that the uncertainty in projected background IVT is dominated by the inter-model

variability. Moreover, we find a positive trend in IVT�+1 during the whole 1950-2100 period
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of study. Figure 3.3(b) shows a five-year averaged IVT�+1 . Although the variability amongh

models is large, in general, they agree in the positive trend for the background IVT field from

historical to future simulations. This increment in the background IVT field and the inter-

(a) (b)

(c)

Figure 3.3: (a) Background IVT value of the PDF at +1 standard deviation (IVT�+1) historical and future
simulations. Filled markers represent historical simulations, empty markers future simulations. Below the
markers, we show the percentage of change in IVT�+1 . (b) IVT�+1 calculated every five years for the complete
1950-2100 period. (c) CDF of the background IVT field. Solid lines and shadows represent the mean across
CMIP5/6 models and the spread between models.

model variability can he observed in the background CDF. Figure 3.3(c) shows the model

mean CDF and spread of the background IVT field. These results gives us confidence that

the SO and BG methods capture the change in AR size while accounting for thermodynamical

changes in the background IVT.
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3.3.2 Mean AR Size

In this section, we present the AR size results for the ensemble mean (length, width,

and area). To calculate this mean, we use a random sample from the complete original AR

object composite to ensure statistical independence our calculations. Figures 3.4 through 3.6

show the results for AR size across models in historical and future simulations. The gray

rectangles represent the change in IVT�+1 for each CMIP5/6 models (IVT value is indicated

in the right vertical axis). The mean (± standard deviation) AR width, length and area for

historical simulations are 1167 (991-1344) km, 3407 (3059-3756) km, and 3.15x106 (2.32x106-

3.98x106) km2, respectively. Although for some models we can appreciate a relation between

the background IVT changes and AR size and its changes, there is not a consistent pattern

that indicates that changes in AR size are dominated by the change in IVT background. It is

worth noticing that the size estimation methods that do not take into account the increase in

the background IVT (SO250, PC, and ARCI) show a consistent increase in AR size for future

scenarios. In contrast, the statistical methods (BG and SO) reflect both positive and negative

changes in mean AR size, depending on the CMIP5/6 model.

Figure 3.4: AR width from SO, SO250, BG, and PC methods. Historical and future runs are represented by
filled and empty markers, respectively. The results from PC represent the median width. Light gray rectangles
show the range between the historical and future IVT�+1 .

Figure 3.7 shows the fractional size change from historical to future simulations. The
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Figure 3.5: AR length from SO, SO250, BG, and PC methods. Historical and future runs are represented
by filled and empty markers, respectively. The results from PC represent the median length. Light gray
rectangles show the range between the historical and future IVT�+1 .

Figure 3.6: AR area from SO, SO250, BG, and PC methods. Historical and future runs are represented by
filled and empty markers, respectively. The results from PC represent the median area. Light gray rectangles
show the range between the historical and future IVT�+1 .

gray background denotes positive changes (increase in mean AR size) while white background

denotes negative changes (decrease in mean AR size). Solid contours show the fractional area

change and the dashed line is the identity line, which represents equal fractional changes in

width and length. We show that for SO250, ARCI, PC, and 5 out of 9 models in BG, there

is an increment in future AR mean area between 5% and 30%. SO and 4 out of 9 BG cases
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show decreases in AR area of less than than ⇠10%. It is safe to say that positive changes in

future AR size are projected from the CMIP5/6 data. Furthermore, we notice that for the

majority of results, AR area change is more sensitive to changes in AR width, regardless of

positive or negative area changes.

Figure 3.7: Fractional size change between historical and future simulations (area/width/length), calculated
with five di↵erent methods (SO, SO250, BG, PC, and ARCI). PC and ARCI results represent the median area,
length, and width.

It is clear that there is a distinction between the methods that compare the background

IVT from those that do not. Both are valid approaches and provide di↵erent information.

However, to systematically explore the possible changes in landfalling AR impacts, we cal-

culate the mean AR-cross section water vapor transport from the AR width and the mean

IVT within the AR composite. In Figure 3.8, we plot the mean IVT within the composite

vs the mean AR width. Gray solid contours show constant values of AR cross-section water

transport with units of 103 m3s�1 (to give us a perspective, the Amazon River has a water flux

rate of ⇠209x103m3s�1). We find a consistent increase in AR-cross section moisture transport

in the future. Even for the size estimation methods that compare the AR composite to the

background IVT field (SO and BG) and have negative changes in AR size, there is either

an increase or no change in the mean moisture flux. Table 3.2 summarizes the results for

the mean AR change from historical to future simulations and the di↵erent size estimation

methods.
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Figure 3.8: AR width and mean IVT from five methods (SO, SO250, BG, PC, and ARCI). Historical and
future runs are represented by filled and empty markers, respectively. Results from PC represent the median
width. Gray contours show lines of constant AR cross-section water transport in 103 m3s�1.

Table 3.2: Fractional change in AR size from historical to future simulations. Mean (standard deviation)
across models.

Mean AR size change

Method �Width [%] �Length [%] �Area [%]

SO -6.8 (3.0) -3.1 (2.8) -9.7 (5.3)
SO250 6.4 (1.9) 5.3 (2.9) 12.1 (5.0)
BG -1.2 (4.9) 1.3 (3.5) 0.0 (5.8)
ARCI 8.7 (4.3) 1.8 (2.0) 22.5 (9.0)
PC 10.3 (2.3) 9.3 (3.1) 21.4 (6.4)

3.3.3 North America Landfalling Atmospheric Rivers

The results presented in 3.3.2 represent the change in mean AR size (global AR events

during their complete life cycle). This Section analysis focuses on the ARs that make landfall

on the North American West Coast (NAWC) at the end of their life cycle (90%-100%). The

motivation for this Section arises from Figure 3.9. We find that NAWC landfalling ARs have

a higher probability on penetrating further inland for future simulations. Figure 3.9 shows

the joint PDF of the final AR centroid longitude and latitude in the CMIP5/6 dataset. The

filled/dashed contours represent historical simulations, while thick contours show the PDF of

future simulations. NAWC landfalling ARs show increments in mean area of 5%-30% in their

area according to SO250, PC, and ARCI methods; and mean area changes between +5% and

-15% BG and SO (Figure 3.10). It is worth noticing that despite a decrease in future AR
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Figure 3.9: Joint PDF of the final AR centroid position (at 90%-100% life cycle), generated using all
CMIP5/6 models. Solid thick contours represent future simulations (RCP-8.5 and SSP-8.5). Filled contours
represent historical simulations.

areas, some models (CSIRO-Mk3-6-0, IPSL-CM5A-LR, and IPL-CM5B-LR) show an increase

in mean AR length, which suggests that width dominates the changes in mean AR area.

Furthermore, we find a positive trend in the AR-cross section water transport for NAWC

landfalling ARs Figure 3.11 for all CMIP5/6 models and size estimation methods.

For some CMIP5/6 models, SO and BG indicate an increase in AR width. Furthermore,

Figure 3.8 shows that for all models/methods, there is a positive trend in the mean AR cross-

section water transport. Even for the methods that compare the AR IVT composite with the

background field (BG and SO) and predict negative changes in AR size, the thermodynamic

e↵ect compensates for the size change in the water flux change.

3.4 Discussion

We have presented evidence that there is an increase in mean AR size for future cli-

mate simulations. However, the interpretation of these results must be done carefully. The

changes in the background IVT field become relevant when we think of an AR as a signal in

a background field. The di↵erent ARDTs’ sensitivity to thermodynamic changes in IVT will

depend on how they treat the IVT or IWV threshold: Absolute ARDTs use fixed thresholds

to discriminate AR from the background field; fixed relative ARDTs as those that employ rel-

ative thresholds that do not vary with time; and relative ARDTs employ relative thresholds
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Figure 3.10: Fractional change between historical and future simulations of AR area in width and length at
95% life cycle, calculated with five methods (SO, SO250, BG, PC, and ARCI), for the North America landfalling
ARs. Width and length fractional changes are represented by filled and empty markers, respectively. Results
from PC and ARCI represent the median length and width.

Figure 3.11: Fractional change between historical and future simulations in width/length at 90%-100% life
cycle for Northamerica landfalling ARs, calculated with five methods (SO, SO250, BG, PC, and ARCI). Width
and length fractional changes are represented by filled and empty markers, respectively. Result from PC and
ARCI represent the median length and width.

that vary with time (O’Brien et al., 2021). Moreover, our statistical methods (PC, SO, and

BG) estimate AR size in an analogous matter. PC is not exactly equivalent to an absolute

ARDT (since it does not impose a fixed IVT threshold). However, PC estimates calculates

the covariance matrix of the absolute IVT field without considering the background field. We

can relate BG and SO methods to relative ARDTs since both compare the composite IVT

to the background IVT field. Additionally, SO250 uses a fixed background value throughout

historical and future simulations, and we can relate it to the fixed-relative ARDTs. IVT

fractional changes are given by the horizontal wind speed magnitude changes and the change
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in vertically integrated water vapor due to the Clausius–Clapeyron (CC) scaling (Gao et al.,

2015, 2016; Payne et al., 2020). Increments in the background IVT field have been observed

in aquaplanet simulations with increased SST, with ⇠6% IVT increase per K SST warming

McClenny et al. (2020). O’Brien et al. (2021) find a positive trend in global IVT with a rate

of 20%-40% per century, with decreases in moisture weighted wind of 5%–15% per century in

most of the tropics and midlatitudes, and increases of similar magnitude in the polar regions.

IVT�+1 results from this work are consistent with these previous studies, projecting that in

a global average, the e↵ect that dominates the trend in IVT�+1 is the thermodynamic com-

ponent increases between ⇠10% and ⇠21% for the RCP8.5 and SSP5-8.5 scenarios (Figure

3.3).

