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Data Descriptor: Metagenome
sequencing and 98 microbial
genomes from Juan de Fuca Ridge
flank subsurface fluids
Sean P. Jungbluth1,y, Jan P. Amend1,2,3 & Michael S. Rappé4

The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet.
This study takes advantage of new sampling technologies and couples them with improvements to DNA
sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and
Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two
metagenomes from borehole observatories located 311meters apart and, using binning tools, retrieved 98
genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an
additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of
which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria
included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria,
and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and
Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic
subseafloor biosphere, and provide a dataset available for further interrogation.

Design Type(s) observation design • species comparison design

Measurement Type(s) metagenomics analysis

Technology Type(s) Shotgun Sequencing

Factor Type(s)

Sample Characteristic(s) Juan de Fuca Ridge • hydrothermal fluid
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Background & Summary
Beneath the sediments of the deep ocean, the subseafloor igneous basement presents a largely unexplored
habitat that likely plays a crucial role in global biogeochemical cycling1. This system also provides
a gradient of untapped environments for the discovery of novel microbial life. Because of extensive
hydrothermal circulation, the porous uppermost igneous crust is likely quite suitable for microbial life2.
Entrainment of deep seawater into young ridge flanks injects a variety of terminal electron acceptors into
the deep ocean crust, establishing chemical gradients with the reducing deeper fluids, and thereby fueling
redox-active elemental cycles3. The redox disequilibria and circulation of fluids through the permeable
network of volcanic rock sustains a largely uncharacterized microbial community that potentially extends
thousands of meters below the seafloor4. In such environments, temperatures may be elevated and energy
and nutrients may be limited, providing a unique combination of challenges to microbial life.

CORK (circulation obviation retrofit kit) observatories have been used to collect warm, anoxic crustal
fluids originating from boreholes drilled into 1.2 and 3.5 million-year-old ridge flank of the Juan de Fuca
Ridge (JdFR)5. This young, hydrologically-active basaltic crustal environment is overlain by a thick
(>100 m) blanket of sediment that serves to locally restrict fluid circulation in the ocean basement6,7. The
sampling and interrogation of raw basement fluids enabled by CORK observatories has revealed the
presence of novel microbial lineages that are related to uncultivated candidate microbial phyla with
unknown metabolic characteristics8–11. Here, we present the genomes from metagenomes (GFMs) of two
pristine large-volume igneous basement fluid samples collected from JdFR flank CORK observatories
within boreholes U1362A and U1362B (Fig. 1).

Shotgun sequencing produced 503 and 705 megabase pairs (Mbp) of unassembled sequence data from
individual borehole U1362A and U1362B samples (Table 1). The metagenomes were assembled
separately into 137,575 and 212,307 scaffolds totaling 170 and 168Mbp of sequence data from U1362A
and U1362B, respectively (Tables 1 and 2). The maximum scaffold lengths constructed from U1362A and
U1362B metagenome were, 541 and 1,137Mbp, respectively (Table 2). The success of this assembly to
generate long scaffolds that represent large, intact fractions of individual genomes provides a significant
foundation for which to apply binning methods to piece together genomes from populations in the
original samples.

Several methods were used to generate GFMs, which were then evaluated, further curated, and
reduced to a set for additional characterization. Ultimately, analysis was performed on 98 GFMs that were
over 200 Kbp in length, contained marker gene sets identified by CheckM, and were >10% complete
(Table 3 and Supplementary Table 1).

Phylogenetic analysis of concatenated universally conserved marker gene alignments (Figs 2 and 3,
Supplementary Figs 1 and 2) and taxonomic identification of SSU rRNA genes (Table 4 (available online
only)) allowed for the phylum-level identification of most of the 53 bacterial and 45 archaeal GFMs. The
U1362A and U1362B borehole fluid GFMs were comprised of many of the same microbial lineages
described previously using SSU rRNA sequencing8,11, including bacterial groups Chloroflexi (11),
Nitrospirae (8), Acetothermia (OP1; 7), EM3 (5), Aminicenantes (OP8; 4), Gammaproteobacteria (4),
and Deltaproteobacteria (4), and archaeal groups Archaeoglobi (21), Bathyarchaeota (MCG; 9), and
Marine Benthic Group E (MBG-E; 3) (Table 5 (available online only) and Supplementary Table 1). In this
study, we identified the first near-complete genomes from archaeal and bacterial lineages THSCG,
MBG-E, and EM3 and, based on the warm, subsurface and hydrothermally-associated environments
from which these groups tend to be found, propose the names Geothermarchaeota, Hydrothermarch-
aeota, and Hydrothermae, respectively.

