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Solution of Eigenproblems for Damped Structural Systems
by the Lanczos Algorithm

HARN C. CHEN and ROBERT L. TAYLOR

Department of Civil Engineering
University of California

Berkeley, CA 94720, U.S.A.

Abstract

A variant of the Lanczos algorithm is deduced to solve the eigenproblem arising in
the analysis of viscously damped structural systems. Re-orthogonalization schemes are
employed to restore the required orthogonality between the Lanczos vectors. A projection
of the original eigenproblem onto the Krylov subspace spanned by the Lanczos vectors
gives a standard tri-diagonal eigenproblem, of which the solutions are the Ritz approxima-
tions to the eigenpairs sought. An advantage of the algorithm is the fact that the Lanczos
vectors are all real, even though the final solution is complex. A number of problems are
solved by the algorithm and the results are very good.
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1. Introduction

In the analysis of dynamic response of linear structures, the equation of motion of a
damped system can be expressed as

Mq(1) + Cq(t) + K q(r) = (1) (1.1)

where M, C, and K are, respectively, the n X n mass, damping, and stiffness matrices and
d(z), (i(t), and q(z) are the n X 1 acceleration, velocity, and displacement vectors. To find
the free vibration solution of the system, we first solve eqn (1.1) for the homogeneous solu-

tion, which is of the form
q(1) = M w (1.2)
Substituting this solution into eqn (1.1), we obtain the characteristic equation
(MM+AXC+K)w=0 (1.3)

where A and w are the eigenvalue and eigenvector of the system and both are complex-
valued in general. This quadratic characteristic problem can be reduced to a linear one by

doubling the order of the system [1]. Accordingly,

C M w -K 0 W
Aol law ! =]l o M| |[aw (1.4)
which may be written as
AMAz= Bz . (1.5)
with
[c M ] [ -K o ] [ w ]
A:[M oJ B=[o M] Z‘[ij (1.6)

In this study, we are interested in nongyroscopic, damped systems. The associated M, C
and K matrices are all symmetric. Hence the matrices A and B are also symmetric

although neither is positive definite.

While eqn (1.5) is similar in form to the eigenproblem associated with an undamped

system, i.e.,



w:Mw=Kw (1.7)

there are important differences between the two problems. bFirst, the pencil (A, B) is twice
the size of the pencil (M, K). Second, both the M and the K matrices are positive defin-
ite, or at least positive semi-definite; whereas neither A or B is definite. Last, the solutions
of A A z = B z are complex-valued while the solutions of w?’M w = K w are real-valued.
Due to these differences, the solution of A A z = B z is more complicated than the solution

of o> M w = K w and therefore needs more computational effort and storage.

In this paper, we first employ an orthogonal projection method to reduce the original
problem X A z = B z to a smaller one. To obtain an effective reduced problem, we choose
a Krylov subspace generated from B'A to construct the reduction. We deduce a variant
of the Lanczos algorithm to account for the indefiniteness of the matrix pencil (A, B). The
infamous loss of orthogonality between Lanczos vectors is discussed and schemes to restore
the orthogonality or the semi-orthogonality are presented. The matrix pencil (A, B) is then
projected onto the Krylov subspace spanned by the Lanczos vectors to obtain a reduced
tri-diagonal system. The solutions of this reduced system are taken as the approximate
eigensolutions of (A, B). The quality of this approximation can be measured by the resi-
dual vectors, which are readily obtained. In the end, the efficiency of the algorithm is

shown by solving numerical examples.

2 Orthogonal Projection Method -

In practical analysis, only the lower modes (i.e., those associated with the smallest
[A]) of a large dynamic system are required as they are the most important from a physical
point of view. In addition, the mathematical idealization of any complex dynamic system
also tends to be less reliable in predicting the higher modes. Consequently, the higher
modes are of little practical interest. For these reasons, we are interested only in the lower
mode solutions of the eigenproblem X\ A z = B z. To find only the lower mode solutions,
we employ an orthogonal projection method to obtain a reduced eigenproblem from the

original eigenproblem. In practice, the order m of the reduced problem is considerably



smaller than the order n (or 2n) of the original problem and hence a substantial computa-
tional effort can be eliminated by solving the reduced problem instead of the original prob-
lem. Nevertheless, some solutions of the reduced problem are very good approximations to
the lower mode solutions of the original problem. 1In the following, we briefly describe
how the orthogonal projection method can be used to reduce the eigenproblem

AN Az= Bztoasmaller one.

