
UC Davis
UC Davis Previously Published Works

Title
Efficiently sampling conformations and pathways using the concurrent adaptive
sampling (CAS) algorithm

Permalink
https://escholarship.org/uc/item/3bm7h3pw

Journal
The Journal of Chemical Physics, 147(7)

ISSN
0021-9606

Authors
Ahn, Surl-Hee
Grate, Jay W
Darve, Eric F

Publication Date
2017-08-21

DOI
10.1063/1.4999097

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bm7h3pw
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Efficiently sampling conformations and pathways using the concurrent adaptive
sampling (CAS) algorithm
Surl-Hee Ahn, , Jay W. Grate, and , and Eric F. Darve

Citation: The Journal of Chemical Physics 147, 074115 (2017); doi: 10.1063/1.4999097
View online: http://dx.doi.org/10.1063/1.4999097
View Table of Contents: http://aip.scitation.org/toc/jcp/147/7
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Ahn%2C+Surl-Hee
http://aip.scitation.org/author/Grate%2C+Jay+W
http://aip.scitation.org/author/Darve%2C+Eric+F
/loi/jcp
http://dx.doi.org/10.1063/1.4999097
http://aip.scitation.org/toc/jcp/147/7
http://aip.scitation.org/publisher/

THE JOURNAL OF CHEMICAL PHYSICS 147, 074115 (2017)

Efficiently sampling conformations and pathways using the concurrent
adaptive sampling (CAS) algorithm

Surl-Hee Ahn,1,a) Jay W. Grate,2,b) and Eric F. Darve3,c)
1Chemistry Department, Stanford University, Stanford, California 94305, USA
2Pacific Northwest National Laboratory, Richland, Washington 99352, USA
3Mechanical Engineering Department, Stanford University, Stanford, California 94305, USA

(Received 8 May 2017; accepted 4 August 2017; published online 21 August 2017)

Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of
bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties’
efficiently because we need to run microseconds or longer simulations using femtosecond time steps.
To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful
enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However,
the WE method requires an appropriate partitioning of phase space into discrete macrostates, which
can be problematic when we have a high-dimensional collective space or when little is known a priori
about the molecular system. Hence, we developed a new WE-based method, called the “Concurrent
Adaptive Sampling (CAS) algorithm,” to tackle these issues. The CAS algorithm is not constrained to
use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead,
it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the
high-dimensional space. This is especially useful for systems in which we do not know what the right
reaction coordinates are, in which case we can use many collective variables to sample conformations
and pathways. In addition, a clustering technique based on the committor function is used to accelerate
sampling the slowest process in the molecular system. In this paper, we introduce the new method
and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a
triazine trimer. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4999097]

I. INTRODUCTION

Computational modeling of bio-molecules is an essential
tool that gives us insight into mechanisms of bio-molecules
that experiments fail to capture. We can easily simulate var-
ious bio-molecules of manageable size up to microseconds,
which enables us to see realistic pathways and intermediates.
But it is still difficult to uncover most of the pathways and
intermediates using all-atom simulations due to the temporal
gap between simulations that require a time step in femtosec-
onds and biological systems with time scales of milliseconds.
In addition, the simulated bio-molecules often stay trapped in
metastable states, and no significant conformational change
can be observed for a long time.

Consequently, several methods have been developed for
all-atom molecular dynamics (MD) simulations to overcome
these difficulties. One class of methods applies a biasing poten-
tial to force the system to move away from the metastable
state, namely, umbrella sampling, metadynamics, hyperdy-
namics, accelerated MD (aMD),1–8 and adaptive biasing force
(ABF).9–15 Umbrella sampling can sample specific regions of
phase space by adding a restraining potential to the system’s
potential to keep the system close to those specific regions.1

Metadynamics, on the other hand, can quickly compute the free

a)Electronic mail: sahn1@stanford.edu
b)Electronic mail: jwgrate@pnnl.gov
c)Electronic mail: darve@stanford.edu

energy landscape by filling the visited places with “Gaussians”
or small repulsive Gaussian potentials, which forces the system
to escape from local minima.2–5 Similarly, hyperdynamics and
aMD can also quickly reconstruct the free energy landscape
by raising the energy in low energy, metastable regions.6–8

Finally, ABF calculates the first derivative of the free energy
landscape, which is used to bias the simulation to overcome
large energy barriers and improve sampling, and ensures that
the system stays close to statistical equilibrium.14,15

However, these methods are only able to have a few collec-
tive variables, which is limiting in cases where many collective
variables are required to characterize a bio-molecule’s confor-
mation. It is very challenging to find the few essential collective
variables or reaction coordinates that can characterize the bio-
molecule’s conformation. In practice, it is desirable to use
many of them in the hope that the true reaction coordinates
are a function of the ones we selected. Additionally, metady-
namics requires the collective variables to be differentiable,
which is limiting in cases where we have non-differentiable,
discrete collective variables, such as the number of hydrogen
bonds.

Another class of methods changes the temperature of
the system to sample states that are difficult to reach
at the original temperature, namely, replica exchange and
temperature-accelerated dynamics (TAD).16,17 Specifically,
replica exchange enhances sampling by exchanging replicas of
the same system at different temperatures periodically while
maintaining an equilibrium canonical ensemble distribution

0021-9606/2017/147(7)/074115/14/$30.00 147, 074115-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4999097
http://dx.doi.org/10.1063/1.4999097
http://dx.doi.org/10.1063/1.4999097
mailto:sahn1@stanford.edu
mailto:jwgrate@pnnl.gov
mailto:darve@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4999097&domain=pdf&date_stamp=2017-08-21

074115-2 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

for each temperature.16 Even though replica exchange main-
tains detailed balance for an extended ensemble of canonical
states, it alters the actual kinetics of the system by exchanging
states from different temperatures. Hence, we are unable to
obtain real kinetic properties from replica exchange. TAD, on
the other hand, raises the temperature and allows only those
events that should occur at the original temperature to preserve
correct dynamics.17 However, the simulated system is required
to have minor anharmonic effects.

An alternate method that can be used to overcome the
time scale barrier is building Markov state models (MSMs).
In MSMs, the conformational space is divided into kinetically
relevant macrostates and a number of trajectories are run to
compute transition probabilities, overall reaction rates, and
other kinetic and thermodynamic properties.18–22 This way,
transition regions and long time scale events can be identified
efficiently. In building an MSM, the lag time τ, or the time dis-
cretization of the MSM, is chosen to be long enough, and the
macrostates are chosen to be small enough so that transitions
are Markovian.19,21 However, controlling the Markovian error
may be difficult or even practically impossible. One option
is to use smaller macrostates such that the relaxation times
inside a macrostate are very small, but this leads to a sig-
nificant increase in computational cost. Another option is to
increase the lag time τ. In practice though, it is very difficult
to determine when the MSM is converging with respect to τ
(see the work of Suárez23 and the supplementary material).
The rate is strictly determined by the eigenvalues of the
infinitesimal generator of the stochastic system, and τ effec-
tively represents a discrete approximation of this generator. As
τ increases, the mean first passage time tends to increase, even-
tually exhibiting a linear dependency with τ. This is because
as τ increases, non-Markovian effects decrease but errors due
to the time discretization increase. In some cases, convergence
can be very difficult to detect and may in effect never happen
(see the supplementary material in Ref. 23).

To overcome the limitations that result from the Marko-
vian assumption, we can use the weighted ensemble (WE)
method instead.23–33 Similar to MSMs, the WE method divides
the conformational space into macrostates and runs a fixed
number of short trajectories or “walkers” with simulation time
τ within each macrostate. The walkers carry probabilities or
“weights” that sum up to 1, and these weights eventually con-
verge to steady-state weights. Unlike MSMs, however, there
is no need to adjust the simulation time τ and the macrostate
decomposition to control the accuracy. This is because the
Markovian assumption is not required and therefore, there is
no inherent statistical bias upon convergence. In other words,
the WE method yields unbiased and exact results in the absence
of statistical errors (see the work of Zuckerman25,27 and Chap.
7 by Darve and Ryu in the work of Schlick34). But because the
Markovian assumption is not used, the WE method requires
global convergence of the macrostate weights, which leads to
a larger computational cost than MSMs (Chap. 7 in the work of
Schlick34). Since MSMs have uncontrollable errors unless the
macrostates are chosen carefully, the WE method is preferable
in many cases as it is more robust.

