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Covariate-Adjusted Region-Referenced Generalized Functional 
Linear Model for EEG Data
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Dickinson2, Charlotte DiStefano2, Damla Şentürk1

1Department of Biostatistics, University of California, Los Angeles, CA, U.S.A.

2Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 
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Summary

Electroencephalography (EEG) studies produce region-referenced functional data in the form of 

EEG signals recorded across electrodes on the scalp. It is of clinical interest to relate the highly 

structured EEG data to scalar outcomes such as diagnostic status. In our motivating study, resting 

state EEG is collected on both typically developing (TD) children and children with Autism 

Spectrum Disorder (ASD) aged two to twelve years old. The peak alpha frequency (PAF), defined 

as the location of a prominent peak in the alpha frequency band of the spectral density, is an 

important biomarker linked to neurodevelopment and is known to shift from lower to higher 

frequencies as children age. To retain the most amount of information from the data, we consider 

the oscillations in the spectral density within the alpha band, rather than just the peak location, as a 

functional predictor of diagnostic status (TD vs. ASD), adjusted for chronological age. A 

covariate-adjusted region-referenced generalized functional linear model (CARR-GFLM) is 

proposed for modeling scalar outcomes from region-referenced functional predictors, which 

utilizes a tensor basis formed from one-dimensional discrete and continuous bases to estimate 

functional effects across a discrete regional domain while simultaneously adjusting for additional 

non-functional covariates, such as age. The proposed methodology provides novel insights into 

differences in neural development of TD and ASD children. The efficacy of the proposed 

methodology is investigated through extensive simulation studies.
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1 | INTRODUCTION

Children with Autism Spectrum Disorder (ASD) display a wide range of cognitive ability 

compared to their typically developing (TD) peers, yet the neural processes underlying this 

variability are not well understood.1 In our motivating study, resting-state 

electroencephalograms (EEG) were recorded on both ASD and TD children aged two to 

twelve years old, allowing researchers to compare and contrast neural processes between the 

two diagnostic groups over a wide developmental range. Of particular interest was the 

location of a single prominent peak in the spectral density located within the alpha 

frequency band (6–14 Hz) called the peak alpha frequency (PAF). PAF has been shown to 

index neural development in TD children, where it shifts from lower to higher frequencies as 

children grow older.2,3 Recent research suggests that this chronological shift (from lower to 

higher frequencies) in PAF is delayed or possibly absent in children with ASD.1,4 This 

phenomena can be seen in our motivating data where slices of the group-specific bivariate 

mean surface of the spectral density (across age and frequency) at ages 30, 60, 90 and 120 

months from the T8 electrode are plotted in Figure 1(a). The PAF, resembled by the location 

of the ‘humps’ in the spectral density, is more pronounced and displays a greater shift with 

age in the TD children compared to their peers diagnosed with ASD.

While the PAF location is well defined in sample averages, estimating a subject-electrode 

specific PAF presents many challenges, including the variability in estimation of the spectral 

densities and the potential for multiple local maxima.5 In addition, identifying a single PAF 

inherently collapses information in the data across the alpha frequency band into a single 

number. To retain the most information from the data, we consider the spectral density 

across the alpha band as a functional observation and model associations between alpha 

band spectral dynamics and diagnostic status. In our motivating study, EEG signals are 

observed uninterrupted for several minutes across a high density electrode array and the 

continuous signal is divided into two-second segments before Fast Fourier Transform (FFT) 

to guarantee stationarity. The spectral density is then averaged across segments to increase 

the signal-to-noise ratio. The resulting spectral densities obtained across electrodes form the 

region- referenced functional data, with the spectral densities and the electrodes referred to 

as the functional and regional dimensions of the data. In order to model the association 

between diagnostic status and the high-dimensional EEG data, two methodological obstacles 

must be addressed. First, EEG signals recorded at each electrode result in a region-

referenced functional predictor for which an appropriate functional regression model does 

not exist. Second, the relationship between the alpha band spectral dynamics and diagnostic 

status is expected to change with age and thus the potential regression model must allow for 

covariate- adjustments when estimating functional effects. To address both issues, we 

propose the covariate-adjusted region-referenced generalized functional linear model 

(CARR-GFLM) that jointly estimates covariate-adjusted functional effects at each region by 

first projecting the regression function onto a tensor basis and then performing dimension 

reduction to produce a well-posed problem.

Since the introduction of the functional linear model (FLM) by Ramsay and Dalzell6, 

functional regression methods have been formalized into three categories based on the role 

of the functional data object: (1) scalar-on-function, (2) function-on- scalar, and (3) 

Scheffler et al. Page 2

Stat Med. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function-on-function regression models.7,8 Given that our goal is to relate a region-

referenced functional predictor (region-referenced EEG spectral densities) to a scalar 

response (ASD diagnostic status), we restrict our discussion to relevant scalar-on-function 

regression methods (SoFR) particularly with respect to multivariate (i.e. multiple functional 

signals defined on possibly different domains) and multi-dimensional (i.e. two- or higher-

dimensional functional signals defined continuously on a single domain) functional 

predictors. Hastie and Mallows9 were the first to formally define a FLM for a Gaussian 

response and Marx and Eilers10 broadened this foundational model to include exponential 

family responses by proposing a generalized FLM (GFLM). Both models have been 

extended to accommodate multilevel functional predictors and adapted to non-parametric 

and non-linear frameworks.11 Considerable methodological development has focused on 

appropriate regularization strategies for settings in which multivariate or multi-dimensional 

functional predictors are observed, where estimation is often performed via projection of the 

corresponding regression function(s) onto smooth basis functions with regularization 

imposed via the basis coefficients. While regularization for multivariate functional predictors 

is enforced within each distinct functional domain (Zhu et al12; Gerthreiss et al13; Lian14), 

regularization for multi-dimensional functional predictors is enforced by assuming 

continuity across the functional domain (Marx and Eilers15; Reiss and Ogden16; Goldsmith 

et al17). Specific to EEG and local field potentials, recent works by Gao et al18,19 develop 

methods for vector-valued electrical potentials recorded from multiple electrodes but these 

models focus on capturing longitudinal dynamics and cluster structures over the course of a 

recording session, respectively, rather than modeling associations with a scalar response.

