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Abstract Recent studies have demonstrated that levels of
fibroblast growth factor 23 (FGF-23), a key regulator of
phosphorus and vitamin D metabolism, rise dramatically as
renal function declines and may play a key initiating role in
disordered mineral and bone metabolism in patients with
chronic kidney disease (CKD). The physiologic importance
of FGF-23 in mineral metabolism was first identified in
human genetic and acquired rachitic diseases and further
characterized in animal models. FGF-23 and its regulators,
including phosphate regulating endopeptidase homolog,
dentin matrix 1 (DMP1), and matrix extracellular phospho-
glycoprotein, are made primarily in bone, specifically in
osteocytes. Dysregulation of these proteins results in
osteomalacia, implicating the osteocyte in the regulation
of skeletal mineralization. Studies in pediatric patients with
CKD, the majority of whom have altered skeletal mineral-
ization in early stages of CKD, have demonstrated that
skeletal expression of both FGF-23 and its regulator,
DMP1, are increased in early stages of CKD and that
expression of these proteins is associated with alterations in
skeletal mineralization. Thus, dysregulation of osteocytic
proteins occur very early in the course of CKD and appear
to be central to altered bone and mineral metabolism in this
patient population.
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Introduction

Abnormalities in mineral and bone metabolism occur early
in the course of chronic kidney disease (CKD) and progress
as renal function declines [1]. Traditionally, these abnor-
malities have been ascribed to changes in the parathyroid
hormone (PTH) and vitamin D axis, which lead to
subsequent alterations in calcium and phosphorus metabo-
lism [1–3]. However, recent studies have revealed that
circulating values of fibroblast growth factor 23 (FGF-23),
a key regulator of phosphorus and vitamin D metabolism,
rise dramatically as renal function declines and may play a
key initiating role in the development of abnormal mineral
metabolism in patients with CKD [4].

FGF-23 is made in osteocytes in mineralized bone [5],
and studies of FGF-23 in human on genetic and acquired
diseases and those using animal models have demonstrated
that both under- and over-expression [6–8] of FGF-23
result in impairments in bone biology. Although the
defective skeletal mineralization observed in patients with
FGF-23 excess is likely a consequence of low phosphorus
and vitamin D values, studies of FGF-23 deficiency in
animal models and in cell culture suggest that FGF-23, and
the proteins that regulate FGF-23, also have a direct effect
on bone [9]. In these models, FGF-23 appears to directly
regulate osteoblast differentiation [9], while a complete lack
of the FGF-23 protein impairs skeletal mineralization,
despite adequate (even excessive) circulating levels of
phosphorus and vitamin D [6, 7]. In addition, recent studies
suggest that alterations in skeletal FGF-23 expression also
coincide with impairments in skeletal metabolism in the
CKD population. Indeed, FGF-23 is up-regulated early in
the course of CKD and is associated with skeletal
mineralization indices in these individuals [10]. Although
the mechanisms by which these effects on bone are

K. Wesseling-Perry (*)
Department of Pediatrics,
David Geffen School of Medicine at UCLA,
650 Charles Young Drive East, A2-383 MDCC,
Los Angeles, CA 90095, USA
e-mail: kwesseling@mednet.ucla.edu

Pediatr Nephrol (2010) 25:603–608
DOI 10.1007/s00467-009-1384-6



mediated are unknown, they may involve a number of
proteins that have been shown to regulate both FGF-23
levels and skeletal mineralization [11, 12].

FGF-23 and mineral metabolism: function
and regulation

The physiologic importance of FGF-23 was first identified
in human genetic and acquired rachitic diseases, such as
autosomal dominant hypophosphatemic rickets (ADHR),
tumor-induced osteomalacia (TIO), and X-linked hypo-
phosphatemic rickets (XLH) [8, 13–15]. In these condi-
tions, increased levels of the protein are accompanied by
impaired tubular phosphate reabsorption, hypophosphate-
mia, low (or inappropriately normal) levels of 1,25
(OH)2vitamin D, and impaired skeletal mineralization
(rickets or osteomalacia) [6, 7, 16–18]. Increased circulating
levels of FGF-23 are necessary and sufficient to account for
these abnormalities since the infusion of FGF-23 into rats
with normal renal function results in renal phosphate wasting
and direct suppression of 1α hydroxylase activity [18] while
the inverse phenotype accompanies a complete lack of either
functional FGF-23 or its co-receptor, Klotho [6, 7, 19–23].
More recently, FGF-23 has also been shown to regulate PTH
metabolism based on observations that it can suppress PTH
secretion both in vitro and in vivo [24, 25].