We now explain the WE method in more detail. To start,
the collective variables to keep track of (e.g., dihedral angles

and bond distances) need to be chosen beforehand. Their val-
ues determine which macrostate each walker belongs to at
each step. The macrostates form a partitioning of the collec-
tive variable space. Then the walkers are run for τ amount
of time and are binned to macrostates according to their new
collective variables’ values. Within each macrostate, a fixed
target number of walkers are maintained by merging or split-
ting walkers in a statistically correct way. This process is
called “resampling.” We have resampling because we want
to maintain a constant stream of walkers going from one
macrostate to another irrespective of the energy barrier height.
If the walkers are not resampled, then the walkers would be
depleted in macrostates near an energy barrier or overcrowded
in macrostates at low energy and would not be able to overcome
energy barriers and sample rare pathways and intermediates.
Finally, these same steps are repeated until convergence.

Unfortunately, the WE method loses efficiency if the
macrostates are not correctly defined. In this case, sampling
relevant regions for computing reaction rates takes longer and
is less accurate.35 For instance, if our partitioning is fine, then
we end up having too many walkers to simulate. Conversely,
if our partitioning is coarse, then the walkers are unable to
easily go over the energy barriers by having to go over energy
barriers within the macrostate first, and trajectories of differ-
ent walkers remain correlated for a long time. As a result, we
end up with larger standard deviations when the macrostates
are not partitioned well. Furthermore, the WE method is not
ideally suited to sample high-dimensional space because of
the intractable number of macrostates required to partition the
space.

Considering these shortcomings of the WE method, we
developed a WE-based method called the “Concurrent Adap-
tive Sampling (CAS) algorithm.”32 As done in the WE method,
the CAS algorithm runs a number of short simulations or
“walkers” for each macrostate and maintains a fixed target
number of walkers for each macrostates so that macrostates
are constantly sampled irrespective of their energy barriers.
Unlike the original implementations of the WE method, how-
ever, the CAS algorithm constructs macrostates based on (an
approximation of) the committor function, which is the prob-
ability to reach the product before the reactant from a given
point. In other words, each macrostate approximates an iso-
committor surface. This guarantees that the walkers can make
progress in sampling the reactant-to-product pathways of inter-
est, while keeping the computational cost under check. This
idea of building macrostates that approximate the committor
function has been used previously in other methods, includ-
ing the string method using collective variables and optimal
milestoning.36,37

Using the exact committor function would lead to an opti-
mal partitioning of phase space and the best possible WE
sampling. However, this problem in itself is as complicated as
or more than computing rates and pathways of interest, so we
have to use an approximation of the committor function. This
can be done in different ways, and we explore two options. The
first option is to compute the committor function adaptively as
the simulation is on-going. We start from an initial guess and
refine it using simulation data as it is produced. The second
option is to run an initial brute force simulation for a short

074115-3 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

period and approximate the committor function based on this
partial sampling. An important observation is that obtaining an
accurate estimation of the committor function is not required.
Improvements in sampling and convergence can be observed
even with a simple estimate of the committor function. In prac-
tice, we have observed that even short brute force simulations
are sufficient to get a good partitioning and fast convergence
of the CAS algorithm.

Besides knowing the collective variables, the reactant, and
the product beforehand, we only need to know little a priori
knowledge about the system of interest to use the CAS algo-
rithm. That is, the CAS algorithm can be used for systems in
which the reaction coordinates are largely unknown. This is
because a macrostate in the CAS algorithm can be any union
of n-dimensional Voronoi cells, where n denotes the number of
collective variables. A Voronoi cell is a region that is defined
by its center and encompasses points that are closest to the
center than any other center. The construction of Voronoi cells
is detailed in Sec. II B. By using n-dimensional Voronoi cells,
we are able to feasibly sample high-dimensional spaces. If
we let the CAS algorithm adaptively construct Voronoi cells
as the simulation proceeds, then we can sample conforma-
tions and pathways without having to pre-define an intractable
number of Voronoi cells in the high-dimensional space. The
coupling of the CAS algorithm with any underlying MD sim-
ulation “engine” is also relatively straightforward, as done in
WESTPA and Workqueue.29,38

As previously mentioned, the committor function can
either be computed during the simulation or before the simu-
lation in a pre-processing step. This depends on whether we
let the CAS algorithm adaptively construct macrostates as the
simulation proceeds or use static macrostates throughout the
simulation. If we use static macrostates, then we construct
them to be isocommittor surfaces based on the (approximate)
committor function. If we use adaptive macrostates, then we
first let the Voronoi cells naturally follow the evolving proba-
bility distribution, which increases the number of constructed
Voronoi cells and computational cost. To mitigate this prob-
lem, we propose an algorithm to down sample these Voronoi
cells in an optimal way, based on the sampled data up to this
point. This is done by computing the transition matrix using
the existing Voronoi cells and approximating the committor
function to be the second left eigenvector of the transition
matrix. This is equivalent to approximating the exact com-
mittor function using piecewise constant basis functions (for
which the functions are constant over each Voronoi cells).
Then we define new macrostates to be a union of Voronoi
cells that have the same (similar) committor function values
so that each macrostate approximates an isocommittor surface.
Within each macrostate, the walkers are resampled so that a
fixed target number of walkers are maintained. Then we let the
Voronoi cells adaptively evolve again, and this process repeats
until convergence.

This way, we control the computational cost by discard-
ing walkers that are orthogonal to the slowest pathways and
keeping walkers that are progressing along the pathways. This
guarantees an efficient sampling and progression along the
pathways. Note that our clustering method aims to cluster
Voronoi cells based on their dynamic similarity rather than

geometric or energetic similarity. Geometric clustering meth-
ods and Perron Cluster Cluster Analysis (PCCA) are some-
times used in order to build an MSM and to identify metastable
states of the system, respectively.18 By clustering dynamically
similar Voronoi cells via the committor function, we end up
sampling dynamically important pathways and intermediates
more efficiently.

This idea of using adaptive macrostates has been used
previously in other methods.24,25,39–41 In particular, the WE-
based string method adaptively constructs macrostates that
form the principal reaction pathway and achieves lower error
and true mean first passage times more quickly than conven-
tional methods.40 However, the method is poorly suited for
finding multiple reactions and pathways and does not work
when the reaction pathway is not well-defined. This is a com-
mon problem unless the system’s temperature is low. The
minimum free energy pathway can be easily defined at zero
temperature, but at higher temperatures, its definition is more
ambiguous.

The WExplore method, on the other hand, adaptively
constructs macrostates in a hierarchical fashion and effec-
tively maps out the free energy landscape with pathways and
intermediates that are not known a priori.41,42 To control the
computational cost, the WExplore method sets a strict limit on
the total number of macrostates by pre-defining the following
parameters: number of hierarchy levels, macrostate sizes for
each level, and maximum number of branching macrostates for
each level. Although the WExplore method is able to dynami-
cally define regions and cover the entire landscape efficiently,
the critical distances associated with each level needs to be
defined carefully, and since it does not use the committor func-
tion, the method is heuristic.41 In this sense, the CAS algorithm
is easier and more appropriate, since we only need to define the
reactant and the product and calculate the committor function
to have an optimal partitioning (based on the data collected so
far).

II. METHODS
A. Resampling

As done in the WE method, the walkers are resampled in
the CAS algorithm after the walkers are run for τ amount
of time and are binned to their corresponding macrostates
according to their new collective variables’ values. That is,
each walker i gets assigned to the mean weight W =

∑
i wi/nw

in its respective macrostate, and target number of walkers per
macrostate or nw walkers are maintained in each macrostate.
The resampling algorithm is illustrated in Fig. 1 and was first
suggested by Darve and Izaguirre (Chap. 7 in the work of
Schlick34). In the original WE method, walkers are assigned
to weights between W /2 and 2W but not exactly equal to W.24

However, it is more optimal when walkers are assigned to the
same weights since variance and statistical errors are mini-
mized (Chap. 7 in the work of Schlick34). See also Ref. 25 for
a description of resampling in general terms. To assign a mean
weight W to each walker, we first start out with a list of walk-
ers to process for each macrostate. Then we sort the walkers
in descending order based on their weights. The sorting of the
weights helps reduce data correlation, since when a walker is

074115-4 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 1. Illustration of the resampling algorithm. One
walker in bin 1 is killed and its probability or weight is
carried by the surviving walkers. A new walker is created
in bin 2 by duplicating an existing walker and dividing its
weight. After resampling, each macrostate ends up with
the same number of walkers and within each macrostate,
the walkers end up having equal mean weight.

split, the newly created walkers become correlated for some
time (Chap. 7 in the work of Schlick34). Then we encounter
the following two cases for the walkers:

1. wi ≥ W : In this case, the walker is split into an integer
number of walkers of weight W, and the remainder is
reinserted into the list of walkers to process.

