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Large gas bubbles can reach the surface of pools of mud
and lava where they burst, often through the formation
and expansion of circular holes. Bursting bubbles release
volatiles and generate spatter, and hence play a key role
in volcanic degassing and volcanic edifice construction.
Here, we study the ascent and rupture of bubbles using a
combination of field observations at Pâclele Mici (Romania),
laboratory experiments with mud from the Imperial Valley
(California, USA), numerical simulations and theoretical
models. Numerical simulations predict that bubbles ascend
through the mud as elliptical caps that develop a dimple at
the apex as they impinge on the free surface. We documented
the rupture of bubbles in nature and under laboratory
conditions using high-speed video. The bursting of mud
bubbles starts with the nucleation of multiple holes, which
form at a near-constant rate and in quick succession. The
quasi-circular holes rapidly grow and coalesce, and the sheet
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evolves towards a filamentous structure that finally falls back into the mud pool, sometimes
breaking up into droplets. The rate of expansion of holes in the sheet can be explained by
a generalization of the Taylor–Culick theory, which is shown to hold independent of the fluid
rheology.

1. Introduction
Gases that exsolve and expand in erupting mud or magma can form large bubbles that ascend to and
burst at the surface of mud pools, lava lakes and lava flows (figure 1). When bubbles reach the surface
of these non-Newtonian, shear-thinning fluids, they initially form hemispheric structures in which
the gas is enveloped by a thin fluid sheet of mud or lava. The subsequent dynamics of the bubbles
often lead to an interesting sequence of events (figure 1). As a gas bubble expands, rupture occurs
at multiple sites within the thinning fluid sheet. This phenomenon is surprising because bubbles in
Newtonian fluids often rupture when a single hole forms at the apex of the bubble (e.g. [1]). In bursting
mud bubbles, the holes rapidly expand, and the fluid sheet falls owing to the loss of pressure. In the
meantime, the sheet undergoes topological changes and evolves towards a web-like structure that may
fragment into droplets, some of which may be ejected (e.g. [2]). A multitude of phenomena involving
thinning liquid sheets display similar nucleation and hole growth dynamics (e.g. [3]), including planar
water jets, films of melted iron [4], mercury sheets [5], expanding tin microdroplets [6] and lava
structures [7]. Therefore, exploring the details of bubble dynamics in mud can serve as an analogue for
bubbles in magma [7], and can contribute to a better understanding of various phenomena in interface
science (e.g. [8]).

We present new observations and models of bubble ascent, expansion and rupture at natural mud
volcanoes and under laboratory conditions. Depending on water content, mud can behave as either a
fluid or a solid. Gas ascends by viscous flow at high water contents and by fracture at lower water
contents (e.g. [9,10]). In the field and laboratory conditions discussed herein, mud is always in the fluid
regime. We first describe the two sites used for field observations and sample collection. We character-
ize the rheology of the mud in which bubbles burst at each location.The ascent of bubbles through the
mud as they approach a free surface is modelled numerically by solving the Navier–Stokes equations
with a rheological model informed by our laboratory measurements. We confirm that large (as large
as several tens of centimetres in diameter) dome-shaped bubbles can be reproduced for measured
rheological properties. We investigate the nucleation and expansion of holes in the hemispherical
fluid sheet by photogrammetry in the field and in laboratory experiments with natural mud. Multiple
near-simultaneous film ruptures have nucleation and growth dynamics that share some features of
first-order phase transitions. The rate of hole expansion is well-described by a generalized version of
the Taylor–Culick model [11,12], resulting in a terminal speed which depends only on the fluid density,
surface tension and thickness of the fluid film and is independent of the mud rheology.

2. Material and methods
2.1. Field sites
Our investigations focused on two sites with mud volcanoes: Imperial Valley, California, USA, and
Pâclele Mici in the Buzău region, Romania (figure 2). Laboratory experiments were performed using
the mud collected at the Imperial Valley, while field measurements were made at Pâclele Mici.

2.1.1. Imperial Valley, California, USA

Mud was collected from the Davis–Schrimpf mud volcanoes near the Salton Sea (figure 2a) in the
Imperial Valley, California, USA. This region is a sediment-filled tectonic basin associated with the
extensional stepover (normal faulting) between the dextral (right lateral, strike-slip) San Andreas and
Imperial faults. The eruption of mud and fluids at the ∼2–3-m tall gryphons is the surface manifes-
tation of the Salton Sea Geothermal System, where metamorphic decarbonation releases a gas that
ascends upwards along fault-controlled pathways [15,16]. Temperatures within the exposed mud pools

2
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231555



in the gryphons range from 18°C to 70°C [17–20]. The solids are sourced from lacustrine and deltaic
deposits [15] and are dominated by quartz, feldspar and clay minerals (illite, montmorillonite and
kaolinite) [17,19,21]. The median grain size of the mud is 24 µm [19]. The gas-driving mud ascent and
eruption is primarily CO2 with very minor amounts of methane [22]. We collected mud from open
vents on the Davis–Schrimpf mud volcanoes and stored it in 20-l sealed buckets prior to being used for
laboratory experiments.

2.1.2. Pâclele Mici region, Romania

The Pâclele Mici mud volcano field [14] is located in the southern part of the Eastern Carpathian
Mountains (Romania) along the Berca–Berciu–Arbănași anticline (figure 2b), a region rich in hydrocar-
bon resources. The field is in the proximity of the southeastern bending zone of the Carpathians, in the
Carpathian Foredeep [23]. Gas and connate water (from Meotian deposits) rise to the surface along the
faults and mix with Pontian marl and phreatic water at shallow depths [14].