It has been observed that the dynamic contributions to changes in IVT (both ARs and

the background field) are smaller than the thermodynamic contributions. However, they may

increase in importance in the transition regions between the subtropics and the mid-latitudes

(Payne et al., 2020). We can directly observe that regarding AR size, the size estimation

methods that take into account the statistics of the background IVT project in fact di↵erent

changes in AR size than those that do not look at the background. Nevertheless, we must be

careful when interpreting these results, since the inter-model spread in the mean IVT�+1 is

larger than the single models historical to future increases.

One of the main objectives of this work was to provide a narrower range of AR size

estimation for future climate scenarios. The range in the median AR area estimation directly

from the six global ARDTs (B.1) in the ARTMIP Tier 2 CMIP5/6 experiment is ⇠ 106-6x106

(O’Brien et al., 2021). Although this is considerable narrower than the ARTMIP estimation in

Tier 1 (Figure 1.2), our collection of methods still provides a slightly narrower size estimation

range of ⇠ 2x106-5x106). O’Brien et al. (2021) sensibly points out that care must be taken

when making general statements about the sign of AR frequency/size/count trends, since they

are linked to choices that ARDT design. We completely agree with this statement, since our

results show di↵erent results for future AR sizes depending on the treatment of the background

IVT, even when our methods are independent of the ARDTs. It has been shown that di↵erent
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ARDTs could be detecting di↵erent parts of the ARs (Lora et al., 2020), which contributes

to the uncertainty in AR size estimation using the ARDTs. Inda-Dı́az et al. (2021) raises

the question “could we benefit from the definition of three potential new terms: ‘AR core’,

‘dynamical envelope’, and ‘thermodynamic envelope’.” We speculate that if those distinctions

were made, each di↵erent phenomenon could have di↵erent responses to climate change, and

a↵ect the definition and estimation of AR size and their impacts in future climates. Our

size estimation methods could be adapted to analyze other variables in the filed (for example

IWV, wind speed, and precipitation), and they could be used to study the response in size of

the di↵erent features associated with ARs. This presents an interesting opportunity for future

work.

This e↵ect is explicitly exhibited in Figures 3.4-3.7: BG and SO methods take into

account the statistics of the background field, giving a di↵erent result regarding the change

in AR length, width, and area, than SO250, PC, and ARCI.

Regarding AR width, other works have shown systematic increases in AR width with SST

warming McClenny (2020). In general, our results agree on the increase in AR mean width

with climate change. Only SO shows a consistent decrease in AR width. An interesting finding

is that AR width is more sensitive to climate change, and it is the dominant source of variability

in AR area, regardless of positive or changes in area. This apparent enhanced response

of AR width over length could be related to the previous mentioned di↵erent “definitions

or parts” of ARs. A future study of these features could help understand this di↵erence.

Changes in AR width have underlying implications for continental regions, from the amount

of transported water vapor by ARs, to the extent in landfalling impact region from single ARs,

since the coastal precipitation due to orographic lifting is directly related to the magnitude

of IVT (Neiman et al., 2002; Ralph et al., 2005; Rutz et al., 2019). Wider more intense ARs

could mean higher than average precipitation in larger coastal regions, which could have a

direct impact in the hydrological hazards of landfalling ARs. Similarly, changes in AR could

have direct impacts over continental regions. Assuming ergodicity, longer ARs could more

prolonged landfalling AR conditions, that together with the higher IVT magnitudes observed
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in our results could derive on increased ARs categories and their impacts over land (Ralph

et al., 2019b).

Our results suggests larger ARs with higher cross-section horizontal water vapor trans-

port. These results are particularly relevant for the North American landfalling ARs, since

they are a well-studied source of rainfall and hydrological impacts in the region Ralph et al.

(2005); Leung and Qian (2009); Guan et al. (2010); Neiman et al. (2013); Ralph et al. (2013);

Rutz et al. (2014); Huang et al. (2021). We show that ARs are more likely to penetrate further

inland in future simulations. The west coast of North America has been observed to have an

increase in precipitation uncertainty in climate change projections, with increases in wet and

dry extremes Shields and Kiehl (2016); Payne and Magnusdottir (2015); Polade et al. (2017);

Payne et al. (2020). Larger ARs with higher water vapor horizontal transport could a↵ect

the characteristics of extreme precipitation in the NAWC. Higher IVT magnitudes in places

where historically ARs do not reach that often could a↵ect the hydrodynamic of the water

basins and have relevant impacts on flooding hazards in the region (Dettinger, 2013; Lavers

and Villarini, 2013a; Lavers et al., 2016b; Dong et al., 2019).

The results presented in this work can help to bring a new perspective for absolute vs

relative ARDTs in terms of a signal-to-noise problem. Although the absolute ARDTs would

not detect the AR dynamical signal per se, they are relevant from the AR landfalling impacts

point of view since it is the absolute water vapor transport what would produce precipitation.

This raises some questions, if the relative methods better detect the dynamical AR signal, would

this mean that the precipitation would be outside the detected relative envelope? ; moreover,

Would absolute methods better represent the precipitation signature under climate change?. At

the moment of the writing of this dissertation, the ARTMIP project has nearly 30 algorithms

at the moment. Di↵erent ARDTs are generally designed with di↵erent objectives in mind.

Since there is still an open debate about the definition of an AR and its boundaries, we do not

state that one ARDT is better than others, or that the size estimation methods that look into

the background IVT field are better. With this work, we expect to provide an objective insight

into the study of AR size independently from the design of the AR detection algorithms, and
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to encourage future investigation about the di↵erent features or weather patterns that right

now are being identified as AR. It is possible that these individual features might have di↵erent

responses under a climate changing and warming world.

3.5 Conclusions

This study analyzed data from the ARTMIP Tier 2 CMIP5/6 experiment to calculate

the AR confidence index. Using an object-based tracking method, we estimate the location

of ARs based on the AR confidence index for historical and future simulations with strong

radiative forcing (CMIP5: RCP-8.5, CMIP6: SSP-858). We create global composites of AR

objects and estimate their size (length, width, and area) using four di↵erent methods: ARCI,

PC, SO, and BG.

We use the value for the IVT background field PDF at +1 standard deviation (IVT�+1)

as a proxy to analyze the IVT background state across models. Our results show an increase

between 10% and 21% in IVT�+1 among CMIP5/6 models. However, we need to be careful

when applying size estimation methods that compare with the background (also with the use

of relative ARDTs) since our results show a spread ⇠27% in IVT�+1 across CMIP5/6 models,

which is a larger variation than the mean historical to future IVT�+1 increase. Moreover, we

find a constant increase in IVT�+1 throughout the 1950-2010 period, which suggests that a

time-dependent AR size analysis could help understand the response in AR size with climate

change.

We find a median AR area of 3.15x106 (2.32x106-3.98x106) km2 for historical runs, and

3.42x106 (2.73x106-4.11x106) km2 for future runs. We do not find a clear correlation between

the background IVT (IVT�+1) and the mean AR area. According to our methods, width

is more sensitive to climate change and has a larger contribution than length to the change

in AR area. All methods that do not take into account the background IVT (PC, ARCI,

and partially SO250) agree on the increment of AR size with climate change. The statistical

overlapping method shows a decrease in mean AR size, and the KS–test with the background

IVT methods shows increases and decreases in AR size, depending on the CMIP5/6 model.
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It is worth emphasizing that regardless of a positive or negative change in AR size for

future simulations, the mean AR cross-section water vapor transport increases between 8%

and 37% (depending on the model and method). This suggests that the thermodynamical

increase in background IVT due to CC scaling dominates over the change in AR size.

Finally, an analysis of AR size for North American West Coast landfalling ARs shows a

higher probability for ARs to penetrate further inland in future simulations. Like the global

mean results, future North American West Coast landfalling ARs are larger than those in the

historical simulations, with higher cross-section mean water vapor transport.

We provide an objective insight into the change in AR size with climate change from

an independent perspective of the ARDTs design and algorithms. More research needs to be

done to understand these changes better. We recognize that some of our methods are not ideal

for more geometrically complicated ARs. We propose exploring the use of non-linear principal

component analysis to increment the range of ARs that could be analyzed using our methods.

Non-linear PCA could also help in future works estimating the size of less studied AR regions

(like the tropics), which are gaining relevance and interest from the scientific community.
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Chapter 4

Relationship Between Atmospheric Rivers and

the Dry Season Extreme Precipitation in Central-

Western Mexico

4.1 Abstract

Atmospheric rivers (AR) are long, narrow jets of moisture transport responsible for over

90% of moisture transport from the tropics to higher latitudes, covering only between 2%

and 10% of the earth’s surface. ARs have a significant impact on the hydrological cycle of

midlatitudes and polar regions. This has developed great interest and community e↵ort to

study ARs and their impacts on these regions. It is not until recently that ARs in tropical

latitudes are starting to generate interest within the scientific AR community. We use data

from the ERA-20C reanalysis and the Bayesian AR detector TECA-BARD to show the relation-

ship between extreme precipitation and atmospheric rivers in central-western Mexico (CWM)

during the dry-seasons (November-March) in the 1900-2010 period. We find that more than

25% extreme precipitation amount and frequency are associated with ARs, with a maximum

of 60%-80% during December and January near the coast of Sinaloa (⇠107.5W,⇠25N). Dur-

ing these events, composites of the mean meteorological state show “ideal” conditions for

orographic precipitation due to landfalling ARs: high plume of horizontal vapor transport

perpendicular to the mountain range. We observe high horizontal vapor transport perpen-

dicular to the Sierra Madre mountain range, and a tropospheric wave pattern in vertical

velocity, surface pressure, and geopotential height associated with these events. The nature

and evolution of these waves need to be further studied in depth. Our results suggest that
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TECA-BARD provides a reasonable estimation for AR presence in CWM. Nevertheless, we

recommend using more than one ARDT or one tuned explicitly for tropical latitudes. This

will allow investigating the response of CWM landfalling ARs to climate change, which could

be critical for studying the region’s hydroclimatology under future climate scenarios.