Consider an order m subspace S of the solution space, referred to as the admissible
space. The orthogonal projection method consists in using a vector y; in subspace S to
approximate an exact eigenvector z; by requiring that the residual vector of y; satisfy the

Galerkin condition, i.e., the residual vector of y; is orthogonal to the subspace §.

The orthogonal projection method applied to solve A A z = B z seeks approximate
eigenvalues 6; and their associated eigenvectors y;, which belong to the admissible sub-

space S, such that the following Galerkin condition is satisfied :
6, Ay, - By, | § (2.1)
Let Q be an arbitrary orthogonal basis of S; then we can replace the preceding equation by
QT(8;Ay; —By;) =10 (2:2)

The fact that y; is in the subspace of § requires y; = Q's;, where s; are a set of free

parameters. The choice of the free parameters in s; is made to satisfy the Galerkin condi-

tion eqn (2.2), that is, s; is the solution of
Q'(8,AQ-BQ)s; =0 (2.3)
This equation can be put in the following form :
A®s; = B s; (2.4)
where A™ and B” are the m by m projected matrices given by
A"=QTAQ B =Q'BQ (2.5)

We note that eqn (2.4) actually represents an eigenproblem of the same form as eqn (1.5)

but of reduced size. The solution of the reduced problem yields 6, . . ., 8, . which are



the Ritz values, and sy, . . ., s, , which are the parameters used to form the Ritz vectors

1)
Y ={[y,....Y,]bytherelationy;, = Qs;. These Ritz pairs (8, y;) are the optimal
approximations to the eigenpairs sought from the admissible subspace S in the sense that

8; Ay; — By; is orthogonal to S.

It is evident from the above description that any subspace can be used to construct a
reduced eigenproblem. However, the key point is that the desired eigenvectors should be
accurately approximated by vectors of the admissible subspace §. In the following, a
Krylov subspace generated from the operator D = B'lA and an arbitrary vector q, that is,
span(q, Dq, D%, ..., D"71q), is chosen as the admiSsible subspace for the reduction of
a large eigenproblem. A variant of the Lanczos algorithm is deduced to generate an
orthogonal basis for this Krylov subspace. A major advantage of using this basis, as shown
in Section 5, is that the projected eigenproblem is a standard eigenproblem with a tri-

diagonal coefficient matrix.

3 Lanczos Algorithm for Indefinite Matrix Pencil

The Lanczos algorithm was introduced in 1950 as an efficient method to extract some
eigenvalues and associated eigenvectors of a symmetric standard eigenproblem. The algo-
rithm may also be used to solve K w = »? M w, since this generalized eigenproblem can

be transformed into a standard one which is still symmetric. However, we can avoid this

transformation by working directly with K;!' M w = -—% w where K, = K —o M and o
w

is a shift. Although K;! M is not symmetric, it is self-adjoint with respect to the M-
weighted inner product defined by (u, v)y = ul M v [2]. Given a starting vector, the
Lanczos algorithm generates a sequence of vectors which are M-orthonormal to each other.
These vectors, known as the Lanczos vectors, are used in the Rayleigh-Ritz procedure to
reduce the original system into a smaller symmetric tridiagonal system. The solutions of
the reduced tridiagonal system described above can be obtained easily and inexpensively.
In addition, usually almost half of the solutions are very good approximates to the eigen-

pairs of the origin system. These advantages make the Lanczos algorithm an effective



method for the solution of large eigenproblems.