FGF-23 expression is regulated by vitamin D, phosphate
and, potentially, PTH. In both animals and humans, the
administration of 1,25(OH)2vitamin D increases circulating
FGF-23 levels [26], apparently due to a direct action of
vitamin D on FGF-23 via a vitamin D response element
located upstream of the FGF-23 promoter [27]. Sustained
increases in dietary phosphorus are also associated with
increasing FGF-23 levels and declining 1,25(OH)2vitamin
D levels [28, 29], while dietary phosphorus restriction
reverses these trends [28, 29]. PTH levels may also
stimulate FGF-23 expression [30]; findings in primary
hyperparathyroidism [30], McCune–Albright syndrome
[31], and Jansen’s disease [32] suggest that osteocytic
stimulation by PTH directly increases skeletal FGF-23
release. The mechanism by which phosphate and PTH
mediate changes in FGF-23 expression remain unknown
and may be either direct effects on FGF-23 gene expression
itself or mediated through other potential regulators of
FGF-23.

Regulation of FGF-23: effects on bone metabolism
and interaction with other skeletal proteins

Although the effects of FGF-23 on mineral metabolism
obscure the potential direct effects of the protein on bone

biology, a growing compendium of data from animals as
well as from genetic and acquired human diseases of FGF-
23 deficiency and excess have yielded many insights into
the role that both FGF-23 and the factors that regulate FGF-
23 play in bone biology. While FGF-23 is expressed in a
variety of tissues, the majority of circulating FGF-23 is
derived from osteocytes (in high levels) and osteoblasts (in
lower levels) [33]. Although Klotho, the obligate co-
receptor for the actions of FGF-23 on mineral metabolism,
has not been described in skeletal tissue, a number of
studies suggest that FGF-23 has a direct effect on bone.

FGF-23 appears to directly inhibit osteoblast maturation
and matrix mineralization particularly during embryonic
skeletal development [9]. Consistent with an effect of
FGF-23 on osteoblast proliferation, FGF-23 expression is
much lower in the embryonic skeleton than it is in adult
animals [5] and, indeed, disruption of the Wnt signaling
pathway—a pathway responsible for osteoblast prolifera-
tion and bone matrix mineralization—has been noted in
mice with excess skeletal FGF-23 expression [34]. In
mature animals, a complete lack of FGF-23 also results
in focal alterations in skeletal mineralization, despite
adequate (even excessive) serum phosphate, calcium, and
vitamin D levels [6, 7], suggesting a direct role of the
protein on maintaining skeletal mineralization at later
stages of development.

Several factors have been described which are produced
in bone and regulate skeletal FGF-23 expression and which
may themselves contribute to the skeletal mineralization
process. The genetic condition of XLH (a condition with a
phenotype very similar to that of ADHR) and its mouse
homolog, the Hyp mouse, are associated with increased
FGF-23 levels as a result of defects in the phosphate-
regulating endopeptidase homolog (PHEX). PHEX is a
cell-surface endopeptidase predominantly located in osteo-
blasts and osteocytes. Although the exact actions of PHEX
in vivo have not yet been completely defined, inactivation
of PHEX leads to increased FGF-23 expression by an
indirect mechanism. Potential mediators of these increased
FGF-23 levels include increased skeletal expression of
fibroblast growth factor 1, which has been shown to
directly stimulate the FGF-23 promoter [34], and decreased
expression of UDP-N-acetyl-alpha-D-galactosamine poly-
peptide N-acetylgalactosaminyltransferase 3 (GALNT3), an
enzyme essential for the glycosylation (and hence, stabili-
zation) of the FGF-23 protein [34].