4.2 Introduction

Atmospheric rivers (AR) are long, narrow jets of moisture transport typically associated

with a low-level jet stream ahead of the cold front of an extratropical cyclone (Ralph et al.,

2018). ARs account for over 90% of the water vapor transport from the subtropics to midlat-

itudes (Zhu and Newell, 1998). Over the last 20 years, there has been an increasing interest

in the study and characterization of ARs. There are numerous recent studies that investi-

gate AR and their relationship with extreme wind, precipitation, their impact to the regional

hydrological cycles, water mass balance, and extreme hydrological events like flooding and

droughts in midlatitude continental regions like North America, Europe, and South America

(Neiman et al., 2002; Ralph et al., 2004, 2005, 2006; Dirmeyer and Brubaker, 2007; Neiman

et al., 2008; Leung and Qian, 2009; Guan et al., 2010; Viale and Nuñez, 2011; Dettinger, 2011;

Ralph and Dettinger, 2011; Warner et al., 2012; Dettinger, 2013; Lavers and Villarini, 2013b,a;

Kim et al., 2013; Neiman et al., 2013; Ralph et al., 2013; Rutz et al., 2014; Gimeno et al.,

2016; Lavers et al., 2016b,a; Waliser and Guan, 2017; Gershunov et al., 2017; Goldenson et al.,

2018; Viale et al., 2018; Eldardiry et al., 2019; Ralph et al., 2019b; Huang et al., 2021). Some

works have even investigated the structure of AR using in situ data and satellite observations

(Ralph et al., 2005; Neiman et al., 2008; Ralph et al., 2010).

The significant impact of ARs on the climatology and hydrology of midlatitudes has

generated great interest and community e↵ort in studying ARs and their impacts on these

regions. Ralph et al. (2019a) introduced a scale to categorize AR strength based on vapor

transport intensity and landfall duration and show that there are beneficial and hazardous

impacts associated with AR events. This scale is helpful for the scientific community, and it
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is a way of communication with the general public. The AR category scale can be applied to

gridded datasets such as reanalysis, forecast, and climate projections. There is also an increas-

ing interest in understanding how ARs and their impact will change in future climates. Payne

et al. (2020) concludes that AR response to climate change will have noticeable importance

to water balance and regional water resources.

Most of the ARs research focuses on midlatitudes and polar regions. ARs in low latitudes

are starting to generate interest within the scientific AR community. This work is motivated

by the lack of study of tropical ARs. Moreover, we are also motivated by the personal

observation of “unusual non-tropical” precipitation in the Winter of 2019-2020 in Nayarit,

Mexico ⇠21.5N,104.9W, during the dry season (November-March). We refer to “unusual non-

tropical” precipitation as a low magnitude precipitation rate (compared to convective heavy

tropical precipitation). During these days, we observed constant rainfall throughout one or

two days, very similar to typical California’s winter precipitation (Figure 4.1(b) shows the

IVT and horizontal wind speed at 700 hPa from one such event). The similarities in the IVT

field with the typical characteristics of an AR raised the question: is this an AR? Are there

more events like this, and how are they associated with the extreme precipitation for the dry

season in Central-Western Mexico (CWM)? (thick black contour in Figure 4.1(a)).

(a) (b)

Figure 4.1: (a) Percentage of annual total precipitation from CPC Global Unified Gauge-Based Analysis
of Daily Precipitation. Thick black contour used to indicate what is considered as Central-Western Mexico
throughout this work. (b) ERA5 reanalysis IVT in color contours. Vectors represent the 750 hPa wind velocity.
2020-01-01 is one of the times when the precipitation in CWM resembled the winter Californian AR-associated
rainfall.
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CWM is characterized by a dry season from November to March (Garćıa Amaro de

Miranda, 2003), with a mean monthly accumulated precipitation of less than 10 mm1 and

over 75% of the annual precipitation from July-September, during the spring and summer

months. Rainfall in CWM is mainly associated with the North American Monsoon. Less

than 10% of the total annual mean rainfall occurs between November and March for most of

CWM (Figure 4.1(a)), according to the CPC Global Unified Gauge-Based Analysis of Daily

Precipitation2 (Chen et al., 2008).

From a socio-economic point of view, it is important to study and quantify these events of

atypical precipitation. CWM is one of the largest agricultural production regions in Mexico.

It is common knowledge among CWM farmers that these rainfall events can be exploited to

benefit agriculture; however, we could not find scientific quantification of it. There are even

popular beliefs that they can be predicted following a set of heuristic rules (Cruz López, 2011).

There is also some evidence that di↵erent crops like beans, co↵ee, and corn, are sensitive to

changes in the environmental conditions, like precipitation and humidity (Viguera et al., 2017).

Therefore, changes in climate conditions can a↵ect the productivity and quality of the crops

(Porter and Semenov, 2005).

Moreover, changes in wind speed and direction, moisture transport, and the location of

the intertropical convergence zone (ITCZ) can modify the energy exchange between the atmo-

sphere and the ocean. These changes could generate a displacement northward of the oxygen

minimum zone (OMZ), which can a↵ect ocean species distribution and the productivity of re-

gional aquaculture and fisheries (Breitburg, Denise; Grégoire, Marilaure and Isensee, Kirsten,

2018). Furthermore, other studies have observed that dry season rainfall events can change

the coastal environment. Coastal water chlorophyll concentration, turbidity, temperature, and

salinity, due to increased river discharge, can impact the sustainability of coastal ecosystems

and their biological production Domı́nguez-Hernández et al. (2020); Romero-Rodŕıguez et al.

(2020).

1https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/
resumenes-mensuales-de-temperaturas-y-lluvias

2https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
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Although there are numerous possible e↵ects of anomalous winter precipitation in the

CWM region, there is still a lack of documentation about these events and their impacts.

Moreover, no existing research links these events with ARs. We investigate the relationship

between lower latitudes ARs “dry season” (November-March) rainfall in CWM. We use data

from the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric

Reanalysis of the Twentieth Century ERA-20C3 (Poli et al., 2016) and the Bayesian AR

Detector TECA-BARD v1.0.1. We aim to quantify how much of the CWM winter precipitation

is associated with ARs and the meteorological state of the atmosphere during these events.

4.3 Data and Methods

ERA-20C output is 3-hourly with a of ⇠125 km on 37 pressure levels. We use data at

pressure level: geopotential z, wind velocity u, v, and w, specific humidity q, temperature t,

and surface level: mean sea level pressure mslp, surface pressure ps, total precipitation tp, ver-

tical integral of northward water vapor flux vinwvf, vertical integral of eastward water vapor

flux viewvf, and total column water vapor tcwv. According to the ERA-20C documentation,

the vertically integrated vapor fluxes are calculated in the model coordinates following

VIEWVF = �1
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vk qk�pk, (4.2)

where u and v are the components of the horizontal wind vector, q is the specific humidity,

p is pressure, ⌘ is the hybrid coordinate (Simmons and Burridge, 1981), index k corresponds

to model levels going from the surface (k = 1) to the top of the model atmosphere (k = N),

and �pk is the di↵erence in level pressures, estimated at level k. ERA-20C daily forecasted

precipitation accumulation has been converted to 3-hourly precipitation rate (with units of

mm/d), IWV is used directly from ERA-20C total column water vapor tcwv. IVT is calculated

3https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
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as the magnitude of the vertically integrated moisture weighted wind (horizontal vapor flux

vector) ~uq, directly from ERA-20C eastward and northward water vapor fluxes:

~uq = (VIEWVF,VINWVF), (4.3)

IVT = | ~uq| =
p

VIEWVF2 +VINWVF2. (4.4)

Additionally, we compare the ERA-20C reanalysis data with observational precipitation,

using precipitation data from the Livneh gridded precipitation for the continental US, Mex-

ico, and Southern Canada 4. The Livneh et al. (2015) dataset is a long-term gridded daily

dataset at fine 1/16� (⇠6 km) horizontal resolution for the period 1950-2013. We use bilinear

interpolation to regrid the AR detection from TECA-BARD in ERA-20C data to the Livneh

dataset grid.

4.3.1 AR probability from ERA-20C and TECA-BARD

To calculate the probability of the presence of an atmospheric river (AR probability) we

use the Bayesian AR Detector TECA-BARD v1.0.1, a probabilistic AR detector implemented in

the Toolkit for Extreme Climate Analysis5 (TECA). TECA-BARD uses a Bayesian framework

to sample from the set of AR detector parameters that yield AR counts similar to the expert

database of AR counts; this yields a set of “plausible” AR detectors from which we can assess

quantitative uncertainty (O’Brien et al., 2020b). We apply TECA-BARD to the ERA-20C

data, and asses the plausible presence of an AR at a grid point where where AR probability>

0.05. While 0.05 is a low probability threshold, this indicates a non-zero probability of the

existence of an AR in a given grid cell. Since TECA-BARD is inherently designed to detect

ARs in mid-latitudes, it filters the IVT field near the tropics, resulting in AR probability that

would have lower values in the presence of an AR in tropical latitudes than one in higher

latitudes. We hypothesize that AR probability> 0.05 represents a reasonable indication of

the presence of an AR in lower latitudes. We test and show this in Sections 4.6 and 4.7.

