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Uncovering Category Representations with Linked MCMC with people
Pablo León-Villagrá1,2 Kay Otsubo1 Christopher G. Lucas2 Daphna Buchsbaum1

1Department of Psychology, University of Toronto, Canada
2School of Informatics, University of Edinburgh, United Kingdom

Abstract

Cognitive science is often concerned with questions about our
representations of concepts and the underlying psychological
spaces in which these concepts are embedded. One method
to reveal concepts and conceptual spaces experimentally is
Markov chain Monte Carlo with people (MCMCP), where
participants produce samples from their implicit categories.
While MCMCP has allowed for the experimental study of psy-
chological representations of complex categories, experiments
are typically long and repetitive. Here, we contrasted the clas-
sical MCMCP design with a linked variant, in which each par-
ticipant completed just a short run of MCMCP trials, which
were then combined to produce a single sample set. We found
that linking produced results that were nearly indistinguishable
from classical MCMCP, and often converged to the desired dis-
tribution faster. Our results support linking as an approach for
performing MCMCP experiments within broader populations,
such as in developmental settings where large numbers of trials
per participant are impractical.

Keywords: Experimental design, Markov chain Monte Carlo,
categorization, representation

Introduction
A fundamental question in cognitive science is how cate-
gories are represented and how these representations are used
to generalize to novel stimuli. Imagine seeing a persimmon
for the first time and trying to infer what kind of fruit it is.
Based on its size and color, one might think that it is a kind of
orange. However, its shape and leaves might remind one of a
tomato. To make an informed guess about what kind of fruit
the persimmon is we need to weigh these hypotheses: how
likely is it that an orange could have this type of shape and
leaves, could a tomato have this color and texture, or is it a
novel fruit altogether?

At the computational level, one can conceive of this cat-
egorization task as probability density estimation (Ashby &
Alfonso-Reese, 1995; Jäkel, Schölkopf, & Wichmann, 2008).
When deciding what kind of fruit the persimmon is, one must
consider how likely it is to belong to known categories of
fruits or a new fruit category. These categories can be thought
of as mixtures of probability distributions over fruit features,
where previously encountered stimuli determine the num-
ber and distributional properties of these categories (Rosseel,
2002; Sanborn, Griffiths, & Navarro, 2010). Thus, to better
understand human categorization, it is crucial to obtain a fine-
grained picture of how people represent these category distri-
butions. One method to obtain these distributions directly is
Markov chain Monte Carlo with people (MCMCP; Sanborn,
Griffiths, & Shiffrin, 2010).

MCMCP takes inspiration from a prominent statistical
method, Markov chain Monte Carlo (MCMC; for a general
introduction, see MacKay, 2003). In MCMC, samples from

an arbitrary distribution can be obtained by an iterative proce-
dure. In each step, the current state of the MCMC sampler is
compared against a proposed update. If the proposed update
is accepted, the proposal becomes the new state of the sam-
pler. For appropriate proposal and acceptance procedures,
this method produces a chain of samples approximating the
desired probability distribution.

As in MCMC, in MCMCP, participants are presented with
a series of forced-choice questions between the current state
and a proposed state. Each option is a proposed example of
the category of interest. Participants are asked to select the
more likely category member, and given their choice, the state
of the sampler is updated. Sanborn, Griffiths, and Shiffrin
(2010) showed that these choices correspond to a statistically
valid acceptance procedure, so, after enough iterations, sam-
ples from MCMCP correspond to samples from the partici-
pants’ category representations (the target distribution).

MCMCP offers several advantages over alternative meth-
ods for eliciting psychological spaces, such as multidimen-
sional scaling (MDS; Torgerson, 1965; Shepard, 1980). For
example, in MCMCP, the experimenter does not need to spec-
ify all experimental stimuli a priori, which makes it possible
to explore categories with complex structures and more than
one or two relevant features (Martin, Griffiths, & Sanborn,
2012). Furthermore, by relying on forced choices, MCMCP
does not require participants to understand and express cat-
egory structure or stimulus similarity explicitly. This makes
the method a potentially interesting tool for the study of non-
verbal groups like young children or non-human animals.