Our proposed CARR-GFLM makes two important contributions to the existing literature. 

First, to our knowledge no SoFR method accommodates region-referenced functional 

predictors, i.e. correlated functional data observed over a non-smooth regional domain. To 

address this challenge, we consider a tensor basis that is a mixture of discrete and 

continuous basis functions. A corresponding penalty structure is developed to ensure 

smoothness of the regression function within each region along the functional dimension, 

with joint penalization across the regional domain. Second, we allow for the region-

referenced regression function to vary across a continuous covariate, in our application, age. 

In the setting of a one-dimensional functional predictor, Wu et al20 proposed a varying-

regression functional linear regression model where regression effects not only vary across 

functional time but also across a scalar covariate. Authors estimate regression effects by 

targeting the functional covariance processes conditional on specific values of the scalar 

covariate via kernel smoothing methods. This estimation approach does not scale up well for 

higher dimensional functional data (e.g. region-referenced EEG spectral densities) given the 

reliance on computationally intensive kernel methods. Different from the approach in Wu et 

al20, we add age as an argument to the tensor basis considered in estimation. The tensor 

basis is formed as a kronecker product of a marginal bases in the functional, regional and 

covariate domains leading to greater computational efficiency. The resulting number of 

tensor basis functions may exceed the number of subjects in some applications; hence we 

further consider the singular value decomposition (SVD) of the design matrix as in Reiss 

and Ogden16,21 to ensure the problem is well-posed.
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Note that existing SoFR methods do not provide an adequate covariate-adjusted modeling 

framework for region-referenced functional predictors. Given that region-referenced 

functional predictors are observed over a discrete regional domain, methods for multi-

dimensional functional predictors which assume continuity of the regression function across 

each dimension cannot be used in the analysis of region-referenced functional predictors. 

Considering the functional signal from each region as multivariate functional data and 

applying existing multivariate GFLM (m-GFLM) techniques would require either a global 

regularization parameter across all dimensions or a separate regularization parameter for 

each region, both of which are undesirable due to the possibility of under fitting or over 

fitting the data, respectively. In addition to less than desirable regularization, existing 

multivariate methods do not allow for covariate adjustments when modeling the regression 

effects, as these adjustments have only been proposed in the literature for a single functional 

predictor by Wu et al20. We show the favorable predictive performance of the proposed 

CARR-GFLM in comparison to the existing simpler approaches of m-GFLM, ignoring 

covariate effects, and a multivariate GFLM with a linear interaction term between the 

covariate and the functional predictor (m-GFLMi) in simulation studies and data 

applications.

The paper is organized as follows. Section 2 introduces the proposed model and develops 

estimation and inferential procedures. Section 3 discusses application of the proposed 

method to resting state EEG data from our motivating study, focusing on inference and 

interpretation of the estimated regression coefficients. Section 4 assesses performance of the 

proposed methodology via a simulation study. We conclude with a brief discussion in 

Section 5.

2 | THE PROPOSED COVARIATE-ADJUSTED REGION-REFERENCED 

GFLM

2.1 | Statistical framework and modeling

Suppose for i = 1,... n subjects, we observe the data {yi,Xi(ai,r,ω),ai}, where yi is a scalar 

response, Xi(ai,r,ω) is a region-referenced functional predictor observed at region r, r = 1,

…,R, frequency ω, ω ∈ Ω and non-functional scalar covariate ai ∈ A ⊂ ℝ. While Ω and A 
are both continuous domains, they represent a functional and a non-functional covariate 

domain, respectively. The predictor Xi(ai, r, ω) is assumed square-integrable and smooth 

over the functional domain Ω. Given our motivating data, we assume ai is a scalar covariate 

though it could constitute a real valued vector of continuous covariates. For notational 

convenience, a regular grid for observations is assumed in the regional and functional 

dimensions, however, note that for sparse data applications in either the regional or 

functional dimension or both, the hybrid principal components analysis (HPCA) of Scheffler 

et al22 can be used to reconstruct the full functional predictor. Throughout the remainder of 

the paper, scalars will be represented by lower case letters (b), vectors by lower case bold 

letters (b), and matrices by upper case bold letters (B).

First consider the region-referenced GFLM allowing for a region-referenced functional 

predictor,
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yi ℱ μi, ϑ

g μi = ∑
r = 1

R ∫ Xi(r, ω) − η(r, ω) β(r, ω)dω

= ∑
r = 1

R ∫ Xi
c(r, ω)β(r, ω)dω

(1)

where ℱ is an exponential family distribution with conditional expectation 

μi = E yi | Xi(r, ω), ϑ , ϑ denoting the vector of nuisance parameters and g(·) denoting an 

invertible link function. The region-referenced mean curve for all subjects is denoted by η(r, 
ω) = E{Xi(r, ω)} and the mean centered subject-specific functional predictor which captures 

subject-level deviations from the region-referenced mean curve is denoted by 

Xi
c(r, ω) = Xi(r, ω) − η(r, ω) . The region-referenced regression function β(r, ω) models the 

linear association between g(μi) and Xi
c(r, ω), where β(r, ω) is not assumed to be smooth 

across the R regions. Note that the region-referenced GFLM in (1) is different from a 

multivariate GFLM with R separate functional predictors (possibly evaluated over different 

functional domains) in that the R functional predictors considered for (1) all represent 

spectral densities evaluated over the same domain, hence modeled in the next section with a 

single tensor basis and a combined smoothing parameter. Fixing R =1 yields a standard 

GFLM for a functional predictor and scalar response as described in Marx and Eilers10.