4UCAR: https://bit.ly/3u8lNts
5https://github.com/lbl-eesa/teca
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4.3.2 Extreme Precipitation

We calculate the monthly 98th percentile precipitation rate value for ERA-20C and

Livneh datasets at each grid cell. We define an extreme precipitation event for a given grid

cell as the time when the precipitation is above the 98th percentile. We calculate the AR as-

sociated extreme precipitation for each grid cell as the precipitation above the 98th percentile

when AR probability> 0.05. Since the data record is su�ciently long (1900-2010 for ERA-

20C and 1950-2013 for Livneh), we calculate all means and extreme precipitation quantiles

monthly. The same holds for the atmospheric state composites described in Section 4.3.3.

4.3.3 Atmospheric State Composites

Following the methodology of Neiman et al. (2008), we create composites of meteoro-

logical variables to study the state of the atmosphere at the time of extreme precipitation

and AR events at two locations: Loc1 = 107.5W,25N, and Loc2 = 105.0W,21N (Figure 4.2,

Loc1 denoted circle marker, Loc2 by the triangle). Loc1 is located close to the maximum

area of AR-associated precipitation and close to Culiacán Sinaloa, one of the most productive

agricultural states of México. Loc2 is around the most southern region with AR-associated

precipitation fraction ⇠0.5, and in the state of Jalisco, another important agricultural produc-

tor in CWM. Both locations are close to the Sierra Madre Occidental, a mountain range that

extends through Northwestern and Central-Western Mexico, as a part of the North American

Cordillera, parallel to the coast. We hypothesize that if there is IVT normal to the Sierra

Madre during the dry season, it could produce precipitation due to orographic lifting. The

methodology to select the time steps to composite is as follows: we find the times when the

AR probability is > 0.05 (ar), then we find all the times when the precipitation is above

the 98th percentile (pr). We define then AR + extreme precipitation conditions as the times

where both conditions ar and pr are met (ar pr), times when there is ar but no pr (ar nopr),

and times when there is pr but no ar (pr noar). Finally, the long-term mean is the monthly

climatology for 1900-2010 (ltm). We average in time for all the time in each composite, and
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create monthly composites. Anomalies are calculated as the specific composite minus the

long-term mean. Table 4.1 summarizes the di↵erent composite sampling.

Table 4.1: Atmospheric state composites. Composites are created monthly. The number of events at each
location is the total number of events for all November-March months.

Atmospheric state composites

Conditions Name Anomaly Events at Loc1 Events at Loc2

Climatology (long term mean) ltm 134304 134304
AR ar ar - ltm 8886 4650
Extreme precipitation pr pr - ltm 2690 2688
AR/extreme precipitation ar pr ar pr - ltm 1549 1003
AR/no extreme precipitation ar nopr ar nopr - ltm 7337 3647
Extreme precipitation/no AR pr noar pr noar - ltm 1141 1685

Figure 4.2: Orography of CWM. Loc1 and Loc2 are show in circle and triangle markers, respectively. The
Sierra Madre Occidental is the mountain range that runs through Northwestern and Central-Western Mexico.

4.4 Results

In Section 4.4.1 we present the results of the AR-associated precipitation in CWM during

the dry-season (November-March) in the 1900-2010 period. We present the fractional con-

tribution of ARs to the precipitation, using ERA-20C data and the Livneh et al. gridded

dataset. Sections 4.6 through 4.7 focus on the meteorological state of the atmosphere during

extreme precipitation and AR events, and the di↵erence between di↵erent composites. In
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Appendix C we include additional plots related to the meteorological state of the atmosphere

and di↵erences between composites.

4.4.1 AR-associated extreme precipitation

Figures 4.3 and 4.4 show how much of the CWM dry-season precipitation is associated

with ARs. Figure 4.3 (a) shows the fraction of ERA-20C total extreme precipitation amount

associated with ARs, and (b) shows the same for Livneh precipitation. Figure 4.3 (a) shows

the fraction of ERA-20C extreme precipitation frequency associated with ARs, and (b) shows

the same for Livneh precipitation. The results are highly condensed in these figures, but they

are clear and relevant: The influence of ARs in the dry-season extreme precipitation in CWM

extends as far as ⇠17N. December has the highest AR-associated precipitation, with ⇠75% of

the frequency and amount 0.75 near Loc1, and between 50% and 60% near Loc2. In general,

we can say that in the Nov-March, more than half of the extreme rainfall at Loc1 (more than

30% at Loc2) is associated with ARs, both in total amount and frequency.

Figure 4.3: Fraction of the total precipitation extreme precipitation (>98th percentile) associated with ARs.
(a) ERA-20C 1900-2010. (b) Livneh 1950-2010.
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Figure 4.4: Fraction of AR-associated to total extreme (>98th) precipitation frequency. (a) ERA-20C 1900-
2010. (b) Livneh 1950-2010.

We have shown the results based on two facts: the total amount of precipitation (and

frequency) higher than the monthly 98th percentile for November-March; and the “plausible”

presence of an AR in CWM given the ar_probability�0.05. We hypothesize that this

precipitation is associated with low latitudes ARs and that TECA_bard provides a good insight

into the presence of ARs in CWM. This becomes more clear in Section 4.6, where we present

composites of the state of the atmosphere during ar_probability�0.05 events at Loc1 and

Loc2. For simplicity, in Section 4.5 and 4.6 we show the results for January. Appendix C

contains the results for the long-term mean and ar pr composites.

4.5 Long-term Mean

We briefly show the climatological state of the atmosphere (ltm) for January. The long-

term mean is calculated based using ERA-20C data. Figure 4.5 (a) shows IWV between 10 and

15 kg m�2 in CWM, with a maximum of 45 kg m�2 near the ITCZ (between 5S and 5N). IVT

is shown in Figure 4.5 (b), with values between 0 and 100 kg m�1s�1 in CWM (IVT direction
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shown with vectors). We note a high IVT plume over the Pacific storm track, and higher IVT

values between 5S and 5N associated with the ITCZ. Mean sea level pressure depicts the North

Pacific High with its maximum at 130W,30N, shown in Figure 4.5 (c). Geopotential height

at 650 hPa, shown in Figure 4.5 (d), has a large gradient between 30N and 60N, associated

with the jet stream over midlatitudes, with very little or no spatial patterns over CWM and

the central Pacific Ocean. The long-term means for Nov-March are shown in Appendix C

(Figures C.1 through C.5). The general structure of the atmosphere is similar to 4.5 (Low

IVT and IWV over CWM with the North Pacific High west of the coast of California and Baja

California), with slight di↵erences in the locations of the ITCZ, storm track, North Pacific

High, etc.

(a) (b)

(c) (d)

Figure 4.5: Long-term mean for 1900-2010 in December. (a) Integrated water vapor (IWV), (b) integrated
vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa. The vectors
in panel (b) represent the direction of IVT.

4.6 Extreme Precipitation and AR Events Composite

In this section, we focus on the state of the atmosphere for the ar pr composite (events

with extreme precipitation + AR probability ±0.05).
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ar pr composite at Loc1: Sinaloa, (107.5W,25N)

Figure 4.6 (a) shows IVT in colored contours and IWV in dashed white contours. We

observe an elongated region of high IWV extending from the ITCZ into CWM, with values up

to 30 kg m�2 at Loc1; as well as a ridge-like structure of high IVT (between 200 and 400 kg

m�1s�1 centered at Loc1, similar to mid-latitude landfalling ARs (Neiman et al., 2008). Figure

4.6 (b) shows IVT anomalies higher than 200 kg m�1s�1, and IWV anomalies up to 15 kg m�2

nearLoc1. Mean sea level pressure (grey-filled contours in Figure 4.6 (c)) show the presence

of the North Pacific High. Moreover, in 4.6 (d), we observe a low in sea level pressure and

geopotential height at 850 hPa anomalies centered near 115W,30N. This wave pattern is more

noticeable in Figures 4.6 (e) and (f) (geopotential height at 500 hPa). It is worth noticing

that the low-pressure system at the surface is approximately aligned with the mid-troposphere

low. This could imply that the wave producing this AR-pattern and anomalous dry-season

precipitation is barotropic. However, more analysis is needed to determine the nature and

characteristics of these waves. Figures 4.6 (g) and (h) show a mean negative vertical velocity

(ascending) over the high IVT plume, ahead of the mid-tropospheric low (with anomalies ⇠6

hPa s�1). Vectors show the direction of IVT and its anomalies in Figures 4.6 (g) and (h).

IVT is normal to the mountain range and Loc1, with a weakening of the westward moisture

transport near the Equator.

ar pr composite at Loc2: Jalisco and Nayarit (105.0W,21N)

The ar pr at Loc2 has a similar general structure to the Loc1, with slightly weaker IVT

and higher IWV than the Loc1 composite. Figure 4.7 (a) shows a high IVT ridge near Loc2

with a maximum value of ⇠350 kg m�1s�1 and IWV ⇠35 kg m�2 near Loc2. The mean

sea level pressure and geopotential show negative anomalies centered near 26N,110W, with

lower magnitude than the Loc1 composite anomalies (Figures 4.7 (c-f)). An upward 650 hPa

wind velocity (and its anomaly) ahead of the tropospheric through, with high IVT normal

to the Sierra Madre at Loc2 (Figures 4.7 (g) and (h)). The genesis and nature of the waves

responsible for this weather pattern need to be further explored.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in January.
Contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level pressure,
geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column: anomalies with
respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in January.
Contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level pressure,
geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column: anomalies with
respect to the long-term mean for the same variables.
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4.7 Di↵erence between composites

This work focuses on the relationship between ARs and extreme precipitation during the

dry-season in CWM. In Section 4.6 we show the results for the ar pr composite, i.e. when

extreme precipitation and AR are present. This naturally raises the questions: what about

the other composites?, what is the di↵erence between composites?. For example, what is the

di↵erence between the climatology of events with extreme precipitation but no ARs detected

(pr noar)? What drives this anomalous rainfall? For simplicity, we focus the results in this

section on composites over Loc1.