2. wi < W : In this case, the walker is merged with other
walkers in a statistically exact way to create a walker
with a weight ≥W . For instance, if we have a walker
with a weight w1 and another walker with a weight w2,
we randomly select one of the walkers with probabilities
w1/(w1 + w2) and w2/(w1 + w2), respectively, and assign
the chosen walker with a weight w1 + w2 and so on.

From this procedure, we can clearly see that each walker
will end up with a mean weight W, and any number of walkers
can be combined or split in this fashion without violating any
rules of probability. As mentioned previously, resampling is a
crucial aspect of the WE method and the CAS algorithm since
resampling allows rare regions to be sampled efficiently and
continuously throughout the simulation.

B. Defining macrostates

As mentioned in Sec. I, the macrostates form a partitioning
of the collective variable space and are essentially unions of
n-dimensional Voronoi cells, where n equals the number of
collective variables. We can either adaptively construct or pre-
define and fix the macrostates throughout the simulation. In the
case of pre-defining and fixing macrostates, Sec. II C discusses
how to calculate the committor function, which is used to form
the macrostates into isocommittor surfaces.

In the case of adaptively constructing macrostates, we
need to use n-dimensional spheres of radius r that are used
to define the newly created Voronoi cells’ centers. Before the
Voronoi cells are constructed, all of the walkers have run for τ
amount of time and are ready to be binned to their correspond-
ing Voronoi cells. The basic outline of how the Voronoi cells
are created during a single simulation step is as follows.

1. The very first walker in the list of walkers to bin is binned
to its own center. That is, a new center is created and is
equal to the walker’s collective variables’ values.

2. For the subsequent walkers, they are tested to see if the
distance between the walker’s collective variables’ values
and any of the existing centers is less than or equal to r.
If not, then a new center is created that is equal to the
walker’s collective variables’ values.

3. If there is more than one center that is r or less away from
the walker, then the walker is binned to the center that is
closest to the walker.

4. After all of the walkers are binned to a center, we go
through all of the walkers once more to bin them to their
true closest centers, since the centers have been created
for one walker at a time.

5. The centers that have no walkers are deleted, and the
remaining centers become the Voronoi centers.

This adaptive construction of Voronoi cells allows us to
sample unknown systems without having to partition the col-
lective variable space beforehand, which is especially suitable
for high-dimensional systems. Note that the radius r is cho-
sen such that the walkers have relatively fast relaxation times
within the resulting Voronoi cells. Therefore, r should not be
too big so that there are significant energy barriers within the
resulting Voronoi cells. As a rule of thumb, small Voronoi cells
are suitable for systems with high energy barriers at transition
regions, whereas large Voronoi cells are suitable for diffusive
systems with low energy barriers.

Since the number of Voronoi cells and associated walkers
can quickly increase after the simulation has proceeded for
a number of steps, we need a way to control the number of
walkers to make the CAS algorithm computationally tractable.
The committor function is used to do that and is explained in
Sec. II C.

C. Spectral clustering

As mentioned in Sec. II B, the number of Voronoi cells
and associated walkers may quickly increase as the collective
variable space is explored. In this case, the computational cost
of running all of the walkers will be high, and sampling the
slowest process of the system will take much longer. There-
fore, we need to calculate the committor function to resolve
this issue. The committor function describes the probability
to reach the product before reaching the reactant first. If the
committor function of a macrostate is 0, then the macrostate
is a reactant, and if the committor function of a macrostate is
1, then the macrostate is a product. In other words, we can
characterize how close the macrostate is in terms of reach-
ing the product and exactly where the macrostate is in the
reactant-to-product pathways.

In order to calculate the committor function, we first have
to compute the transition matrix of the existing Voronoi cells
for a number of simulation steps. This is because we use the
eigenvectors of the transition matrix that are shown to be
equivalent to computing an approximation of the committor

074115-5 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

function, where the approximation is constant over each
Voronoi cell, i.e., a piecewise constant approximation.43

Specifically, we approximate the committor functionψ(x) to be

ψ(x) ≈ ρ2(x)/ρ(x). (1)

Here, ρ2(x) denotes the eigenvector corresponding to the
second largest eigenvalue λ2, which represents the slowest pro-
cess of the system. ρ(x) denotes the eigenvector corresponding
to the largest eigenvalue λ1 = 1, which represents equilibrium
weights of the Voronoi cells. Note that we have not normal-
ized ψ(x) so that it ranges from 0 to 1, but this is not necessary
since this only shifts the values. With the committor function
calculated, we can cluster the Voronoi cells by their commit-
tor function values. The union of Voronoi cells then becomes
our new macrostates. Within each new macrostate, we can
resample walkers and end up evenly covering the slowest path-
ways with walkers and reducing walkers that are redundant
or orthogonal to the pathways. Thus, we naturally call this
method spectral clustering. We note that our spectral clus-
tering is slightly different from the ones in published studies,
which use the first k generalized eigenvectors to cluster a high-
dimensional data into k clusters using k-means.44,45 We only
use the first two eigenvectors, and the number of clusters is
pre-defined separately.

To illustrate the method more clearly, we present the
basic scheme of spectral clustering in Fig. 2. Here, ρ(x, y)
is indicated, and the equilibrium weights are highest in the
two metastable basins, which are the reactant and the prod-
uct, respectively. In addition, ρ2(x, y)/ρ(x, y) is indicated, and
the dynamics at this longest time scale is characterized by
a global shift in probability density between the two basins,
which makes sense because the equilibration between the two
would take the longest than any other non-stationary process
in the system. Finally, with spectral clustering, the reactant-
to-product pathways are partitioned into dynamically distinct
regions characterized by the values of ρ2(x, y)/ρ(x, y) and are

FIG. 2. Illustration of spectral clustering. Along with the free energy land-
scape U(x, y), the equilibrium eigenvector ρ(x, y) and the committor function
ρ2(x, y)/ρ(x, y) are indicated. The walkers are represented as black circles,
and the partitioning from spectral clustering is indicated by the dashed lines.
This way, the slowest pathways, i.e., equilibration between the two metastable
basins, get evenly sampled and covered while reducing walkers that are
orthogonal to the pathways.

marked with dashed lines. This way, we increase sampling
along the pathways while reducing sampling orthogonal to the
pathways. After clustering and resampling, the walkers, which
are represented as black circles, will evenly cover the path-
ways with new walkers in deficient regions and fewer walkers
in oversampled regions.

The key idea is that we use importance sampling in spaces
orthogonal to the slowest pathways. Although pathways are
not represented explicitly in our method, the use of the sec-
ond eigenvector allows us to use a fine discretization along the
pathways, while importance sampling is used in the orthogo-
nal directions to make sure we control the number of Voronoi
cells throughout the simulation. The second eigenvector is ini-
tially computed using incomplete information. However, the
information provided is sufficient to control the number of
Voronoi cells constructed and make sure it remains bounded,
while allowing the system to make progress along the slow-
est pathways. The caveat is that in all of the examples in this
paper, we pre-identified and chose the reactant and the product
to be the two metastable states of the system, in which case we
expect the committor function and the natural reaction coor-
dinate of the system to be nearly equivalent.46 However, the
slowest process may not always be the reaction between the
two metastable states of interest as stated in Ref. 46, so cau-
tion should be exercised when using the second eigenvector to
speed up the slowest process of the system.

Up to this point, the committor function has only been
used to cluster the adaptively created Voronoi cells to newly
define macrostates throughout the simulation. Alternatively,
we can use the committor function to initially partition the
collective variable space into macrostates and run the CAS
algorithm with these fixed, static macrostates. The macrostates
use an approximate committor function, but if we use the exact
committor function, then this static partitioning can be proven
to be the most optimal partitioning such that the CAS algorithm
converges after one resampling step in the limit of having infi-
nite number of walkers per macrostate or nw = ∞. That is,
we do not need to relax the walkers’ weights to steady-state
to get the correct fluxes. This choice is also optimal because
the accuracy of the flux becomes independent of the relaxation
times for the walkers inside each macrostate. If the macrostates
are not chosen correctly, the relaxation time inside macrostates
will lead to long correlation times in the flux values, resulting in
larger statistical errors. With an optimal choice, the relaxation
times have no effect on the standard deviation of the fluxes.