Next, consider the proposed CARR-GFLM where the regression relationship changes as a 

function of a non-functional covariate. In our motivating data for example, the association 

between a subject’s diagnostic status and alpha band spectral dynamics depends on 

chronological age. Thus, the proposed model for region-referenced functional predictors is 

given by

g μi = ∑
r = 1

R ∫ Xi ai, r, ω − η ai, r, ω β ai, r, ω dω

= ∑
r = 1

R ∫ Xi
c ai, r, ω β ai, r, ω dω

(2)

where μi = E yi | Xi ai, r, ω , ai, ϑ ,η(a, r, ω) = E Xi ai, r, ω |ai ,Xi
c ai, r, ω  and β(ai,r,ω) denote 

the conditional expectation, the region-referenced mean surface, the mean-centered subject-

specific functional predictor and the regression function that now all depend on the covariate 

a, respectively. The regression function β(ai,r,ω) in a specific region r is assumed to be 

smooth in both the functional domain Ω and the covariate domain A, allowing borrowing of 

information across the range of the covariate values observed in the sample in estimation. 

For a fixed a, the regression function β(ai,r,ω) captures the different weights placed on the 

functional predictor across the frequency domain and how these relations change over the R 
regions. Changes over a add to this interpretation by depicting how this regression relation 
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can vary over the different values of the covariate a. The proposed model reduces to the 

varying-coefficient functional linear model of Wu et al20 for R =1.

The regression function β(ai,r,ω) is approximated by a linear combination of basis functions 

that are formed as a tensor product of discrete and continuous marginal basis functions in a, 
r, and ω,

β(a, r, ω) ≈ ∑
ka = 1

Ka
∑

kr = 1

Kr
∑

kω = 1

Kω
ϕka

(a)ϕkr
(r)ϕkω

(ω)θka, kr, kω

where the basis functions in a and m, denoted by ϕka
(a) and ϕkω

(ω), respectively, can be 

chosen to be any set of continuous basis functions appropriately combined with a quadratic 

penalty, such as functional principal components or B-splines. The basis functions in r, 

denoted by ϕkr
(r) , is a set of discrete basis functions such that span ϕkr

(r)
kr = 1

Kr
⊆ ℝR(e.g. 

columns of an identity matrix). The unknown coefficients of the projection, denoted by 

θka, kr, kω
 are collected into the vector θ and are estimated. Note that the total number (Ka, Kr 

and Kω) of basis functions considered in each dimension, is chosen to be sufficiently large to 

capture the regression function behavior before penalization. The shape of the resulting 

regression function can be controlled by both the choice of the marginal basis functions and 

the quadratic penalization of θ. We follow Wood23 to construct a general penalty structure 

which is formed by a kronecker sum of marginal penalties along each dimension a, r and ω,

pen(θ λ) = θTP(λ)θ,

P(λ) = λa Pa ⊗ IKr
⊗ IKω

+ λr IKa
⊗ Pr ⊗ IKω

+ λω IKa
⊗ IKr

⊗ Pω ,

where λ = (λa, λr, λω) denotes a vector of positive penalty parameters and Pa, Pr, and Pω 
denote the positive semi-definite penalty matrices, that control the degree of smoothness or 

shrinkage along each marginal dimension. For the dimensions along which the regression 

function is expected to be smooth (i.e. the functional and covariate dimensions), a 

differencing penalty can be used for a B-spline basis to penalize rapid change in the 

coefficients. In case of the regional dimension, the regression function is not assumed to be 

smooth and the choice of penalty structure requires more deliberation. In situations where 

there is no a priori knowledge of the dependency of the functional effects among regions, a 

ridge penalty would promote smaller coefficients without imposing a prior dependency 

structure. If prior knowledge is available, one way to induce dependency across regions 

would be through a Gaussian Markov Random Field prior which have been applied in 

spatial analysis and generalized additive models.24,25 The choice of the penalty structure 
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plays an important role in inference through the posterior distribution of the coefficient 

vector θ and should be considered carefully.

To our knowledge, this is the first application of a tensor basis formed from a mixture of 

discrete and continuous basis functions for estimating functional regression effects. Note 

that the proposed penalty structure with one penalty parameter for each marginal dimension, 

strikes a balance between under smoothing and increased computational burden with a larger 

number of penalty parameters and over smoothing with a smaller number of penalty 

parameters. For example, penalizing the regression function in each region separately would 

lead to R separate pairs of penalty parameters (λra, λrm), r = 1,… ,R, increasing the number 

of penalty parameters and hence the computational burden significantly. Alternatively, λr, 

can be set to zero, effectively controlling smoothness across Ω. and A at each region with 

just two parameters, possibly leading to over smoothing.

2.2 ǀ Estimation and inference

The proposed CARR-GFLM model is fit using the general additive model (GAM) 

framework of Wood25 for which there exists both stable optimization routines and theory for 

inference via confidence intervals. The region-referenced mean surface η(a, r, ω) is 

estimated prior to model fitting separately for each region based on pooled data across all 

subjects via smoothing achieved by projection onto a tensor basis of penalized marginal B-

splines in a and ω. Estimation and smoothing parameter selection are carried out by 

restricted maximum likelihood (REML) methods. Let (ω1,…, ωH) denote the regular 

functional grid where the region-referenced functional predictor is observed. The proposed 