The IWV and IVT for January during extreme precipitation without detection of ARs

(pr noar) is shown in Figure 4.8. We observe that the general structure of IVT and IWV

are similar to the ar pr composite (surface pressure, geopotential height and vertical velocity

plots are shown in Figure C.17). So, how di↵erent are they? In Figure 4.9 (b) we observe

Figure 4.8: (a) IVT and IWV and (b) their anomalies. pr noar composites for January at Loc1.

little variation between the two composites for the pressure and 850 hPa geopotential height

near CWM. The main di↵erence in the pressure/geopotential fields are in the north part of

the domain, where the wave pattern, present in both ar pr and pr noar is stronger for ar pr

(positive di↵erences in Figure 4.9 (b)). Nevertheless, the spatial patterns are similar between

the two composites. Figure 4.8 shows spatial patterns in moisture fields similar to ar pr,

although with weaker magnitudes in IVT and IWV for the pr noar composite (Figure 4.9

(a)), probably due to the weakening of the mid-troposphere wave pattern (Figure 4.9 (b)).

Figure 4.10 shows the IWV and IVT for the ar nopr composite in January, i.e. during
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(a) (b)

Figure 4.9: Di↵erences in the mean state of the atmosphere between ar pr and pr noar composites for
January at Loc1. (a) IVT magnitude in filled contours, vectors represent the direction of IVT, and white
dashed contours denote changes in IWV. (b) Filled contours show mean sea level pressure di↵erences, thick
yellow contours show geopotential height at 850 hPa, and black contours the geopotential height at 500 hPa.

AR detection without extreme precipitation present. We note a moisture transport into Loc1

(surface pressure, geopotential height and vertical velocity plots are shown in Figure C.16).

We notice di↵erences with respect to the ar pr composites in surface pressure. The ar nopr

Figure 4.10: (a) IVT and IWV and (b) their anomalies. ar nopr composites for January at Loc1.

has a stronger pressure high in the north-west part of the domain, but a weaker low high near

CWM (Figure 4.11 (b)). Moreover, a tilting in the geopotential height wave pattern in Figure

C.16, and di↵erences in its magnitude create a much weaker IVT magnitude and a di↵erence

in IVT direction at Loc1 (4.11 (a)). This could be due to a stronger mid-troposphere wave

associated with the jet stream meandering or the superposition of two or more waves. Again,

the nature of the wave producing these weather patterns still needs to be explored and would

make an exciting work by itself. Ultimately, the main consequence of these wave di↵erences

is that they result in a much weaker IVT magnitude with a di↵erent direction, both directly

related to orographic precipitation.
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(a) (b)

Figure 4.11: Di↵erences in the mean state of the atmosphere between ar pr and ar nopr composites for
January at Loc1. (a) IVT magnitude in filled contours, vectors represent the direction of IVT, and white
dashed contours denote changes in IWV. (b) Filled contours show mean sea level pressure di↵erences, thick
yellow contours show geopotential height at 850 hPa, and black contours the geopotential height at 500 hPa.

Figures 4.9 and 4.11 suggest that the di↵erent composites might be related to the same or

similar weather events or di↵erent phases in the same weather event or wave. To explore this,

we show the time of the events for each composite in Figure 4.12. There is, in fact, an overlap

between composites; in some cases, precipitation events occur before or after ARs but around

the same dates in general. This suggests that while we have acceptably identified AR events,

an ARDT tuned for tropical latitudes could do improve the AR detection in CWM, which

could result in a greater correlation between ARs and dry-season precipitation in CWM. In

Appendix C - C.18 we show the full 1900-2010 event composites at Loc1.

4.8 Discussion and Conclusions

There is a large amount of literature regarding the impacts of ARs in mid-latitudes

and polar regions (Gimeno et al. (2014); Ralph et al. (2017b); Paltan et al. (2017); Rutz

et al. (2019); Lora et al. (2020), and references therein) and AR changes with climate change

(Lavers et al. (2015); Payne et al. (2020); O’Brien et al. (2021), and references therein).

Nonetheless, there is less research about ARs and their e↵ects in lower latitudes (De Luna

et al., 2020; De Luna, 2021). It is not until recently that tropical ARs have started to gather

scientific interest. Moreover, since the summer precipitation (June-October) dominates the

total precipitation of CWM, a significant part of the research has focused on the role of tropical

storms and tropical cyclones (Farfán and Fogel, 2007; Dı́az et al., 2008; Agust́ın Breña-Naranjo

79



Figure 4.12: Time of events for each composite (ar, ar pr, ar nopr, pr noar, and pr). Each subfigure shows
a year in the 1900-1905 period. Blue circle markers represent ar, orange squares ar pr, green triangles ar nopr,
red stars pr noar, and purple crosses pr.

et al., 2015; Dominguez, Christian and Magaña, Victor, 2018; Dominguez et al., 2020) and the

role of the North American Monsoon (Adams and Comrie, 1997; Douglas and Englehart, 2007;

Cavazos, Tereza and Arriaga-Ramı́rez, Sarah́ı, 2012). Furthermore, some studies associate the

fluctuations and trends in precipitation in CWM with large-scale climate features like El Niño

Southern Oscillation, Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation (

Magaña, Vı́ctor and Pérez, Joel and Vázquez, Jorge and Pérez, José, 2003; Mat́ıas Méndez and

Vı́ctor Magaña, 2010; Curtis, 2007; Arriaga-Ramı́rez, Sarah́ı and Cavazos, Tereza, 2010). In

particular, CWM appears to be a transition region between the Mediterranean rainfall regime

in California and northern Baja California and the summer-dominated tropical rainfall regime

and the North American Monsoon. This, together with the relatively developed AR research,

has resulted in an overlook of the dry-season (winter) precipitation and its association with

tropical ARs.

Here, we present clear evidence of the relationship between CWM dry-season precipi-
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tation and ARs. Our composites reflect a high degree of similarity with other compositing

studios in higher latitudes (Neiman et al., 2008). Nevertheless, many aspects of these tropical

ARs still need to be studied. Investigating the characteristics of the waves that create these

anomalous IVT filaments and rainfall is key to understanding these weather patterns and their

implications in the CWM dry-season hydrological cycle. Moreover, ARs have been typically

associated with mid-latitude baroclinic waves and extratropical cyclones (ETC). However,

recently Zhang et al. (2019b) showed that nearly 20% of ARs are not nearby an ETC. Here

we have presented evidence that aligned surface amd mid-troposphere weaves are associated

with tropical ARs in CWM, and could possibly denote a barotropic nature of these waves.

There is no doubt that we still have a lot to learn and explore about ARs, particularly lower

latitudes ARs. We still need to determine the genesis of these events. Are they more related

to extratropical weather patterns like an amplification of mid-latitude waves? or maybe to

tropical dynamics, energy balance, and responses to shifts in the ITCZ (Ha↵ke and Magnus-

dottir, 2013; Choi et al., 2015; Lintner and Boos, 2019). In other words, are these events, in

fact, atmospheric rivers, or are they another weather phenomenon?. We show clear evidence

that there is a reasonable degree of similarity between winter ARs in CWM and typical mid-

latitude ARs, so a more reasonable question may be how similar or how di↵erent are tropical

and mid-latitude ARs?.

Although ARs in CWM do not dominate the total annual precipitation like on the US

West Coast, they regulate extreme precipitation during the dry season. The water vapor

in ARs frequently leads to heavy precipitation where they are forced upward by mountains

(Ralph et al., 2018; Smith et al., 2009; Ralph et al., 2019a). The presence of the Sierra Madre

Occidental in CWM provides a creates an ideal mechanism for orographic rainfall during

high IVT events in CWM. Therefore, it is relevant to quantify and understand these tropical

ARs and their influence on the regional hydrological cycle of CWM. We recognize that this

study (and future studies) could benefit from an ARDT tuned for tropical latitude, which

brings back the question of how similar these ARs are to “traditional” mid-latitude ARs.

The uncertainty in AR detection is key to answering this question. It has been discussed the
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possibility that there is more than one type of dynamical phenomenon that produces AR-like

objects and that di↵erent definitions for these processes could help in future studies (Inda-

Dı́az et al., 2021; O’Brien et al., 2021). This gains particular relevance for the study of future

ARs in CWM, because, in general, di↵erent “types” of AR-like phenomena (including CWM

landfalling tropical ARs) could have di↵erent responses to climate change. There is some

evidence of future AR frequency increases in lower latitudes (De Luna et al., 2020). Although

the frequency increase magnitude is lower than for higher latitudes, there is no assurance on

how the local hydrology will be impacted by changes in other AR quantities (intensity, size,

orientation, geometry, among others).

In summary, we use data from the Atmospheric Reanalysis of the Twentieth Century

ERA-20C and the TECA-BARD AR detector to demonstrate the relationship between ex-

treme precipitation and atmospheric rivers in central-western Mexico during the dry-season

(November-March) of 1900-2010. We find that more than 25% of extreme precipitation amount

and frequency are associated with ARs, with a maximum of 60%-80% during December and

January near the coast of Sinaloa (⇠107.5W,⇠25N).