Since each macrostate has a constant committor function
value, all of the walkers from a particular macrostate have the
same probability of ending up in another macrostate. That is,
the walkers do not need to relax or go over energy barriers
within each macrostate to reach the correct flux, since they are
enforced to go to their correct macrostates in the next step by
being in isocommittor surfaces. Just as isocommittor surfaces
are proven to be optimal milestones for milestoning, we now
prove that isocommittor surfaces are optimal macrostates for
the CAS algorithm.37

Proposition. Let A and B be two metastable regions of
interest and Ω denote the entire collective variable space. The
following assumptions are made:

074115-6 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

1. The system’s dynamics obeys detailed balance or time
reversibility.

2. Macrostates are constructed such that the committor
function value is constant in each macrostate, i.e., they
are isocommittor surfaces.

3. nw = ∞.

The result is then all of the walkers in each macrostate, regard-
less of the walkers’ distribution and positions, have the same
probability to end up in another macrostate. Said otherwise,
it is not necessary to relax the distribution of walkers inside
each macrostate to obtain the correct fluxes between A and B
and vice versa. Hence, we obtain exact fluxes going from A to
B and vice versa in one step.

Proof. First, let q(x) denote the forward committor func-
tion or the solution of the following Dirichlet partial dif-
ferential equation problem with respect to L, which denotes
the infinitesimal generator of the diffusion that governs the
system’s dynamics,

(Lq)(x) = 0 if x ∈ Ω \ (A ∪ B),

q(x) = 0 if x ∈ A, (2)

q(x) = 1 if x ∈ B.

The solution of Eq. (2) is the committor function that describes
the probability to reach product B before reactant A. Addition-
ally, 1 � q(x) denotes the backward committor function.

Now, let N be the number of macrostates that divide up
q(x) and z1 = 0 < z2 < z3 < · · · < zN = 1 denote uniformly
spaced committor function values. Also, let mij, j = 1, . . . , ni

denote a Voronoi cell that has a center xij and a committor

function value of zi, and ni be the total number of those Voronoi
cells. Then we can construct the macrostates to be the follow-
ing isocommittor surfaces or union of Voronoi cells that have
the same committor function value:

Mi =

ni⋃
j=1

mij =

ni⋃
j=1

{
x �� ��x − xij

�� ≤ ��x − xkl |, ij , kl,

q(x) = zi
}
, i = 1, . . . , N .

(3)

With this setup, A can be re-labeled as M1 and B as MN . From
Eq. (3), we can expect the macrostates close to M1 to have
0 < q(x) � 1 and the macrostates close to MN to have 0
� q(x) < 1. Now, we will prove that all of the walkers in M i

have the same probability to end up in another macrostate M j,
regardless of where the walkers are located within M i. Note
that this is typically not the case because where the walker ends
up in the next step depends on its position within the current
macrostate.

To see this, let the reactant be the union of all of the states
left of M i, i.e., M̃1 =

⋃i−1
i=1

⋃ni
j=1mij, a union of macrostates

that have a committor function value ≤zi−1, and the prod-
uct be the union of all of the states right of M i, i.e., M̃N

=
⋃N

i=i+1
⋃ni

j=1mij, a union of macrostates that have a com-
mittor function value ≥zi+1, and consider this new reaction.
Then M i becomes an isocommittor surface for this reaction
as well, and the committor function for this reaction becomes
q̃(x) = (q(x) − zi−1)/(zi+1 − zi−1) = (zi − zi−1)/(zi+1 − zi−1).
Indeed, q̃(x) still satisfies Eq. (2) and boundary conditions,
since q̃(x) = 0 if x ∈ M̃1 and q̃(x) = 1 if x ∈ M̃N . Returning to
our original setup, we get the following probabilities pik to go
to Mk after being in M i,

pik =

zi − zi−1

zi+1 − zi−1
, if k = i + 1, i= 2, . . . , N − 1,

1 −
zi − zi−1

zi+1 − zi−1
=

zi+1 − zi

zi+1 − zi−1
, if k = i− 1, i= 2, . . . , N − 1,

1, if i= 1, k = 2 or i=N , k =N − 1,
0, otherwise.

(4)

Taken together, all of the walkers in M i reach Mk with the
same probability pik , regardless of the walkers’ distribution,
since each M i is an isocommittor surface. Since no systematic
errors are present and statistical errors become zero in the limit
of nw = ∞, we obtain the exact fluxes going from A to B and
vice versa in one step in the limit of nw = ∞. �

Now that we have proven that using the committor func-
tion to create macrostates is the optimal choice, the specific
steps taken for spectral clustering are listed below.

1. After the simulation has a number of Voronoi cells that
is equal to or greater than the pre-defined threshold num-
ber of Voronoi cells, a transition matrix T of existing
Voronoi cells is calculated for a number of simulation
steps. The Voronoi cells are fixed during these simula-
tion steps so that T can be calculated. Each entry T ij

represents the weight that transitioned from the Voronoi

cell i to Voronoi cell j in one step. This can be done
since each walker keeps track of its weight, previous
coordinates, and current coordinates. However, since a
transition matrix needs to fulfill detailed balance when a
canonical ensemble simulation is run under Hamiltonian
dynamics, each entry T ij is computed using the equations
in Ref. 47, which are

Cij =
Bij + Bji

2s
= Cji, (5)

Tij =
Cij∑n

k=1 Cik
. (6)

Here, Bij denotes the sum of the weights that went from
the Voronoi cell i to Voronoi cell j during s number of
steps, and Cij denotes the state-to-state time-correlation
estimator that fulfills detailed balance. Using Cij, we

074115-7 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

can calculate T ij using Eq. (6). The detailed balance
requirement also reduces the uncertainties of the com-
mittor function.48 This transition matrix T corresponds
to the “graph Laplacian matrix” L described in Refs. 44
and 45.

2. Then an eigendecomposition on T is performed. From
the properties of a transition matrix, the eigenvector
corresponding to the largest eigenvalue λ1 = 1 or ρ(x)
represents the equilibrium eigenvector, as previously
mentioned. The rest of the eigenvectors correspond to
non-stationary processes that are slower for eigenvectors
corresponding to eigenvalues close to 1.

3. Using the equilibrium eigenvector, the eigenvector cor-
responding to the second largest eigenvalue λ2 or ρ2(x)
is divided by ρ(x) to be a good approximation of the
committor function, as previously stated in Eq. (1). The
ρ2(x)/ρ(x) entries represent probabilities of going from
the reactant to product and are the right quantities to use
for clustering, since we will increase sampling along
the reactant-to-product pathways while preserving the
dynamics of the system. Hence, ρ2(x)/ρ(x) is used to
cluster the Voronoi cells using k-means, and the result-
ing union of Voronoi cells become the new macrostates.
The number of clusters is set beforehand.

4. In resampling the new macrostates, the target number
of walkers per cluster or macrostate is set so that the
total number of walkers will be reduced overall. After
resampling, the most probable Voronoi cells end up being
mostly populated within the new macrostates.

After spectral clustering is performed as listed above, nor-
mal CAS algorithm steps are taken until the number of Voronoi
cells hits a certain threshold, which signals spectral clustering
to be performed again. This method is illustrated more clearly
in Sec. III, where specific examples are discussed.

III. EXAMPLES
A. Two-dimensional model

For the simplest case, the CAS algorithm is tested on a
two-dimensional potential surface described by U(x, y) = e−x2

+ y2 taken from Ref. 34. The potential surface is bounded by
−1.0 ≤ x ≤ 1.0 and −1.0 ≤ y ≤ 1.0. The Metropolis algo-
rithm is used to move the walkers with∆x = 0.05 or∆y = 0.05
once per simulation step, and the target number of walkers per
macrostate nw is set to 100 for all of the simulations. As seen in
Fig. 3, the metastable states are A = {(x, y) : −1.0 ≤ x ≤ 0.0,

−1.0 ≤ y ≤ 1.0,
√

(x + 1)2 + y2 ≤ 0.4} and B = {(x, y) : 0.0

≤ x ≤ 1.0, −1.0 ≤ y ≤ 1.0,
√

(x − 1)2 + y2 ≤ 0.4}, and the
minimum energy pathway is a straight pathway linking these
two states. The inverse temperature β is set to 10.0, and half
of the walkers initially start from (�0.6, 0.0), or A, and the
other half start from (0.6, 0.0), or B. Since the initialization of
walkers impacts the convergence time of the fluxes, the initial
conditions are picked such that the simulations will reach con-
vergence quickly. The forward (from A to B) and backward
(from B to A) fluxes are measured by labeling walkers from
A and B with colors, changing colors when walkers from A

FIG. 3. Two-dimensional potential surface described by U(x, y) = e−x2
+ y2.