CARR-GFLM in (2) can be written in matrix notation as,

∑
r = 1

R ∫ Xi
c ai, r, ω β ai, r, ω dω ≈ ∑

r = 1

R ∫ Xi
c ai, r, ω ∑

ka = 1

Ka
∑

kr = 1

Kr
∑

kω = 1

Kw
ϕka

ai ϕkr

(r)ϕkω
(ω)θka, kr, kw

dω

≈ ∑
r = 1

R
∑

h = 1

H
∑

ka = 1

Ka
∑

kr = 1

Kr
∑

kω = 1

Kω
whXi

c ai, r, ωh ϕka
ai ϕkr

(r)ϕkω
ωh θka, kr, kω

= Φa ⊗r XW Φr ⊗ Φω θ

(3)

where ⊗ and ⊗r denote the standard and the row kronecker products, respectively. For two 

matrices with the same number of rows, the row kronecker product ⊗r forms a new matrix 

by taking the kronecker product of the rows of each matrix. In (3), Φa = ϕka
ai ka = 1, …, Ka

i = 1, …, n

denotes an n × Ka matrix with ith row containing evaluations of the marginal basis functions 

at ai; and Φr = ϕkr
(r)kr = 1, …, Kr

r = 1, …, R and Φω = ϕkω
ωh kω = 1, …, Kω

h = 1, …, H denote R × Kr and H × 

Kω matrices, respectively, whose columns contain evaluations of the marginal basis 
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functions in r and m. The predictor matrix X is a n × RH matrix containing the vectorized 

subject-specific functional predictor Xi
c ai, r, ω  in its ith row. Finally, 

W = diag wrh r = 1, …, R
h = 1, …, H  denotes the RH × RH diagonal matrix of weights that 

correspondingly sum across the R regions and is used to approximate the integral in m. More 

information on defining appropriate marginal basis function can be found in Wood25.

The coefficient vector θ is estimated by penalized least squares, with the penalized log-

likelihood given by

𝓁p(θ, λ, ϑ y) = 𝓁(u, ϑ y) − 1
2pen(θ λ)

where u = g−1 Φa ⊗r XW Φr ⊗ Φω θ  and 𝓁(u, ϑ | y) = ∑i = 1
n 𝓁 μi, ϑ | yi denotes the log-

likelihood function for the response distribution ℱ μi, ϑ . The penalized log-likelihood is 

maximized using REML rather than generalized cross-validation (GCV) due to the superior 

performance of REML reported in numerical studies.26 The penalized likelihood can be 

maximized in a number of different ways. One popular approach is to treat λ as a precision 

parameter in a generalized linear mixed model.23,27 However, this often produces covariance 

structures that are difficult to implement in standard software; a challenge that can be 

circumvented by suitable transformations of the marginal basis functions that divide the 

coefficient vector into sets of fixed effects and independent and identically distributed 

Gaussian random effects. This solution may still not be desirable since it introduces 

additional penalty parameters that may be hard to interpret.28 We opt to maximize the 

penalized likelihood with the gam () function in the R package mgcv which finds an 

approximate REML criterion via Laplace approximation and optimizes the approximated 

likelihood using Newton-Raphson updates. The procedure iterates between estimating the λ 
and θ using standard penalized regression methods.25,29

By projecting the regression function β(a, r, ω) onto a tensor basis, we perform an initial 

dimension reduction step. However, for SoF regression with multi-dimensional predictors, 

the number of basis functions may still greatly exceed the number of subjects, suggesting 

that the dimension of the basis is too large to be estimated well and further dimension 

reduction may be needed. Rather than restricting the number of basis functions in the tensor 

product, we perform a second dimension reduction step by only retaining the leading right 

singular vectors of the design matrix D = Φa ⊗r XW Φr ⊗ Φω  as in Reiss and Ogden16,21. 

Therefore, we minimize the penalized log-likelihood based on the response mean function,

u = g−1 DVqθ , (4)

where Vq denotes the matrix containing the q leading columns from the singular value 

decomposition UEVT of the design matrix D and θ denotes the coefficient vector for the 

reduced dimensional design matrix DVq. In applications, we retain the minimum number of 

components q that explain 95% of the total variation in the design matrix D, i.e. q is the 
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minimum number of components that satisfy ∑s = 1
q κs

2/∑s = 1
KaKrKωκs

2 > .95 , where ks are the 

ordered singular values from the SVD of D. The penalty structure can easily be updated to 

accommodate the SVD of the design matrix,pen(θ |λ) = θTVq
TP(λ)Vqθ . This dimension 

reduction serves two purposes, (1) it ensures that there is a unique solution that maximizes 

the penalized log-likelihood and (2) it allows for the use of the inferential machinery of 

mgcv which requires that the number of coefficients is less than or equal to the number of 

subjects. As emphasized earlier, this is a common issue with multi-dimensional predictors in 

SoF regression where the dimension of the scalar response may be much lower than the 

dimension of the functional predictors.

Due to the quadratic penalty, estimates of the coefficient vector θ (associated with the the 

reduced dimensional design matrix DVq) are biased and thus naive point-wise confidence 

intervals calculated based on the covariance matrix of the estimated coefficient vector can 

produce poor coverage. Therefore, we adopt the Bayesian point-wise confidence intervals 

described in Wood30 which are based on the large sample limit of the posterior distribution 

θ | y, which can be obtained by a default option in gam(). More specifically,

θ y 𝒩 γ, Vq
TDTZDVq + Vq

TP(λ)Vq
−1

where γ denotes the estimate of θ , Z denotes an n × n matrix containing entries 

Zii = g′ μi
2V μi

−1
with μi equal to the ith entry of u in (4), V denotes the variance function 

such that V(μi)σ2 is equal to the variance of yi and σ2 is a scale parameter defined by ℱ. The 

covariance of θ | y can be adjusted by Vq in order to recover the posterior distribution of θ|y. 

The Bayesian point-wise confidence intervals have been reported to lead to better coverage 

than those based on the covariance of the parameter estimates. We study the finite sample 

properties of the proposed methodology including coverage of the proposed Bayesian point-

wise confidence intervals in the simulations of Section 4.

