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Statistical inference in behavioral research:
traditional and Bayesian approaches
Alexander Etza, Steven N. Goodmanb, and Joachim Vandekerckhovea,*

This is the author final version of a chapter published in Research Integrity in the Behavioral Sciences (Oxford University Press).

Null hypothesis significance testing (NHST) has long been a mainstay of scientific research, more in some scientific fields than others. It
persists despite numerous calls across multiple scientific disciplines to abandon or at least modify the practice. In 2016, the American
Statistical Association issued a statement decrying the use of the “bright line” p < .05 criterion as leading to a “considerable distortion of
the scientific process.” There are a number of alternatives to NHST that don’t share its logical and practical deficiencies. First among them is
Bayesian inference, which can be viewed as both a calculus of evidence and of belief. The Bayesian definition of “evidence” differs profoundly
from what the p-value represents. In this chapter, we review deficiencies in NHST and provide an introduction to Bayesian reasoning, with
particular attention to its relationship to the truth of scientific claims.

Statistics | Inference | Bayesian | Frequentist | JASP | Bayes factor | p-value

The recent crisis of confidence in psychological science (Pashler
& Wagenmakers, 2012) has led to repeated calls for better sta-
tistical methods, better study designs, and better social incentive
structures. The link of the analytic and inferential issues above
to research integrity is fairly direct, in that research integrity, writ
large, is the fidelity of the scientific process and resulting conclu-
sions to the truth. If it can be shown that the manner in which
studies are done, data is analyzed, or conclusions drawn is likely
to systematically deviate from the truth, then by definition we have
a challenge to research integrity. There has been an evolution of
professional and scientific norms within the behavioral sciences
that have exaggerated and reified some of the most unfortunate
misconceptions and misuses to which standard methods using
hypothesis tests and p-values (known as “frequentist”) are subject;
in particular that statistical significance is an arbiter of truth, that
the credibility of a claim can be assessed without considering the
prior probability of the claim being true, and that non-significant
studies are uninformative. These misconceptions and misuses
include but are not limited to:

7 The false belief that a typical experiment yielding p < .05 is
all that is needed to prove a theory;

7 Resistance to replication of important experiments;
7 The difficulty of publishing research replications;
7 Strong selection pressure at journals for significant findings

(i.e., publication bias);
7 Professional advancement dependent on publications in

highly cited journals, with acceptance influenced by statis-
tical significance;

7 Widespread use of “p-hacking”;
7 Failure to use sample sizes that correspond to a priori plausi-

ble or scientifically important effect sizes;
7 Failure to share data;
7 Failure to prepare, share or publish research protocols.

aUniversity of California, Irvine; bStanford University School of Medicine
All authors contributed to the final draft.
*To whom correspondence should be addressed.

A number of the practices above, particularly those related to repli-
cation and publication, can be related directly to practices based
on extreme versions of frequentist philosophy. But they also mean,
because so many of these practices are deeply entrenched and
indeed, institutionalized, that adopting alternative methods (e.g.,
“Bayesian”) cannot solve all of the challenges to scientific integrity in
the social and behavioral sciences. Nevertheless, we believe that
understanding Bayesian approaches represents a critical piece of
a multifaceted strategy that the behavioral sciences must adopt if
its findings and claims are to be regarded as reliable. To explain
why this is so, in this chapter we will review the fundamentals of
both Frequentist and Bayesian philosophies and methods.

The Foundations of Inference: Types of probability

Science starts and ends in uncertainty. As such, it should not be
surprising that the properties and indeed integrity of any scientific
method depends on how it represents uncertainty. The most basic
measure we have for representing uncertainty is probability. Many
scientists are surprised to learn that probability is an extraordinarily
difficult and complex measure, philosophically and scientifically.
We will begin this discussion of methods in statistical inference by
outlining how different conceptions of probability lead to different
approaches to inference. Many controversies about the proper
approaches to statistical inference are in fact derived from contro-
versies about the meaning of probability itself, which we will review
here.

The original meaning of probability derived from the same root
as “approbation,” related to the degree to which an opinion or
action was supported by evidence, such as when deciding on
the guilt or innocence of a suspect. This kind of probability was
“epistemic” in nature; it related to one’s degree of belief, or a logical
relationship between the opinion and the strength of underlying
evidence. This notion was completely distinct from the notion of
“chance,” as exemplified in games of chance, or gambling. This
kind of probability came to be designated “aleatoric”, related to
games, or “stochastic,” which today applies to a random physical
process.

Today’s dominant approaches to probability can be divided into
the “frequentist” and “epistemic” schools. The frequentist notion

1



AUTHOR

FI
NAL

VERSIO
N

derives from the aleatoric type and epistemic probability is some-
times called “Bayesian.” The frequentist approach to probability is
actually the more recent of the two, having only been formalized
in the early 20th century. The frequentist approach represented
an attempt to make probability as objective and measurable a
scientific quantity as physical measurements like height, weight,
and mass. This was achieved by defining the probability of event
A as being equal to its proportion in a pre-specified, in principle
observable, “collective” of repeatable random events – equivalent
to a “long-run frequency.” The idea was that if we could observe
this proportion, this probability would be objective, uniquely speci-
fied and observable. This probability was deductive in nature, in
that once the collective was specified, the probability of outcomes
within it would be set, or as von Mises famously declared, “First
the collective, then the probability” (von Mises, 1957).

Two consequences of this definition are worth noting, as the
problems with any probability definition are inevitably shared by
the systems of inference built upon them. First, the frequentist
notion of probability does not apply to individual events, but rather
to the collective itself (i.e., the “long run”). Thus, if an experiment
is generating a single outcome to which we want to assign a
probability, this definition says that we cannot apply a probability
to that individual experiment, only to the “long run” of repetitions.
This is why virtually every traditional statistical measure, from p-
values to confidence intervals to Type I and Type II error rates,
have definitions starting with “if this experiment is repeated.” The
second problem is that the long run is not actually observed but
constructed through a thought experiment. One can “imagine”
what might happen if the experiment were repeated many times,
but this differs from having the multiple repetitions in hand. There
may not be a consensus on why the experiment stopped or how
it was run, with consequent uncertainty about which “long run” is
relevant; a given result can be a legitimate member of several
different long runs (Goodman, 1999a; Wrinch & Jeffreys, 1919).