The color bar indicates energy values.

reach B and vice versa, and resampling each color within each
Voronoi cell, as done in Ref. 34.

All of the simulations have the same fixed running time of
48 h to ensure that the computational cost is the same across
all simulations. The simulations differ from each other by hav-
ing different radii r and/or having spectral clustering turned
on or not. These different simulation conditions are chosen
to demonstrate the power of the CAS algorithm with spec-
tral clustering compared with “conventional” methods without
spectral clustering. The committor function is used for spectral
clustering to efficiently sample the slowest process, which in
this case is the equilibration between the two metastable states
A and B. Three simulation runs are done for each kind of simu-
lation, and the standard deviation of the three runs is multiplied
by 2, which approximately represent 95% confidence interval,
for error bars. The total simulation time is calculated by the
cumulative total number of macrostates × number of walkers
per macrostate.

To check whether the CAS algorithm with spectral clus-
tering is more efficient than “conventional” methods without
spectral clustering, we plotted and compared the forward and
backward fluxes between A and B. Indeed as seen in Fig. 4,
the CAS algorithm with spectral clustering is the one that is
closest to converging to the correct fluxes with smaller error
bars within the fixed running time. When the Voronoi cells
are chosen to be big (r = 1.0), we are able to obtain the cor-
rect fluxes but the error bars are bigger by having to go over
energy barriers and taking time to reach relaxation within the
larger macrostates. In contrast, when the Voronoi cells are
chosen to be small (r = 0.4), the number of Voronoi cells
grows rapidly, and we end up wasting our efforts in cover-
ing every region of the potential surface. Since the potential
surface is bounded, the number of Voronoi cells does not grow
beyond a certain point. Nonetheless, the computational cost
becomes large when many Voronoi cells are created, and spec-
tral clustering proves to be useful in this scenario. With spectral
clustering, we are able to focus our efforts in having walkers
equilibrate between A and B and sample this slowest process
and the intermediates involved.

To see how spectral clustering works in this example, we
plotted simulation snapshots in Fig. 5. Spectral clustering or

074115-8 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 4. Flux comparisons among the CAS algorithm simulations with and without spectral clustering. In the case of r = 0.4 unbounded simulations, the number
of macrostates grows rapidly, and we end up wasting our efforts in covering every region. With spectral clustering, we are able to focus our efforts in having
walkers rapidly equilibrate between the reactant and product. For these particular spectral clustering simulations, spectral clustering starts when the number of
Voronoi cells is 8 or larger, the number of cluster is set to 5, the total number of walkers per cluster is set to 80, and the transition matrix is calculated for 5 steps.
(a) Forward flux (A to B). (b) Backward flux (A to B).

calculation of the transition matrix starts from step 19 when the
total number of Voronoi cells becomes large. After calculation
of the transition matrix is finished at step 69, the commit-
tor function is calculated to cluster the Voronoi cells, and the
unions of Voronoi cells become the new macrostates. We can
see that the macrostates at the very left and right-hand sides
are the largest, which makes sense since most of the walk-
ers are concentrated near the minimum energy basins A and
B and have small weight changes, making them relatively sta-
ble. After resampling, however, each macrostate ends up with
the same number of walkers, which results in spreading walk-
ers around minimum energy pathway and reducing walkers
orthogonal to the pathway. Hence, we can see that the CAS
algorithm with spectral clustering is very effective at focus-
ing efforts on sampling slow time scales and is much more
efficient than conventional methods, even for this relatively
simple two-dimensional model example.

B. Penta-alanine

After the low-dimensional model was tested, we applied
the CAS algorithm to high-dimensional real examples.
Namely, we applied our method to penta-alanine, which con-
sists of five alanine residues and 66 atoms. Its conforma-
tions can be described by the three middle φ and ψ dihe-
dral angle pairs or six dihedral angles in total.49 If all three
residues are helical αR states (−100.0◦ ≤ φ ≤ −30.0◦ and
−90.0◦ ≤ ψ ≤ −10.0◦), then penta-alanine is considered
to be folded, whereas if all three residues are coiled C7eq

states (−180.0◦ ≤ φ ≤ −55.0◦ and 105.0◦ ≤ ψ ≤ 180.0◦

or −180.0◦ ≤ ψ ≤ −155.0◦), then penta-alanine is considered
to be unfolded. Since its conformations have to be described
in high dimensions, penta-alanine is a nontrivial example. The
fluxes between the two states, or the folding and unfolding
fluxes, are of interest to us. Again, these fluxes are measured by
labeling walkers from folded and unfolded states with colors,
changing colors when walkers from one state reach another,
and resampling each color within each macrostate, as done in
Sec. III A.

The MD simulations are run with Gromacs 4.5.7 using
Amber96 force field and implicit solvent at temperature T
= 300 K with time step ∆t = 2 fs.50,51 For brute force simula-
tions, five different initial configurations (folded, unfolded,
partially folded, partially unfolded, and neither folded nor
unfolded) are used, and each simulation is 3 µs long. The
standard deviation of the five runs is multiplied by 2, which
approximately represent 95% confidence interval, for error
bars. The unfolding and folding fluxes from brute force simu-
lations are listed in Table I. For the CAS algorithm simulations,
the same MD simulation conditions are used and since all of
the collective variables are dihedral angles with [−180◦, 180◦]
limits, the minimum distance is taken between the previous
and the new dihedral angle values when creating macrostates
for the walkers.

First, we evaluated the effectiveness of the CAS algorithm
compared to conventional brute force simulations. In order to
do so, we calculated and plotted the unfolding and folding
fluxes to compare. We use the bootstrapping procedure, or
drawing first passage times randomly with replacement for a
number of times that is proportional to the total simulation
time, to obtain the fluxes and to simulate the statistics which
we would obtain with shorter simulations. For comparison,
the CAS algorithm simulations are run with simulation time
τ = 500.0 ps, which happens to fulfill the Markovian prop-
erty according to Ref. 49, even though it is not necessary for
the CAS algorithm. Since the fluxes are not very low, i.e.,
transitions occur repeatedly due to having low energy bar-
riers, the macrostates are pre-defined and fixed throughout
the simulation in this case. The folded and unfolded states
are defined as single states, and the rest are partitioned using
the committor function, which prove to give the most optimal
macrostates.

Specifically, a single 3 µs brute force simulation trajec-
tory is used to sample the collective variable space, which
is then covered with Voronoi cells. These Voronoi cells are
used to calculate the transition matrix so that we can obtain
the committor function. States are sampled every 500.0 ps so
that the transition matrix is Markovian, and r is set to 80.0◦

074115-9 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 5. Spectral clustering simulation
snapshots for r = 0.1 at β = 10.0.
The simulation starts with half of the
walkers on the left metastable state and
the other half of the walkers on the
right metastable state, as shown in (a).
Voronoi cells are colored according to
their weights in log scale in (b), (c), and
(f), and the color bar indicates which
colors correspond to which weight val-
ues in log scale. In (d), the macrostates
are colored according to their committor
function values. In (e), each macrostate,
a union of Voronoi cells, is represented
by a color (five clusters in total, num-
bered from 0 to 4). For this particu-
lar simulation, spectral clustering starts
when the number of Voronoi cells is 120
or larger, the total number of clusters
is set to 5, the total number of walkers
per cluster is set to 50, and the transi-
tion matrix is calculated for 50 steps.
(a) Initial condition. Step 0. (b) Transi-
tion matrix calculation starts. Step 19.
(c) Equilibrium weights. Step 69. (d)
Committor function. Step 69. (e) Clus-
ters. Step 69. (f) After clustering and
resampling. Step 69.

so that approximately 200 Voronoi cells are used to cover all
of the states, a size that is shown to give an accurate Markov
State Model (MSM) or transition matrix according to Ref. 49.
Similar to spectral clustering, the committor function is used
to cluster neither the folded nor unfolded or intermediate
states into macrostates with approximately constant committor
function values. In particular, the minimum and the maximum
committor function values are obtained and are used to create
an interval of committor function values. This interval is evenly
divided into a pre-defined number of clusters or macrostates,

TABLE I. Penta-alanine fluxes from brute force simulations at T = 300 K.