The 98 genomes described here were deposited into the National Center for Biotechnology
Information (NCBI) and Integrated Microbial Genomes (IMG) databases12. The genome data described
here are the first GFMs described from the deep subseafloor volcanic basement environment and will be
used to interrogate the functional underpinnings of individual microbial lineages within this remote and
distinct ecosystem. Considering that genome binning methods cannot yield comprehensive segregation of
all entities in complex samples13, and that informatics tools are continuously improving, we recommend
that anyone using these data verify the contents of these GFMs with the latest tools available.

Methods
Borehole fluid sampling
Sample collection methods are described elsewhere11. Briefly, during R/V Atlantis cruise ATL18-07
(28 June 2011-14 July 2011) samples of basement crustal fluids were collected from CORK observatories
located in 3.5 million-year-old ocean crust east of the Juan de Fuca spreading center. Basement fluids
were collected from lateral CORKs (L-CORKs) at boreholes U1362A (47°45.6628′N, 127°45.6720′W) and
U1362B (47°45.4997′N, 127°45.7312′W) via polytetrafluoroethylene (PTFE)-lined fluid delivery lines that
extend to 200 (U1362A) and 30 (U1362B) meters sub-basement. Fluids were filtered in situ through
Steripak-GP20 (Millipore, Billerica, MA, USA) polyethersulfone filter cartridges containing 0.22 μm
pore-sized membranes using a mobile pumping system. Filtration rates were 1 l/min in laboratory trials,
indicating that ~124 liters and ~70 liters were filtered from boreholes U1362A and U1362B, respectively.
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Metagenomic DNA sequencing
Borehole fluid nucleic acids were extracted using a modified phenol/chloroform lysis and purification
method and is described in detail elsewhere11. The samples used in this study correspond to samples
SSF21–22 (U1362A) and SSF23–24 (U1362B) labelled by Jungbluth et al.11. Library preparation and
sequencing was conducted by the Department of Energy Joint Genome Institute as part of the
Community Science Program. A total of 100 ng (U1362A) or 5 ng (U1362B) of DNA was sheared using a
focused-ultrasonicator (Covaris, Woburn, MA, USA). The sheared DNA fragments were size selected
using SPRI beads (Beckman Coulter, Brea, CA, USA). The selected fragments from U1362A were then
end-repaired, A-tailed, and ligated of Illumina compatible adapters (Integrated DNA Technologies,
Coralville, IA, USA) using KAPA-Illumina library creation kit (KAPA Biosystems, Wilmington, MA,
USA). The selected fragments from U1362B were treated with end repair, ligation of adapters and 9 cycle
of PCR on the Mondrian SP+ Workstations (Nugen, San Carlos, CA, USA) using the Ovation SP+
Ultralow DR Multiplex System kit (Nugen).

The library was quantified using KAPA Biosystem’s next-generation sequencing library qPCR kit and
run on a LightCycler 480 real-time PCR instrument (Roche, Basel, Switzerland). The quantified U1362A
library was then prepared for sequencing on the HiSeq sequencing platform (Illumina, San Diego, CA,
USA) utilizing a TruSeq paired-end cluster kit, v3, and Illumina’s cBot instrument to generate clustered
flowcell for sequencing. The U1362B library was prepared for sequencing in the same manner except the
library was multiplexed with one other sample library prior to use of the TruSeq kit. Sequencing of the
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U1362A U1362B

No. assembled (% of
assembled)

No. unassembled (% of
unassembled)

Total (% of total) No. assembled (% of
assembled)