To complicate this further, outcomes within a given long run
may not be equiprobable; for instance, the border of a “tail area”
used to calculate a p-value is almost always the most probable
outcome within that tail and grouping them together sometimes
violates inferential intuition. So the conditions for using frequen-
tist probability as a foundation for inference come at a price; the
resulting numbers cannot be used to apply to an individual ex-
periment, observers must agree on the hypothetical “long run”,
and demonstrably different elements of a long run may be treated
similarly. These properties generate the requirement for rigid pre-
specification of all experimental procedures, including outcome
measures and stopping rules, and cautions that 95% confidence
intervals don’t mean we have 95% confidence in any individual
interval.

In contrast, epistemic probability can apply to individual events
or to propositions that are not repeatable events. It is a plausibility,
or a “degree of justified belief”, with the justification arising from
underlying evidence. The “logical” subtype of epistemic probability
requires that the correspondence between belief and the evidence
be unique, based on logical relationships that can be difficult to get
agreement on. The “subjective” subtype allows for variation among
individuals but raises the question of whether inter-subjective vari-
ability renders it illegitimate as a scientific tool.

What makes probability “scientific?”. The question of what
makes methods based on these types of probability “scientific”,
or correspond with the truth, is a central issue for science. For
the frequentist, a “scientific” or objective probability is based on

correspondence with an imagined empirical reality. This reality is
not usually observable, and is typically based on statistical models,
calculations or simulations. Even if these models are correct, or
agreed upon, they apply only to the data, not to hypotheses, so
a frequentist has no language or measure of uncertainty about
hypotheses giving rise to the data.

The “scientific” property of epistemic probability is not empir-
ical, but logical. It is that probabilities are (a) consistent (i.e.,
one would never believe simultaneously that P (A) > P (B) and
P (A) < P (B)), and (b) coherent, in that one would never act
based on these beliefs in ways that guaranteed one would be
worse off. These properties lead us directly to Bayes theorem: one
can only satisfy these conditions if one’s epistemic probabilities are
modified by empirical data using Bayes theorem. Bayes theorem
further guarantees that with accumulating data, any intersubjective
differences (such as interindividual differences in the strength of
one’s prior beliefs) will eventually disappear and probability es-
timates will typically conform to observable reality (Diaconis &
Freedman, 1986). So epistemic probability in some sense ends
where frequentist probability tries to start – a correspondence with
observed reality. As Kendall (1949) stated, “Neither party can avoid
using the ideas of the other to set up and justify a comprehensive
theory” (p. 107).

Bayes theorem. It was the need to answer fundamental questions
about the behavior of games and rational betting strategies that led
to developments in the calculus of probabilities (Devlin, 2010). It
was the theorem of an amateur scientist, the Rev. Thomas Bayes,
that has reverberations today. He set out to answer the question of
how much one should bet on one player versus another player in
an interrupted game of chance. In solving this, he came up with
an equation that is an uncontroversial mathematical expression. It
was that the probability of two events occurring together, A and
B, could be decomposed into different ways: the probability of A
given B, times the probability of B, or the probability of B given A,
times the probability of A. This can be written: P (A&B) = P (A |
B)× P (B) = P (B | A)× P (A). Equating the two expressions
on the right, this can be rearranged to yield Bayes theorem:

P (A | B) = P (B | A)× P (A)
P (B) .

This is merely the algebra of conditional probability, subject to no
more controversy than 1 + 1 = 2. The difficulty begins when we
assign meanings to A or B such that their probabilities cannot be
directly observed. If A is a scientific hypothesis and B is data,
Bayes theorem becomes:

P (Hypothesis | Data) =
P (Data | Hypothesis)× P (Hypothesis)

P (Data)
.

This equation requires us to define a measure that corresponds
to the probability of a hypothesis being true (e.g., P (Hypothesis))
without data. This kind of probability falls into the “epistemic”
category; logically justified, perhaps, but not necessarily empirically
confirmable.

So Bayes theorem, when applied to the process of inference—
drawing conclusions about nature based on observed data—
requires an epistemic probability of a hypothesis. This was his-
torically known as “inverse” probability because it allows us to
“invert” P (Data | Hypothesis) to P (Hypothesis | Data), but it is
now more commonly called “Bayesian” probability (Fienberg, 2006).
The acceptance or rejection of this foundational concept is at the
core of the controversy about the use of Frequentist and Bayesian
methods in statistics.
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Statistical inference. Statistical inference is a subset of the broader
subject of scientific inference. An inference from the general (hy-
pothesis) to the specific (data) is called “deductive” and is truth
preserving, in that the conclusions are true if the premises are true.
This is what makes it an attractive foundation for empirical science;
it guarantees—as in pure mathematics—that all statements de-
riving from the premises are valid if the premises are true. But it
comes at the price of not expanding our knowledge beyond what
is already in the premises. Making a statement about the truth of a
hypothesis based on observed data is a form of inductive inference,
also called “ampliative” inference, in that the conclusion (about a
hypothesis) has more explanatory power than the premises (the
data). So inductive logic “amplifies” our knowledge, but at the price
of not knowing if our conclusions about the hypotheses are correct.

In statistical inference, the hypotheses are probabilistic state-
ments about nature, i.e., statistical. Examples of statistical hy-
potheses are “a response rate is 10%,” or “the success rates of
two interventions are equal.” Under such hypotheses, one can
predict the distribution of observations one would expect under
specified experimental conditions. A prediction based on proba-
bilistic formulae, of how often various outcomes will arise under
a specified statistical hypothesis is deductive, and the attendant
probabilities, “frequentist.” Any probabilistic statements about the
underlying truth are by definition epistemic, or “Bayesian.”