The depth from which the erupting mud originates is debated. The mud may arise from Middle
Miocene deposits of about 3-km depth [24]. However, an argument favouring a shallower depth
of mud origin is that mud volcano activity intensifies during or after heavier rains, indicating a
shallower water source [25,26]. The solids in the mud are dominated by quartz, kaolinite, illite and
calcite, identified using X-ray diffraction (electronic supplementary material, figure S4). The results
from ICP-MS analysis of the mud for metals and semimetals are provided in electronic supplemen-
tary material, table S3. While letting the mud decant, a supernatant liquid will appear. This liquid
has a significant amount of dissolved salts [27] (electronic supplementary material, table S4, with
ICP-MS analysis, electronic supplementary material, table S5, for anions and chemical parameters). The
supernatant also contains various organic components identified by GC-MS (electronic supplementary
materials, §S1.6), which are common in mud volcanoes [28].
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0 ms 5 ms 10 ms 15 ms 20 ms

45 ms40 ms35 ms30 ms25 ms

60 ms 100 ms

5 cm 5 cm 5 cm

2 cm2 cm2 cm2 cm2 cm

2 cm 2 cm 2 cm 2 cm

Deb Bergfeld/USGS Image
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Figure 1. Lava and mud bubbles with holes, in igneous and mud volcanoes, respectively. (a) Kīlauea, Hawaii 1988 (United States
Geological Survey (USGS), Public Domain Images), (b) Imperial Valley, California (Deb Bergfeld/USGS, Public Domain). (c) Formation
and rupture of a mud bubble at Pâclele Mici, Buzău, Romania. (d) The sequence of images shows a bubble bursting in a laboratory
experiment (experiment E6) using mud from the Imperial Valley, California, USA.
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Most of the mud volcanoes in Pâclele Mici display continuous gas bubbling and mud overflow, with
small rhythmical eruptions. The erupting gas has a methane concentration of over 95% [29] (electronic
supplementary material, figure S2). The grain size distribution was measured with a Horiba laser
scattering particle size analyser (electronic supplementary material, figure S3) and the characteristic
size of the solid particles in the mud is of the order of 10 µm. The high-speed video recordings of
bubbles bursting were made in the highest vent of the central crater of the Pâclele Mici region [30]. One
of our samples was collected from the periphery and the other from the centre of the ∼5-m-diameter
central crater. The samples were stored in 0.5-l glass bottles having a glass lid sealed with a rubber ring
prior to being used for rheology and surface tension measurements.

Note that distinct craters at the Pâclele Mici site have muds with different rheological properties,
as a result of their different water content. We examined only bubble formation, breakup and mud
properties in the central crater.
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Figure 2. Geological maps of the studied areas. (a) Imperial Valley, California, USA, based on USGS [13] data. (b) Berca–Beciu–
Arbănași mud volcano area (Romania), using data from Ciocârdel [14]. The mapped deposits' age and lithology are Maeotian (from
8.4 to 6 Ma, marl and sandy marl), Pontian (from 6 to 4.7 Ma, marl and sand), Dacian (from 4.7 to 4 Ma, marl and sand), Romanian
(from 4 to 2.58 Ma, mostly sand) and Quaternary (from 2.58 Ma to present, sand and gravel). On both maps, the coordinate system is
in geographic latitude/longitude. (c) Geographic location of both sites.
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2.2. Characterization of mud rheology
We characterized the rheology of mud samples from the Imperial Valley (USA) and from Pâclele Mici
(Romania). Mud is a non-Newtonian fluid, with yield stress and shear-thinning behaviour (e.g. [31]).
For the purposes of numerical modelling of bubble ascent (described in §2.6), the stress and strain-rate
measurements were fit with a Carreau–Yasuda rheological model (e.g. [32]). The effective viscosity of
the mud (μm) is given by

(2.1)μm = μ0 1 + λγ̇ 2 (n − 1)/2
.

Here, μ0 represents the zero shear-rate viscosity, and γ̇ shear rate, n is the power law index and λ is
the consistency. The rheological measurements using a Herschel–Bulkley model (power law fluid with
yield stress) are shown in electronic supplementary material, figure S1.

2.2.1. Imperial Valley mud

We measured the rheology of three mud samples with different water contents (38.5, 39.5 and 39.7
wt%, electronic supplementary material, table S1) that were used in our experiments, described later.
The water content of each mud sample was determined by weighing the sample before and after
drying in an oven at 120°C for 3 h.

Rheological properties were measured using an Anton Paar MCR 302 rheometer with a parallel
plate (PP25) geometry with a sample gap of 1 mm at 25°C. We first performed a ramped pre-shear
(0.1–100 s−1) while tracking viscosity. Following this, we measured the shear-stress–shear-rate relation-
ship under both controlled-stress (ramping up from 1 to 200 Pa) and controlled-rate (0.1–1000 s−1)
conditions.

2.2.2. Pâclele Mici mud

We measured the rheology of two mud samples with different water contents (55.8 and 49.5 wt%),
the first one (D2 in electronic supplementary material, table S1) from the centre of the central crater
and the second one (D1 in electronic supplementary material, table S1) from its periphery. Note that
the bubbles shown in figure 1 form in the central region. The dry matter content/water content was
determined by weighing the sample before and after drying in an oven at 105°C until the mass no
longer changed.

The rheological properties of Pâclele Mici mud were measured with an Anton Paar Physica MCR301
rheometer under a parallel plate (PP25/S) geometry with a sample gap of 0.5 mm. The samples were
pre-sheared by applying a steady rotation (shear rate 100 s−1 for 30 s). Subsequently, the shear stress
was recorded as a function of shear rate by stepwise increasing the shear rate from 0.01 to 100 s−1,
followed by a stepwise decrease to 0.01 s−1. At each step, the mud sample was first sheared for 10 s. The
measurements were performed three times, and each measurement was repeated twice at 15°C and
25°C.