No. unassembled (% of
unassembled)

Total (% of total)

Number of
sequences

137,575 (8.08) 1,564,185 (91.92) 1,701,760 (100) 212,307 (7.60) 2,582,305 (92.40) 2,794,612 (100)

Number of
bases

169,908,118 (33.78) 333,077,167 (66.22) 502,985,285 (100) 168,044,831 (23.83) 537,213,224 (76.17) 705,258,055 (100)

GC count 82,941,377 (48.82) 163,998,454 (49.24) 246,939,831 (49.09) 87,552,944 (52.10) 270,739,112 (50.40) 35,829,2056 (50.80)

Genes

rRNA genes 609 (0.22) 1,124 (0.08) 1,733 (0.10) 682 (0.21) 1,219 (0.05) 1,901 (0.07)

16S rRNA 198 (0.07) 162 (0.01) 360 (0.02) 199 (0.06) 191 (0.01) 390 (0.01)

23S rRNA 315 (0.12) 617 (0.04) 932 (0.05) 359 (0.11) 587 (0.02) 946 (0.04)

Protein
coding
genes

267,511 (98.50) 1,489,984 (99.63) 1,757,495 (99.46) 319,764 (98.87) 2,344,253 (99.37) 2,664,017 (99.31)

with
Product
Name

160,006 (58.91) 438,495 (29.32) 598,501 (33.87) 170,964 (52.86) 559,698 (23.73) 730,662 (27.24)

with COG 186,319 (68.60) 675,287 (45.16) 861,606 (48.76) 207,169 (64.06) 834,581 (35.38) 1,041,750 (38.84)

with Pfam 172,149 (63.38) 519,243 (34.72) 691,392 (39.13) 187,717 (58.04) 647,505 (27.45) 835,222 (31.14)

with KO 131,624 (48.46) 604,486 (40.42) 736,110 (41.66) 151,186 (46.75) 773,722 (32.80) 924,908 (34.48)

with
Enzyme
(EC)

73,927 (27.22) 356,052 (23.81) 429,979 (24.33) 83,086 (25.69) 440,214 (18.66) 523,300 (19.51)

with
MetaCyc

52,288 (19.25) 244,997 (16.38) 297,285 (16.82) 58,809 (18.18) 301,799 (12.79) 360,608 (13.44)

with KEGG 78,361 (28.85) 365,246 (24.42) 443,607 (25.10) 88,171 (27.26) 455,581 (19.31) 543,752 (20.27)

Table 1. Metagenome sequencing statistics reported in IMG.

U1362A U1362B

Minimum scaffold length Num. of Scaffolds* Total Scaffold Length* Num. of Scaffolds* Total Scaffold Length*

All 137,575 169,908,118 212,307 168,044,831

1 kb 25,958 122,371,000 22,179 94,767,619

2.5 kb 10,118 98,145,686 7,817 72,903,412

5 kb 4,544 78,915,922 3,232 57,281,039

10 kb 1,933 60,882,353 1,339 44,376,823

25 kb 615 41,195,243 435 30,631,998

50 kb 273 29,394,283 191 22,129,275

100 kb 105 18,147,775 72 13,983,109

250 kb 15 5,160,259 11 5,597,623

500 kb 1 540,961 3 2,801,775

1 mb 0 0 1 1,136,825

Table 2. Metagenome scaffold length statistics. *Numbers listed are the cumulative sum of all scaffolds
equal to or above the scaffold length.

Method Num Bins Num Bins >10% Complete Num Bins >50% Complete Avg. Completeness (%)* Avg. Contamination (%)*

CONCOCT 66 56 46 90.9 50.8

ESOM 60 54 49 90.4 71.5

MaxBin 75 66 51 85.7 42.9

MetaBAT 69 64 45 87.7 9.7

CONCOCT (post manual
curation in Anvi’o)

252 98 61 84.4 3.3

Table 3. Genome binning method summary. *Average calculated for bins >50% completeness.
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flowcell was performed on the Illumina HiSeq2000 sequencer using a TruSeq SBS sequencing kit
200 cycles, v3, following a 2 × 150 indexed run recipe.