Origins of frequentist inference

The central challenge of statistical inference is how to make state-
ments not about observable data, but about the hypotheses that
give rise to them, the essence of inductive reasoning. Until the
early 20th century, a widely accepted methodology for how to use
data to ascertain the truth of underlying hypotheses did not ex-
ist. Scientists and statisticians were familiar with the mathematics
of probability, but how to use those mathematical properties to
draw conclusions about nature from data was far more unsettled.
The problem lay in the measure of probability itself; there was a
well-known formula that could guide inference about probabilities—
Bayes theorem—but its use required the acceptance of epistemic
probability that many rejected as a foundation for sound science.
The challenge was whether a method could be constructed, based
purely on frequentist probability, that could provide a measure of
uncertainty about underlying hypotheses without the machinery of
Bayes or attendant Bayesian probabilities.

Frequentist inference as we know it today was really born in
the 1920s and 1930s, as a reaction to the Bayesian model. The
pioneers in this frequentist revolution were Ronald Fisher, Jerzy
Neyman, and Egon Pearson. Fisher was a mathematician, geneti-
cist and active experimentalist, the latter in the field of agriculture.
Neyman and Pearson were mathematical statisticians. The driving
motivation was to develop a new framework of inference that was
“objective,” in the sense that it was not based on epistemic uncer-
tainty. Fisher believed that “The theory of [Bayesian inference] is
founded upon an error, and must be wholly rejected” (Fisher, 1925,
p. 10). What was this fatal error? He objected to using Bayes
theorem when there was no basis to estimate the prior probability
of a hypothesis, nor an acceptable way to assign probabilities if
we claimed prior ignorance (Aldrich, 2008; Zabell, 1989). In the
1920s Fisher constructed his own view of how inference could be
conducted, without needing to specify prior distributions. These
included new approaches to both testing and estimation. He took
the idea of a tail-area probability, used by Karl Pearson, and made
it his central tool for statistical testing, calling it the “p-value”, short

for “probability” value, or “associated probability.” The use of the
p-value sidestepped the topic of prior probabilities by only consid-
ering which data might be observed if the null hypothesis were
true.

The p-value was originally intended to be used as a measure
of evidence against the null hypothesis to be combined with other
sources of evidence, and not as an “error rate” associated with
a decision. Fisher suggested that the .05 level might be a use-
ful benchmark, not for determining whether the null hypothesis
was likely to be false, but for deciding whether an experiment was
worth repeating (some more history about the origins of the .05
level is given in Cowles & Davis, 1982). He stated that the .05
threshold represented weak evidence in a single experiment, and
that one should consider the null hypothesis to be false only if,
upon repeated experimentation, “a properly designed experiment
rarely fails to give this level of significance” (Fisher, 1926). So the
“one and done” modern practice of declaring theoretical confirma-
tion based on a single significant experiment is antithetical to the
practice suggested by its originator.

Fisher’s influence expanded immeasurably with the publication
in 1925 of his landmark statistical textbook, Statistical methods
for research workers (Fisher, 1925). This textbook was the first of
its kind, aimed at practicing scientists, filled with practical exam-
ples showing how to analyze common experimental designs, and
served to popularize the use of the p-value. This book, revised 14
times, was a scientific best seller from the time of its publication
until after Fisher’s death in 1962.

Fisher’s approach to inference had both formal and informal
components. Two of Fisher’s contemporaries, Jerzy Neyman and
Egon Pearson, began to try to reframe Fisher’s ideas in a more
formal mathematical framework. In 1928 they proposed a modifica-
tion to the original testing procedure of Fisher (Neyman & Pearson,
1928). Their idea was to introduce an alternative hypothesis to
contrast to the null hypothesis used by Fisher, and to propose
formal decision rules for accepting and rejecting these hypotheses.
They introduced the now familiar notions of Type I and II errors and
power. They proposed that statistical properties of various decision
rules should be studied, and in 1933 they derived the properties
of optimal statistical tests (Neyman & Pearson, 1933). Neyman
would later turn his sights to the topic of estimation, proposing the
now ubiquitous confidence interval procedure (Neyman, 1937).

The innovations by Fisher, Neyman, and Pearson served as the
foundation of modern mathematical statistics. In the following sec-
tions we outline the differences between them, the ways in which
frequentist testing and estimation is done today, and summarize a
number of common criticisms levied at them.

The basics of frequentist testing

In a statistical testing context we are concerned with deciding
which of a set of competing hypotheses are true. A statistical
hypothesis refers to either population parameter values or the
forms of statistical models. Tests of these statistical hypotheses
are used as a stand-in for tests of scientific hypotheses. For
instance, the statement that “the average height of men in the
population is not equal to that of women” is a hypothesis about
the difference between the averages of populations of men and
women. If we let the parameter δ represent the difference in height
between populations of men and women, then a translation of our
hypothesis into statistical language would be that δ 6= 0.

In the Neyman and Pearson theory of hypothesis testing there
are two competing hypotheses: the null hypothesis and the alter-
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native hypothesis. The alternative hypothesis is chosen so that it
corresponds with our hypothesis of interest; the null hypothesis
is (typically) constructed such that it represents the complement
of the alternative hypothesis. In our heights example, the hypoth-
esis that δ 6= 0 would be our alternative hypothesis and our null
hypothesis would be its complement, δ = 0. In the Neyman and
Pearson framework, the outcome of a hypothesis test is a binary
decision: either reject the null hypothesis and accept the alterna-
tive or accept the null hypothesis. This leads to the possibility of
making two types of errors: rejecting the null hypothesis when it is
actually true (false positive, “α” or Type I error), and not rejecting
the null hypothesis when it is actually false (false negative, “β” or
Type II error). The set of observations that would lead to rejection
of the null hypothesis are called the rejection region of the test. If
the observed data are in the rejection region (e.g., Z > 1.96) then
one is supposed to “reject” the null hypothesis. In this framework,
one chooses the rejection region such that there is no more than
(100 × α)% chance of making a Type I error, while at the same
time keeping the chance of making a Type II error to a minimum.
In practice, the use of .05 for the Type I error and less than .20 for
the Type II error has become standard.