2.3. Characterization of mud surface tension
Surface tension was measured for the Pâclele Mici samples. The mud was too viscous to measure
its surface tension using the pendant drop or Wilhelmy plate method. Instead, the surface tension
measurements were performed by using model materials which were prepared by diluting the natural
(original) mud by its dispersion (liquid) phase.

Approximately 500 ml of the original mud was centrifuged with a Hermle Z 36 HK centrifuge (5000
rpm, 20 min). Subsequently, we systematically measured surface tension as a function of water content,
starting with the pure supernatant. Surface tension was measured at 25°C with a KRÜSS DSA30
device using the pendant drop method. We measured the surface tension of the pure supernatant
and sequentially added the original mud to it by mixing until the surface tension measurement was
no longer possible. The surface tension values (72 ± 1 mN/m) were stable and close to the surface
tension of water until the water content of the mixture decreased to approximately 82 wt% (electronic
supplementary material, table S2). A decrease in the surface tension values was observed when the
water content decreased to 78 and 74 wt% (67 ± 1 and 56 ± 4 mN/m). Below this water content, the
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measurements could not be performed because the fluctuations and uncertainties became excessively
large.

From the measurements (electronic supplementary material, table S2), the resultant values for the
most concentrated samples (with 78 and 67 wt% water content) were averaged and used in numerical
simulations of bubble ascent, described in §2.6. We assumed that this value is representative of the
original undiluted mud, and we assume that the surface tension of Imperial Valley mud has a similar
value as well. The value of surface tension did not have a noticeable influence on the simulation results
because the bubbles rise in the large Eötvös-Bond number (ratio of buoyancy to surface tension forces)
limit.

2.4. Laboratory experiments with Imperial Valley mud
We carried out laboratory experiments to study the expansion and rupture of bubbles in Imperial
Valley mud (figure 1c). The goal of these experiments was not to specifically replicate bursting bubbles
observed in the field, in part because there are too many uncertainties in properties at field conditions.
Rather our goal is to probe the effect of rheology on the dynamics of bubble ascent and rupture
to better understand these processes. However, the dynamics seen in the lab at least qualitatively
resemble those in the field. We sequentially diluted the mud with water in a set of eight experiments
(identified as E1, E2, ..., E8). Aliquots of mud from each of the eight experiments were extracted for the
rheology and water content measurements. The rheology of mud is strongly dependent on the water
content, and we carried out experiments with water contents of 38.5−39.7 wt%, corresponding to a
factor of ∼ 2 variation in consistency (electronic supplementary material, table S1).

Air was injected into the base of a 14.6-cm inner diameter circular cylinder filled with mud to
a depth of 28 cm. The dynamics of bubble expansion and bursting were imaged using a Phantom
v1210 high-speed camera recording at 10 000 frames per second (fps). The resolution of the images is
approximately 0.17 mm/pixel, determined by using the inner diameter of the cylinder in the images.
The camera was positioned to look vertically downward upon bursting bubbles. The size and shape
of holes within the expanding film were measured using marker-controlled watershed segmentation
in the MATLAB Image Processing Toolbox. We extracted the dimensions of best-fitting ellipsoids to
each hole for each video frame, recognizing that the size and shapes of holes away from the apex
of the bursting bubble may be subject to some uncertainty owing to optical distortion owing to the
viewing angle. We manually counted the number of holes from the video recording. This analysis
and other measurements were made after all the experiments were performed and the combination
of hole measurements and counting, and rheological and water content measurements, could only be
successfully performed for experiments E1, E2 and E6 with water contents of 38.5, 39.5 and 39.7 wt%,
respectively.

2.5. Field observations at Pâclele Mici
Images of bubble evolution were collected using a Sony Cybershot DSC-RX10 III high-speed camera at
1000 fps. A measuring tape was placed in the vicinity of the emerging bubbles for scale. To measure
the retraction speed of holes, we used the openCV module in Python to detect ellipses in sequences
of video frames, using the maximum radii of the detected ellipses as a proxy for the hole radii. We
converted the number of pixels to centimetres based on the measuring tape that is present in each
video recording. The image resolution is approximately 0.18 mm/pixel. Such measurements contain
some level of uncertainty, which stems from several reasons: the nearly circular holes appear to be
distorted owing to the viewing angle, the distance between the camera and the hole is not identical
owing to the shape of the bubble, and the image depth and perspective cannot be accounted for owing
to the lack of additional visual cues. Twelve holes were chosen to be traced from three different video
sequences. Two basic criteria were used to select them. First, we require that there were no holes in
close proximity to each other and that holes retracted long before the mud film began to disintegrate.
The tracing of ellipses was terminated once the hole expansion started to interfere with neighbouring
holes, or when lighting and shadows in the images prevented the software from accurately detecting
an elliptical shape in an automated manner.
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2.6. Numerical models of bubble ascent
Numerical simulations were conducted employing the parameter set specific to the mud in the Pâclele
Mici mud volcano. These parameters (viscosity, flow index and consistency of mud), detailed in
electronic supplementary material, table S6, were determined from measurements of mud rheology
(§2.2).

Because mud is opaque, the geometry and ascent of bubbles prior to rupture cannot be visualized
directly. Numerical models were thus performed to study the dynamics of a gas bubble rising inside a
mud pool. We solve the incompressible Navier–Stokes equations for both the gas and mud phases and
treat the presence of the interface between the two phases using a volume-of-fluid (VOF) approach.
The mud viscosity is parameterized using the Carreau–Yasuda rheological model [32]. Although mud
is a non-Newtonian fluid with a yield stress, there are significant challenges associated with capturing
yielding in numerical models. In the case of yield stress fluid, the substance behaves like a solid up
to a specific stress, above which it can deform and flow as a fluid. The viscosity is effectively infinite
for stresses below the yield stress. We have adopted a rheological model that is suitable for use in
numerical models while retaining some similarity to rheological models that do include yield stress.
In the Carreau–Yasuda model used here, the yield stress fluid’s effectively infinite viscosity at zero
strain rate is replaced with a finite (but large) value (μ0 in equation 2.1). A complete description of the
governing equations, numerical approach and material properties is given in electronic supplementary
material, §S3. The material properties were chosen based on sample D2 from the central vent at Pâclele
Mici, which is the same location as the bubbles shown in figure 1b.