3 | DATA ANALYSIS

3.1 | Data structure and methods

In our motivating study, EEG data was sampled at 500 Hz for two minutes using a 128-

channel HydroCel Geodesic Sensor Net on 58 ASD and 39 TD children 25 to 144 months 

old (groups were age matched). EEG recordings were made under an ‘eyes-open’ paradigm 

in which bubbles were presented on a screen in a sound-attenuated room.1 Four electrodes 

near the eyes were removed prior to recording, in order to improve the comfort of the 

subjects. To facilitate independent component analysis for identification of artifacts, the data 

was interpolated to the international 10–20 system 25 electrode montage (R = 25) by 

spherical interpolation as described in Perrin et al31 and implemented in the function 

eeg_interp from EEGLAB32 (Figure 1(b)). Following interpolation and ICA, the signal was 

reconstructed without components attributed to non-neural sources of signal, such as 

electromyogram (EMG) or non-stereotyped artifacts, and re-referenced to the average of all 

electrodes. For spectral analysis, the first 38 seconds of artifact free EEG data was used for 
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each subject, where 38 seconds was the minimum amount of artifact free data available on 

all the subjects. Spectral density estimates were obtained by Welch’s method. 33 The 38 

second EEG signal was divided into two second Hanning windows with 50% overlap and 

transformed into the frequency domain via FFT. For each electrode, the spectral densities at 

each overlapping segment were averaged, resulting in electrode-specific estimates of the 

spectral density.

Since the interest is on the location of the dominant alpha peak and the general shape of the 

alpha band spectral dynamics more than alpha band power, the alpha (Ω = (6 Hz, 14 Hz)) 

spectral density normalized to a unit area (through division by its integral) is considered as 

the region-referenced functional predictor to facilitate comparisons across electrodes and 

subjects. As a result of the sampling scheme, the grid along the functional domain has a 

frequency resolution of .25 Hz and thus includes H = 33 points. Smooths of the region-

referenced mean surface η(a, r, ω) are obtained as described in Section 2.2 using a tensor 

basis of penalized cubic B-splines (with 15 and 4 degrees of freedom in the frequency and 

age domains, respectively) and second degree difference penalties along each dimension. In 

order to avoid bias in estimation of the region-referenced mean surfaces due to the observed 

imbalance in sample size between diagnostic groups, we re-weight the data such that the two 

diagnostic groups contribute equally to the region-referenced mean surface smoothing. The 

mean centered subject-specific functional predictors,Xi
c ai, r, ω = Xi ai, r, ω − η ai, r, ω , are 

obtained by subtracting age conditional slices of η(a, m,ω) from the observed subject-

specific alpha spectral densities.

The regression function β(a, r, ω) is estimated by projection onto a tensor basis formed as 

the product of basis functions along the age, region/electrode and frequency dimensions. The 

marginal basis matrices Φa and Φω are formed as evaluations of cubic B-splines with Ka = 5 
and Kω = 10 degrees of freedom, respectively. The regional basis matrix is equal to Φr = 

[1R, IR] with Kr = 26, where 1R is an R × 1 vector of 1’s. Second order marginal difference 

penalties are utilized for both Pa and Pω to ensure smoothness over the functional and age 

domains. Given that we do not have any prior knowledge regarding the dependency of alpha 

spectral effects across electrodes, we employ a ridge style penalty across the regional 

dimension, Pr = [0R, IR], where 0R is an R × 1 vector of 0’s. The zero entry along the 

diagonal of Pr corresponds to the basis vector 1R which is left unpenalized to absorb the 

common effect across all electrodes. The remaining regional basis vectors are penalized and 

loadings on them represent the electrode-specific deviations from the overall effect across 

the scalp. The number of columns in the resulting design matrix D is KaKrKω = 1300.

We carry out comparisons between the proposed CARR-GFLM and the existing approaches 

of m-GFLM and m-GFLMi. For the m-GFLM, the region-referenced alpha spectral densities 

are treated as multivariate functional data where the functional effect at each region is 

estimated by projection onto a basis of cubic B-splines with ten degrees of freedom. The m-

GFLMi includes a main effect of age as well as a linear interaction term between age and the 

region-referenced alpha spectral densities for which an additional set of functional effects 

are estimated. For each functional effect, regularization is enforced using a separate 

smoothing parameter with a second degree difference penalty. Similar to CARR-GFLM, the 
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number of basis functions for m-GFLM and m-GFLMi is too large to be estimated well and 

the portion of the design matrix encoding functional effects is reduced by SVD with 

appropriate adjustments made to the penalty structure. The number of columns (i.e. rank) of 

the SVD reduced design matrices for the CARR-GFLM, m-GFLM, and m-GFLMi models is 

66, 57, and 50, respectively, accounting for approximately 99% of the total variation. The 

threshold for the proportion of variation explained is slightly higher in the data analysis than 

suggested in Section 2.2 in order to ensure model convergence. Models are fit using the 

gam() function from mgcv (version 1.8–24) on a 2.4 GHz 6-Core Intel Xeon processor 

operating R (version 3.5.1) with a mean computation time of 26.6 seconds based on ten runs. 

Penalty parameters are selected via REML and estimated to be λa = 0.0063, λr = 0.0042, 
and λω = 0.0078.

3.2 | Data analysis results

Slices of the region-referenced mean surface η(a, r, ω) representing the electrode-specific 

mean alpha spectral density at ages 30, 60, 90, and 120 months for the T8 and T10 

electrodes (right temporal) are given in Figure 2 . Across subjects and electrodes, the PAF 

increases with increasing chronological age. Since functional predictors are supposed to 

retain group differences to predict diagnostic status, region-referenced mean surfaces are 

estimated across subjects (rather than within diagnostic groups) and subtracted from the 

observed alpha spectral densities to obtain the mean-centered functional predictors 

Xi
c ai, r, ω  used in modeling. It is expected that, on average, subjects within each diagnostic 

group will deviate from the region-referenced mean surfaces in a distinct manner, allowing 

for characterization of patterns in the alpha spectral density that are predictive of ASD 

diagnosis.