Fisher’s significance test shared many features with that of
Neyman and Pearson, with a few key differences. In Fisher’s
approach, there is no alternative hypothesis; one only considers
which data might be observed if the null hypothesis were true.
With the data in hand one computes the p-value, which is the
probability of the observation plus the probability of any other
observations further from the null hypothesis. For example, if
one observes a Z-value of 2.5, then the p-value is the probability
of observing a Z-value greater than or equal to 2.5. Fisher felt
that the exact level of the p-value was informative, whereas in a
hypothesis test the only information to be used was whether the
result fell in the rejection region, and a p-value was not calculated
at all. If the p-value is small then one has evidence to suggest
the null hypothesis is not true, with smaller p-values providing
stronger evidence. On the topic of whether to regard a given p-
value is considered “significant,” in this approach it is “open to
the experimenter to be more or less exacting in respect of the
smallness of the probability he would require before he would
be willing to admit that his observations have demonstrated a
positive result” (Fisher, 1971, p. 13). This represented the kind of
informality that the Neyman-Pearson hypothesis test was designed
to eliminate. As noted previously, Fisher also put a particular
premium on replication of significance, an idea revived in the 2000’s
under the rubric of research reproducibility (e.g., Goodman, Fanelli,
& Ioannidis, 2016).

Fisher very strongly rejected hypothesis tests as being too
algorithmic and thereby anti-scientific, ironically a criticism that is
today aimed at his innovation, the use of p-values. But today, the
two approaches are typically taught and practiced as a unified set
of methods. For instance, a researcher might set up a null and
alternative hypothesis and choose a Type I error rate of .05, and
then once the data are observed they report: a) whether the data
fall into the rejection region and the null hypothesis was rejected, as
well as b) the strength of the evidence against the null hypothesis
in the form of a p-value. More historical detail on that controversy
and the rise of frequentist inference can be found in Hald (2008),
Goodman (1993), and Gigerenzer (1993, 2004).

Criticisms of frequentist testing. A number of criticisms have
been levied toward the frequentist approaches to hypothesis
testing. First, researchers have a tendency to misinterpret p-

values and to use them to draw improper inferences from their
data (Greenland et al., 2016). A survey by Oakes (1986; repli-
cated by Haller & Krauss, 2002) illustrates these misconceptions.
Oakes quizzed psychology researchers’ interpretations of frequen-
tist hypothesis tests by presenting an experiment that results in
t(18) = 2.7 and p = .01. In response, 35% of the researchers
marked as true the statement, “The probability of the null hypothe-
sis has been found;” 85% endorsed the statement, “The probability
that the decision taken is wrong is known;” 60% endorsed the
statement “A replication has a .99 probability of being significant.”
Since neither a p-value nor Type I error rate apply to the underlying
hypotheses, none of those interpretations are correct.

Other critiques have focused on the statistical properties of
the null-hypothesis significance testing procedure. The p-value
is defined as the probability, if the null hypothesis were true, of
results as or more extreme than those observed in the experiment.
That is, a p-value takes into account not only the results that were
actually observed in the experiment, but also those that could
have potentially been observed but were not. This dependence on
unobserved data has been seen as an inherent weakness of the
procedure (e.g., Jeffreys, 1961), and many take issue with the am-
biguity in the definition of which outcomes are “more extreme” than
those observed because this depends critically on the sampling
plan (Goodman, 1999a; Lindley, 1993) – and the sampling plan is
often arbitrarily chosen (in many research labs) or unknown (in the
case of naturally occurring data, meta-analyses, etc.).

Another challenge associated with frequentist testing proce-
dures is that they are not always logically consistent. Schervish
(1996) and Royall (1997) demonstrate a number of general cases
where both the process of using p-values as measures of evidence,
as well as the process of strict reject/accept hypothesis tests, can
lead to paradoxical inferences. Consider two researchers, Pat and
Oliver, who want to test whether men and women have different
heights. Both specify a point null hypothesis that the average dif-
ference is zero (i.e., δ = 0), but Oliver is only interested in whether
men are taller, so decides to use a one-sided test. They both
agree to use α = .05 to determine their rejection region, mean-
ing Oliver rejects his null hypothesis if Z > 1.64 and Pat rejects
her null hypothesis if |Z| > 1.96. If the experiment results in
1.64 < Z < 1.96, then Oliver rejects his one-sided null hypothesis,
p < .05, and asserts that men are taller on average than women.
At the same time, Pat cannot reject her null hypothesis, because
her calculated p-value is greater than .05, and hence cannot assert
the weaker logical claim that men are either taller or shorter than
women. Thus we are licensed to conclude that men are taller
than women, but, paradoxically, have to withhold judgment about
whether they are taller or shorter. Examples like these also chal-
lenge the notion that frequentist testing is completely objective;
we have the same data, the same null hypothesis, yet we cannot
know the p-value (and the decision) without knowing what is in the
scientists’ minds.

A last issue with p-values as measures of evidence is that they
incorporate no information about effect magnitude. A large effect in
a small study can have the same p-value as a small effect in a large
study. This violates basic scientific intuition that if two observed
effects have the same “statistical distance” from the null effect (e.g.,
the same number of standard errors), the one further from the
null contradicts it more strongly. The p-value does not have that
property because it is calculated only in relation to one hypothesis.
Some statisticians and philosophers (e.g., Evans, 2015; Royall,
1997) object on logical grounds to calling the p-value “evidence,”
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saying that “evidence” must explicitly compare hypotheses, as the
purpose of evidence is to modify belief; “evidence” is a construct
that elevates data from being a neutral observation to something
inferentially relevant. This is the framework for the Bayes Factor,
an alternative measure to the p-value, discussed later.

Frequentist estimation

Recently the field of psychology has seen efforts to replace the ap-
parently problematic practice of hypothesis testing with a focus on
estimation (Cumming, 2014), a practice long advocated (Gardner
& Altman, 1986) and now standard in biomedical research (Altman,
Machin, Bryant, & Gardner, 2013). Estimation has a different goal
than hypothesis testing. Instead of accepting or rejecting hypothe-
ses, estimation concerns which parameter values of a model are
most consistent with the observed data. For example, instead of
testing the difference in heights of men versus women, we would
just estimate the average difference. Frequentist estimation prob-
lems consist of two components: finding a best guess about a
parameter and computing an interval of uncertainty around it. The
“best guess” is called the point estimate, and the frequentist uncer-
tainty interval is called a “confidence interval.” While this seems
straightforward, the formal definition of a confidence interval is
rather convoluted, because of its foundation in frequentist proba-
bility. Namely, “An X% confidence interval for a parameter θ is an
interval (L,U) generated by a procedure that in repeated sampling
has an X% probability of containing the true value of θ, for all pos-
sible values of θ” (Morey, Hoekstra, Rouder, Lee, & Wagenmakers,
2016). It is important to appreciate the subtle implications of this
definition. The frequentist paradigm allows us to make statements
about the group of estimates generated by the confidence inter-
val procedure, but this differs from making statements about the
estimates themselves.