We calculate composites of the mean state of the atmosphere during AR and extreme

precipitation events. We find that for the AR and precipitation composite (ar pr), there is a

positive anomaly in IWV and IVT. Horizontal vapor transport is normal to the coast and the

mountain range of the Sierra Madre. Vertical velocity has upward anomalies alongside the

high IVT envelope. Besides changes in horizontal moisture transport, sea level pressure and

geopotential height anomaly fields show a wave pattern associated with the ar pr composite.

A weakening of the surface pressure high and the presence of geopotential lows (above 850

hPa) suggest that the moisture transport occurs at a higher level than typical mid-latitude

ARs.

Additionally, we examine the di↵erences between composites. Our results suggest that

the AR events without precipitation have a lower IVT magnitude. Furthermore, they show

a tilted wave pattern in the geopotential height field with respect to the AR with precipita-

tion composite. Taken together, this translates into lower horizontal vapor transport values
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with di↵erent orientations with respect to the mountain range, resulting in lower precipita-

tion rates. Furthermore, we show that the main di↵erence between the precipitation events

with/and without ARs composite is IVT magnitude. Both composites have similar pressure

and geopotential wave patterns near the coast of CWM. The pressure and low atmosphere

geopotential main di↵erences are located north of 30N. These results suggest that the precip-

itation without AR events in fact is related to the AR events. Both composites could be part

of the same weather pattern that our ARDT failed to detect due to the lower IVT magnitude

and its inherent design to filter out the tropics.

The nature and genesis of these anomalous IVT events and dry-season precipitation

–or apparent tropical ARs– still need to be determined, and we plan to explore them in

future work. We recommend using more than one ARDT, or one tuned explicitly for tropical

latitudes, which could sharpen the correlation between ARs and CWM winter precipitation.

This will allow investigating the response of CWM landfalling ARs to climate change, which

could be critical for studying the region’s hydroclimatology under future climate scenarios.
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Chapter 5

Conclusions

This dissertation focuses on two related subjects: AR size and its change with future

climate scenarios and the relationship between Central-Western Mexico winter precipitation

and ARs. The overarching motivation of the first part is to develop and implement AR

size estimation methods that are independent of the design of ARDTs. In this fashion, we

aim to provide an objective insight into the AR size and geometric characteristics and their

change in future simulations. This could be used as a reference or supplemental aid for

tuning existing ARDTs or designing new algorithms. In this matter, we have succeeded and

provided a narrower range of size estimation with respect to the ARTMIP collection. The

second part of this dissertation is motivated by the lack of study of ARs in lower latitudes

and the personal observation of winter precipitation in Mexico and its resemblance to the

AR-produced precipitation in California. Although the quantitative definition of AR is still

an open research question, the general meteorological state shows that the dry-season extreme

precipitation in CWM is associated with AR-like events. This is an interesting result by itself

since ARs have been typically associated with higher latitude impacts. Therefore, we aim to

provide a comprehensive preliminary inspection of this association to motivate further and

more profound research about these meteorological events.

5.1 Summary

In Chapter 2 we develop and implement five independent size estimation methods to

characterize the size of ARs that make landfall over the West Coast of North America in the

1980-2017 period and reduce the range of size estimation from the ARTMIP ensemble. Our

results show that ARs that originate in the Northwest Pacific (WP) (100�E-180�E) have larger
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sizes and are more zonally oriented than those from the Northeast Pacific (EP) (180�E-240�E).

ARs become smaller through their life cycle, mainly due to reductions in their width. They also

become more meridionally oriented towards the end of their life cycle. Overall, we provide a

range of AR areas (between 7x1011m2 and 1013 m2) that is several orders of magnitude narrower

than current methods estimation. In addition, we find a composite AR width (length) between

394-1550 km (1580-3842 km), depending on the size estimation method. North America

landfalling ARs originated in the EP (WP) have an orientation with respect to the equator

between ⇠ 31� (⇠ 41�), with mean aspect ratios (length/width) between 2.8 and 5.2.

In Chapter 3 we expand the use of the methods developed in Chapter 2. We analyze

data from the ARTMIP tier 2 CMIP5/6 experiment to calculate the AR confidence index.

Using an object-based tracking method, we estimate the location of ARs based on the AR

confidence index for historical and future simulations with strong radiative forcing (CMIP5:

RCP-8.5, CMIP6: SSP-858). We create global composites of AR objects and estimate their

size (length, width, and area) using four di↵erent methods: ARCI, PC, SO, and BG. We show

an increase between 10% and 21% in the background IVT field among CMIP5/6 models (via

the IVT�+1). However, we need to pay special attention to these changes’ implications. Our

results show a more extensive spread in IVT�+1 across CMIP5/6 models than the individual

model increases from historical to future background field. Moreover, a constant IVT�+1

throughout the 1950-2100 period suggests that a time-dependent AR size analysis could help

understand the response in AR size to climate change. Our results show a mean AR area of

3.15x106 (2.32x106-3.98x106) km2 for historical runs, and 3.42x106 (2.73x106-4.11x106) km2

for future runs. According to our methods, width is more sensitive to climate change and has

a larger contribution than length to the change in the AR area. Most CMIP5/6 models and

size estimation methods project an increment in AR size with climate change. Furthermore,

regardless of the individual positive or negative change in AR size, the mean AR cross-section

water vapor transport increases between 8% and 37% in future simulations. This suggests

that the thermodynamical increase in background IVT due to CC scaling dominates over the

change in AR size. These results hold for the particular case of North American West Coast
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landfalling ARs, with the particular caveat that there is a higher probability of ARs going

further inland in the future. Our methodology provides an objective insight into the change

in AR size with climate change from an independent perspective of the ARDTs design and

algorithms.

In Chapter 4, we look into the relationship between dry-season (November-March) precip-

itation in Central-Western Mexico and atmospheric rivers. We use ERA-20C reanalysis data

and the TECA-BARD Bayesian AR detector. We find that in the 1900-2010 period, more than

25% extreme precipitation amount and frequency are associated with ARs in CW, with a max-

imum of 60%-80% during December and January near the coast of Sinaloa (⇠107.5W,⇠25N).

We demonstrate that although TECA-BARD is not tuned explicitly for AR detection in the

tropics, we can use the probability of AR detection to establish a plausible presence of ARs.

An analysis of the state of the atmosphere during extreme precipitation and AR events in

CWM shows a high degree of similarity with higher latitude ARs meteorology. We find an

enhanced mean IWV (30 kg m�2) and IVT (400 kg m�1s�1) pointing perpendicularly to the

coast of CWM and the Sierra Madre Occidental. Besides, surface pressure suggests that hori-

zontal vapor transport is above typical AR altitudes. Furthermore, we find a wave pattern in

the pressure and geopotential height fields (apparently barotropic). Also, we find ascending

vertical velocities (in the absolute and anomaly fields) aligned with the high IVT ridge, which,

together with the high IVT, provides the ideal conditions for orographic precipitation over

the Sierra Madre. Moreover, we explore the di↵erence between composites of ARs with and

without extreme precipitation. We find a weakening of the mid-troposphere wave pattern,

with tilting in the geopotential height anomalies. This creates a lower mean IVT magnitude

and a shift in the direction of IVT, which could be the reason for the absence of extreme pre-

cipitation during these events. Lastly, we analyze the di↵erence between the composite with

extreme precipitation, with and without ARs. Our results suggest that the main di↵erence

relies on the mean IVT magnitude. We look into the individual time frames of these two

composites and observe that they typically occur around the same dates. Together with the

similarity in the meteorological state, our results suggest that our ARDT fails to detect those
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events. Future studies could benefit from an ARDT specifically tuned for lower latitudes.

5.2 Future Work and Recommendations

We believe that the methodology developed in Chapters 2 and 3 can provide statistical

constraints in size and geometry for the AR detection and tracking algorithms. Additionally,

we aim to provide an objective insight into the AR size change under climate change. More

research needs to be done to understand these changes better. We recognize that some of

our methods are not ideal for more geometrically complicated ARs. We propose exploring

the use of non-linear principal component analysis to increment the range of ARs that could

be analyzed using our methods. We recognize that those di↵erent ARDTs are designed with

di↵erent objectives, and we speculate that they could be detecting di↵erent parts of the AR.

Our results show that, in fact, we can obtain di↵erent estimated sizes depending on the

treatment of the IVT background field. We propose to use the results found in this work to

aid in the definition of new terms like“AR core”, “dynamical envelope’, and “thermodynamic

envelope”. We also propose using these results in the design of a Lagrangian dynamics-

based ARDT. The lower AR size range result dissertation could help to reduce the rules and

threshold used in the Lagrangian ARDT.

We want to raise special attention to the treatment of the background IVT in climate

studies. We observe that the inter-model variance of IVT background is higher than the

change between historical and future simulations. Moreover, there is a constant increase in

IVT background with time thorough the 1950-2100 period. Therefore, any future work must

be aware of these facts to interpret the results correctly.

We propose using the AR size estimation methods in the CWM ARs. This could help

answer how similar or di↵erent these are from the more studied mid-latitude ARs. Moreover,

the use of ARDTs tuned for tropical latitudes could help study the winter precipitation in

CWM and other regions around the world. The closer to the equator we are, the higher IVT

background noise we encounter, mainly due to the presence of the ITCZ. We understand that

this is not an easy task. However, we are sure that the development of more ARDTs capable
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of tropical AR detection would help quantify the detection uncertainty, which could help in

understanding tropical AR, their impacts, and their relationship with higher latitude ARs.

For future work, we propose to explore the possible link between AR size and duration

and how the size of AR might be directly related to hydrological impacts over landfalling

regions. We believe that including AR size in the AR categorization scale would provide

a broader meaning to the scale. In addition, incorporating size could improve the already

helpful AR categorization index in forecasting and preventing AR impacts over land.