Unfolding (folded to unfolded) Folding (unfolded to folded)

Flux (ns�1) 0.0320 ± 0.0035 0.0473 ± 0.0053
Error (%) 10.79 11.24

and the intermediate states are binned to their corresponding
macrostates according to their committor function values. This
way, every part of the committor function can be efficiently
sampled throughout the simulation. The pre-defined number
of macrostates is set to be large enough so that none of the
macrostates will be empty and to have the macrostates repre-
sent a narrow range of committor function values so that they
are close to being true isocommittor surfaces. In this case, the
number of macrostates is chosen to be 10, which excludes
the folded and unfolded states. As a result, we end up with a
single folded state, a single unfolded state, and 10 states that
represent probabilities going from folded to unfolded. With
these macrostates combined with binning and resampling,
the walkers are forced to make progress along the fold-
ing/unfolding transition pathways as the simulation proceeds.

With this pre-defined and fixed macrostate setup, we only
need to initialize walkers and choose nw to run the most optimal

074115-10 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 6. Flux and free energy landscape
comparisons between brute force and
the CAS algorithm simulations at T =
300 K. (a) and (b) show that the CAS
algorithm simulations are able to obtain
the correct fluxes while having signif-
icantly smaller error bars. (c) and (d)
show that the CAS algorithm simula-
tions are also able to reproduce the
correct free energy landscape, and the
macrostates are colored according to
their free energy values or −kBT ln P,
where P equals the weight. The larger
circular macrostates on the left-hand
side and the right-hand side repre-
sent the folded state and the unfolded
state, respectively. ε for diffusion map,
which is used for visualization purposes
only, is set to 10, and the number of
macrostates (excluding the folded and
unfolded states) is set to 10. (a) Unfold-
ing flux. (b) Folding flux. (c) Free energy
landscape from brute force. (d) Free
energy landscape from CAS.

CAS algorithm simulations. First, set nw such that it repre-
sents numbers of walkers per macrostate per “color.” In this
case, the “color” represents whether the walker comes from
the folded or unfolded state. For instance, if a macrostate has
walkers from both the folded and unfolded states, then after
resampling, the macrostate will end up with nw walkers that
come from the folded state and nw walkers that come from
the unfolded state. Empirically, setting nw to be the average
number of walkers that initially come from the folded state
is found to yield the most accurate unfolding flux and vice
versa for the folding flux. Hence, nw is chosen to be 90 for the
unfolding flux and 230 for the folding flux from using the given
brute force simulation trajectory. Finally to initialize walkers,
all of the states need to make a transition from their initial
states to their next states according to what their next states are
from the brute force trajectory and resampled according to the
pre-defined nw as previously stated. The resulting walk-
ers are used as initial walkers for the CAS algorithm
simulations.

To directly compare the CAS algorithm’s accuracy and
efficiency with brute force simulations, the CAS algorithm

TABLE II. Penta-alanine fluxes from the CAS algorithm simulations at
T = 300 K.

Unfolding Folding
(folded to unfolded) (unfolded to folded)

Flux (ns�1) 0.0320 ± 0.0020 0.0484 ± 0.0018
Error (%) 6.15 3.72
Reduction in error(

brute force error
CAS error

)
1.75 3.02

simulations are run for 15 µs, which is equal to the cumulative
total number of walkers × simulation time (τ = 500.0 ps). As
seen in Fig. 6 and in Table II, the performance of the CAS
algorithm is significantly better than brute force in getting the
correct fluxes efficiently with much smaller error bars.

Second, we plotted the free energy landscapes obtained
from brute force and the CAS algorithm simulations to further
validate the CAS algorithm’s accuracy. To visualize a high-
dimensional bio-molecule such as penta-alanine, we used dif-
fusion map to project the high-dimensional space onto two
dimensions.52,53 Diffusion map is a non-linear dimension-
ality reduction technique that discovers the underlying low-
dimensional manifold, preserves the true geometric structure,
and is robust to noise perturbation.53 The parameter ε for dif-
fusion map corresponds to the neighbor size and is chosen so
that the underlying manifold is clearly shown and not entirely
uniformly distributed from one another. For both brute force
and the CAS algorithm simulations, 15 µs of simulation data
is used to plot the free energy landscape. As mentioned pre-
viously, the folded and unfolded states are fixed to be single
states and the rest are clustered according to their committor
function values. Thus, as seen in Fig. 6, the folded state (left)
and the unfolded state (right) are represented as larger circular
macrostates, and the rest are clustered and colored accord-
ing to the macrostates’ weights. The free energy landscapes

TABLE III. Penta-alanine fluxes from brute force simulations at T = 250 K.

Unfolding (folded to unfolded) Folding (unfolded to folded)

Flux (ns�1) 0.001 98 ± 0.000 739 0.0311 ± 0.0116
Error (%) 37.36 37.27

074115-11 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 7. Flux comparisons between
brute force and the CAS algorithm
simulations at T = 250 K. (a) Unfolding
flux. (b) Folding flux.

from brute force and the CAS algorithm simulations are almost
identical, which validates the sampling accuracy of the CAS
algorithm.

To see more of CAS algorithm’s efficiency over brute
force simulations, we lowered the system temperature from
T = 300 K to T = 250 K, which made the transitions sig-
nificantly rarer. Again, brute force simulations are run for
15 µs to calculate the brute force fluxes, and a single 3 µs
brute force simulation trajectory is used to partition the free
energy landscape beforehand with the committor function for
the CAS algorithm. The unfolding and folding fluxes from
brute force simulations are listed in Table III. For the CAS
algorithm simulations at T = 250 K, nw is chosen to be 150
for the unfolding flux and 20 for the folding flux from using
the given brute force simulation trajectory. As seen in Fig. 7
and Table IV, the reduction in error is much greater at lower
temperatures.

Finally, we extracted the major conformations for each
macrostate to check whether they correspond to the correct
intermediate states according to their ranges of committor
function values. As expected, the conformations’ degree of
foldedness/unfoldedness matched with their committor func-
tion values and the folded states (labeled as FFF) gradually
unfolded one by one as they got nearer to the unfolded states
(labeled as UUU) and vice versa, as seen in Fig. 8. Interest-
ingly, none of the intermediate macrostates between folded
and unfolded states, except for the one nearest the unfolded
state, has the first and the second φ,ψ pairs unfolded. This
is consistent with the claim that the first φ,ψ pair, which is
nearest to the N terminus, has the slowest relaxation to unfold,
as stated in Ref. 54. Accordingly, penta-alanine most likely
unfolds like a zipper starting from the C terminus and ending
with the N terminus.

TABLE IV. Penta-alanine fluxes from the CAS algorithm simulations at
T = 250 K.

Unfolding Folding
(folded to unfolded) (unfolded to folded)

Flux (ns�1) 0.001 87 ± 0.000 141 0.0303 ± 0.0040
Error (%) 7.52 13.17
Reduction in error

4.97 2.83(
brute force error

CAS error

)

Taken together, the CAS algorithm is not only able to effi-
ciently obtain kinetic pathways and fluxes for penta-alanine,
but is also able to extract useful thermodynamic information
like transition states and free energy landscapes. With the
use of diffusion map, we are also able to visualize the high-
dimensional conformational space and pathways going from
one state to another.

C. Triazine trimer

For the final example, the CAS algorithm is applied to a
high information content triazine polymer newly developed by
Grate and co-workers at Pacific Northwest National Labora-
tory.55 The triazine polymers encode information by having
various side chains and since they do not have hydrolyz-
able bonds, the molecules are robust and are not suscep-
tible to proteases.55 Although the triazine polymers have
been shown to form particular sequential stacks, have stable
backbone-backbone interactions through hydrogen bonding
and pi-pi interactions, and conserve their cis/trans conforma-
tions throughout the simulation, there are still many questions
left to be solved. We do not know their various possible con-
formations along with their probabilities of occurring and
their rare pathways and probabilities of cis-to-trans transitions.

FIG. 8. Diagram of the committor function and macrostates for penta-alanine
at T = 300 K. ρ(x) indicates the equilibrium weights and ρ2/ρ indicates the
committor function. The committor function is uniformly divided into 10
macrostates. The folded state (labeled as FFF) and the unfolded state (labeled
as UUU) have committor function values that are within the committor values
of the leftmost and rightmost macrostates, respectively, so they are marked as
the major conformations here but are separate macrostates from the leftmost
and rightmost macrostates.

074115-12 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

FIG. 9. Structure of all-cis triazine trimer. (a) Molecu-
lar structure. (b) Pymol structure with cis/trans dihedral
angles marked.

Figure 9 shows the structure of a triazine trimer where all the
aromatic ring to alpha-nitrogen bonds in the main chain are in
the cis configuration, i.e., all-cis or CCCC, where C denotes
cis, since there are four cis bonds.