To illustrate the distinction, take the following example (due to
D. Basu; Ghosh, 1988). To determine a 95% confidence interval, let
us ignore the data and instead generate a random number between
0 and 1 from a uniform distribution, deciding as follows: CI = ∅ if the
number is .05 or smaller and CI = (−∞,+∞) otherwise. Note that
this odd procedure has the same property: with a probability of one
in twenty (5%), it will generate the empty interval ∅, which does not
contain the true parameter, and with a complementary probability
95%, it will generate the infinite interval that does contain the
true parameter. Hence, according to the definition, any interval
generated by this procedure is a valid 95% confidence interval.
It is hopefully clear that these intervals are useless for scientific
inference.1

This example is artificial, but the same principle applies in situ-
ations where we believe strongly in the null hypothesis (e.g., the
existence of ESP), or any range of hypotheses. We do an ex-
periment that generates a 95% CI on the ESP effect size of, say,
0.3 to 0.6. We would recognize this as very unusual, and would
not accord it a 95% probability of including the truth because that
would mean that after this one result we would have a 95% or
greater belief in the existence of ESP. This shows that we do not
accord every observed interval the same 95% chance of including
the truth. If we strongly believe in the null, we will accord every ob-
served interval including the null much higher than 95% chance of
including the truth, and every CI not including the null a much lower

1Note that an exactly analogous procedure can be conceived for null hypothesis significance testing:
Reject the null hypothesis if and only if a 20-sided die comes up 1. Such a procedure guarantees
that, in the long run, we will falsely reject approximately 5% of all true null hypotheses. The proce-
dure is nevertheless entirely useless.

than 95% chance of including the truth. If our prior evidence/belief
is justified, this would be confirmed empirically.

From these thought experiments, we recognize that the proper-
ties of a confidence interval generating procedure do not neces-
sarily transfer to the confidence intervals themselves, and that we
need another inferential approach to know what credibility to apply
to any particular observed interval. This is not a new insight. The
subtle distinction between properties of an interval and properties
of the process that generated an interval is why Neyman used
the neologism “confidence,” instead of “probability” to describe the
interval, as he was aware that the confidence level did not accord
with the frequentist notion of probability.

Criticisms of frequentist estimation. Most confidence intervals
used in practice can be seen as inversions of one hypothesis test
or another, in that the parameter values inside a 1− α confidence
interval are precisely those which would not be rejected by a level
α hypothesis test. Thus, these confidence intervals necessar-
ily inherit the statistical criticisms of hypothesis tests mentioned
above.

Like hypothesis tests, confidence intervals are often misinter-
preted. Hoekstra, Morey, Rouder, and Wagenmakers (2014) pro-
vided researchers and students with a survey about confidence
intervals, analogous to the survey conducted by Oakes (1986)
about hypothesis testing. This survey presented the result of an
experiment with a 95% confidence interval for the mean ranging
from 0.1 to 0.4. In response, 86% of the researchers from this
sample marked as true the statement, “The ‘null hypothesis’ that
the true mean equals 0 is likely to be incorrect”; 59% endorsed the
statement “There is a 95% probability that the true mean lies be-
tween 0.1 and 0.4”; 47% endorsed the statement “The probability
that the true mean equals 0 is smaller than 5%”; 58% endorsed the
statement “If we were to repeat the experiment over and over, then
95% of the time the true mean falls between 0.1 and 0.4.” Just as
with the previous survey, none of these statements follow from the
result of a confidence interval.

Recognition that the p-value value was both widely misused in
a “bright line” fashion and misinterpreted as an inverse probability
led the American Statistical Association to issue a remarkable
statement about p-values in 2016 (Wasserstein & Lazar, 2016),
the first such statement in its 125-year history. The most important
two points of the statement were that p ≤ .05 does not mean that
the probability of the null hypothesis is less than .05, and that the
use of p ≤ .05 as an indicator of the truth or falsity of a scientific
claim represented poor scientific practice.

Bayesian methods

Bayesian updating. The way in which probabilities are expressed
in natural language is prone to misunderstanding. The confusion
of the inverse is the cognitive illusion that the very different proba-
bilities P (A | B) and P (B | A) are similar in magnitude, whereas
they can be completely divergent. A common illustration is the case
where A = “Jane is a US citizen,” and B = “Jane is a member of the
US Senate.” In that case, P (Jane is a citizen | Jane is a Senator)
is 1, whereas P (Jane is a Senator | Jane is a citizen) is close to 0.
Similarly, if we flip a standard coin 5 times and get 5 heads the prob-
ability of getting that is P (5heads | Fair coin) = 1/32, but the prob-
ability that the coin is fair given the 5 heads, P (Fair Coin | Data),
would still be 1 because—outside of statistics textbooks—people
do not carry around biased coins (Gelman & Nolan, 2002).
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Bayes theorem provides us a way to properly go from P (Data |
Hypothesis), a “direct probability” that we can calculated under
any model, to P (Hypothesis | Data), the inverse probability. The
inverse probability is called a “posterior” probability since it is the
probability of the hypothesis after considering the data, contrasted
with the “prior” probability of the hypothesis before seeing the data.
Going from the prior probability to the posterior probability is called
Bayesian “updating.” To show this, we will write Bayes theorem
slightly differently than before:

P (Hypothesis | Data)︸ ︷︷ ︸
Posterior probability

= P (Hypothesis)︸ ︷︷ ︸
Prior probability

×
(

P (Data | Hypothesis)
P (Data)

)
︸ ︷︷ ︸

Updating factor

In this equation, P(Hypothesis) is the prior probability of the hypoth-
esis, and P (Data | Hypothesis)/P (Data) is an updating factor
that captures how much more likely the hypothesis becomes once
the data are factored in (Carnap, 1950; Keynes, 1921; Rouder &
Morey, 2019). This updating factor is a measure of the strength
of evidence supporting the hypothesis (Berger & Wolpert, 1988;
Edwards, Lindman, & Savage, 1963; Royall, 1997; Wagenmakers,
Gronau, Dablander, & Etz, in press).