The results from fitting the CARR-GFLM model to our motivating data for the T8 electrode 

are shown in Figure 3 and are representative in shape and sign of other electrodes across the 

scalp. In order to visualize information across chronological age, results are shown as cross 

sections at 30, 60, 90, and 120 months. The T8 electrode is highlighted because among all 

electrodes it produces the highest average contribution to the log-odds of ASD diagnosis,

1/n∑i = 1
n ∫ Ω Xi

c ai, r, ω β ai, r, ω dω , which can be interpreted as a measure of the absolute 

effect of a given electrode across all subjects. Referring to Figure 1(b), the three electrodes 

with the highest average contribution to the log-odds of ASD diagnosis, the T8, T10, and F8 

electrodes, are located in the right temporal and frontal region of the scalp, suggesting 

differences in these brain regions have the strongest effect on whether a subject is predicted 

to have an ASD diagnosis. The average mean-centered functional predictors for the TD and 

ASD children displayed in in Figure 3 (top row) provide insights into group differences. On 

average at 30 months old, TD children display higher alpha power between 8 to 10 Hz. This 

changes over the course of development and by 120 months ASD children display higher 

alpha power between 6 to 10 Hz and TD children show higher power between 10 to 12 Hz.

The slices of the estimated regression function β(a, r, ω) for the T8 electrode are plotted in 

Figure 3 (middle row). The estimated regression function puts mostly negative weight on the 

spectral density for frequencies between 8 to 10 Hz and positive weight for frequencies 

Scheffler et al. Page 11

Stat Med. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between 10 to 14 Hz for subjects aged 30 to 60 months. After 60 months the shape of the 

regression function begins to flip, with positive weight on frequencies between 6 and 10 Hz 

and negative weight for those between 10 and 14 Hz. The Bayesian point-wise confidence 

intervals are wide including zero, due to the small sample size within diagnostic groups; 

however they exclude zero at 11.25 Hz for children between 124 to 134 months (not shown). 

The point-wise product of the average mean-centered functional predictors for each group 

and the regression function are displayed in Figure 3 (bottom row) where the shading 

represents the area under the curve for each group which ultimately encapsulates the linear 

effect on the log odds of ASD diagnosis. Before 60 months, the average TD child has a PAF 

between 8 to 10 Hz and hence due to the negative weighting by the regression coefficient, 

this results in a predicted probability of ASD diagnosis that is less than .5. Similarly, since 

the average TD child of age older than 60 months have PAF between 10 to 14 Hz, a negative 

weight in that domain results in a predicted probability of ASD diagnosis that is again less 

than .5. Similar descriptions can be formed for the ASD group and on average the areas 

under the curve produced by the point-wise products formed in Figure 3 (bottom row) are in 

accordance with the true diagnostic status.

To get a better sense of the predictive performance of the CARR-GFLM in our data across 

electrodes stratified by developmental age, we look at the predicted probabilities of ASD 

diagnosis and their associated 95% confidence intervals for the study subjects in Figure 4 

(top row). The 95% confidence intervals are calculated on the logit scale based on the 

posterior distribution of DVqθ | y (see Section 2.2) and then transformed onto the probability 

scale. If subjects are classified based on a threshold of .5, then at younger and older ages 

CARR-GFLM discriminates between the two groups well. However, between 50 and 75 

months the model has some trouble distinguishing the two diagnostic groups. This is likely 

because the differences in the alpha spectrum between the two groups are minimal at the 

median study age, suggesting the greatest group differences in alpha spectral dynamics 

occur at younger and older ages. In order to contrast the predictive performance of the 

CARR-GFLM with the existing models of m-GFLM and m-GFLMi, we compare 

performance measures including sensitivity (sens = P ASD | ASD ), specificity (spec = 

P TD |TD  ), and the area under the receiver operating characteristic curve (AUC). Predicted 

probabilities are estimated using leave-one-out cross validation (LOOCV) in which each 

subject is iteratively withheld from the model data, models are fit, and then probabilities are 

predicted for the withheld subject. The CARR-GFLM (sens = .602; spec = .663; AUC = .

635) outperforms both m-GFLM (sens = .527; spec = .588; AUC = .553) and m-GFLMi 

(sens = .822; spec = .363; AUC = .593) in terms of both balance between sensitivity and 

specificity and AUC.

It is clear from the superior performance of the CARR-GFLM and m-GFLMi models 

compared to m-GFLM that including age improves prediction of ASD diagnosis. To 

determine why CARR-GFLM outperforms m-GFLMi despite the fact that both models 

account for age, we consider the estimated regression functions from the T8 electrode for 

both models. For m-GFLMi (Figure 4 (bottom row)), the association between the alpha 

spectral densities and ASD diagnosis is modeled as a function of two terms, the main effect, 
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Xi
c(T8, ω) , and the interaction term, aiXi

c(T8, ω). The estimated regression function for the 

main effect is flat compared to the estimated regression function of the interaction term 

which assumes a relatively linear decreasing trend with a positive weight on the alpha 

spectral density between 6 to 9 Hz and a negative weight between 9 to 14 Hz. These effects 

get stronger as children age. On the other hand, CARR-GFLM (Figure 3 (middle row)), 

allows the regression function to vary in a non-linear manner across age, with the sign and 

shape of the regression function shifting across development. The benefit of the greater 

flexibility of CARR-GFLM over m-GFLMi is visible in the predicted probabilities for each 

model. While both models struggle to differentiate between the two groups between 50 and 

75 months, CARR-GFLM (Figure 4 (top row)) is able to discriminate between the two 

diagnostic groups at younger ages between 25 and 50 months while m-GFLMi (Figure 4 

(middle row)) shows a clear bias towards a diagnosis of ASD, likely induced by the more 

rigid linear modeling structure.

4 | SIMULATION

We assess the finite sample performance of the proposed methodology across a range of 

simulation settings. The data generating process for the simulation is described in Section 

4.1 and simulation results are deferred to Section 4.2.