3. Results
3.1. Mud rheology
We fit the rheological measurements with the Carreau–Yasuda rheological model, a generalized power
law model that we used in the numerical simulations of bubble ascent. The Carreau–Yasuda fits to the
data are shown in figure 3. For completeness, we also show fits of a Herschel–Bulkley model with yield
stress to the data (electronic supplementary material, §S1.1).

3.2. Numerical simulations of ascending gas bubbles
The numerical simulations of gas bubble ascent show that gas bubbles take the shape of a dimpled
ellipsoidal cap (figure 4). This is consistent with the behaviour seen in Newtonian fluids at similar
values of the Reynolds and Eötvös-Bond numbers [33]. However, owing to the non-Newtonian
rheology of the mud, the bubble does not attain a steady shape, and the dimpled region continues
to expand. The interface curvature is largest near the edge of the dimple on the aft side of the bubble.
The curved interface on the bottom of the bubble is also visible in the field observations as the bubble
bursts in figure 1c, confirming the bubble shape obtained in the simulations. In the numerical models,
there is a local thickening of the film at the top of the ascending bubble (indicated with an arrow in
figure 4), similar to the dimples that occur during film drainage between coalescing drops and the
impingement of drops on surfaces. Although the dimple at the apex of the bubble cannot be measured
in experiments or field observations, there is indirect evidence for its existence. In both the field and
laboratory, when bubbles rupture, the first holes are offset from the apex of the bubble, which suggests
that the fluid film is not necessarily thinnest at the apex. This stands in contrast to the dynamics of an
expanding bubble in a Newtonian fluid, where the film is thinnest at the apex of the bubble [34]. Film
rupture is not captured in the models owing to the vast difference in the spatial scales of bubble size
relative to the film thickness at the point of rupture, which we are not able to resolve numerically.

3.3. Formation of holes
In both field observations and laboratory experiments, at a certain stage of bubble growth, multiple
holes form or ‘nucleate’. The first holes do not form at the apex of the bubble, as in similar experiments
with Newtonian fluids, but slightly offset (figure 1c), likely owing to the thickening of the fluid film at
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the apex, predicted by the numerical models and arises from the non-Newtonian behaviour of the mud
(figure 4).

Once the first hole forms in the thinning fluid sheet, others form in quick succession (multiple holes
appear within less than 1 ms). In laboratory experiments performed using the Imperial Valley mud
with different water content, where a camera was positioned directly above the bubble (refer figure 1c),
the number of holes appears to grow linearly in time (figure 5). The less-viscous muds formed fewer
holes and holes nucleated more slowly.

3.4. Expansion of holes
After their appearance, the holes quickly expand. In figure 6, we show the evolution of hole size for
selected natural bubbles (A) and for bubbles in laboratory experiments (B). The expansion rates of
holes in laboratory experiments and field observations appear to reach a constant speed of 24−93 cm/s
after a few milliseconds that we refer to as the long-time limit. We postulate that this approach towards
a constant speed is in agreement with the classical Taylor–Culick theory [11,12], according to which the
constant speed can be derived through a series of arguments based on the conservation of momentum
within the rim of the sheet [11,12]. The generalization of the Taylor–Culick theory presented in §4.3
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Figure 3. Rheological measurements for Pâclele Mici mud (a) and Salton Sea mud (b). The curves show the Carreau–Yasuda
rheological model [32], with parameters given in the legends.
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20 cm

Figure 4. Results from the numerical simulations. Temporal evolution of bubble shape as it approaches the free surface, modelled
using the Carreau–Yasuda rheological model [32]. The top and bottom rows depict three-dimensional and cross-sectional views,
respectively. In the cross-sectional view, the black curve indicates the free surface and the bubble is shown in blue. The number at
the top of each panel is the numerical time in seconds with t = 0 the instant when the bubble starts to rise with a hemispherical
morphology from a location 7R beneath the undisturbed free surface. Here, R denotes the equivalent spherical radius of the bubble
(=20 cm). The rest of the parameters are given in electronic supplementary material, table S6.
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directly looks at the momentum equation for the whole sheet but we show how one can arrive at the
same result independently of the form of the stress tensor for the fluid.

In our field observations, the speed of the hole expansion decelerates in the first milliseconds after
the hole formation but later approaches a constant asymptotic value. This can be seen most clearly for
the blue curve in figure 6a. This type of behaviour can be attributed, at least partly, to the initial shape
of the rim of the hole when it is created [35], the rheological properties of the fluid, or possibly owing
to the bubble having locally thinner walls. Our laboratory experiments also hint to a more rapid hole
expansion during the initial stages (see figure 6b), but typically this effect is too brief to be investigated
precisely, especially given that the photogrammetry is most uncertain when hole radii are small.

The rate of steady hole expansion differs considerably among holes growing on any given bubble
(figure 6) and between bubbles in Imperial Valley versus Pâclele Mici mud. Long-time hole expansion
speeds in the Imperial Valley mud are more rapid (57–93 cm/s) than those observed in the Pâclele Mici
mud (24–54 cm/s).

Owing to inertia, the bubbles are still expanding during the initial phase of hole growth. However,
we do not find evidence that the ongoing expansion of the bubble has an observable effect on the speed
of hole expansion.