Both matrices of the pencil (A, B) associated with a damped system are indefinite.
Therefore, the weighted inner-product of a vector is not necessarily positive. Except for
this improper inner-product [4], the rest of the Lanczos algorithm for solving
w?M w = K w may be applied to solve X A z = B z. Assuming that the first j Lanczos
vectors (qy, g3, - . - ,q;) have been found, we describe how to construct the next Lanczos
vector q;,;. Here, we require that the g; satisfy the condition qJTH Ag; = 0foralli
from 1 to j; that is, the new Lanczos vector is A-orthogonal to all the previous Lanczos
vectors. To obtain g; 1, a preliminary vector (i}H is first calculated from the previous vec-

tor q; as in the Krylov sequence.
;41 = B A g, (3.1)

In general, this preliminary vector can be expressed as a linear combination of all the pre-

vious Lanczos vectors and a residual vector; namely,

(Ij+1 = Qe+ oq + Bjgqi T € 0q 2t - (3.2)
where (ij“ is the residual vector, which is A-orthogonal to all previous Lanczos vectors,
and «;, Bj_1, €3, . . . are the components of ‘Ii*‘l in the directions of the previous Lanc-
zos vectors. These component coefficients can be evaluated by imposing the condition of

A-orthogonality among the Lanczos vectors. For example, pre-multiplying both sides of

eqn (3.2) by q}r A, we obtain

qfAqj1=qfAq + o;qfAq; + (3.3)
Bioaf Agqi1+ € qf Agqiot ...

Here the first term on the right-hand side vanishes due to A-orthogonality, and all terms
after the second vanish for the same reason. Hence, the component of (i—jﬂ along q; can

be readily obtained through
T ,
o = et (3.4)

The component of (.;-jﬂ along q; _; may be found similarly by pre-multiplying eqn (3.2) by



qu.,lA. In this case all terms except the third vanish due to A-orthogonality, so we have

. -
q4;-1Aqj4+1 .

Bj-1 = —iT-—“—j——- (3.5)
q;-1Aq;

Similarly, the component of q;_, contained in c;jﬂ is found to be
T ‘
€= —j (3.6)

Making use of eqn (3.1) and the fact that the transpose of a scalar and the scalar are ident-

ical, we obtain

a4/ 2A g1 =q,AB T Ay

H

qf AB'Aq, (3.7)

[

qu A q] -1
Next, expanding (.]—j_l in terms of the preceding Lanczos vectors and the residual vector
(A]j~1 as in eqn (3.2), we obtain

af Aq; = qf A+ o q o+ Bjsqi s+ € aqj gt o) (3.8)

Since all terms on the right hand side vanish due to the A-orthogonality, we achieve the
anticipated result €;_, = 0. A similar manipulation could be applied to eqn (3.2) to
demonstrate that all further terms in the expansion of (Ijﬂ vanish. In other words, the
(i.jﬂ can expressed as the combination of only the previous two Lanczos vectors and the
residual vector. Therefore, we can combine eqn (3.1) and eqn»(3.2) to give the recurrence

formula for deriving the residual vector (ij+1 as

(ij+1 = Bdlqu' —a;q; —Bj 19, (3.9)
with «; and B;_; given in eqn (3.4) and (3.5) respectively. The new Lanczos vector is

then obtained simply by scaling the residual vector (in, ie.,
Q4 = — (3.10)

where ;1 is the pseudo length of (ijﬂ and is defined as



Yi+1 T (5j+1 ‘AIJTH A (ijﬂ)vz (3.11)

with 8,1 = sgn ((ijTH A (ijﬂ), Here we use an extra array & to store the pseudo length

of the Lanczos vectors, which are normalized to be 1 or -1.

In the above derivation, we assumed that y;,; is not equal to zero. Although in prac-
tice it is highly improbable that a zero ;4 is encountered; we still include the discussion
of this situation for the completeness of the proposed algorithm. For the indefinite matrix
pencil under consideration, there are two possible alternatives when Yj+1 1s equal to zero :
(1) (ijﬂ is equal to zero, or (2) (ijﬂ is not equal to zero. If the first case occurs, which
means that we have captured an invariant subspace [2], every Ritz pair of the invariant sub-
space is an exact eigenpair of the original system. If the second case occurs, which implies
that unfortunately we have chosen a defective starting vector, we can start the procedure

over by choosing a different starting vector.