4.1 | Data generation

Binary scalar outcomes are simulated from yi ~ Bernoulli(μi), i = 1,… ,n, where the subject-

specific probabilities are formed on the log odds scale through the linear model 

logit μi = ∑r = 1
R ∫ Xi

c ai, r, ω β ai, r, ω dω . The functional and covariate grids are chosen as 

50 and 30 equidistant points in [0,1], respectively, with data generated for a total of R = 15 

regions. For each subject, the observed covariate values are simulated from a discrete 

uniform distribution defined on the covariate grid in [0,1]. The regression function β(a, r, ω) 

is constructed to vary both across regions and along the functional and covariate domains,

β(a, r, ω) =
( − 1)r2cos(ωrπ /6 + πa), r = 1, …, 8

( − 1)r2sin ω(r − 8)π /6 + πa , r = 9, …, 15.

The subject-specific functional predictors are formed by Xi ai, r, ω = ∑k = 1
5 ξikrψk(ω) , with a 

common set of basis functions ψk(ω), k = 1,…, 5, across the 15 regions, where ψk(ω) are 

cubic B-splines and the vector of subject-specific scores is generated from 

ξik = ξik1, …, ξikR
T ℳ𝒱𝒩 0, Σk  . The r × r covariance matrix Σk controls the regional 

dependency of the functional predictors by inducing correlations between a subject’s scores 

for the kth spline basis across the R regions. The covariance matrix Σk is chosen to have a 

compound symmetric structure with diagonal entries equal to one and off diagonal entries 

equal to ρ, a tuning parameter for the level of dependency across regions. For simplicity, we 

set η(ai, r, ω) to zero.
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We perform 500 Monte Carlo runs across nine simulation settings: three sample sizes (n = 

200,500,1000) and three levels of regional dependency (ρ = 0.0,0.1,0.3). We use the relative 

squared error RSE(a, r, ω) = f (a, r, ω) − f (a, r, ω)2 / f (a, r, ω) 2 to assess the regression 

function estimates, where f (a, r, ω) 2 = ∑r = 1
R ∬ f 2(a, r, ω)dadω . The coverage probability 

of the Bayesian point-wise confidence intervals as a function of a, r and ω, is assessed by 

recording the proportion of times the regression function estimates lie within the confidence 

interval over the 500 Monte Carlo runs. For each Monte Carlo run at a fixed sample size n, 

we generate n + 200 samples, where first n is used for estimation and the additional 200 

samples are reserved as a validation set for assessing prediction accuracy. Prediction 

accuracy is assessed by the AUC in the validation sets. The use of validation sets with a 

common number of observations (200 samples) allows for comparisons of the AUC from 

different simulation settings.

The region-referenced mean curves are estimated by pooling data across subjects and 

performing bivariate penalized smoothing over the functional and covariate domains with a 

tensor basis of penalized cubic B-splines (with 10 and 5 degrees of freedom in the functional 

and covariate domain, respectively). In addition, second order difference penalties are used 

along the functional and the covariate dimension, similar to the data analysis. The marginal 

basis matrices Φa and Φω are formed as evaluations of the cubic B-splines with Ka = 5 and 

Kω = 5 degrees of freedom, respectively, and the regional basis matrix is equal to Φr= [115, 

I15] with Kr = 16. First order marginal difference penalties are utilized for both Pa and Pω to 

ensure smoothness over the functional, and the covariate domains. For the regional domain, 

a ridge style penalty Pr = [015, I15] is employed as in the data analysis. The model for all 

simulation settings has Ka × Kr × KΩ = 400 coefficients and for each Monte Carlo run SVD 

is used to reduce the dimension of the design matrix such that the resulting columns account 

for at least 95% of the total variation. Across simulation settings, the rank of the SVD 

reduced design matrix increases with sample size and decreases as a function of ρ, with the 

median rank at ρ = 0.0 equal to 93, 128, 145, for n = 200,500, and 1000, respectively. 

Moving from ρ = 0.0 to ρ = 0.3, the median rank decreases by approximately 20 at each 

sample size. The median penalty parameters across 500 Monte Carlo runs for n = 500; ρ = 

0.0 are λa = .0033, λr = .0036, and λω = .0043, with penalty parameters displaying no 

median trend across sample size or dependency structure but slightly more variation among 

Monte Carlo runs at n = 200 compared to larger sample sizes. The average computation 

times based on ten iterations for Monte Carlo runs at n = 200,500,1000 are 7.6, 15.4, and 

29.1 seconds, respectively. Predictive performance of CARR-GFLM is compared to the 

existing methods of m-GFLM and m-GFLMi with functional effects estimated by projection 

onto a basis of cubic B-splines with five degrees of freedom and second degree differencing 

penalties.

4.2 | Results

Figure 5 displays the results from 500 Monte Carlo runs under each simulation setting, with 

RSE values for the regression function β(a, r, ω) (top row) and coverage probabilities for the 

Bayesian point-wise confidence intervals (bottom row). As expected, RSE values decrease 

as sample size increases with the median RSE reduced by approximately a factor of 3 
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moving from n = 200 to n = 1000 at each level of regional dependency. For a fixed sample 

size, an increase in regional dependency produces a modest but consistent increase in 

median RSE (RSE is increased by 7.2% with ρ changing from 0.0 to 0.3 at n = 200). With 

increasing ρ, functional predictors at each region share more information and the estimated 

regression function may lose precision much akin to when a multivariate regression 

experiences multicollinearity. The true and estimated regression function β(a, r, ω) at three 

regions from the Monte Carlo run with the median RSE (0.327) for n = 500 and ρ = 0.1 is 

shown in Figure 6 . Despite the non-negligible RSE, the shape, periodicity, and magnitude of 

the regression function is well preserved, suggesting that the accumulation of estimation 

error is evenly distributed across the regression functions from each region rather than being 

concentrated within a few regions. Note that n = 200 is a small sample size for functional 

regression settings, especially for binary functional regression. This explains the relatively 

high median RSE values observed for n = 200 (ranging between 0.57 and 0.65 for varying 

values of ρ). The coverage probabilities for each simulation setting approaches the nominal 

level of 95% as sample size increases. For sample sizes n = 500 and 1000, the median 

coverage observed is consistently larger than .83. Since the confidence intervals considered 

are point-wise, they are not expected to hit the nominal level uniformly over all a, r and ω. 