4. Discussion
4.1. Bubble shape
The shapes and dynamics of gas bubbles have attracted the attention of scientists since the early 20th
century owing to their natural beauty and importance to engineered systems. The formation of large
(tens of cm) bubbles at the surfaces of mud volcanoes (figure 1) implies that large gas bubbles can
ascend through viscous mud without breaking up into smaller bubbles.

A regime map has been developed to understand and categorize the diversity of bubble shapes,
including spherical, oblate, wobbling and skirted bubbles for Newtonian fluids (e.g. [33]). This regime
map has been further expanded through extensive numerical simulations and experiments, incorporat-
ing breakup bubbles into the map [36,37]. There is no generalized equivalent regime map for non-New-
tonian fluids, though a number of studies have examined controls on bubble shape for specific classes
of non-Newtonian fluids. For example, Handzy & Belmonte [38] explored the dynamics of rising
bubbles within an aqueous solution of cetylpyridinium chloride and sodium salicylate (Maxwell-type
viscoelastic fluids). By varying the concentrations and temperature, they identified various regimes,
including those without a cusp, steady cusp and oscillatory bubbles. Xu et al. [39] devised a regime
map illustrating different dynamics of an air bubble rising in PAAm and xanthan gum in the Reynolds
number and Eötvös-Bond number space. By varying the air bubble volume, Polyres & Vidal [40]
observed a small spherical bubble, a bubble exhibiting a cusp at its rear, bubble deflection and bubble
fragmentation with a fingering instability. Although the fluids investigated in our study are non-New-
tonian, the Newtonian regime map helps us to understand the qualitative behaviour of bubbles rising
in non-Newtonian fluids. It is noted that the Carreau–Yasuda model does not replicate the cusp shape
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observed in the previous studies. Extensive numerical simulations that account for viscoelasticity are
necessary to identify all the intriguing characteristics of mud bubbles in this context.

The bubble dynamics can be described using four dimensionless groups. The Galilei number
(Ga = ρmg1/2R3/2/μm) measures the relative importance of buoyancy and viscous forces. The Eötvös-Bond
number (Bo = ρmgR2/σ) is the ratio of buoyancy and surface tension forces. The density ratio (ρg/ρm) and
the viscosity ratio (μg/μm) express the contrast in physical properties between the bubble and ambient

fluid. Here, R = (3V /4π)1/3 represents a characteristic radius of the bubble with V  the bubble volume, σ
is the interfacial tension and (ρg, μg) and (ρm, μm) denote the dynamic viscosity and density of the gas
and continuous phases, respectively.

The bubbles studied here have low (O(1)) Ga and high (O(103)) Bo, thus exhibiting symmetrical
oblate or dimpled shapes. At such a high Eötvös-Bond number (Bo), the influence of surface tension
is negligible when compared with the force of gravity. Thus, despite their larger size, gas bubbles in
mud do not disintegrate and take on an oblate or dimpled shape, as depicted in figure 4. Because the
viscosity of water is ∼ 4 × 104 times less than that of mud, the Galilei number of bubbles of similar size
in water is orders of magnitude larger, leading to bubble breakup [36].

In the numerical simulations of bubble ascent, as the bubble impinges upon the free surface, a
dimple develops at the uppermost part of the bubble and a thickened region develops in the fluid sheet
above the dimple. Similar features are observed during the impingement of bubbles on a rigid interface
and during bubble coalescence [41], during the ascent and bursting of bubbles in a Hele–Shaw cell
with shear-thinning fluids [40], and in numerical models of bubble ascent and interaction in Bingham
fluids [42]. This feature cannot be directly observed in our experiments because we cannot measure
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film thickness. Although we do not directly observe a dimple at the top of the bubble or the closely
related thickening of the film in the experiments and field observations, we note that holes do not form
preferentially at the apex of bursting bubbles, suggesting that the apex is not the thinnest part of the
fluid sheet. The development of this dimple appears to be related to rheology, perhaps associated with
the localization of strain rate away from the stagnation point directly above the bubble. In simulations
with Newtonian rheology (shown in electronic supplementary material, figure S10), we do not observe
any dimpling at the top of the bubble and the film is thinnest at the apex.

4.2. Hole formation
When a bubble impinges upon the free surface, the fluid overlying the bubble is deformed upward
into a hemispherical thin sheet that undergoes thinning owing to the expansion of the gas within the
bubble and the drainage of the fluid film. When the film becomes sufficiently thin, holes start to form
at a constant rate (figure 5). As holes expand and coalesce, the fluid film undergoes a reorganization
into filaments which then break into droplets (figure 1). Similar phenomenology has been observed
in the fragmentation of rapidly expanding liquid shells [43], lava bubbles (figure 1) and thinning
viscous sheets [44]. In the flame-driven shell expansion experiments of [43], the fluid rheology is
Newtonian, suggesting that the complex rheology of mud and magma is not a prerequisite for bubble
disintegration through the rapid formation of multiple holes.

Several mechanisms have been proposed to nucleate holes, including a Rayleigh–Taylor instability
within an accelerated fluid interface [43], the Marangoni instability [45] and the capillary (Plateau–Ray-
leigh) instability [46,47]. Of these mechanisms, the Rayleigh–Taylor instability within an accelerating
fluid film appears broadly consistent with the phenomenology of bubble bursting in mud and magma.
Instabilities in the fluid film are capable of explaining the formation of multiple holes even in a
homogeneous fluid. However, we cannot exclude the possibility that hole formation is affected by the
concentration of stresses around larger solid particles or by the deformation history of the mud.