However, MCMCP typically requires hundreds or thou-
sands of samples to capture the structure of a category
(Sanborn, Griffiths, & Shiffrin, 2010; McDuff, 2010), so par-
ticipants must perform repetitive judgments over long ses-
sions, especially for complex or high-dimensional categories.

Previous MCMCP experiments have adapted strategies
from MCMC methods to reduce experimental duration, for
example, creating a more efficient sampling space (Hsu, Mar-
tin, Sanborn, & Griffiths, 2019), adapting more efficient sam-
pling schemes to experimental paradigms (Blundell, Sanborn,
& Griffiths, 2012), or using specialized proposal schemes
(Sanborn, Griffiths, & Shiffrin, 2010; Ramlee, Sanborn, &
Tang, 2017; León-Villagrá, Klar, Sanborn, & Lucas, 2019).

Another way to improve MCMCP experiments is to
link several participants to produce one shared distribution
(Martin et al., 2012; Ramlee et al., 2017). Here, rather than
each participant generating a full set of samples, participants
complete a shorter number of trials, using the final samples of
a previous participant as their initial state. This setup allows
multiple participants to provide a single sample set, reducing
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the number of trials needed per participant.
While it has been previously noted that this procedure

might increase power at the expense of obscuring individ-
ual differences (Ramlee et al., 2017), no systematic analysis
of the trade-off introduced by linking participants has been
performed. As a result, MCMCP remains infeasible as an
experimental method for populations for which the long and
repetitive choices are too taxing.

We conducted the first direct comparison of both proce-
dures. In Experiment 1, we contrasted the quality of poste-
rior distributions for the same categorization task, generated
from both linked and unlinked MCMCP. In Experiment 2,
we asked a separate group of participants to rate samples ob-
tained from both conditions. This allowed us to establish that
both methods produced good examples of fruits from each
category, and to determine whether there were meaningful
differences between procedures.

Experiment 1: Linked vs. Unlinked MCMCP
In Experiment 1, we compared posterior distributions ob-
tained via both methods for three fruit categories: apple, or-
ange, and grape. Our unlinked condition was a replication
of Sanborn, Griffiths, and Shiffrin (2010), in which a small
number of participants each made a large number of choices,
independently of one another. In our linked condition, each
participant made a smaller number of choices contributing to
one of several sample sets. We hypothesized that both meth-
ods would produce similar distributions and psychologically
similar exemplars in all fruit categories, which would validate
the use of linking in MCMCP experiments.

Participants
Participants were 131 non-colorblind adults, from within the
city of Toronto (8 in the unlinked condition, 123 in the linked
condition; Mage = 25.10, SDage = 9.48, 91 female, 38 male,
2 other). An additional 10 participants were excluded, either
due to technical issues (n = 6), or low acceptance rates1 (n =
4). In the linked condition, to match the unlinked condition’s
data, participants were collected until eight sets of trials were
completed. On average, 15 participants were needed to com-
plete one set in the linked condition.

Participants in the unlinked condition were compensated
$10 per hour (M = 3 hours; range: 2.28-3.40 hours) and were
allowed to complete the study over multiple two-hour ses-
sions. Participants in the linked condition were compensated
$5 for 15 minutes of participation and had to have an accep-
tance rate lower than 42% after participating – two standard
deviations above the average acceptance rate after 15 minutes
in the unlinked condition.

Materials
The experiment was presented on a 13-inch Macbook Air lap-
top. The stimuli were stylized images of fruit, as in Sanborn,

1The acceptance rate is the proportion of trials in which the par-
ticipant chooses the proposed fruit over the current.

Griffiths, and Shiffrin (2010). The fruits were generated by
calculating the convex hull over a set of three circles. Varying
the radii of these circles, as well as the horizontal and vertical
distance between them, created a set of complex shapes that
resembled fruits (see Figure 1). Finally, three parameters de-
termined the color of the fruit (hue, saturation, and lightness).

h

v
r

Figure 1: Stimuli were fruits that could be programmatically
generated by specifying radii (r), vertical (v) and horizontal
(h) length, and three color parameters.

Parameter ranges were taken from Sanborn, Griffiths, and
Shiffrin with two exceptions: a 1.5 increase of radius and a
0.9 decrease in lightness. We increased the radius range, as
additional analysis of data shared by Sanborn, Griffiths, and
Shiffrin suggested that participants preferred slightly rounder
fruits than those presented in their study. We decreased light-
ness to allow better visibility of the fruit on a white plate.
Each fruit was topped with a brown stem to indicate the fruit’s
orientation to participants.