However for n = 200, coverage decreases significantly with increasing ρ. This may be due to 

the fact that the rank of the resulting design matrix after SVD is the smallest at n = 200 and 

ρ = .3, leading to narrower confidence intervals. Note that because coverage probabilities are 

calculated at each (a, r, ω), the number of points considered 15 * 30 * 50 = 22,500 is large 

and thus outliers have been jittered horizontally to improve presentation.

Figure 7 compares the AUC from CARR-GFLM (top row) with m-GFLM (middle row) and 

m-GFLMi (bottom row) over 500 Monte Carlo runs under each simulation setting. For all 

models, the median AUC for the validation sets improves with increasing sample size and 

decreases with increasing regional dependency, though the differences observed for regional 

dependency are small. At each simulation setting, a descending trend is observed for median 

AUCs as one moves from CARR-GFLM to m- GFLMi to m-GFLM. While the median AUC 

for CARR-GFLM is greater than .80 for sample sizes greater than n = 200, m-GFLM and m-

GFLMi fail to exceed a median AUC of .75 for any simulation setting, suggesting that 

incorporating flexible covariate-adjustments is essential for predictive performance even at 

large sample sizes. The overall good AUC for CARR- GFLM suggests that despite the high 

model complexity, the regularization induced by the quadratic penalty and SVD avoids 

overfitting and allows for generalization of the fitted model to newly observed data.

5 | DISCUSSION

We propose a covariate-adjusted region-referenced generalized functional linear model 

(CARR-GFLM) that estimates functional effects across a non-smooth regional domain while 

simultaneously adjusting for observed covariates. The proposed estimation procedure 

projects the regression function onto a tensor basis formed from a kronecker product of one-

dimensional discrete and continuous basis functions. The tensor structure allows for 

construction of a flexible penalty structure that induces regularization along each dimension 

while at the same time controlling the number of shrinkage parameters. Even for a three-

dimensional regression function, the number of elements in the tensor basis will often 
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greatly exceed the number of observed subjects and thus SVD is utilized to reduce the 

dimension of the design matrix allowing the proposed model to be fit in standard software. 

The model can be generalized to accommodate a vector of covariates by introduction of 

additional marginal bases in the kronecker product.

The proposed method is used to model associations between diagnostic status and alpha 

band spectral dynamics in ASD and TD children across a broad developmental range. The 

challenge in estimating a single PAF at each electrode is a voided by considering the full 

alpha spectral density, where the information on the developmental stage of the child is 

integrated into the model by adjusting for chronological age. Thus, based on EEG data 

alone, we find that differences across the scalp in alpha band spectral dynamics between 

ASD and TD children at similar ages can predict diagnostic status reasonably well. This 

finding suggests that developmental differences in the alpha band spectral density may 

provide a promising point of further investigation into the underlying neural differences 

between ASD and TD children. Performance of the CARR-GFLM model is compared to 

existing methods in both the data analysis and the simulation study and is found to provide 

superior prediction and inference. While the proposed model is motivated by a 

developmental EEG study, the methodology can be considered in applications involving 

other brain imaging modalities with a regionally-referenced functional predictor and an 

additional set of covariates.
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FIGURE 1. 
(a) Slices of the group-specific bivariate mean alpha band spectral density (across age and 

frequency (6–14 Hz)) at ages 30, 60, 90 and 120 months from the T8 electrode. Darker lines 

correspond to older children. (b) A schematic diagram of the 10–20 system 25 electrode 

montage.
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FIGURE 2. 
Slices of the region-referenced mean surface η(a, r, ω) representing the electrode-specific 

mean alpha spectral density at ages 30, 60, 90, and 120 months for the T8 and T10 

electrodes. Darker lines correspond to older children.
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FIGURE 3. 
The results from fitting the CARR-GFLM model to the resting state EEG data for the T8 

electrode. Results are presented with increasing age from 30 to 120 months organized by 

column. (top row) The average mean-centered functional predictor for (black) TD children 

and (grey) ASD children. (middle row) Cross sections of the estimated regression function. 

(bottom row) The point-wise product of the top two rows where the shading represents the 

average area under the curve for the (black) TD children and (grey) ASD children.
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FIGURE 4. 
(top and middle row) The predicted probabilities of ASD diagnosis and their associated 95% 

confidence intervals for the study subjects, with true group membership denoted by black for 

TD and grey for ASD for the CARR-GFLM (top) and m-GFLMi (middle) models. (bottom 

row) The estimated regression functions for the main effects and interaction term from the 

T8 electrode for the m-GFLMi model.

Scheffler et al. Page 21

Stat Med. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 
The simulation results from 500 Monte Carlo runs under each simulation setting (ρ = 
0,0.1,0.3 in columns and n = 200,500,1000 in columns within panels). RSE values for the 

regression function β (a, r, ω) (top row) and the coverage probability for the Bayesian point-

wise confidence intervals for a nominal level of 95% ((bottom row) are provided. Outliers 

are jittered horizontally to improve presentation.
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FIGURE 6. 
The true (left column) and estimated (right column) regression function β (r,a,ω) for regions 

r = 1,7,15 (descending rows) from the Monte Carlo run with the median RSE (0.327) under 

the simulation design, n = 500; ρ = 0.1.

Scheffler et al. Page 23

Stat Med. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
The AUC for the validation data sets from 500 Monte Carlo runs under each simulation 

setting (ρ = 0,0.1,0.3 in columns and n = 200,500,1000 in columns within panels) for the 

CARR-GFLM (top row), mGFLM (middle row), and m-GFLMi (bottom row).
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