Hole formation and evolution in fluid sheets shares some common features with the nucleation
process in first-order phase transitions. For example, holes must achieve a critical radius to start
growing and not disappear [4,45,48–50] but their value is found to be smaller than the thickness of the
film [51,52]. When a phase transition occurs, certain properties of the physical system, characterized
by an order parameter, are suddenly and qualitatively altered as an external factor, and the control
parameter is smoothly varied. In first-order phase transitions, the new phase may appear through
nucleation, a random process where a critical extent of the new (more stable) phase has to form in
order not disappear but to start growing at the expense of the old (less stable) phase. In heterogeneous
nucleation, the presence of impurities can lower the free energy barrier required for the formation of
the new phase having this critical extent.

The sequence of events during the rupture of mud bubbles shows some similarities with a phase
transition through heterogeneous nucleation. Once the bubble reaches the surface, the film of mud
surrounding the bubble thins through drainage and stretching. As the thickness of the film considered
the control parameter of the system, decreases to some critical value, the fluid film becomes unstable
and holes will emerge. Achieving the critical nucleus size may be influenced by the inhomogeneities
of the mud. Note that the later stage of bubble bursting resembles a phase separation: the mud sheet
separates into zero-density holes and thickening filaments.

This scenario can result in two outcomes depending on whether nucleation or hole expansion
dominates. If the alteration of the control parameter (the film thickness) quickly drives the system far
into the unstable region, several holes will nucleate in a short time frame provided that hole expansion
is sufficiently slow that it does not destroy the fluid film in this time frame. This is the case observed
with mud bubbles [53]. In contrast, when hole expansion dominates over nucleation, we hypothesize
that only one hole will form.

4.3. Hole expansion rate
The stability and growth of holes in fluid films has been studied since the nineteenth century, when
it was observed that hole expansion approaches a constant rate, which was found independently by
Taylor [11] and Culick [12]. Taylor and Culick corrected an earlier analysis by Dupré [54] who obtained
an expansion rate from energy arguments, but neglected viscous dissipation. In accordance with the
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Taylor–Culick theory, the terminal speed of the hole expansion depends only on the film’s density,
thickness and surface tension. Subsequently, it has been discovered that the initial phase of hole growth
may not be linear during the early stages of retraction, but is exponentially accelerating [1,55]. This
effect was documented in very viscous fluids, when the Ohnesorge number (a dimensionless ratio of
viscous forces to inertial and surface tension forces), defined as Oℎ = μm/ ρmσH ≫ 1, so that the hole
expansion is considerably slowed down (H is the thickness of the sheet).

For the present study, Oℎ is of order unity (see the following text), favouring a rapid transition
towards the terminal speed [35], which is also confirmed by the data shown in figure 6. In accordance
with estimates from experimental measurements, taking σ = 0.07 N/m, ρ = 1400 kg/m3 and uc = 0.6 m/s,
the terminal speed of the Taylor–Culick theory, we deduce from equation (4.13) that H ≈ 3 × 10−4 m.
The characteristic shear rate is thus γ̇ = uc/H ≈ 2000 s−1 for which the effective viscosity is about 0.2 Pa
s (using data from §3.1). Using the definition of Oℎ and equation (4.13), we deduce Oℎ = μuc/( 2σ) so
that we finally get Oℎ ≈ 1. The relationship describing the exponential phase includes a characteristic
time, which is proportional to the dynamic viscosity and thickness, while inversely proportional to
the surface tension of the fluid [35]. The expansion speed asymptotically approaches a constant value
regardless of the viscosity of the fluid.

The measurements of hole expansion speed (figure 6) show that for both laboratory and field
measurements, the expansion rate appears to quickly reach a steady value. Here, we will show that
a constant retraction speed is reached in the limit when the hole has expanded sufficiently, a speed
that is independent of the fluid rheology. To show this, we assume that we have a large axisymmetric
liquid sheet that retracts under the influence of capillary forces acting at the edge of its rim, illustra-
ted schematically in figure 7a. Gravitational effects are neglected because we are interested in the
intermediate stages of hole formation; at later stages, the thin film structure collapses and we can no
longer exploit any symmetries in the system. This means that gravity manifests itself at much longer
times compared with the time to reach the terminal speed. Under these assumptions, the flow is
governed by the Cauchy momentum equation, namely

(4.1)ρm DuDt = ∇ ⋅ T,

where u is the fluid’s velocity, T is the (Cauchy) stress tensor of the fluid, and Du/Dt is the material
time derivative of u. The stress tensor is also typically expressed as T = − pI + τ, where p is the
pressure, I is the identity tensor so that the pressure acts isotropically within the fluid and τ is the
deviatoric stress tensor that captures viscous (including potentially non-Newtonian) effects.

Exploiting the assumption that the flow is axisymmetric, we may carry out an integral over a
representative volume V(t), so that

(4.2)ρm V(t)rDuDt dzdrdθ = V(t)r∇ ⋅ T dzdrdθ,

as expressed in the usual cylindrical coordinate system (r, θ, z). This volume represents a narrow
slice of the sheet, with radial extent r0(t) ≤ r ≤ R, spanning a small azimuthal angle δθ so that
−δθ/2 + θ0 ≤ θ ≤ θ0 + δθ/2 and θ0 arbitrary (see figure 7a). Here, r0(t) is the radial tip position of the
sheet and R is some generally large (or even infinite) distance, where the sheet terminates, so that it is
not impacted by the dynamics in the vicinity of the hole. On the left-hand side of equation (4.2) , we
apply the Reynolds transport theorem which allows us to move the time derivative outside the integral
sign, whereas on the right-hand side, we apply the Gauss–Ostrogradskij divergence theorem to reduce
it to a surface integral over the free surface of the slice, denoted by S(t), so that

(4.3)dP
dt = S(t)T ⋅ n̂ds,

where the net (radial) contributions coming from the surface integrals on either side of the narrow slice

are negligible owing to the smallness of δθ. Here, P = ρm V rudzdrdθ ≈ ρmδθ Srudzdr denotes the

total momentum vector within the narrow slice of the sheet and n̂ is the outward unit normal to the
free surface of the film, S(t), see figure 7a. Similar principles have been employed by Bohr and Scheichl
[56] for the transport of energy in a moving fluid. On the free surface, S(t), surface tension forces
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balance viscous stresses, so that the normal stress boundary condition reads T ⋅ n̂ = − σκn̂, where σ is
the surface tension and κ is the curvature of the boundary S(t) so that equation (4.3) becomes

(4.4) d
 dtP t = − S t σκn̂ds .