Procedure
On each trial, two fruits were displayed on top of white plates
equidistant from the center of a black screen with instructions
stating “Pick the [fruit]” for one of the three fruit categories:
apple, orange, or grape, see Figure 2.

Pick the

APPLE

Figure 2: On each trial, participants chose which of the two
options most resembled one of the three fruit categories.

For every trial, one fruit was the current state of the MCMC
chain, while the other fruit was a sample from the proposal
distribution (described below). The side on which each fruit
appeared was randomized.

The proposal distribution was a mixture of a Gaussian dis-
tribution centered on the six current parameter values and
two uniform distributions for shape and color parameters,
w = (0.8,0.1,0.1). The standard deviation of the Gaussian
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was set to cover 0.07 of each parameter range. The uni-
form distributions allowed for the proposals to make large
jumps in the parameter range, to avoid being stuck in isolated
peaks. The uniform distributions sampled across either the
three color or the three shape parameters while keeping the
other parameters fixed. Any sample outside the valid param-
eter range was automatically rejected without being shown to
participants; the current state was recorded, and the proposal
counted as a rejection. A new proposal was then generated
until all parameter values were within range.

Following Sanborn, Griffiths, and Shiffrin (2010), each
fruit category had three independent chains, and participants
completed 667 trials per chain, making a total of nine Markov
chains and 6003 trials in a single sample set. Throughout
the experiment, trials from the nine chains were presented
in an interleaved sequence. The initial states for each chain
were taken from Sanborn, Griffiths, and Shiffrin. All three
fruits started from the same three initial states. Participants in
the unlinked condition each completed an entire sample set,
while participants in the linked condition completed as many
trials as possible within a 15-minute session (Mtrials = 393).

To implement linking, the next participant in the set contin-
ued from wherever the previous participant left off. In other
words, a participant’s last response on each of the nine chains
became the first for the next participant in that set. Once the
6003 trials were completed for a set, the session automatically
ended, and the next participant began a new set.

Results
Before analyzing the posterior distributions, it is critical to
evaluate if the sampling process reliably captured partici-
pants’ representation of fruit categories. Several diagnostics
have been proposed in the statistical and MCMCP literature
for whether an MCMC chain has accurately approximated its
target distribution (Gelman et al., 2013; Sanborn, Griffiths,
& Shiffrin, 2010). Here, we focus on evaluating two cru-
cial characteristics of a reliable approximation: the number
of (uncorrelated) samples obtained from the target distribu-
tion and the degree to which participants explored the fruit
categories.

Usually, MCMC chains start at random locations – here,
random fruit parameters that may not specify anything re-
sembling a fruit – and the sampler has to move through the
sample space until it lands in the area where the target dis-
tribution is concentrated. Then subsequent samples tend to
stay in that region, and the chain is said to have converged.
Thus, it is common practice to remove the samples before
the chain has converged, often referred to as the burn-in pe-
riod. We determined the length (in samples) of burn-in for
each fruit category individually for each sample set, by in-
crementally calculating multivariate potential scale reduction
factors (MPSRF)2, a common metric of convergence from the
statistics literature (Brooks & Gelman, 1998). Low MPSRF

2We considered the MPSRF for the full length and iteratively
calculated MPSRF for chain lengths up to half of the total length of
the shortest chain.

values indicate that a sequence of samples has converged. We
used the point with the lowest MPSRF factor to determine the
unique burn-in point for each set’s category (for details, see
Sanborn, Griffiths, and Shiffrin (2010)). We report samples
after burn-in for all posterior distributions.

We observed no significant difference between the aver-
age length of burn-in between conditions, (Munlinked = 158,
SDunlinked = 146; Mlinked = 109, SDlinked = 110; t = 1.32, p =
.01)3. On the other hand, average MPSRF values were signif-
icantly lower in the linked condition (M = 1.34, SD = 0.18)
than in the unlinked condition (M = 1.89, SD = 0.93, t = 2.85,
p < .001) suggesting that convergence was achieved within
fewer trials when linking participants.