Lastly, we need to extend the work of Chapter 4 to other precipitation datasets, reanalysis,

and coupled models, such as those in CMIP5/6. We need to understand the nature of the

waves creating these AR-like events and extreme precipitation and their relationship with

large-scale climate patterns (ENSO, PDO, AMO, MJO). There is still a lot we do not know

about ARs in the near-tropics, particularly their non-linear response to climate change. Since

dynamical and thermodynamical e↵ects drive IVT changes, it is possible that although ARs’

contribution to the CWM (and other tropical regions) total precipitation is low, this might

not be the case for a warmer world.
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Appendix A

Supporting information for “Constraining and Charac-

terizing the size of Atmospheric Rivers: A perspective

independent from the detection algorithm”

In this Appendix, we present a deeper insight into the AR size estimation methods’

construction and characteristics. We also present the sensitivity analysis of three of our AR

size estimation methods: Statistical Overlapping of IVT With the Background Field PDF

(SO), K-S Statistics Between AR Composite and the Background CDF (BG), and Lagrangian

tracers method (LT). For reference, Table A.1 shows the labels in Figure 1 from the main

text to the respective ARTMIP detection and tracking algorithm used to calculate AR area

in Figures 1.2 and 2.1.

A.1 Principal Components Size Estimation Method (PC)

Applying principal components to a complex field such as IVT is a complicated task. As

described in section 2.4.1, to isolate the AR object from the IVT far-field, we use a three-

step iterative process. First, we filter the ITZC large contiguous regions of high IVT with a

two-dimensional Gaussian filter:

IVT0 = IVT · (1� e
�y2

2�y2 ), (A.1)

where IVT’(x, y) is the filtered IVT field, x and y are the longitude and latitude, respectively,

and �y is half-width at half-maximum of the filter. We use �y = 15�, which e↵ectively damps

the IVT to zero within the ITCZ. Figure A.1 shows an original (a) and filtered (b) IVT field.

Then, from the AR object tracking algorithm, we approximate the location of the AR and
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(b)(a)

Figure A.1: (a) Original integrated vapor transport (IVT) field; (b) IVT after application of the Gaussian
filter in Equation (A.1) with �y = 15� tropical filter (IVT’).

determine the AR “core” as the points where IVT is greater than 0.5 times the local maximum

IVT. Next, we apply PCA to the AR core and use the eigenvalues and eigenvectors to create

a 2D Gaussian function using Equation (11) in Chapter 2. Then, we filter all the points from

the original ERA5 IVT field where the core Gaussian function is less than 10�3 (we found

this value worked well for the ARs objects analyzed in this work). We then apply PCA to

the filtered IVT field and use the results to estimate the size of the AR object. Figure A.2

shows three examples of the process. Figure A.2 shows three cases where the process works

(a) (b) (c)

(d) (e) (f)

Figure A.2: Illustration of the steps in the PC calculation. The top sub-figures show the original IVT field
in filled contours, with a white circle marker as the first guess of AR location (from the tracking algorithm).
The bottom sub-plots show the filtered IVT field in color-filled contours, the AR core ellipse and the principal
components ellipse in transparent white contours, and the direction of the eigenvectors in red lines.

very well, this is not always the case. For example, merging ARs, or ARs objects with higher

curvature in their geometry tend to fail in the PC calculations. We found that for this work,

less than 10% of the AR objects failed in the calculation. Those cases were not included in
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the composites. Figure A.3 shows three cases with characteristics that are not ideal for the

PC analysis. Those three cases in particular did not fail, but the size estimation is not as well

performed compared to cases like those in Figure A.2. We hypothesize that using non-linear

(a) (b) (c)

Figure A.3: Illustration of three cases where the PC calculation is more complicated. AR objects with high
curvature and merging ARs are particularly challenging. IVT field is shown in color-filled contours and the
direction of the eigenvectors in red lines.

principal component analysis could help with the highly curved ARs, but we leave this for

future work’s exploration.

In the full composite, there are well-behaved and complex cases. Nevertheless, once

we leave out the cases where the PC analysis and IVT sampling along the direction of the

eigenvectors failed, the obtained composite is quite resembling of the AR structure (Figure

A.4). The final composites have 1,150 and 980 AR objects for the WP and EP, respectively.

Figure A.4: Summary of the results and graphical illustration of the di↵erent size estimation methods. In
color contours, we superimpose (with transparency of 0.1%) the IVT field of all the AR objects available at
50% life cycle for (a) Western Pacific and (b) Eastern Pacific.
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A.2 Statistical methods (SO and BG)

For each AR object in the composite, we sample IVT in the directions of the principal

components and calculate the distance of each point to the AR centroid. One example of this

process is illustrated in Figure A.5. We obtain a series of IVT values and their correspondence

distance to the AR centroid, along and across the AR object (left and right bottom figures).

We apply this sampling technique for all AR objects and get a “raw-sampled” IVT vs distance

to the AR centroid composite (left panel in Figure A.6) We utilize fastKDE1 (O’Brien et al.,

(a)

Text

(b) (c)

Figure A.5: Illustration of one AR object IVT sampling along the principal components’ direction.

2014, 2016) to calculate the conditional probability distribution (CPD) of IVT with respect

to the distance to the AR centroid. CPD is the base for the statistical methods the statistical

overlapping (SO) and the background KS-test (BG) methods. Figure A.5(a) shows the CPD

for one composite. From the calculated CPD, we extract the CPD=0.16 contour (orange

line in Figures A.5(b) and A.7(a)). SO method defines the statistical boundary of the AR

composite as the distance at which the background IVT probability density function (PDF)

IVTBK at plus one standard deviation �+1 (dotted line in Figure 3.2(b)) intersects the com-

posite CPD at minus one standard deviation ��1 (CPD=0.16). We can interpret this point

as the distance at which the background IVT PDF at �+1 overlaps with the AR composite

1https://github.com/LBL-EESA/fastkde/releases/tag/v1.0.18
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CPD=0.16, represented by the dashed blue line in Figure A.7(a). The BG method compares

(a) (b)

Figure A.6: (a) Raw sampling of IVT vs distance to the AR centroid. (b) Conditional probability distribution
of IVT and distance to the AR centroid along the AR composite (white contours show CPD across AR
composite). The orange contour represents the 0.16 probability contour. Vertical dashed line shows how we
would sample to generate the cumulative density function at a given distance.

the AR composite and the background IVT cumulative distribution function (CDF). To cal-

culate the CDF of the composite as a function of the distance to the centroid, we sample the

CPD at specific distances, represented by the dashed line in Figure A.5(a). From the CPD, we

can calculate the composite CDF at di↵erent distances from the AR centroid. BG method is

based on the hypothesis that near the AR centroid, the ARs composite CDF is very di↵erent

from the background (circle markers in A.7). Furthermore, the composite CDF must become

more similar to the background CDF as we move away from the AR centroid (triangle markers

in Figure A.7(b)). We use a two-tailed Kolmogorov–Smirnov test (KS-test) to determine the

distance at which the composite and background IVT fields become indistinguishable.

A.3 Sensitivity analysis: BG and SO methods

We calculate a sensitivity test for the Statistical overlapping of AR composite conditional

probability distribution of IVT given the distance to the AR center and the PDF of the

background IVT field (SO), and the comparison of the IVT cumulative distribution function

(CDF) of AR composite with the CDF of the background IVT field (BG) method.

For the SO method, we vary the overlapping PDF intersection value to define the AR

composite size: the background IVT PDF value �� from 0.05 to 0.5, and the conditional
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(c) (d)

Figure A.7: (a) Illustration of the statistical overlapping method. Blue line shows an sketched background
IVT PDF. The orange line is the CPD=0.16 (from panel b). (c) Illustration of two CDF at di↵erent distances
from the AR composite center. CDF are obtained sampling vertically from the CPD (panel b). Circle markers
represent a closer distance to the composite center than the triangle markers.

probability distribution (CPD) value of the AR IVT composite �+ from 0.95 to 0.5. The

values used to calculate the results shown in the main text are ��=0.16 and �+=0.84.

For the BG method, we test the sensitivity of the one-tailed Kolmogorov–Smirnov test by

varying the p-value used to estimate the size of the AR composite, from p = 0.80 to p = 0.99.

Figures A.8(a-b) and A.8(c-d) show the results of these sensitivity tests for the Northwest

(WP) and Northeast Pacific (EP) ARs at 50% life cycle. Similar results 25% and 75% of the

AR life cycle.

It is important to notice that the dependence on the free parameters for the SO and BG

methods is as expected. SO dimensions and areas should increase as �� decreases and �+

increases (so the AR becomes “indistinguishable ” from the background). This is shown in

Figure A.8(a-b). Moreover, in the BG method areas should decrease as p increases (a more

stringent condition), as Figure A.8(c-d) shows.

A.4 Lagrangian tracers method (LT) sensitivity analy-

sis

We explore the sensitivity the LT method to the stochastic component and the scaling

of the horizontal-velocity used for the velocity used for tracer advection. We calculate the
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Figure A.8: WP (a) and EP (b) sensitivity background for the one-tailed KS-test method (BG). AR area
is shown in blue (left vertical axis). AR length and width are shown in orange and green, respectively (right
vertical axis). p is the statistical significance level for the one-tailed KS-test. The results presented in the
main text of this work are generated using p = 0.95. WP (c) and EP (d) sensitivity test for the statistical
overlapping method (SO). �� and �+, are the PDF value of the IVT background and the CPD value of the
IVT composite with distance, respectively. AR area is shown in blue (left vertical axis). AR length and width
are shown in orange and green, respectively (right vertical axis). The results presented in the main text of
this work are generated using �� = 0.16 and �+ = 0.84.

trajectory of the tracers using a modification of Equation (10) from the main text of this work

dxi = (ui + ↵
p
2ui wi) dt, (A.2)

where we use the parameter ↵ to modify the magnitude of the scaling velocity, from 1/8 times
p
2ui to 4 times

p
2ui (↵ = 1 represents the value used to calculate the results shown in the

main text of this work).