We see that viscous terms do not appear explicitly in equation (4.4), since the source of momentum
is the unbalanced surface tension force at the rim of the retracting sheet, as argued in related works
[11,12,35,57]. However, we emphasize that viscosity is not neglected, and viscous dissipation does
occur within the retracting sheet [12,57]. By exploiting the top-bottom symmetry of the sheet (figure

7a), we may describe its axisymmetric profile above the xy-plane by z = ℎ(r, t) so that ds = δθr 1 + ℎr2 dr,
and

(4.5)κ = ∇ ⋅ n̂ = − ℎrr
1 + ℎr2 3/2 + ℎrr 1 + ℎr2 1/2 and n̂ = −ℎrr̂ + k̂

1 + ℎr2 ,

where ℎr = ∂ℎ/∂r and ℎrr = ∂2ℎ/∂r2. Hence, equation (4.4) simplifies

(4.6) d
 dtP t = − 2δθ σr̂ r0

R rℎrℎrr
1 + ℎr2 3/2 + ℎr2

1 + ℎr2 1/2 dr,
where, at leading-order in δθ, r̂  may be taken outside the integral sign. In equation (4.6), the factor

of two accounts for both the top and bottom parts of the sheet, where, owing to symmetry, the k̂
(z-directed) component of P t  vanishes. By applying integration by parts, equation (4.6) simplifies to

(4.7)

d
dt P (t) = 2δθ σr̂ r0

R r ∂∂r 1
(1 + ℎr2)1/2 −

ℎr2
(1 + ℎr2)1/2 dr

= 2δθ σr̂ R − ro
R

1 + ℎr2 dr
noting that, in deducing equation (4.7), we assumed that ℎr → ∞ as x→ r0 and ℎr → 0 as r→ R. The
arguments leading to equation (4.7) justify rigorously why viscous effects do not influence the terminal

z

O

n̂

n̂

ˆ

ˆ

ˆ r

r̂

R

r0

ˆucr ˆucr

d

B

A

R –

C

H

Huc = δr / δt

δr

θ

θ

δθ
–

(c)(b)

(a)

Figure 7. (a) Rendering of an axisymmetric sheet of thickness H  retracting with speed uc, showing its cross section (blue shaded

region), which is described by the profile z = ℎ(r, t) above the axis of symmetry for r0 ≤ r ≤ R; n̂ is the outward unit normal
to the free surface of the sheet. Inset: schematic illustration of the volume over which the integration is carried out. (b) Partition of
the cross-section for estimating the length of the profile ABC: AB is a circular arc of approximate length (πd − H)/2; BC is a straight
segment of approximate length R − r0 − d (c) Within time δt, the tip of the rim moves by a distance δr = ucδt; the mass of the
fluid accumulated in the rim during that time is δm ≈ 2πr0ρH δr.

13
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231555



velocity, unlike in the aforementioned works of Taylor and Culick, whose arguments relied on their
sharp physical intuition about the system [11,12].

The integral term in equation (4.7) corresponds to the length of the profile of the sheet, which may
be estimated by adding the length of the (assumed) circular arc for the profile near the rim and the
flattened part of the sheet, namely

(4.8)r0
R

1 + ℎr2 dr ≈ π
2 − 1 d(t) − H2 + R − r0(t),

where H is the thickness of the sheet and d(t) is the (growing) diameter of the rim, see figure 7b. Hence,
equation (4.7) may be estimated as follows

(4.9) d
 dtP t ≈ 2δθ r0(t)σr̂ 1 + H

2r0(t) − π
2 − 1

d(t)r0(t) .

For r0 ≫ H and r0 ≫ d, the last two terms in equation (4.9) may be neglected so that as the hole grows
sufficiently large

(4.10) d
 dtP t → 2δθ r0(t)σr̂ .

In experiments, we observe that r0 ≫ H within milliseconds after the nucleation of the hole. While
it is true that the rim diameter d grows with the hole radius r0, a simple scaling argument reveals
that d ∼ r0H, so that r0 ≫ d also applies after some initial transients. Hence, we conclude that the
retraction dynamics may be adequately described by assuming a planar two-dimensional sheet within
a short time of the nucleation of the hole in the low-viscosity (low-Oℎ) limit considered here. Thus,
independently of the rheology of the fluid, and hence independently of the form of the stress tensorT, the evolution of the sheet’s momentum is governed by equation (4.7) with the total momentum
directed in the r direction. As the hole expands, the rate of change of momentum is governed by
equation (4.10), which is equivalent to the planar limit, in the sense that the rate of change of total
momentum per unit length approaches 2σ, refer e.g. the work of Savva & Bush [35] on two-dimen-
sional Newtonian viscous sheets. It should be emphasized that the development of this theory does
not apply to the limit of high-yield stress fluids, owing to the discontinuous manner in which the fluid
behaves. For example, for viscoplastic liquid sheets with a sufficiently large Oℎ, the plastic nature of
the fluid can prevent the retraction of the sheet for high-yield stresses [58]. The yield stress of the muds
considered here is clearly low enough that hole expansion is unimpeded.