In addition to ensuring that the MCMCP chains converged,
we also needed to verify that participants produced a suffi-
ciently large number of independent, uncorrelated samples in
order to obtain reliable approximations of the posterior dis-
tributions. However, since every state in a chain depends on
the previous one, MCMC samples are correlated. A com-
mon way of estimating the number of independent samples
in an MCMC chain is to estimate the effective sample size
(ESS; Gelman et al., 2013). We calculated per-parameter
ESS values for each of the nine chains (three per fruit cat-
egory) in each sample set, and compared ESS values across
conditions. ESS did not differ significantly between the un-
linked and linked conditions, (Munlinked = 10.66, SEunlinked =
0.5, Mlinked = 11.52, SElinked = 0.67, t = -1.02, p = .16 ).

Given that samples with out-of-range parameters were au-
tomatically rejected, the number of samples was often higher
than the total number of trials seen by participants. We, there-
fore, discuss acceptance rates in two ways. First, including
these automatic rejections, as they are diagnostic for the sam-
pling process (total acceptance rates), and second, excluding
automatic rejections (human acceptance rates), as this cor-
responds to the proportion of proposals the participants ac-
cepted and thus is diagnostic for the psychological validity of
the method.

For all convergence diagnostics per fruit category, see Ta-
ble 1. Total acceptance rates (calculated per fruit) were rela-
tively low in both conditions, compared to the recommended
20 - 40% (Roberts, Gelman, & Gilks, 1997). However, our
rates were similar to those reported in Sanborn, Griffiths, and
Shiffrin (2010). Human acceptance rates were closer to the
recommended range. These results suggest that our proposal
schemes were successful in that they allowed the participants
to explore the category distribution efficiently.

Posterior Distributions
We found that the linked experimental design produced faster
convergence and comparable numbers of samples as the un-
linked condition. However, our main interest was in the cate-

3We report bootstrapped, two-sample t-tests (Efron & Tibshirani,
1994). The p value corresponds to the proportion of permutations
at least as extreme as the observed t. For all tests the number of
permutation was set to 10,000. Traditional unequal variance, two-
sample t-tests resulted in virtually identical results.
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Table 1: Total number of samples (including automatic rejec-
tions) and effective sample sizes. The fruit category ESS was
obtained by first calculating ESS for each set and then sum-
ming over all sample sets. We report total acceptance rates
(act) and human acceptance rates (ach).
Condition Fruit N MESS Mact SEact Mach SEach
Unlinked Apple 22552 185 9% 10% 14% 12%

Orange 18104 211 10% 11% 14% 12%
Grape 17727 179 15% 13% 21% 14%

Linked Apple 19787 166 13% 12% 19% 14%
Orange 19729 249 10% 11% 14% 12%
Grape 19317 206 17% 13% 23% 15%

gory structures that both methods uncovered.
To visualize the distribution over fruit categories for both

conditions, we jointly embedded the samples in a two-
dimensional plane using PCA, a common dimensionality re-
duction technique (see Figure 3). Both conditions produced
qualitatively similar spaces. In both conditions, the horizontal
dimension appears to broadly separate grapes relative to ap-
ples and oranges. In contrast, the vertical dimension has less
overall separation but captures a relatively distinct clustering
of oranges relative to the other two fruits.

The sample distributions in the linked and unlinked condi-
tions qualitatively agreed in terms of their overall shapes and
medians for the individual parameters (see Figure 4). Fur-
thermore, our distributions closely matched those obtained
by Sanborn, Griffiths, and Shiffrin (2010), suggesting that
both linked and unlinked conditions produced comparable
fruit distributions and reproduced their results.

While the overall distribution for apples was practically
identical, some minor differences were apparent for oranges
and grapes. First, the posterior density for oranges was more
concentrated on larger radii in the linked condition, indicat-
ing that participants selected slightly larger oranges. More
interestingly, while the median for the vertical parameter for
grapes was similar across conditions, both distributions dif-
fered considerably in their overall shape. While the posterior
distribution in the linked condition was unimodal and cen-
tered on zero – producing rounder grapes – the unlinked con-
dition exhibited multiple modes. As a result, the posterior
distribution exhibited higher density at the edges of the pa-
rameter range, corresponding to more oblong grapes.