Insert size analysis was performed at JGI using bbmerge to pair overlapping reads and,
with sufficient coverage, non-overlapping reads using gapped kmers. The ‘percentage reads
joined’ was calculated by (number of joined reads/total number of reads × 100). Raw reads were
used for the insert size calculation (no trimming or filtering). Insert size statistics for the
U1362A metagenome were: 68.342% reads joined, 216.60 bp average read length, 37.40 bp s.d.

IM
G

_2
51

66
53

08
8

Altiarchaeales

G. ahangari

SG
8-5

BA2

A
. boonei

J-
10

T. sibiricus

J-32

M. thermolithotrophicus

J-03

G. acetivorans

BA
1

C
al

di
ar

ch
ae

um

J-
11

J-2
0

D
G

-70-1

DG
-4

5

J-35

T. sp. PK

SM1-50

F. placidus

SM
TZ

-8
0

J-27

A. fulgidus

J-34

J-23

M
. stordalenm

irensis
A. profundus

J-07

J-2
2

J-17

Lokiarchaeota

J-39

J-37

AD8-1

J-
19

A. sulfaticallidus

A. veneficus

D
G

-70

J-45

J-18

J-24

SG8-32-3

J-2
1

M
. lum

inyensis

J-
14

J-0
4

Methanopyri

pM
C2A384

J-43

SG8-
32

-1

IM
G

_2502171154

J-4
2

J-
13

A. sp. M
AR

08-339

J-08

T. barophilus

J-02

J-31

J-41

1.00

Bacteria

Micrarchaeum

Diapherotrites

Aenigmarchaeota

Pacearchaeta & 

W
oesearchaeota

Th
au

m
ar

ch
ae

ot
a

Th
or

ar
ch

ae
ot

a

Th
er

m
op

ro
te

i

Hadesarchaea

Other Thermococci

Other Thermococci

Other Methanococci
Other Methanococci
Other Methanococci

Other Methanococci

Methanobacteria

SG8-52-(1-4)Therm
oplasm

ata-Therm
oplasm

atales

M
et

ha
no

m
icr

ob
ia

-M
et

ha
no

sa
et

a

M
et

ha
no

m
icr

ob
ia

-M
et

ha
no

sa
rc

in
al

es
M

et
ha

no
m

ic
ro

bi
a-

M
et

ha
no

m
ic

ro
bi

al
es

H
al

ob
ac

te
ria

M
et

ha
no

m
ic

ro
bi

a-
M

et
ha

no
ce

lla
le

sArchaeoglobi

Methanomicrobia
& Halobacteria

DHVEG-2 &
Aciduliprofundum

Thermoplasmata 

Methanococci

Thermococci

Bathyarchaeota (MCG)

Geothermarchaeota
(THSCG)

Hydrothermarchaeota
(MBG-E)

Euryarchaeota - 
NRA7

Figure 2. Phylogenomic relationships between archaeal genomes >50% complete identified in CORK

borehole fluid metagenomes and other closely related genomes. The scale bar corresponds to 1.00

substitutions per amino acid position. Some groups are collapsed to enhance clarity and all groups with

taxonomic identities are shown. The names of major lineages with GFMs found in Juan de Fuca Ridge

basement fluids are indicated with bold-face font. JdFR GFM prefixes are abbreviated from ‘JdFR’ to ‘J’ and

labeled using red-colored text. Black (100%), gray (≥80%), and white (≥50%) circles indicate nodes with high

local support values, from 1,000 replicates.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170037 | DOI: 10.1038/sdata.2017.37 5



read length, and 215 bp mode read length. Insert size statistics for the U1362B metagenome were: 50.40%
reads joined, 210.80 bp average read length, 39.70 bp s.d. read length, and 196 bp mode read length.