Frequently, we encounter problems in which the stiffness matrix K is singular. In this
case, we perform a spectral shift o to transform eqn (1.4) into

[(C+2eM) M ] [ w ]

(A =0) M 0 J [()\—(r)w J

(3.12)

[(-K-sC—™M) 0] [ w ]

l 0 M J {(x —o)w }
where the shifted A and B matrices remain symmetric. In this formulation, we only need
to factor the shifted stiffness matrix K + o C + o2 M, which is still in banded form. An
alternative is to form (B — oA )z = ( A — ¢ )} A z; however it is necessary to factor the

entire ( B — oA ), which is much more expensive and hence should be avoided.

An algorithm for computing the Lanczos vectors is summarized in Box 1, showing
that only 14n + 2u(M) + p(C) + v(K) multiplications are required to generate each new
Lanczos vector, where w(M), p(C) represents the number of operations to compute M x,
C x, respectively, and v(K) represents the number of operations to solve K y = x for typi-

cal n-vectors x, y. To compute m Lanczos vectors, the algorithm only needs the storage



for m 2n-vectors and 4 m-vectors to keep all the essential information. The algorithm
does not need to explicitly form matrices A and B; moreover, it can take full advantage of

the symmetry and sparsity of the matrices M, C, and K.

4 Orthogonality between Lanczos Vectors

The algorithm presented above involves orthogonalization against only the two
preceding vectors at each step. In finite precision arithmetic, inevitable rounding errors in
computation will generate vectors which are not orthogonal to each other. To be precise

about the loss of orthogonality between Lanczos vectors, we measure orthogonality between

q; and q; by
mjxr = 4] Aq (4.1)

The m; ; are zero for all k < j and [nj j | is equal to 1 if the q’s are orthonormal. In fin-
ite precision arithmetic, we might expect these |njk| to be at € level, where € is the
machine round-off error unit. The output from a simple Lanczos solution, however, shows
that the computed m’s are much larger than € and can even be of the order 1. This loss of
orthogonality is unfortunately widespread. To illustrate the loss in orthogonality, we have
solved a test problem using the simple Lanczos algorithm given in Box 1. The beam struc-
ture shown in Figure 2 is divided into five equal segments and has 10 degrees of freedom.
The simple Lanczos algorithm is used to generate 20 Lanczos vectors which is the order of
(A, B). We show in Figure 1 the quantities logyq (|m; ; — BU’Sj |/€) rounded to the next

integer, with §;; being the Kronecker delta function. In exact arithmetic, all these quanti-

ties should be zero.

Figure 1 shows that the orthogonality relation starts to fail at an early stage of the cal-
culation and the growth of n’s appears to follow a regular pattern. We may simulate this
pattern in the following way. To include the effect induced by rounding errors, we change

the three-term recurrence formula eqn (3.9) into

Yi+1 Gj+1 = Bl A q; —a;q; — Bi-19;-1 + fj41 (4.2)
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Figure 1 1ogm<'“"’"f" ol
rowicoli1 2 3 4 5 6 7 8 9101112 1314151617 15 19 20
1 0101 3 4 7 811131516 1512101213 141515
2 01 02 3 57 911141514 11111314 151717
3 01 2 2 46 8101314131011 13151617 16
4 0 1 1 34 7 911121111214 15161616
5 0 1! 23 5 7101 910111314 151515
6 011 4 6 8 9 810111314 151515
7 01 2 4 6 7 6 8 912131414 14
8 0 2 1 5 5 6 8 91112131414
9 01! 2 3 4 6 7 911121212
10 0 2 1 3 5 6 810111212
11 0 0 1 3 4 7 8101313
12 0 0 1 4 7 9111414
13 0 2 2 6 8101313
14 0 1 2 5 71010
15 Symme 1t r i c 0 2 2 5 8 8
16 01 1 5 4
17 0 1 3 4
18 1 3 3
19 1 2
20 1

where the n-vector f;,; accounts for rounding errors introduced during the step and a;,
Bj-1, ¥j+1 and q's denote the quantities computed according to Box 1. Pre-multiplying
eqn (4.2) by q;f A and using the definition in eqn (4.1), we obtain
- . =qlABTAq —a; m;y —B; 1 FQr AT (4.3)
Yi+1 Mj+1k = Qi q; —o;mjx —Bjmimja T QG Aty %
Interchanging the index j and k of eqn (4.3) we obtain a similar expansion :
- =qfABTAq - - +qlAf (4.4)
Yi+1 Mk+1j = 4 9 — o Mg — Br-1 M1 T 4; k+1 ‘