The rest of the derivation of uc follows the arguments of [11] and [12], by assuming that we have a
rim of mass m(t) that collects fluid in an otherwise quiescent film so that

(4.11) d
 dtP t = uc  dm dt r̂ = 2σδθ r0r̂ .

The mass accumulated in the rim during time δt, δm, is given by δm = δθ ρmr0Hδr, where δr = ucδt is
the distance travelled by the tip of the rim during that time. Hence, the rate of change of the rim mass
satisfies

(4.12) dm
 dt ≈ δmδt = δθ r0ρmHuc .

By substituting equation (4.12) in equation (4.11), we may solve for uc so that

(4.13)uc = 2σρmH .

Hence, consistent with [11,12], the terminal hole expansion rate depends only on the surface tension
and the density of the film and is independent of the rheology of the mud. For the measured values
of ρm and σ, we used equation (4.13) to predict the speed of hole expansion as a function of the
(unknown) film thickness H (electronic supplementary material, figure S11). We find uc = 0.29 m/s,
comparable to the measured speeds, for H = 1 mm.

The constant speed of retraction is a consequence of the balance of inertial and surface tension
forces. It is important to note, however, that just as in Newtonian fluids, equation (4.11) accounts
for viscous dissipation, but in a manner that is not related explicitly to viscosity [57]. Viscous effects
merely affect how the momentum is distributed through the sheet and the time required to reach the
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terminal speed, uc, but not the value of uc itself [35]. In other words, viscous effects dictate the extent
of the region over which energy dissipation occurs. At higher viscosity, the liquid is in motion further
away from the retracting tip and viscous dissipation is observed throughout. Hence, no visible rim
forms as in the experiments by Debrégeas et al. [55], and, as a result, a longer time is required to reachuc. For lower viscosities, the liquid is collected within a retracting rim, which assumes its terminal
speed within a short time [12,35]. In such cases, viscous dissipation primarily occurs in the neck region,
where a rim of nearly constant speed meets the quiescent part of the sheet [59]. In fact, it has been
shown that in the long-time limit, exactly one-half of the surface energy that is introduced into the
system owing to the destruction of the sheet is converted into kinetic energy, and the other half is
dissipated [12,57,59]. Recently, departures from the classical hole expansion rate (equation (4.13)) have
also been observed. For example, Deka and Pearson reported a slow-down of the expansion rate in
numerical simulations with finite sheets in the large Oℎ limit [60], whereas Sanjay et al. [59] found that
if the ambient fluid is sufficiently viscous, dissipation in the ambient dominates and the hole expansion
occurs at a slower constant rate that depends on the viscosity of the ambient fluid [59]. Numerical
simulations with viscoplastic sheets, but with a sufficiently low yield stress that retraction occurs, also
anticipated the eventual transition to uc, which was nevertheless not fully observed in practice owing to
the small size of the computational domain considered [58].

5. Conclusions
We investigated the ascent and rupture of gas bubbles in natural mud volcanoes and under laboratory
conditions using a combination of field observations, laboratory experiments, numerical simulations,
and theoretical models. The phenomenology of bubble bursting in mud is similar to that seen in some
lava bubbles (figure 1), highlighting the potential of mud volcanoes to serve as analogues to their
more hazardous volcanic counterparts. Numerical simulations of bubble ascent indicate that large
(decimetre-sized) gas bubbles ascend as ellipsoidal caps (with a semi-crescent cross-section), and are
not expected to break up into cascades of smaller bubbles owing to the high Eötvös-Bond and low
Galilei numbers.

The numerical simulations reveal a dimple at the apex of the bubble and a thickening of the fluid
film above the dimple, a consequence of the non-Newtonian rheology of the fluid. This numerical
finding is supported indirectly. The first holes are assumed to appear at the thinnest part of the fluid
film, and indeed, our experiments and observations showed that the sites of the earliest nucleation
formed in a ring-like zone around the apex (figure 1).

The pattern formation in the fluid sheet starts with the rapid formation of multiple holes. Hole
nucleation occurs within the span of a few milliseconds and has a constant rate. At the same time, the
holes expand. The speed of hole expansion approaches a constant value that differs among holes even
on the same bubble, likely owing to variations in the thickness of the fluid sheet. The fact that multiple
holes can temporally coexist is explained by the relatively fast nucleation and slow growth rates. We
pointed out the similarities of this sequence of events to first-order phase transitions.

By considering the total momentum of an axisymmetric sheet as it moves in gas so that the
dynamics of the ambient fluid may be neglected, our theoretical model for the hole expansion rate
generalizes the results of Taylor and Culick for fluid sheets of arbitrary rheology, including the case
of bubbles in aqueous solutions if the bubble is large enough and surface tension gradients are not
dynamically significant. We show that the Taylor–Culick theory applies, and thus that the terminal
speed of the expansion rate of the hole depends only on the thickness of the fluid sheet, its mass
density and surface tension. This rate was found to be independent of fluid viscosity, owing to the
internal nature of the associated viscous stresses [35,59]. That viscosity does not influence the speed
of retraction can intuitively be explained as follows. Energy dissipation by viscosity is related to strain
rate. In the investigated phenomenon, the expansion of the holes does not influence the distant parts
of the fluid film, which, over the time scale of the fast hole expansion, can be considered to be steady.
As highlighted in related studies, the dissipation of energy occurs in the vicinity of the neck region
where the rim meets the rest of the fluid film, and viscosity controls the length scale over which this
dissipation occurs. Ultimately, viscosity only impacts the time it takes to reach this speed and not its
value. The variability of the terminal speeds observed in experiments is attributed, at least partly, to
changes in the local thickness of the film, the value and dynamics of which we were not able to fully
resolve in numerical simulations, observations, or experiments owing to the multi-scale nature of the
phenomenon and the opacity of mud.
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