To demonstrate that the CAS algorithm can capture rare
pathways not easily accessible by regular MD simulations, the
CAS algorithm is used to sample cis-to-trans transitions. For
this, a single all-cis triazine trimer (CCCC) is simulated with

FIG. 10. Simulation snapshots of all-
cis triazine trimer (CCCC) transition-
ing to all-trans triazine trimer (TTTT),
where C denotes cis and T denotes trans.
Note that the C’s and T’s are written
in order, so TCCC refers to a triazine
trimer with one trans bond at the end of
the triazine trimer. The Voronoi cells are
colored according to their free energy
values or −kBT ln P, where P equals the
weight, except for (e) where the color
bar indicates the number of cis to trans
transitions. ε for diffusion map, which
is used for visualization purposes only,
is set to 1. (a) Step 50. (b) Step 100. (c)
Step 200. (d) Step 400. (e) Number of
cis to trans transitions.

074115-13 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

Gromacs 4.6.4 using implicit solvent at temperature T = 300 K
with time step ∆t = 2 fs.50 Most simulation parameters are
identical to the ones in Ref. 55, including the force field that
was generated using the generalized Amber force field (GAFF)
and is used with a Generalized Born/Surface Area (GBSA)
implicit solvation model.51,56 Otherwise, the radius r is set to
24◦, the target number of walkers per macrostate nw is set to
10, and the simulation time τ is set to 0.04 ps. The collective
variables are the four dihedral angles that are associated with
bonds that can be cis or trans, marked as all cis in Fig. 9.
Note that these are not exactly the same as the conventional ω
dihedral angles, which determine the cis/trans conformation
in peptide bonds. But like the regular ω dihedral angles, the
molecule is cis when the dihedral angles are all equal to 0◦ and
trans when they are all equal to 180◦. Again as in Sec. III B,
since all of the collective variables are dihedral angles with
[−180◦, 180◦] limits, the minimum distance is taken between
the previous and the new dihedral angle values when creating
Voronoi cells for the walkers.

Since the energy barrier to get to the trans conformation
is very high (a single transition is experimentally measured to
have an energy barrier of ∆G, = 15 kcal/mol), the walkers
tend to cluster around the cis region initially.57–59 However,
with a very short resampling time, small Voronoi cells, and
enough number of walkers per macrostate, the all-cis triazine
trimer (CCCC) is able to go from cis to trans one at a time and
eventually, it transitions into an all-trans triazine trimer (TTTT,
where T denotes trans) as seen in Fig. 10. Specifically, we start
to see triazine trimers with one trans bond at the end of the
triazine trimers (TCCC, where C’s and T’s are written in order)
at step 100, and we see more TCCC’s at step 200. At step 400,
most of the free energy landscape gets covered, and we see
triazine trimers with more than one trans bond, in particular,
the first appearance of an all-trans triazine trimer as indicated
by the red dot (representing four cis to trans transitions) in
Fig. 10(e). Again since this is a four-dimensional problem,
diffusion maps are used to visualize each step of the CAS
algorithm simulation. Note that at step 400, the CAS simu-
lation has not converged yet, since all-trans triazine trimer
has an infinitesimally small weight. But we expect the all-
trans triazine trimer to have a comparable weight to that
of all-cis triazine trimer since both conserve their cis/trans
conformation throughout long MD simulations (data not
shown).

From running the CAS algorithm simulation, we were
able to observe not just one but four cis-to-trans transitions,
whereas observing even one cis-to-trans transition in conven-
tional MD simulations is not feasible due to its high energy bar-
rier. With the CAS algorithm, rare cis-to-trans transitions were
easily seen with optimal choice of parameters, and indeed, all
four cis-to-trans transitions could be observed.

IV. DISCUSSION

The CAS algorithm is an efficient enhanced sampling
method that combines the WE method to overcome energy
barriers and a method based on the transition matrix to
reduce redundant walkers that do not allow the simulation to
efficiently make progress along the slowest reaction. The

important features of the WE method that are incorporated
into the CAS algorithm are the following.

1. There is no Markovian error as in MSMs, which requires
a global convergence of the weights. This is a necessary
trade-off, however, resulting from the fact that Marko-
vian approximation is not used and therefore, we need to
wait until steady-state is reached, at which point the walk-
ers are correctly distributed and non-Markovian effects
disappear (Chap. 7 in the work of Schlick34).

2. Exact fluxes are obtained upon convergence with no bias.
3. General collective variables, including non-differential

variables such as discrete coordinates with integer or
Boolean values, can be considered. This will be useful
for further studying the triazine polymers’ self-assembly,
e.g., have the number of hydrogen bonds and pi-pi
interactions as a collective variable.

4. The MD simulation program can be used in a black box
manner, i.e., the wrapper Python CAS algorithm code
can be used with any MD simulation program with-
out having to modify its source code and is available
at http://github.com/shirleyahn/CAS Code. A complete
documentation on how to make use of the CAS algorithm
code is still underway.

5. There is a large amount of parallelism in the algo-
rithm, since we simultaneously run many walkers for
each macrostate. This allows us to achieve computational
efficiency proportional to the available computational
resources.

The novel features of the CAS algorithm are the
following.

1. Mild assumptions or little a priori knowledge about the
system is required, since we can use many collective vari-
ables for systems in which the reaction coordinates are
unknown. The macrostates are high-dimensional and if
we adaptively construct macrostates to sample confor-
mations and pathways, we do not need to pre-define an
intractable number of macrostates. This is useful for rel-
atively unknown or unfamiliar systems like the triazine
trimer in Sec. III C.

2. Close to optimal macrostates are constructed, which have
small statistical errors.

3. Computational cost is strictly controlled by reducing the
aforementioned redundant walkers, while allowing the
simulation to make progress in sampling the slowest
process.

Furthermore, the CAS algorithm focuses on identifying
critical pathways and transition states and is able to extract
thermodynamic and kinetic information in a general setting.
The CAS algorithm is also not hampered by the presence of
metastable states since a constant stream of walkers at visited
macrostates is maintained by resampling, an important feature
from the WE method that has been improved upon by walkers
having equal mean weights within each macrostate as stated in
Sec. II A. Finally, as done in the WE method, we only need to
tune a few parameters to increase efficiency in the sampling,
such as simulation time, number of walkers per macrostate,
and size of Voronoi cells.

http://github.com/shirleyahn/CAS_Code

074115-14 Ahn, Grate, and Darve J. Chem. Phys. 147, 074115 (2017)

ACKNOWLEDGMENTS

This work is supported by the Applied Mathematics
Program within the Department of Energy (DOE) Office of
Advanced Scientific Computing Research (ASCR) as part of
the Collaboratory on Mathematics for Mesoscopic Modeling
of Materials (CM4). We thank Hee Sun Lee for contribut-
ing to the regular WE method code that served as the basis
for the CAS algorithm code, Johannes Birgmeier for making
improvements on the parameter input file, Jeffery Kinnison
for providing us with the penta-alanine simulation files, and
Michael Daily for providing us with the triazine trimer sim-
ulation files. We also thank Jesús Izaguirre and the reviewers
for giving us helpful comments that improved the presentation
of the paper.

1G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).
2A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562
(2002).

3A. Laio and F. L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008).
4A. Barducci, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 100, 020603
(2008).

5G. Bussi, A. Laio, and M. Parrinello, Phys. Rev. Lett. 96, 090601
(2006).

6A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).
7D. Hamelberg, J. Mongan, and J. A. McCammon, J. Chem. Phys. 120, 11919
(2004).

8Y. Miao, F. Feixas, C. Eun, and J. A. McCammon, J. Comput. Chem. 36,
1536 (2015).

9D. Rodrı́guez-Gómez, E. Darve, and A. Pohorille, J. Chem. Phys. 120, 3563
(2004).

10D. Rodrı́guez-Gómez, E. Darve, and A. Pohorille, in AbSciCon 2006
(Washington, DC, USA, 2006), pp. 26–30.

11A. Pohorille and E. Darve, AIP Conf. Proc. 872, 23–30 2006.
12E. Darve and A. Pohorille, J. Chem. Phys. 115, 9169 (2001).
13E. Darve, M. A. Wilson, and A. Pohorille, Mol. Simul. 28, 113

(2002).
14E. Darve, D. Rodrı́guez-Gómez, and A. Pohorille, J. Chem. Phys. 128,

144120 (2008).
15J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille, and C. Chipot,

J. Phys. Chem. B 119, 1129 (2015).
16Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).
17M. R. So, A. F. Voter et al., J. Chem. Phys. 112, 9599 (2000).
18G. R. Bowman, V. S. Pande, and F. Noé, An Introduction to Markov State

Models and Their Application to Long Timescale Molecular Simulation
(Springer Science & Business Media, 2013), Vol. 797.