From the symmetry of A B™! A, the first term on the right-hand side of eqn (4.3) and

(4.4) are equal and therefore can be eliminated by subtraction, resulting in

Yi+1 Mtk = Ya+1Mje+1 T (g —o)m; + (4.5)
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BioiMjk—1 — Bjmmjoix T AL A —qf Ay
The last two terms of eqn (4.5) are duc to unknown local rounding errors which are

assumed to be at round-off level. We can denote them simply by a number ¢ 41 4. Thus,

we achieve a recurrence that governs the evolution of the m; 414
Vir1 Mtk = Ye+1 Mjk+1 T (o —oj)mjp + (4.6)
Br-1mjr-1 — Bj—1mj—1e T W41
This recurrence can also be expressed compactly in vector form as
Yi+1 Mj+1 T T"Ij —am; '“Bj—l"‘j-—1+ ‘|‘j+1 (4.7)
where 741 and ¥ 41, are the clements of mj,q and ¥4, respectively, and T is the tri-
diagonal matrix defined in eqn (5.2). This formula states that m;,, is some combination
of m; and m;_; plus the contamination from round-off §;,; occurring at this step. The
loss of orthogonality therefore can be viewed as the result of an amplification of each local

error after its introduction into the computation. This statement is consistent with the

phenomenon observed in Figure 1.

Full re-orthogonalization. To maintain all the m;,q,’s at round-off level, a full re-
orthogonalization (FRO) scheme can be adopted which performs the explicit orthogonali-
zation of q;,; against all the previous ¢'s. To this end, we add the following Gram-
Schmidt orthogonalization step after the three-term recurrence step to force (in to be
orthogonal to qy, . . . , q; up to the round-off level ’

Pj+v1 = A Elj+1
‘ij+1 - (ij+l - .él d; q; (‘IrT Pj+1) (4.8)
i=
where §; = q,-T A q; is 1 or -1. During the summation, the vector p; 4 is not changed to
avoid extra 2p(M) + p(C) multiplication of (in by A. This modification can bring ail
the m’s to the round-off level, however an extra 4jn multiplication is added to the original

cost. This additional cost is not small compared to the cost of performing the three-term

recurrence. Indeed, this cost will become dominant after some steps depending on the
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costs w(M), n(C) and v(K) relative to n.

Partial re-orthogonalization. The FRO scheme just discussed aims at keeping all the
m’s at € level, where € is the machine round-off error unit. However, recent research [2]
and [3] shows that semi-orthogonality; i.e., maintaining all the n’s at €¥? level, between
Lanczos vectors generated from the operator K™! M is sufficient to achieve the eigensolu-
tions of (M, K) within the desired accuracy. Following this approach, we examine
whether semi-orthogonality between the Lanczos vectors generated from the operator B~ A
1s enough to achieve satisfactory eigensolutions of (A, B). To this end, we monitor the
components in m;,; when computing a new vector q;+1. We purge the q;, against only
those q; with m;,;; greater than €2 to restore the required semi-orthogonality. In this
way, re-orthogonalization is performed against a portion, rather than all, of the previous
Lanczos vectors. Therefore, this scheme is called partial re-orthogonalization (PRQO). To
determine whether re-orthogonalization is required, we need to know all the elements in
m;+1. Forming m;; explicitly requires 2jn multiplications, which is actually half the cost
of the re-orthogonalization process. Thus, for economic reasons, we use the estimated
Mj+1, represented by eqn (4.7), to determine whether re-orthogonalization is required.
The unknown vector ¥;4q in eqn (4.7) can be replaced by appropriately chosen random
numbers, which are based on a statistical study to reflect the effect of round-off, as detailed
in [5]. Accordingly, we use the following recurrence in the algorithm to estimate the level

of orthogonality.
Nj+1 = I [Twm; —m; —Bjomj—1 + $j41] (4.9)
This formula holds for j+1=3 and starts by assuming that n;; = 81, ;1 = ¥y and
M22 = 8.
5 Reduction to Tri-diagonal System