Discussion
We compared the posterior distributions obtained by two dif-
ferent MCMCP methods: a classical MCMCP experiment,
and a linked experiment. The linked experiment produced
faster convergence, comparable sample sizes, and, qualita-
tively, nearly indistinguishable category distributions. How-
ever, we did not show that these category distributions were
also psychologically equivalent. For example, the small dif-
ferences in grape shapes and orange sizes that we found could
amount to large perceptual differences. In Experiment 2, we

ran a preregistered follow-up to assess the psychological rep-
resentativeness of our samples directly.

Experiment 2: Subjective Fruit Ratings
To establish that both linked and unlinked methods gener-
ated equally-representative fruits, we asked participants to
rate fruit samples taken from both conditions on how much
they resembled each of the three fruit categories. We pre-
dicted that fruits from both experimental conditions would
produce similar ratings, and fruits taken from a specific cate-
gory would be rated as better examples of that category than
the two alternatives (e.g., true apples would be rated as the
best examples of apples, and as better examples of apples than
of oranges or grapes).

Participants
A power analysis based on a separate set of 10 pilot partic-
ipants established that at least 40 participants were required
to achieve a power of ≥ 80% with an α level of .05 to detect
main effects and interactions. We recruited 40 non-colorblind
participants from within the city of Toronto (Mage = 22.5,
SDage = 4.93, 27 female, 12 male, 1 other). Participants were
paid $5 to complete the task (M = 22.15 minutes, SD = 4.79,
min = 13.29, max = 34.12). All participants passed our pre-
registered exclusion criteria4.

Materials
We created four non-overlapping sets of 192 fruits by sam-
pling from the fruits produced in Experiment 1 (after burn-
in). In each set, we sampled 96 fruits from each condition
(linked and unlinked), equally split over fruit categories (32
from each) and sample sets (four from each). As in Experi-
ment 1, fruits were pictured centered on a plate. Fruits were
presented one at a time, and three 7-point scales were posi-
tioned below, each with the corresponding rating prompt (e.g.
“How much does this fruit resemble an apple?”). The order
of the three rating scales was randomized across participants.
Participants were randomly presented one of the four sets of
fruits.

Procedure
Participants were instructed to rate each fruit in terms of how
much it resembled each of the three fruit categories. To pro-
ceed to the next fruit, participants had to select a value for
each of the three rating prompts (0-not at all, 6-exactly). The
192 fruits were presented in random order. Once the partici-
pants had completed the 192 ratings, they completed a short
demographics survey.

Results
Fruits were consistently rated higher in terms of their true cat-
egory than the two alternatives. Interestingly, oranges were
rated relatively highly as apples, but apples were not rated

4Participants had to answer a comprehension check correctly and
were excluded if they selected the same value on all three rating
scales on more than 90% of the total trials.
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Figure 3: Samples obtained for the unlinked (left) and linked conditions (right). We calculated a shared two-dimensional
representation of the data via its principal components.

highly as oranges. For a direct comparison of average fruit
ratings, see Figure 5.

To examine how ratings differed across fruit categories and
experiments, we fitted a 2× 3× 3 Bayesian generalized lin-
ear model5, experiment condition (linked vs unlinked) × true
fruit category (apple, orange, grape) × rating category (ap-
ple, orange, grape), to participants’ ratings. To account for
variation in overall rating standards, the models had random
per-participant intercepts. Since participants potentially var-
ied in their rating standards for individual fruit categories, we
also specified random slopes across fruit categories.

To test whether both experiments produced equally good
fruits, we compared models with and without the effect of
experimental condition. To test whether fruits were better ex-
amples of the true category than the alternatives, we com-
pared models with and without an interaction for rating and
true fruit.

This resulted in a total of five models: the full 2× 3× 3
model, a model without the effect of experiment condition
( f ruit × rating), a model without the interaction of rating
and true fruit (exp × ( f ruit + rating)), a model with only
f ruit + rating, and the null-model (y ∼ 1). For all models,
we specified weakly informative priors and ran two chains of
40,000 MCMC iterations.