Whether from a direct effect of increased skeletal FGF-
23 expression or due to some other factor modulated by the
loss of PHEX activity, bone from Hyp mice displays an
intrinsic mineralization defect that is not corrected by
normalization of circulating calcium and phosphate con-
centrations; indeed, the selective ablation of PHEX in
osteoblasts and osteocytes is sufficient to generate a
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phenotype of osteomalacia in mice [35], while the
transplantation of Hyp mouse bone into wild-type mice
does not reverse the phenotype of the explanted bone [36].
This intrinsic mineralization defect may be due to
excessive proteolytic activity in the absence of PHEX;
Rowe et al. [37] have demonstrated that the mineralization
defect in the Hyp mouse can be reversed with CA074 and
pepstatin—inhibitors of proteolytic activity—without cor-
recting systemic hypophosphatemia. Factors which regu-
late local pH, such as carbonic anhydrase 12 (Car12),
carbonic anhydrase 3 (Car3), and sodium-dependent
citrate transporter (Slc13a5) expression, are also dysregu-
lated in Hyp osteoblasts [34], suggesting that altered local
bicarbonate and/or citrate concentrations may also impair
mineralization by depriving the osteocyte of citrate
necessary for energy metabolism. In addition, intrinsic
mineralization inhibitors, including matrix gla protein
(MGP) and thrombospondin (Thbs) 4, are increased in
Hyp mouse osteocytes and may also contribute to altered
skeletal mineralization [34].

Skeletal mineralization in various forms of hypophos-
phatemic rickets may also be regulated through interactions
with members of the short integrin binding-ligand, N-linked
Glycoprotein (SIBLING) family. It has been proposed that
PHEX binds to members of the (SIBLING) family,
proteins which regulate both FGF-23 [11] and the process
of skeletal mineralization [38]. Indeed, PHEX regulates at
least two SIBLING proteins, matrix extracellular phospho-
glycoprotein (MEPE) [11] and dentin matrix protein 1
(DMP1), thereby preventing their proteolytic cleavage and
the release their active C-terminal peptide [11, 12].
Consistent with these findings, MEPE is increased in
XLH patients and in Hyp mice [11, 39], while PHEX
inhibits the cleavage of the acidic, serine- and aspartic
acid-rich motif (ASARM) peptide, an active peptide which
inhibits mineralization, from full-length MEPE [11].
However, as the deletion of MEPE fails to correct the
Hyp phenotype [39], other factors are likely to be
involved.

The role of DMP1 in the regulation of FGF-23 and
skeletal mineralization may be of even greater importance.
In contrast to MEPE, DMP1, or rather the 2 active (N- and
C-terminal) fragments of DMP1 generated from its
cleavage by such proteinases as bone morphogenic protein
1 (BMP1) [40], promotes mineral formation [41]. In both
humans and animals, DMP1 dysfunction results in
increased skeletal and circulating FGF-23 values as well
as a diffuse skeletal mineralization defect [33, 42] and
disrupted osteocyte structure [33]. Furthermore, the
DMP1/FGF-23 double knockout is phenotypically similar
to the FGF-23 knockout [43], suggesting that DMP1
regulates FGF-23 and is located upstream of the FGF-23
molecule.

The effects of FGF-23 on mineral and bone metabolism
in CKD

FGF-23 levels rise progressively as renal function declines
[4, 44]. Several potential mechanisms for these increasing
values have been proposed, including (1) an increased
production by bone in response to a decreased capacity for
renal phosphate excretion and/or (2) decreased renal
clearance of FGF-23. The variety of assays available for
detecting FGF-23 complicates this issue; currently, the
“intact” molecule may be detected by two assays produced
by two different manufacturers: Kainos and Immutopics
[45]. A “C-terminal” assay is also available (Immutopics,
Los Angeles, CA) that has the potential to measure
potentially inactive C-terminal fragments of the molecule
[45]. However, in a number of studies, values of FGF-23 by
these different assays are well correlated [10, 46], and
recent data suggest that the vast majority of circulating
FGF-23 in dialysis patients is in the full-length, intact,
active form of the molecule [47]. Thus, although these three
assays are calibrated differently, all three likely measure
full-length, active FGF-23 in circulation.