Bayesian methods have a number of attractive properties for
use in science. Because they derive directly from epistemic proba-
bility theory, they are guaranteed to be internally consistent, and
because they are built on a formal system, they do not rely on
shortcuts, heuristics, or leaps of logic. Most importantly, because
Bayesian methods allow us to calculate the probability that a hy-
pothesis is true, their use is particularly attractive for behavioral
scientists (Edwards et al., 1963; Etz & Vandekerckhove, 2018;
Vandekerckhove, Rouder, & Kruschke, 2018).

Bayesian testing. The power of Bayesian methods comes with
certain requirements. Because the system of inference is formal,
the researcher is required to be similarly precise in the specification
of their statistical assumptions – as in any formal system, the con-
clusions are only as good as the assumptions. It is important for the
analyst to make only assumptions that are reasonable, defensible,
or otherwise tenable (e.g., because it can be demonstrated that
the conclusions are invariant under multiple sets of assumptions).
This can be challenging to researchers accustomed to statistical
analyses that work out-of-the-box and do not appear to demand
such efforts, but classical methods are equally or more assumptive,
just not transparently so.

How to represent the prior probability of the hypothesis,
P (Hypothesis), is often the most contentious in model compari-
son exercises. Scientists conduct their research to determine the
probability that a hypothesis is true (or false), so quantifying that
probability before they start is sometimes difficult, particularly if
it is an unfamiliar exercise. Of course, there is nothing illogical
about factoring prior information into our ultimate evaluation of a
hypothesis, but sometimes that information is difficult to quantify.
In such cases, it might be desirable to instead limit the scope of
the calculation and assess first only how much is learned from
the data at hand. This is where a new quantity, the Bayes factor,
becomes useful.

Consider the case where there are two competing hypotheses,
Ha and Ho, and where we have some relevant data D. For this
case, there will exist two posterior probabilities: P (Ha | D) and
P (Ho | D). A handy way of expressing which hypothesis is more
likely than the other is the posterior odds P (Ha | D)/P (Ho | D).
Using Bayes theorem, we know that P (Ha | D) = P (D | Ha)×

P (Ha)/P (D). Substituting Ho into the same equation and dividing
the two gives us the “odds form” of Bayes theorem:(

P (Ha | D)
P (Ho | D)

)
︸ ︷︷ ︸

Posterior odds

=
(

P (Ha)
P (Ho)

)
︸ ︷︷ ︸

Prior odds

×
(

P (D | Ha)
P (D | Ho)

)
︸ ︷︷ ︸

Bayes factor

.

We can read this expression in an intuitive way: the relative poste-
rior probability of two hypotheses is their relative prior probability
multiplied by the relative strength of evidence provided by the data.
This relative strength of evidence is the ratio of the predictive suc-
cess of the two hypotheses and is called the Bayes factor. In other
words, how much better each hypothesis predicts the observed
data determines how much more we believe in one than the other
after seeing the data.

Mathematical likelihood. The Bayes Factor is the ratio of two proba-
bilities that are important to understand on a deeper level. They
are derived from calculating the direct probability of the data under
a given model, P (Data | Hypothesis), which is also the basis of
the likelihood function (Etz, 2018; Goodman & Royall, 1988; Royall,
1997), sometimes written as L(Hypothesis | Data). The reason
we rewrite it in that way is that the likelihood function treats the
data we observe as fixed and varies the parameter of interest of
the probability model generating the data, whereas a probability
density function holds the parameters fixed and calculates the
probability of all possible data. We interpret the probability of the
observed data under a given model as the support the data give to
that model, captured in the simple relationship:

L(Hypothesis | Data) = C × P (Data | Hypothesis).

The likelihood function has two critical properties that differ from
p-values. First, it uses to the probability of the data in hand, not the
often unknowable “more extreme data” used in frequentist methods.
Second, for inferential purposes, it is always used in a comparative
fashion, as in the Bayes factor above. The arbitrary constant C
cancels when ratios are taken and shows that the likelihood has
no unique value. So instead of being a probability under only
one hypothesis (e.g. p-values), we compare instead how well two
hypotheses predict the observed data; it is the relative support
given to different hypotheses that is interpreted as evidence, not
the degree to which the data are incompatible with just one hypoth-
esis. Finally, likelihood functions provide a formal framework (viz,
Bayes theorem) for interpreting their inferential meaning, whereas
frequentist methods do not.

Bayesian testing with likelihood ratios. Consider the case of bistable
perception. In this phenomenon, a single perceptual stimulus can
be seen or heard two different ways. A figure might look like a
vase one moment but look like two faces the next moment; or
a drawing might look like a duck one second, a rabbit the next.
Some ambiguous percepts differ between individuals: a dress in a
photograph might appear blue and black to some people, gold and
white to others; or a sound clip might sound like “YANNY” to some
and like “LAUREL” to others.2 Suppose that a researcher claims
that teenagers are more likely to hear YANNY than LAUREL – three
times more likely, in fact (i.e., 75% chance of YANNY). Another
researcher claims there is no preference (i.e., 50% chance of
YANNY). Because both of these claims are quite specific, let us call

2This example is based on a real debate caused by an audio clip that went viral on social media
in the spring of 2018. In the audio clip, a male voice is clearly heard saying “LAUREL,” but many
perceived it as saying “YANNY.” The clip, some variations, and background, can be found on CNN
(2018, May 16).
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Fig. 1. An illustration of the computation of the Bayes factor using visualizations
from Etz et al. (2018). Shown are the predictive distributions of two competing
hypotheses: one ‘point null hypothesis’ under which some event happens with a
50% probability (lighter bars, upside-down) and one ‘competing-point hypothesis’
under which it happens with a 75% probability (darker bars, upright). The predictions
are for an experiment with 30 trials in which the event can either occur or not. The
arrows indicate the case where the event happened 20 times out of 30. This outcome
is predicted with a probability of .0280 under the point null hypothesis and with a
probability of .0909 under the competing-point hypothesis. The Bayes factor between
these two models is simply the ratio of these probabilities, here 3.247.

the latter claim the “point null hypothesis” and the former claim the
“competing-point hypothesis.” Further suppose that the researchers
collected data from 30 teenagers and found that Y = 20 heard
YANNY while L = 10 heard LAUREL.