Additionally, we vary the PDF threshold value used to define the AR area from p = 0.4

to p = 0.93, where p = 0.68 represents the value used to estimate the AR area for the results

of this work.

Figure A.9 shows the sensitivity test results for WP and EP AR composites at 50% life
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cycle. Similar results 25% and 75% of the AR life cycle.

Results for the LT sensitivity test are as expected. Increasing p should decrease the area

for a given value of alpha, as shown in Figure A.9. The increase in area for a given p value is

certainly plausible – in the limit of ↵ ! 1, the sample points from the AR should insteadly

spread over the whole globe after the first time step, thereby maximizing the area.

Figure A.9: Sensitivity test for the Lagrangian tracers method (LT). Colored contours show AR area, ↵ is the
multiplication factor of the scaling velocity

p
2ui from equation (A.2), and p-value is the final tracer position

PDF value at which we define the AR size. Black contours represent -2, -1, 1, and 2 standard deviations of
the AR area calculated using the LT method (from main text Figure 1). The black star represents ↵ = 1.0
and p = 0.68, which are the values used to calculate the main work results.

A.5 ARTMIP algorithms used in Chapter 1 analysis

For reference, we include table A.1 that describe the algorithms used to generate Figures

1.2 and 2.1.
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Table A.1: List of ARTMIP algorithms used to generate Figures 1.2 and 2.1

Label Algorithm name
01 Lavers
02 PNNL AR detection ALG#2 v1
03 wille IWV
04 Brands v3
05 Tempest T2CNTL
06 CASCADE IVT
07 tempest ivt250
08 tempest ivt700
09 tempest ivt500
10 CASCADE IWV
11 Payne Magnusdottir
12 wille vIVT
13 Gershunovetal2017 v1
14 PNNL AR detection ALG#1 v1
15 Reid500
16 Mundhenk v3
17 Guan Waliser v2
18 TDA ML
19 Walton v1
20 SAIL v1
21 Rutz
22 Lora v2
23 Reid250
24 PanLu
25 Viale SAmerica
26 Goldenson v1-1
27 cascade bard v1
28 ARCONNECT
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Appendix B

Supporting information for Chapter 3

B.1 Calculation of ARCI

In this section we asses the ARTMIP algorithms used to calculate the atmospheric river

confidence index (ARCI), and their classification based on their treatment of thresholds. Ad-

ditionally, we briefly review the issues in the process of ARCI calculation, such as missing and

corrupt data in the CMIP5/6 and ARTMIP tier 2 catalog.

B.1.1 Global ARTMIP ARDTs

Table B.1 shows the six global ARDTs used in this, their contributors, and references. AR

detections are part of the ARTMIP tier 2 CMIP5/6 experiment. ARTMIP Tier 2 CMIP5/6

catalogs can be found on the Climate Data Gateway1. We thank all the contributors to the

ARTMIP tier 2 experiment.

Table B.1: Global ARTMIP Tier 2 CMIP5/6 experiment ARDT algorithms used to calculate the atmospheric
river confidence index (ARCI).

ARDTs

Algorithm ID Contributor DOI/Reference

ARCONNECT v2 Shearer et al. doi.org/10.1029/2020JD033425
GuanWaliser v2 Guan and Waliser doi.org/10.1002/2015JD024257

doi.org/10.1175/JHM-D-17-0114.1

Lora v2 Lora et al. doi.org/10.1016/j.epsl.2020.116293

Mundhenk v3 Mundhenk 10.1175/JCLI-D-15-0655.1

Tempest McClenny et al. doi.org/10.5194/gmd-10-1069-2017
doi.org/10.1029/2020JD033421

TECA BARD v1.01 O’Brien et al. 10.5194/gmd-13-6131-2020

1https://doi.org/10.26024/s4p7tt9f13
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B.1.2 Classification of ARDTs

We follow O’Brien et al. (2021) classification of ARDTs based on their treatment of

thresholds:

Absolute ARDTs use any fixed thresholds (for example, in IVT) for discriminating

ARs from the background. ARCONNECT_v2 uses an absolute threshold in IVT to detect ARs.

Lora_v2 uses an IVT 250 kg m�1s�1 above time/latitude dependent threshold using 30-day

running mean and zonal average of IWV. Although this threshold varies with latitude and

time, it imposes an absolute threshold of 250 kg m�1s�1, which is why O’Brien et al. (2021)

classifies it as an absolute method.

Fixed relative ARDTs employ relative thresholds that do not vary with time. Guan_Waliser_v2

discriminates ARs from the background where the IVT is greater than the local, historical

85th IVT percentile. Mundhenk_v3 identifies ARs in which their IVT anomalies are above the

94th percentile of the historical simulation.

Relative ARDTs employ relative thresholds that vary with time. TECA_BARD_v1.01

identifies IVT above a fixed percentile of IVT, where the percentile is calculated in space.

Tempest uses an absolute threshold applied to the Laplacian (which removes the mean of the

IVT field) of the IVT field, identifying regions of high IVT relative to nearby IVT at the same

timestep.

B.1.3 CMIP5/6 and ARDTs Missing Data

The outputs for historical/future CMIP5/6 simulations were for the 1951-2099 period.

CMIP6 IPSL-CM6A-LR SSP5-8.5 simulation are only available through 2049, and there are

data corruption issues for the year 2006 in the CMIP5 CSIRO-Mk3-6-0 simulation. Corrupt

and missing data are not used in the calculation of ARCI. For most of the CMIP5/6 cases,

ARCI is the mean of the six ARDTs, except for NorESM1-M and BCC-CSM2-MR simulations,

where Guan_Waliser_v2 algorithm did not supply ARDT catalogs due to technical issues at

the time. The ARCI calculation was challenging. Di↵erent ARDTs and models had di↵erent
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time units, calendars, and di↵erent output file frequency. First, we unified time units and

calendars, identifying and marking corrupt and missing data. All ARDTs results were saved

into new netCDF files, with unified time, calendar, and output frequency. Then, we calculate

the mean across ARDTs (ARCI) and apply the Zhou et al. (2018) tracking algorithm to the

ARCI for each CMIP5/6. Additional details on the ARDTs and tier 2 experiment design is

available in ARTMIP’s website2 and Increases in Future AR Count and Size: Overview of the

ARTMIP Tier 2 CMIP5/6 Experiment (O’Brien et al., 2021)3.

B.2 AR Size Supplementary Plots

Figure B.1: Fractional change between historical and future simulations in background IVT�+1 vs fractional
change in median AR area. Each CMIP5/6 model is represented by a di↵erent marker, colors represent the
size estimation method.

2https://www.cgd.ucar.edu/projects/artmip/
3https://doi.org/10.1029/2021JD036013
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Appendix C

Additional Plots for Chapter 4
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C.1 Long-term Means

(a) (b)

(c) (d)

Figure C.1: Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated vapor trans-
port (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa

(a) (b)

(c) (d)

Figure C.2: Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated vapor trans-
port (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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(a) (b)

(c) (d)

Figure C.3: Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated vapor trans-
port (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa

(a) (b)

(c) (d)

Figure C.4: Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated vapor trans-
port (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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(a) (b)

(c) (d)

Figure C.5: Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated vapor trans-
port (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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C.2 AR-Precipitation Composite

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.6: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in November.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.7: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in December.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.8: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in January.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.9: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in February.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.10: State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in March.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.11: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in November.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.

111



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.12: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in December.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.13: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in January.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.14: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in February.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.15: State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in March.
Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean sea level
pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right column:
anomalies with respect to the long-term mean for the same variables.
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C.3 AR+No Precipitation Composite

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.16: State of the atmosphere during AR landfalling and without extreme precipitation at Loc1 in
January. Black contours variables are specified on the top-right of each plot. Left column: IWV, IVT, mean
sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa. Right
column: anomalies with respect to the long-term mean for the same variables.
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C.4 Precipitation+no AR Composite

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.17: State of the atmosphere during extreme precipitation without AR landfalling conditions at
Loc1 in December. Black contours variables are specified on the top-right of each plot. Left column: IWV,
IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ! at 650 hPa.
Right column: anomalies with respect to the long-term mean for the same variables.
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C.5 Time Correlation between AR and Extreme Pre-

cipitation Events

In this section, we present the times where each of the composites is present at Loc1 for

the entire 1900-2010 period. We notice that AR detection (blue circle markers in C.18 are in

general around the same dates that the extreme precipitation events (purple cross markers),

in some cases before or after, but around each other. It is possible that an ARDTs tuned

for tropical ARs would better detect ARs near CWM. Moreover, in future works, we could

explore di↵erent reanalysis or precipitation data that, together with a tropical ARDT, could

mean an even more significant correlation between extreme dry-season precipitation and ARs

in CWM. The following seven pages show each composite’s 1906-2010 events; we do not add

a caption for simplicity.

Figure C.18: Time of event for each composite (ar, ar pr, ar nopr, pr noar, and pr). Each subfigure shows
a year in the 1900-2010 period to be able to clearly look at the overlap of events across composites. Blue circle
markers represent ar, orange squares ar pr, green triangles ar nopr, red stars pr noar, and purple crosses pr.
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en San Juan Jalpa municipio San Felipe Del Progreso Estado de México: Evidencia de
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Viguera, B., Mart́ınez-Rodŕıguez, M., Donatti, C., Harvey, C., and Alṕızar, F. (2017). Im-
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