Metagenome quality control, read trimming and assembly
Assembly was performed by the JGI; corresponding JGI assembly identifications are 1,020,465 (U1362A)
and 1,020,462 (U1362B). Raw Illumina metagenomic reads were screened against Illumina artifacts with
a sliding window with a kmer size of 28, step size of 1. Screened read portions were trimmed from both
ends using a minimum quality cutoff of 3, reads with 3 or more ‘Ns’ or with average quality score of less
than Q20 were removed. In addition, reads with a minimum sequence length of o50 bp were removed.
Trimmed, screened, paired-end Illumina reads were assembled using SOAPdenovo version 1.05 (ref. 14)
with default settings (options: -K 81, -p 32, -R, -d 1) and a range of Kmers (81, 85, 89, 93, 97, 101).
Contigs were generated by each assembly were de-replicated and sorted into two pools based on length.
Contigs smaller than 1,800 bp were assembled using Newbler version 2.7 (Life Technologies, Carlsbad,
CA, USA) in an attempt to generate larger contigs (flags: -tr, -rip, -mi 98, -ml 80). All assembled contigs
larger than 1,800 bp were combined with the contigs generated from the final Newbler run using
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minimus2 (AMOS) version 3.1.0 (ref. 15) (flags: -D MINID= 98 -D OVERLAP= 80). JGI-reported read
depths available in IMG were estimated based on read mapping with JGI custom mapping programs.

Gene prediction and annotation
All aspects of metagenome annotation performed at JGI have been described previously12 and can be
found at https://img.jgi.doe.gov/m/doc/MGAandDI_SOP.pdf. Briefly, metagenome sequences were
preprocessed to resolve ambiguities, trim low-quality regions and trailing ‘N’s using LUCY16, masked
for low-complexity regions using DUST17, and dereplicated (95% threshold). Genes were predicted in the
following order: CRISPRs, non-coding RNA genes, protein-coding genes. CRISPR elements were
identified by concatenating the results from the programs CRT18 and PILER-CR19. tRNAs were predicted
using tRNA scan SE-1.23 (ref. 20) three times using each of the domains of life (Bacteria, Archaea,
Eukaryota) as the parameter required; the best scoring predictions were selected. Fragmented tRNAs were
identified by comparison to a database of tRNAs identified in isolate genomes. Ribosomal RNA genes
were predicted using JGI-developed rRNA models (SPARTAN: SPecific & Accurate rRNA and tRNA
ANnotation). Protein-coding genes were identified using a majority rule-based decision schema using
four different gene callings tools: prokaryotic GeneMark (hmm version 2.8)21, MetaGene Annotator
version 1.0 (ref. 22), Prodigal version 2.5 (ref. 23), and FragGeneScan version 1.16 (ref. 24). When there
was no clear decision, the selection was based on preference order of gene callers determined by JGI-
based runs on simulated metagenomic datasets [GeneMark > Prodigal > Metagenome > FragGeneScan].

Predicted CDSs were translated and associated with Pfams, COGs, KO terms, EC numbers, and
phylogeny. Genes were associated with Pfam-A using hmmsearch25. Genes were associated with COGs by
comparing protein sequences with the database of PSSMs for COGs downloaded from NCBI; rpsblast v2.
26 (ref. 26) was used to find hits. Assignments of KO terms, EC numbers, and phylogeny were made
using similarity searches to reference databases constructed by starting with the set of all non-redundant
sequences taken from public genomes in IMG. Sequences from the KEGG database that were not present
in IMG were added and all data was merged to related gene IDs to taxa, KO terms, and EC numbers.
USEARCH v6.0.294 (ref. 27) was used to compare predicted protein-coding genes to genes in this
database and the top five hits for each gene were retained. Phylogenetic assignment was based on the top
hit only; for assignment of KO terms, the top five hits to genes in the KO index were used. A hit resulted
in an assignment if there was at least 30% identity and greater than 70% of the query protein sequence or
the KO gene sequence were covered by the alignment.

Genome binning
Assemblies from the U1362A and U1362B metagenomes were combined and used to generate GFMs.
Four different genome binning approaches were used to identify the workflow that yielded the most
favorable balance between maximizing genome completeness while minimizing contamination for these
metagenomes: MaxBin28, ESOM29, MetaBAT30, and CONCOCT31.