We can now calculate how strongly either hypothesis had pre-
dicted this outcome. In both cases, the probabilities are obtained
with the binomial formula. For the point null hypothesis Hp, the
probability is

P (Y = 20, L = 10 | Hp) =
(
Y + L

Y

)
× 0.50Y × 0.50L

=
(

30
20

)
× 0.5020 × 0.5010

= 0.0280,

while for the competing-point hypothesis Hc, the probability is

P (Y = 20, L = 10 | Hc) =
(

30
20

)
× 0.7520× 0.2510

= 0.0909.

Hence, the competing-point hypothesis is supported more strongly
by these observations by a factor of .0909/.0280 = 3.247. Figure 1
illustrates this comparison graphically.

A Bayes factor of 3.247 is generally considered to be only weak
evidence (Goodman, 1999b; Kass & Raftery, 1995; Wagenmakers,
Marsman, et al., 2018). Combined with a perfectly ambivalent
prior (50% on either claim, or a prior ratio of 1), this Bayes factor
brings us to a posterior probability of only about 76% in favor of
the competing-point hypothesis – not a very high probability.

Bayesian estimation. In the Bayesian framework, the distinction
between testing and estimation is less clear-cut than it is in the
frequentist framework. It is useful to think of the two practices as
the ends of a continuum. The continuum captures how many pos-
sible states of the world are being considered. If we are interested
in the probability θ that a coin comes up heads, we might limit

our possible hypotheses to A : θ = 0.5 and B : θ = 1.0. This
has all the bearing of a testing scenario. Alternatively, we might
consider A : θ = 0.0, B : θ = 0.5, C : θ = 1.0, which still has
the appearance of a testing context. However, if we permit that θ
might be any of (0.01, 0.02, . . . , 0.99, 1.00), then it is less clear if
we are estimating a parameter or selecting between 101 models.
If we allow θ to be anywhere from 0.5 to 1.0, or from 0.0 to 1.0,
then we are more obviously dealing with an estimation scenario.
Hence, the Bayesian estimation task can be seen an extension
of Bayesian hypothesis testing, in which truth value is reallocated
among many possible parameter values.

An example of Bayesian estimation. Behavioral researchers rarely
have strong quantitative theories that permit statements such as
“the probability that a teenager will hear YANNY is 75%.” Instead,
much behavioral research is conducted in a context of discovery:
we seek to quantify effect sizes or estimate parameters (Cumming,
2014), rather than to discriminate between a set of competing theo-
retical accounts. The simplest way to illustrate Bayesian estimation
is to use conjugate families of distributions. A prior distribution and
likelihood for the data are said to be conjugate when the resulting
posterior distribution is in the same class as the prior distribution.
For example, updating a normal prior distribution with normally
distributed data results in a normal posterior distribution with a
new mean and standard deviation. In what follows we will illustrate
conjugate updating and estimation using the conjugate family that
includes beta prior distributions and binomial likelihood functions.

Continuing with the bistable perception phenomenon, we might
consider two researchers interested in estimating the fraction θ of
teenagers who hear YANNY versus LAUREL. The two researchers,
independently from one another, retrieve the data from the previous
example (a sample of 30 teenagers, 20 of whom hear YANNY) and
use it to estimate θ. However, the two researchers differ in their
prior conceptions of this proportion. Researcher 1 believes that
teenagers are relatively homogeneous and will to a large extent
either all hear LAUREL or all hear YANNY (i.e., θ will be close to 0%
or 100%). Researcher 2 believes that the population is more likely
to be split, and θ is most likely close to 50%. This difference in
prior beliefs is displayed with the dashed lines in both panels of
Figure 2. Researcher 1’s prior is well captured by a beta(0.5, 0.5)
distribution while Researcher 2’s prior is best described with a
beta(2, 2) distribution. Finding the set of prior parameters that best
captures one’s prior beliefs is known as prior elicitation. In practice
this is often a matter of experience, but intuitions about the effect
of parameter changes can be built by visualizing the prior density,
by experimenting with its effect on the model’s data predictions,
and through mathematical analysis – an example of that is given
below and Kadane and Wolfson (1998) provide a comprehensive
review.

The beta(a, b) prior is defined as

P (θ | a, b) = θ(a−1)(1− θ)(b−1) × Cprior

where Cprior is a scaling parameter independent of θ that ensures
the function describes a proper distribution (i.e., one whose mass
totals 1). The interpretation of the parameters a and b will be
revealed once we compute the posterior distribution.

To obtain the posterior distribution of θ, we multiply the prior
with the binomial likelihood of the data, which is:

P (Y,L | θ) = θY × (1− θ)L × Clikelihood,
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Fig. 2. Prior and posterior distributions of two independent researchers seeing the same data. Researcher 1 (left) expects the ratio parameter to be extreme; either close to 0 or
close to 1. Researcher 2 (right) expects the parameter to be closer to .5. Both researchers observe the same data: a sample of 30 yields 20 observations in one category and
10 in the other. When these data are factored in, the differences between the two researchers dissipate – even the dramatic difference in priors is easily overwhelmed by a
modest amount of data.

where we again capture all factors that do not contain θ into a
single scaling parameter. The posterior is then, by Bayes theorem:

P (θ | Y,L) = P (Y,L | θ)× P (θ | a, b)× Cposterior

=
[
θY (1− θ)L

]
×
[
θa−1(1− θ)b−1]× Cposterior.