After m steps, we have the Lanczos vectors Q = [q;, . . ., q,, ] satisfying the matrix

form of three-term recurrence formula :
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Ym+1Gm+1€n = BTAQ -QT (5.1)
where e} = (00 .. .0 1) and T is a tri-diagonal matrix of the form
oy By
Y2 2 B3
T= o : (5.2)
Ym~1 %m-1 Bm—l
L Ym Ay

These Lanczos vectors are A-orthogonal; i.e., they satisfy
QTAQ=A (5.3)

where A is the diagonal matrix with diagonal elements 8; (i.e., 1 or -1). After pre-
multiplying eqn (5.1) by QT A and using eqn (5.3), we obtain

QTAB1AQ= AT (5.4)
Now, we choose the span of the set of Lanczos vectors, Q, as the admissible space and
apply the projection method described in section 2 to obtain a reduced eigenproblem. To
this end, we first premultiply eqn (1.5) by AB™ to obtain

AABlAz= Az (5.5)
Using this equation, we obtain the reduced problem :

or equivalently
; = -1

which is a standard eigenproblem. We solve this reduced eigenproblem by a OR algo-
rithm, which is readily available in the EISPACK library [6]. After the solution of this
reduced eigenproblem 64, . . ., 8,, are the Ritz values and the Ritz vectors yq, . . ., Ym

are given by
y;j = Qs; (5.8)

To make the Ritz vectors satisfy iijij | = 1, we can scale the s; such that

T . - - . . . . . , . . .
I s; As; | =1forj=1 ..., m. These Ritz pairs are the approximates to the least
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dominant eigenpairs of the original system (A, B). To measure the quality of this approxi-

mation, we compute the residual vectors defined by

;87! (5.9)

= p-1l
r,=B Ay, —y
The three-term recurrence formula can be used to simplify the computation of these resi-

dual vectors. Post-multiplying eqn (5.1) by s; leads to
Ym+1dm+1€n5; = BT AQs; —QTs; (5.10)

Making use of T s; = s; 6}7"1 and Q s; = y;, we obtain

B~ A Yi 7Y 91—1 = Ym+1 Gm+1 8;(m) (5.11)

where s;(m) represents the m " element of the vector s;. That is, the residual vector can be

obtained simply from

l’j = Ym+1 Qm +1 S_](m) (512)
and its pseudo length can accordingly be obtained from
| "jTA L |1/2 = Ym+1 S;(m) (5.13)

where in general s;(m) is a complex number. Note that v, 4, and s;(m) are readily avail-
able from the Lanczos algorithm and therefore no extra computational effort is required to
form the quantity | rj'-r Ar; |V2. Since r; = 0 corresponds to an exact solution, we can
assess the quality of the approximate solution by examining the magnitude of the com-
ponents of r;. It is convenient to use the scalar quantity | ro Ar; |V2 instead. However,

as already stated in section 3, it is possible for | r}r Ar; |2 to be zero with a nonzero r;.

Therefore, one has to be cautious about the use of | ro Ar; |12 as a measure of how good

. . . cy ’ T 172 :
the approximation is. We suggest that one compute the Euclidean length | rr; |V* in
addition to the pseudo length | ro Ar; !1/2 to make surc that the components of r; are

indeed small.
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6 Numerical Examples

In this section, we use several Test Problems to assess the performance of the pro-
posed algorithm to extract the eigenpairs of damped dynamic systems. The solution algo-
rithm proposed is implemented in the research version of FEAP, a '"Finite Element
Analysis Program,” (see Chapter 24 in [7] for a description of a simplified version of this
program). The results reported herein are obtained using a VAX Station IIVGPX computer

system using the Ultrix 1.2 operating system and the {77 Fortran compiler.

Test problem 1 : The structure is modeled as a cantilever beam with a lumped trans-
lational viscous-damper attached at the tip. The beam is modeled using the elementary
beam theory where the geometrical configuration and physical properties are shown in Fig-
ure 2. The consistent mass is used to define M. The damping matnx C has only one
nonzero element representing the magnitude ¢ of the lumped damper. The cantilever
beam is divided into 20 equal elements and has 40 degrees of freedom. The order of the

associated (A, B) is 80.