Genome binning was performed using MaxBin version 2.1.1 (ref. 28) with the 40 marker gene set
universal among Bacteria and Archaea32, minimum scaffold length of 2,000 bp, and default parameters.
Scaffold coverage from each metagenome was estimated using the quality-control filtered raw reads as
input for mapping using Bowtie2 version 2.2.3 (ref. 33) used within MaxBin.

Genome binning was also performed using a combination of tetranucleotide frequencies and
differential coverage in emergent self-organizing maps (ESOM)29. Scaffold coverage was calculated using
bbmap version 35.40 and the jgi_summarize_bam_contig_depths script from the MetaBAT pipeline30.
Scripts downloaded from (http://github.com/tetramerFreqs/Binning) were used to calculate tetramer
frequencies and create input files for ESOM. A robust Z-transformation was applied to the input data
prior to generation of the ESOM. Scaffolds 10 Kbp or greater were cut into fragments of 2,000 bp prior to
clustering. The number of epochs used for clustering was 20 and the dimensions of the ESOM were
400 × 430 (Supplementary Fig. 3).

Using MetaBAT version 0.26.3 (ref. 30), genome binning was performed with the jgi_summar-
ize_bam_contig_depths script and the same scaffold coverage map calculated using bbmap described
above. Default parameters were used.

Finally, genome binning was performed using CONCOCT31 within the Anvi’o package, version
1.1.0 (ref. 34). The metagenomic workflow employed here is described online (merenlab.org/2015/05/02/
anvio-tutorial), and included as input data the quality-filtered raw sequence reads from both
metagenomes, as well as assemblies generated by the JGI. The scaffold coverage map was calculated
using bbmap version 35.82. Scaffolds greater or equal to 2.5 Kbp were used for binning with CONCOCT.

Comparison of genome binning methods and bin curation
Completeness and contamination of all GFMs created using the four binning methods were assessed
using CheckM version 1.0.5 (ref. 35). Compared to the GFMs generated via MaxBin, ESOM, and
MetaBAT, GFMs generated with CONCOCT had the highest average percent completeness for bins that
were at least 50% complete (Table 3). Genome completeness was the primary criterion used in the
selection of the binning method because the facilitated supervised binning via the ‘anvi-refine’ function in
Anvi’o proved an effective means to remove contamination from a draft set of genome scaffolds. Manual
refinements to the GFMs were executed in Anvi’o using differential coverage, tetranucleotide frequency,
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and marker gene content (i.e., completeness/contamination). Bin splitting was assisted by the analysis
of SSU rRNA genes identified using CheckM and inspected via the SILVA/SINA online aligner version
1.2.11 (ref. 36) with the following parameters: minimum identity with query sequence, 0.8, and number
of neighbors per query sequence, 3. When SSU rRNA genes of different taxonomic origin were found to
conflict within a single bin, those bins were further scrutinized and split manually. In most instances
where contamination was >50%, splitting bins into their U1362A and U1362B components resolved
conflicts. Bins were split until no SSU rRNA gene conflicts remained and all bins had been manually
inspected and screened for outlying scaffolds. Four other marker gene sets31,37–39 were used to compare
completeness and contamination within Anvi’o (Supplementary Fig. 4). A total of 252 GFMs were
identified after curation with Anvi’o, and completeness and contamination of the final GFMs was
ultimately estimated with CheckM and the marker gene set of Wu and colleagues32. Of these, 98 were at
least 10% complete (Table 5 (available online only) and Supplementary Table 1), which was used as a
minimum cutoff because the GFMs all contained marker genes that allowed them to be assigned
phylogenetic identities via CheckM. The 98 GFMs included a total of 16,066 scaffolds and 154,609,643 bp.