Some algebraic rearrangement yields

P (θ | Y,L) = θa−1+Y (1− θ)b−1+L × Cposterior

= θa′−1(1− θ)b′−1 × Cposterior,

where we have first collected all scaling factors into a new factor
Cposterior and then introduced the updated parameters a′ = a+ Y
and b′ = b + L. This rearrangement illustrates the conjugacy of
the beta prior and the binomial likelihood: the posterior distribution
of θ again follows a beta distribution. Due to the conjugacy, adding
further observations is easy: simply increment a′ with the number
of new YANNY observations and increment b′ with the number of
new LAUREL observations.

The way in which a and b absorb the number of observations
of each type also reveals an interesting interpretation of these
parameters: the value of a and b prior to seeing the data can
be interpreted as the (possibly hypothetical) number of times the
researcher had already observed YANNY and LAUREL occurrences
(respectively). The “effective prior sample size” a+b expresses the
strength of the available prior information. Note that this remains
true if we were to add a second batch of observations: the effective
sample size after the first batch is a′ + b′, and upon observing
new data (Y2, L2) the new parameters would be a′′ = a′+Y2 and

b′′ = b′ + L2. Updating the probability density with new data is a
matter of incrementing the parameters of the distribution and (in
this case) does not require complex mathematical exercises.

It is also easy to see how the data will quickly overwhelm the
prior: Researcher 1 has the equivalent prior information of one ob-
servation and Researcher 2 has the equivalent of four observations.
These quickly pale when incremented by 30 observations.

With the parameters of the posterior distribution P (θ | Y,L)
in hand, we can now compute a number of interesting quanti-
ties, such as the most “plausible” value of θ (the posterior mode):
(a′ − 1)/(a′ + b′ − 2), which is .672 for Researcher 1 and .656
for Researcher 2. We could also compute the posterior proba-
bility that θ > .5, which is .970 for Researcher 1 and .960 for
Researcher 2. Here, again, the dramatic difference in the prior dis-
tribution makes little difference in the ultimate quantities of interest.
Both researchers conclude that θ is close to 2/3rd and is very likely
greater than one half.

Software. Some of the most common Bayesian methods require
no more computational effort than standard approaches. To il-
lustrate the use of Bayesian computation we will recreate the
estimation analysis above using the software JASP (JASP Team,
2018). JASP is a statistical program with a graphical user interface,
meaning no knowledge of scripting or coding is necessary to per-
form a Bayesian analysis. We have created a data file containing
20 YANNY and 10 LAUREL responses, available for download at
https://osf.io/ksvdp/. If we open this file in JASP and select
“Bayesian binomial test” from the frequencies drop-down button
we are brought to an options menu. In this menu we can specify
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Fig. 3. A Bayesian binomial test in JASP. Left: The interface for the Bayesian binomial test. Right: Default output from the test applied to the YANNY/LAUREL data set.

that the success counts are in the YANNY column of the data, and
also specify that we wish to use a beta(2, 2) prior distribution for
the success parameter(indicating that we expect the population
to be split in two groups, as in the previous section). JASP will
then generate the results of the Bayesian analysis in the right-most
panel, in the form of a plot of the prior and posterior distributions
of the probability of success, which we present in Figure 3 (right
panel). Note that this posterior distribution exactly matches that
from the right panel of Figure 2. JASP provides a 95% credible
interval for the parameter, which in this case ranges from .482 to
.796.

Whereas Bayesian analysis of common designs is possible in
software such as JASP, Bayesian calculation for complex modeling
is often computationally intensive. Fortunately, user-friendly tools
for Bayesian analysis have emerged in recent years and have been
incorporated into virtually all standard statistical software (e.g.,
Stata, SPSS, SAS, and R), as well as in new specialized software
specifically for Bayesian analyses (e.g., JASP). Introductions to
the use of general-purpose Bayesian software can be found in
Matzke, Boehm, and Vandekerckhove (2018), van Ravenzwaaij,
Cassey, and Brown (2018), and Wagenmakers, Love, et al. (2018),
but more tutorials appear on a regular basis.

Conclusion. It is not critical for the entire analytic approach of the
behavioral sciences to move to Bayesianism for bad inferential
practices to be avoided. It is interesting to look at the methodologi-
cal evolution within biomedicine, which has not given up frequentist
methods, but has avoided some of the particularly egregious prac-
tices seen in the behavioral sciences. Most importantly, in clinical
biomedicine there is a culture of disbelief in small, one-off single
studies, particularly small ones, and knowledge is not regarded
as established until a sufficiently large body of data collection
of studies generates convincing evidence, typically as shown in
systematic reviews and meta-analyses. Poorly informative, un-
derpowered studies are strongly disfavored at the major journals,
and strong emphasis is put on estimation together with testing,
particularly for nonsignificant studies with equivocal findings. Study
protocols are now routinely requested by the major journals, and
the law requires that randomized trials must be pre-registered at

clinicaltrials.gov within 21 days from when the first patient is
enrolled, and the RCT results reported in clinicaltrials.gov
regardless of outcome, with government penalties for noncompli-
ance.

This is not to suggest that the field of clinical research has
solved or avoided all of the issues of research integrity or proper
statistical design and interpretation that are now plaguing the be-
havioral and social sciences. As a field, it went down similar paths
of awareness and reform starting three to four decades ago and
has since adopted a number of practices that have blunted some
of the worst potential effects of frequentist philosophy and methods.
That said, problems remain. Interestingly, many of the innovations
currently being suggested for the behavioral sciences are now be-
ing adopted within the biomedical sciences as ways to accelerate
progress there, particularly the move to open science.

Short of moving completely to a Bayesian paradigm, major
progress can be made within the current frequentist paradigm
by eliminating claims based only on statistical “bright lines” (i.e.
significance), understanding that marginal significance (e.g. .01 ≤
p ≤ .05) represents fairly weak statistical evidence, moving to
a cumulative evidence model, and basing conclusions more on
confidence intervals than on “testing.”

Changes in the practices of an entire discipline require far more
than a change in analytic philosophy; these must be accompanied
by changes in education, professional norms and expectations,
funding, promotion criteria, and publication. But understanding
how the dominant analytic philosophy contributed to some of the
most harmful practices is critical to making the right changes and
thereby improve the trust that those inside or outside the behavioral
sciences put in the field and its findings.
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