We use the Lanczos algorithm with the FRO scheme to solve this problem. Figure 3
summarizes the results of 8 experiments. Here, we call a Ritz pair good if the pseudo
length of its associated residual vector is less than 1078, This criterion ensures that a good
Ritz pair approximates the eigenpair sought with high accuracy. From the results in Figure
3, we see that the first few eigenpairs can be extracted at a fairly low cost compared to the
other eigenpairs. This is because the re-orthogonalization cost is greater at later steps in

the Lanczos algorithm.

In this problem, We have run the algorithm up to the size of the problem to test the
robustness of the computer program developed. However we emphasize that the algorithm
is intended only for partial solution of a large eigenproblem. After the 80 steps, we see
that the pseudo length of the 81" Lanczos vector is 0.9% 1071, which is at the round-off
level, implying that the computed Lanczos vectors have spanned the whole solution space

as it should in exact arithmetic. This desirable result will ensure that all the Ritz pairs



16

obtained from the solution of the reduced tri-diagonal system are good and hence are accu-

rate eigenpairs of the system.

Test Problem 2 : The system consists of two beams connected by a hinge with a rota-
tional viscous-damper. The geometrical configuration and physical properties of the system
are shown in Figure 4. The consistent mass matrix is used for M. The damping matrix C
has only four nonzero elements, which are due to the lumped rotational damper. The sys-
tem is divided into 40 equal elements and has 83 degrees of freedom. The associated
(A, B) is of order 166. Note that the system is unrestrained and hence has rigid body
modes. We use the shifted (A, B) defined by eqn (3.12) to compute the eigenpairs of this
unrestrained system. The Lanczos algorithm with FRO scheme is used to solve this prob-
lem. Figure 5 summarizes the results of 9 experiments. Similar conclusions as in the first
test problem can be inferred from Figure 5. The pseudo length of the 167" Lanczos vector

is 0.1x 1071 which again exhibits the robustness of the computer program developed.

In general, the starting vector for the Lanczos algorithm may be chosen arbitranly.
However, if the starting vector is orthogonal to any of the eigenvectors of (A, B), all the
Lanczos vectors will also be orthogonal to these eigenvectors. In practice, round-off errors
eventually will introduce components along these eigenvectors; however, round-off enters
slowly and the convergence to these eigenvectors is deferred. Therefore, we need to avoid
the possibility of the starting vector being orthogonal to the wanted eigenvectors of the sys-
tem. Since the structural system in this test problem is symmetric, there are anti-symmetric
modes as well as symmetric modes. If a symmetric starting vector is used, such as
(1,1,...,1), all the Lanczos vectors will be symmetric. Accordingly, all the anti-
symmetric modes of the structure will be suppressed by this biased starting vector. To
obtain all the required lower modes, we cannot choose a symmetric or anti-symmetric vec-
tor as the starting vector. This undesirable situation can usually be avoided by using a

random vector as the starting vector.

Test Problem 3 : This problem is a three dimensional space truss system. There are

44 nodes and the 4 end nodes are fully restrained, as shown in Figure 6. Thus, there are
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120 degrees of freedom and the associated (A, B) is of order 240. All truss bars have the
same density and Young’s modulus but different damping, as shown in Figure 6, resulting
in a nonproportionally damped system. We use the Lanczos algorithm with the FRO
scheme to generate 60 Lanczos vectors. We also use the Lanczos algorithm with the pro-
posed PRO scheme to generate 60 Lanczos vectors. The results from the two schemes are
compared in Table 2. The PRO scheme is shown to be adequate to compute the desired

solution.