Phylogenomics and identification of genomes from metagenomes
From all genomes described here with completeness >10% and relevant GFMs and single-amplified
genomes (SAGs) from the Integrated Microbial Genomes (IMG)40, ggKbase, and National Center for
Biotechnology Information (NCBI) GenBank databases, phylogenetically informative marker genes were
identified and extracted using the ‘tree’ command in CheckM. In CheckM, open reading frames were
called using prodigal version 2.6.1 (ref. 23) and a set of 43 lineage-specific marker genes, similar to the
universal set used by PhyloSift41, were identified and aligned using HMMER version 3.1b1 (ref. 42). The
61 GFMs with >50% completeness were assigned taxonomic identifications through analysis of a
concatenated marker gene alignment (6,988 amino acid positions) and placement in a phylogenomic tree
with related GFMs and SAGs found in the NCBI, IMG, and ggKbase databases. The phylogeny was
produced using FastTree version 2.1.9 (ref. 43) with the WAG amino acid substitution model and ‘fastest’
mode. Bootstrap values reported by FastTree analysis indicate local support values. To leverage the
taxonomic identifications assigned to GFMs with >50% completeness to assist in the identification of 37
GFMs with completeness 10–50%, an additional phylogenetic analysis with only the 98 Juan de Fuca
GFMs was performed in ARB44 using RAxML version 7.7.2 (ref. 45) with the PROTGAMMA rate
distribution model and WAG amino acid substitution model. Bootstrapping was executed in ARB using
the RAxML rapid bootstrap analysis algorithm46 with 100 bootstraps. To further aid in identification of
GFMs, SSU rRNA genes were extracted from 49 genome bins using the ‘ssu_finder’ command within
CheckM and identified via the SILVA/SINA online aligner version 1.2.11 (ref. 36) with the version 123
database and the following parameters: minimum identity with query sequence, 0.8, and number of
neighbors per query sequence, 3 (Table 4 (available online only)).

Data Records
The raw Illumina sequencing reads, assembled and annotated metagenomes (Table 1), and 98 GFMs
generated from the Juan de Fuca Ridge basement fluids (Table 5 (available online only) and
Supplementary Table 1) are available from the NCBI databases (Data Citation 1). FASTA files containing
the contigs of all 98 GFMs are available on figshare (Data Citation 2). Text files needed to isolate scaffold
sets for all 98 GFMs in IMG/M are available on figshare (Data Citation 3). A FASTA file containing 54
SSU rRNA genes with length >300 base pairs extracted from the 98 GFMs is available on figshare (Data
Citation 4). A text file containing all IMG/M annotations associated with the 98 GFMs is available on
figshare (Data Citation 5).

Technical Validation
To assess the completeness and contamination of the genomes, we analyzed the abundance of single copy
marker genes present in all bacterial and archaeal GFMs using CheckM35 (see Methods for details).

Usage Notes
The U1362A and U1362B metagenome projects and raw sequencing reads are available via the IMG-M
web portal under Taxon ID numbers 330002481 (U1362A) and 3300002532 (U1362B). Gold Analysis
Project ID numbers are Ga0004278 (U1362A) and Ga0004277 (U1362B). Sample metadata can be
accessed at BioProject (Data Citation 1). The NCBI BioSamples used here are SAMN03166137 (U1362A)
and SAMN03166138 (U1362B). FASTA files containing the contigs of all 98 genomes from metagenomes
can be accessed at Data Citation 2. IMG/M-relevant files needed to isolate scaffold sets for all 98 genomes
from metagenomes can be accessed at Data Citation 3. A FASTA file containing 54 SSU rRNA genes with
length >300 base pairs extracted from the 98 genomes from metagenomes can be accessed in
Data Citation 4. IMG/M annotations associated with the scaffolds of all 98 genomes from metagenomes
can be accessed at Data Citation 5. The GFMs can be accessed via the National Center for Biotechnology
Information (NCBI) using the BioSample and GenBank accessions provided in Table 5 (available online
only) and Supplementary Table 1.
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Corrigendum: Metagenome
sequencing and 98 microbial
genomes from Juan de Fuca Ridge
flank subsurface fluids
Sean P. Jungbluth, Jan P. Amend & Michael S. Rappé

Scientific Data 4:170037 doi:10.1038/sdata.2017.37 (2017); Published 28 March 2017; Updated 4 July
2017

Table 5 and Supplementary Table 1 contain an error in the Genbank accession provided for bin JdFR-98.
The correct accession number is “MTPH00000000”, not “MTPG00000000”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/
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