Regardless of the cause, increased FGF-23 values are
found in early stages of CKD—before any abnormalities in
serum calcium, phosphorus, or PTH are apparent [4, 48,
49]. Since normal serum phosphate levels are typically
maintained until late in the course of CKD [4], increasing
concentrations of FGF-23 appear to represent a compensa-
tory response to maintain normal serum phosphate levels in
the face of declining nephron mass. As FGF-23 values are
independently associated with decreasing kidney function
and low 1,25(OH)2vitamin D levels [4], the decline in
calcitriol levels associated with increasing FGF-23 levels is
thought to represent the initial event in the development of
secondary hyperparathyroidism.

As in patients with primary excesses in FGF-23 [8],
defective skeletal mineralization is also common in patients
with all stages of chronic kidney disease, in whom
increased circulating levels of FGF-23 occur in the presence
of normal or elevated serum phosphorus values [6, 7].
However, the association between FGF-23 and bone in this
population differs greatly from that in the general popula-
tion. The results of a cross-sectional analysis of 49 pediatric
dialysis patients with secondary hyperparathyroidism sug-
gest that high circulating levels of FGF-23 in pediatric
dialysis patients are associated with improved indices of
skeletal mineralization [10]. Although these results appear
to contrast with findings in patients with normal kidney
function, they are similar to the mineralization defects
found in rodents with a complete lack of FGF-23, despite
adequate circulating mineral content [6, 7].

Confirming this association, a study of FGF-23, DMP1,
and MEPE expression in bone tissue of 32 pediatric and
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young adult patients with CKD demonstrated that both
FGF-23 and DMP1 expression were up-regulated in
trabecular bone in early (stage 2) CKD, while MEPE
expression remained unchanged from normal controls. In
patients with all stages of CKD, the amount of bone FGF-
23 correlated directly with bone DMP1 expression and the
expression of each was inversely related to osteoid
accumulation. In contrast, MEPE expression was not
related to skeletal mineralization, but it was inversely
related to bone volume. Although the simultaneous increase
in both DMP1 and FGF-23 expression appears to be
contrary to previous data suggesting that DMP1 acts to
suppress FGF-23 expression, other data have suggested that
the over-expression of DMP1 does not suppress FGF-23
expression [50]. Moreover, DMP1 promoter activity
increases in response to increasing phosphate concentra-
tions [51]. Thus, it is possible that the simultaneous
increase in bone DMP1 and FGF-23 expression reflects
the increasing phosphate burden associated with pro-
gressive renal failure. Alternatively, increased DMP1
expression may reflect an alteration in protein function
in the context of CKD. Although the mechanism by
which this might occur is unknown, alterations in
DMP1 protein phosphorylation or cleavage [41] could
play a role. Recent data suggest that DMP1 undergoes
post-translational cleavage, leaving less than 1% of the
protein in the full-length form [52]. The cleavage products
appear to have distinct biological functions; in vitro
mineralization studies have demonstrated that while the
carboxyl-terminal fragment promotes mineralization [41,
53], the full-length DMP1 molecule may inhibit hydroxy-
apatite formation [41]. Thus, alterations in protein cleav-
age could have significant ramifications for DMP1
function.

Summary

FGF-23 plays a central role in mineral and bone metabo-
lism. This role was initially delineated by the study of
genetic and acquired conditions of hypophosphatemic
rickets, but the greatest clinical impact of the discovery of
FGF-23 may be in the management of CKD patients. FGF-
23 and its regulators are made in osteocytes in bone, and in
patients with CKD, FGF-23 levels rise as renal function
declines, likely due to the decreasing capacity of the
damaged kidney to excrete dietary phosphorus loads.
Rising FGF-23 levels contribute to the development of
secondary hyperparathyroidism and may also be linked to
alterations in skeletal mineralization in the CKD popula-
tion. Thus, through the expression of various proteins
crucial to mineral metabolism, osteocytes appear to be
endocrine cells with a key role in the regulation of skeletal

mineralization. Alterations in osteocyte metabolism occur
in very early stages of CKD and likely mediate altered bone
and mineral metabolism in patients with even very mild
degrees of renal dysfunction.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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