Table 2 Results of Test Problems 3 and 4

Test Problem 3 | Test Problem 4

item problem
FRO PRO FRO PRO

number of Lanczos
60 60 80 80
vectors generated

number of
T 1770 602 3159 1246
re-orthogonalization

CPU ii ‘
time spent on 403 | 32.6 | 536.6 | 473.5

generating Lanczos vectors

CPU time spent on solving 50.8 517 1009 | 1012

reduced eigenproblem

total CPU ti K t
otal CPU time spenton 10 6 | 1067 | 893.2 | 830.9

solving the whole problem

number of good
. . . 28 28 40 40
Ritz pairs obtained ~ ‘

Test Problem 4 : This problem is a larger three dimensional space truss system.
There are 300 nodes and the 4 end nodes are fully restrained, as shown in Figure 7. A
typical cell is the same as the typical cell in the test problem 3. There are 888 degrees of
freedom and the order of the associated (A, B) is 1776. We use the Lanczos algorithm
with the FRO scheme to generate 80 Lanczos vectors. We also use the Lanczos algorithm

with the PRO scheme to generate 80 Lanczos vectors. The results from the two schemes
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are also compared in Table 2.

From Table 2, we see that the 60 Ritz pairs obtained provide 28 good eigenpairs for
test problem 3 and the 80 Ritz pairs obtained provide 40 good eigenpairs for test problem 4
for both FRO and PRO cases. That is, approximately two Lanczos vectors, on the aver-
age, are required to capture a new eigenvector for these two large problems. This implies
that the Krylov subspace generated by B'A and a random vector is very effective in

approximating the least dominant eigenvectors of the damped dynamic systems considered.

By maintaining semi-orthogonality between the Lanczos vectors with the PRO
scheme, the resulting Ritz values are as accurate as those obtained with the FRO scheme,
as shown in Table 2. But a great part of the re-orthogonalization steps can be eliminated
by using the PRO scheme instead of the FRO scheme. That is, we can eliminate some re-
orthogonalization effort without sacrificing accuracy of the final solution when solving
A Az= Bz with the PRO scheme. This is in agreement with the case of solving

w?M w = K w by standard Lanczos method, as shown by [5].

To assess the efficiency of the Lanczos algorithm, the lower mode solutions of the
above four test problems are also computed using a subspace iteration algorithm. The sub-
space iteration algorithm reported in [8] is used for this purpose. The subspace dimension
is determined by min { 2n, n+8 }, where n is the number of wanted eigenpairs. Table 3
compares the cost of the Lanczos algorithm with the cost of the subspace iteration algo-
rithm. It is" apparent that the Lanczos algorithm is considerably more efficient than the

subspace iteration algorithm for the examples considered.

7 Conclusions

A variant of the standard Lanczos algorithm is presented which yields an efficient
solution of the eigenproblem arising in the analysis of damped linear dynamic systems.
The algorithm takes full advantage of the sparsity and symmetry of the associated matrices.

From the results shown, the proposed Lanczos algorithm is considerably more economical



Table 3 Results from different algorithms

Test Lanczos algorithm subspace iteration algorithm
es
No. of good CPU time No. of good CPU time
Problem . . . )
Ritz pairs (second) Ritz pairs (second)
1 8 8.5 8 40.2
2 20 41.7 16 214.6
3 28 113.9 24 1012.9
4 40 893.2 40 20992.8
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than the subspace iteration algorithm for extracting lower mode eigenpairs of damped

dynamic systems.
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Box 1 Simple Lanczos Algorithm

Step 1 :

Operation Count

pick a random vector r

p=Ar
solve Bg = p
p=Ag

y1 = sqrt [ abs(q" p) ]
8, = sgn(q" p)
P-P/M1

q-9/v;

solve Br = p

ap = (rFp) - ¥
r-r—a;q

oldp = Ar

Yy = sqrt [abs (rT oldp)]
8, = sgn (rT oldp)

store q as q

2u(M) + n(C)
v(K)

2u(M) + p(C)
2n

2n

2n

v(K)

2n

2n

2u(M) + 1(C)
2n

Loop: Forj=23...

Operation Count

oldq ~ q

oldp —— p

q=r/v;

P-P/Yj

solve Br = p

a; = (r'p) - d;

Bj—1 = (r" oldp) - 8
r-r—aj g

r-r— ;1 oldg
Ar

I

oldp
Yj+1 = sqrt [ abs (rT oldp) ]
dj41 = sgn (r! oldp)

store q as qj

2n
2n
2n
2n
2n
2n
2u(M) + p(C)
2n
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Figure 3 Results of Test Problem 1
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Figure 5 Results of Test Problem 2
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