19G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem.
Phys. 131, 124101 (2009).

20G. R. Bowman, X. Huang, and V. S. Pande, Methods 49, 197 (2009).
21A. C. Pan and B. Roux, J. Chem. Phys. 129, 064107 (2008).
22C. Schütte, F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden, J. Chem. Phys.

134, 204105 (2011).
23E. Suárez, J. L. Adelman, and D. M. Zuckerman, J. Chem. Theory Comput.

12, 3473 (2016).
24G. A. Huber and S. Kim, Biophys. J. 70, 97 (1996).
25B. W. Zhang, D. Jasnow, and D. M. Zuckerman, J. Chem. Phys. 132, 054107

(2010).
26D. Bhatt, B. W. Zhang, and D. M. Zuckerman, J. Chem. Phys. 133, 014110

(2010).
27B. W. Zhang, D. Jasnow, and D. M. Zuckerman, Proc. Natl. Acad. Sci.

U. S. A. 104, 18043 (2007).

28E. Suarez, S. Lettieri, M. C. Zwier, C. A. Stringer, S. R. Subramanian, L.
T. Chong, and D. M. Zuckerman, J. Chem. Theory Comput. 10, 2658 (2014).

29B. Abdul-Wahid, L. Yu, D. Rajan, H. Feng, E. Darve, D. Thain, and J. A.
Izaguirre, in 2012 IEEE 8th International Conference on E-Science (IEEE,
2012), pp. 1–8.

30R. Costaouec, H. Feng, J. Izaguirre, and E. Darve, Discrete Contin. Dyn.
Syst. 2013, 171.

31B. Abdul-Wahid, H. Feng, D. Rajan, R. Costaouec, E. Darve, D. Thain, and
J. A. Izaguirre, J. Chem. Inf. Model. 54, 3033 (2014).

32J. A. Izaguirre, D. Thain, and E. Darve, in SC15 Workshop: Producing High
Performance and Sustainable Software for Molecular Simulation, Austin,
TX, 2015.

33C. Trott, T.-R. Shan, S. Moore, A. Thompson, S. Plimpton, M. Höhnerbach,
A. Ismail, P. Bientinesi, A. M. Elena, C. Lalanne et al., in Proceedings of the
SC15 Workshop on Producing High Performance and Sustainable Software
for Molecular Simulation, 2016.

34T. Schlick, Innovations in Biomolecular Modeling and Simulations (Royal
Society of Chemistry, 2012), Vol. 1.

35D. Aristoff, preprint arXiv:1609.05887 (2016).
36L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, J. Chem.

Phys. 125, 024106 (2006).
37E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber, J. Chem. Phys.

129, 174102 (2008).
38M. C. Zwier, J. L. Adelman, J. W. Kaus, A. J. Pratt, K. F. Wong, N. B. Rego,

E. Suárez, S. Lettieri, D. W. Wang, M. Grabe et al., J. Chem. Theory Comput.
11, 800 (2015).

39D. Bhatt and I. Bahar, J. Chem. Phys. 137, 104101 (2012).
40J. L. Adelman and M. Grabe, J. Chem. Phys. 138, 044105 (2013).
41A. Dickson and C. L. Brooks III, J. Phys. Chem. B 118, 3532 (2014).
42A. Dickson, A. M. Mustoe, L. Salmon, and C. L. Brooks, Nucleic Acids

Res. 42, 12126 (2014).
43J.-H. Prinz, M. Held, J. C. Smith, and F. Noé, Multiscale Model. Simul. 9,

545 (2011).
44A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis

and an algorithm,” in Advances in Neural Information Processing (NIPS)
14, edited by T. Dietterich, S. Becker, and Z. Ghahramani (MIT Press,
Cambridge, MA, 2001).

45U. Von Luxburg, Stat. Comput. 17, 395 (2007).
46R. T. McGibbon, B. E. Husic, and V. S. Pande, J. Chem. Phys. 146, 044109

(2017).
47J.-H. Prinz, J. D. Chodera, V. S. Pande, W. C. Swope, J. C. Smith, and F. Noé,

J. Chem. Phys. 134, 244108 (2011).
48P. Metzner, F. Noé, and C. Schütte, Phys. Rev. E 80, 021106 (2009).
49H. Feng, R. Costaouec, E. Darve, and J. A. Izaguirre, J. Chem. Phys. 142,

214113 (2015).
50S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.

Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel et al., Bioinformatics
29, 845 (2013).

51J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J.
Comput. Chem. 25, 1157 (2004).

52R. R. Coifman and S. Lafon, Appl. Comput. Harmonic Anal. 21, 5 (2006).
53J. de la Porte, B. M. Herbst, W. Hereman, and S. J. van der Walt, in The

19th Symposium of the Pattern Recognition Association of South Africa
(Citeseer, 2008).

54D. J. Tobias and C. L. Brooks III, Biochemistry. 30, 6059 (1991).
55J. W. Grate, K.-F. Mo, and M. D. Daily, Angew. Chem., Int. Ed. 55, 3925

(2016).
56V. A. Voelz, K. A. Dill, and I. Chorny, Pept. Sci. 96, 639 (2011).
57E. A. Archer and M. J. Krische, J. Am. Chem. Soc. 124, 5074 (2002).
58M. Amm, N. Platzer, J. Guilhem, J. P. Bouchet, and J. P. Volland, Magn.

Reson. Chem. 36, 587 (1998).
59H. E. Birkett, R. K. Harris, P. Hodgkinson, K. Carr, M. H. Charlton, J. C.

Cherryman, A. M. Chippendale, and R. P. Glover, Magn. Reson. Chem. 38,
504 (2000).

http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1103/physrevlett.100.020603
http://dx.doi.org/10.1103/physrevlett.96.090601
http://dx.doi.org/10.1103/physrevlett.78.3908
http://dx.doi.org/10.1063/1.1755656
http://dx.doi.org/10.1002/jcc.23964
http://dx.doi.org/10.1063/1.1642607
http://dx.doi.org/10.1063/1.2423257
http://dx.doi.org/10.1063/1.1410978
http://dx.doi.org/10.1080/08927020211975
http://dx.doi.org/10.1063/1.2829861
http://dx.doi.org/10.1021/jp506633n
http://dx.doi.org/10.1016/s0009-2614(99)01123-9
http://dx.doi.org/10.1063/1.481576
http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1016/j.ymeth.2009.04.013
http://dx.doi.org/10.1063/1.2959573
http://dx.doi.org/10.1063/1.3590108
http://dx.doi.org/10.1021/acs.jctc.6b00339
http://dx.doi.org/10.1016/s0006-3495(96)79552-8
http://dx.doi.org/10.1063/1.3306345
http://dx.doi.org/10.1063/1.3456985
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1073/pnas.0706349104
http://dx.doi.org/10.1021/ct401065r
http://dx.doi.org/10.1021/ci500321g
https://arxiv.org/abs/1609.05887
http://dx.doi.org/10.1063/1.2212942
http://dx.doi.org/10.1063/1.2212942
http://dx.doi.org/10.1063/1.2996509
http://dx.doi.org/10.1021/ct5010615
http://dx.doi.org/10.1063/1.4748278
http://dx.doi.org/10.1063/1.4773892
http://dx.doi.org/10.1021/jp411479c
http://dx.doi.org/10.1093/nar/gku799
http://dx.doi.org/10.1093/nar/gku799
http://dx.doi.org/10.1137/100789191
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1063/1.4974306
http://dx.doi.org/10.1063/1.3592153
http://dx.doi.org/10.1103/physreve.80.021106
http://dx.doi.org/10.1063/1.4921890
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1021/bi00238a033
http://dx.doi.org/10.1002/anie.201509864
http://dx.doi.org/10.1002/bip.21575
http://dx.doi.org/10.1021/ja012696h
http://dx.doi.org/10.1002/(sici)1097-458x(199808)36:8<587::aid-omr347>3.0.co;2-b
http://dx.doi.org/10.1002/(sici)1097-458x(199808)36:8<587::aid-omr347>3.0.co;2-b
http://dx.doi.org/10.1002/1097-458x(200007)38:7<504::aid-mrc710>3.0.co;2-7