All models accounted for the data better than the null-
model (all BF > 300). Contrasting the full model and
f ruit × rating suggested that the model without a factor for

5Our preregistration specified analyzing the results with a linear
mixed model. At the suggestion of the reviewers, we performed a
Bayesian analysis to find evidence for the absence of an effect of
experimental condition. The results of the linear mixed model were
practically identical to the results presented here.

experimental condition accounted better for the data (BF >
300). Finally, including the interaction f ruit × rating im-
proved model likelihoods (both BFs > 300). Thus, we found
strong evidence for the absence of an effect of experimental
condition on fruit ratings, and an interaction of f ruit×rating.

Contrast analysis confirmed that the true fruits were rated
more highly as their category than either alternative fruit.
True apples were rated as more apple-like than either oranges
(Mdn = 0.82, CI95 = [0.74, 0.9]) or grapes (Mdn = 1.22, CI95

= [1.15, 1.3]). Similarly, true oranges were rated higher as
oranges than apples (Mdn = 0.89, CI95 = [0.82, 0.97]) or
grapes (Mdn = 1.06, CI95 = [0.98, 1.13]). Finally, grapes
were also scored higher as grapes than apples (Mdn = 1.01,
CI95 = [0.93, 1.09]) or oranges (Mdn = 1.12, CI95 = [1.05,
1.20]). All contrasts can be considered highly significant,
since no CI95 estimate overlapped with the 90% region of
practical equivalence (ROPE; Kruschke, 2018).

To examine the small differences between experimental
conditions, we performed a contrast analysis for the full
model. We found that oranges in the linked condition were
rated slightly higher as oranges than in the unlinked condi-
tion (Mdn = 0.23, CI95 = [0.13, 0.34], ROPE90% = 0%). All
other estimated effects did not suggest a significant difference
in ratings across conditions (all ROPE90% > 38%).

Discussion
We found that the samples in both linked and unlinked con-
ditions were highly rated in terms of their corresponding fruit
categories. This suggests that both designs produced equally
good category distributions. Our results also revealed inter-
esting asymmetries in the psychological fruit space. For in-
stance, oranges were rated relatively highly as apples, but ap-
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ples were not rated highly as oranges, perhaps because they
have somewhat similar shapes, but oranges are more specific
in color. Similar to the results of our two-dimensional em-
bedding, it seems that apples and oranges overlap in crucial
parameters, as well as in their psychological perception. Al-
together, these results corroborate our MCMCP manipulation
– both linked and unlinked designs produced very similar dis-
tributional samples and psychologically representative cate-
gory members.

Conclusion
We found that a linked MCMCP design converged faster, re-
sulted in similar effective sample sizes, and did not differ con-
siderably in terms of its overall distribution or psychological
plausibility compared to a standard unlinked design.

Since linked MCMCP does not require long and repeti-

tive experimental sessions, this suggests that it is possible to
use MCMCP with experimental populations for which un-
linked designs would be prohibitively taxing. Given its sim-
plistic design and minimal linguistic and motor-control re-
quirements, we see potential in adopting the method to ex-
plore mental representations of young children and even in-
fants. Given that linked MCMCP offers the prospect of a sin-
gle methodology suitable for a wide age range, this provides
the opportunity to investigate developmental trajectories at an
unprecedented level of detail.

However, adopting linked MCMCP experiments requires
careful consideration of individual differences and overall
category variability. While it is plausible that the fruit cate-
gories in our experiment were relatively homogeneous across
adult populations, infants and children within the same age
group can vary widely in their category knowledge (Smith,
2003; Bornstein & Arterberry, 2010; Slone, Smith, & Yu,
2019). Similarly, adult mental representations might differ
given different levels of expertise (Chi, Feltovich, & Glaser,
1981; Medin, Lynch, Coley, & Atran, 1997; Bailenson,
Shum, Atran, Medin, & Coley, 2002).

Given large variability in the linked chains, MCMCP
would wash out individual differences and, similarly to other
category learning tasks, only capture group-level representa-
tions. However, more informed linking strategies might al-
leviate these issues. For instance, vocabulary growth, par-
ticularly for object-names, can be a better predictor of chil-
dren’s category knowledge than age (Gopnik & Meltzoff,
1992; Arterberry & Bornstein, 2002; Smith, 2003). Future
work should thus investigate ways of using these markers to
link MCMCP chains optimally.
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