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ABSTRACT OF THE DISSERTATION

Multi-agent coordination algorithms for control of distributed energy resources in

smart grids

by

Andrés Cortés

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2015

Professor Sonia Martı́nez, Chair

Sustainable energy is a top-priority for researchers these days, since electricity

and transportation are pillars of modern society. Integration of clean energy technolo-

gies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering

challenge in operation and management of power systems. This is due to the uncertain

nature of renewable energy technologies and the large amount of extra load that PEVs

would add to the power grid. Given the networked structure of a power system, multi-

agent control and optimization strategies are natural approaches to address the various

problems of interest for the safe and reliable operation of the power grid. The distributed

computation in multi-agent algorithms addresses three problems at the same time: i) it

allows for the handling of problems with millions of variables that a single processor

xvi



cannot compute, ii) it allows certain independence and privacy to electricity customers

by not requiring any usage information, and iii) it is robust to localized failures in the

communication network, being able to solve problems by simply neglecting the failing

section of the system.

We propose various algorithms to coordinate storage, generation, and demand

resources in a power grid using multi-agent computation and decentralized decision

making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordi-

nation of PEVs under usage constraints, where energy only flows from the grid in to the

batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for

PEV coordination that takes into consideration line capacity constraints in the distribu-

tion grid, and where energy flows both ways, from the grid in to the batteries, and from

the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for man-

agement of demand response events with on/off loads. Finally, we introduce distributed

algorithms for the optimal control of distributed energy resources, i.e., generation and

storage in a microgrid. The algorithms we present are provably correct and tested in

simulation. Each algorithm is assumed to work on a particular network topology, and

simulation studies are carried out in order to demonstrate their convergence properties

to a desired solution.
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Chapter 1

Introduction

As awareness toward climate change and greenhouse emissions increases, clean

alternatives for energy generation and transportation are being actively investigated. The

use of technologies that are considered clean, such as solar and wind generation, and

electric vehicles, is growing at a significant rate, propelled by governmental subsidies

and social environmental awareness.

However, the introduction of such technologies poses additional engineering

challenges for the proper operation of power systems. The inherent uncertainty of re-

newable energy, and the immense additional electric load that electric vehicles represent

may lead power systems to instability, if appropriate engineering measures are not taken.

Control and optimization strategies have been researched in the last years, aim-

ing for the harmless introduction of such new elements into power systems. Moreover,

new ideas have come up in order to operate the power grid with the oncoming elements.

Demand response and electric vehicle coordination for supply/demand balancing, and

distributed generation allow for a more efficient and robust power grid. All these ideas

also present control and decision making problems. These problems involve the coordi-

nation of millions of elements, trying to fulfill grid operation objectives while guarantee

quality of service for users.

Multi-agent algorithms have been extensively considered for control and op-

timization of power grids in the last few years. Probably the main advantage of using

multi-agent algorithms is that the computational burden can be parallelized. This is con-

venient since the large-scale of a power system, may lead to extremely large decision

1
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making problems that cannot be solved in a centralized way. In addition, many multi-

agent algorithms have been shown to be robust to information losses, communication

failures, or changes in the structure of the computation network.

There are two major multi-agent structures that are considered for control and

optimization of power systems. First, a distributed architecture which is horizontal, i.e.,

all agents perform the same task, information only flows between neighboring agents

according to a communication graph, and no operation is fully carried out in a central-

ized manner. Second, a hierarchical architecture, which is widely considered in demand

response studies. In this architecture, there are agents, usually associated to the utility

or the system operator, which aggregate information in order to provide a coordination

signal to agents that control user-side elements, e.g., loads, electric vehicles, etc. Then,

those agents in the user-side are the ones that decide the action to take locally. There is

never information exchange between users, but only between users and the grid.

Among the multi-agent algorithms that have been used for control of resources in

power grids, its worth mentioning distributed load balancing for demand response [1, 2],

consensus for economic dispatch [3], Laplacian-gradient (continuous-time) dynamics,

also for economic dispatch [4, 5], dual decomposition [6, 7] and alternate direction

method of multipliers (ADMM) [8, 9] for the optimization of distributed energy re-

sources (DERs). While the dual decomposition algorithm allows for distributed compu-

tation in many cases (separability), it also exhibits very slow convergence. The ADMM

algorithm presents higher rate of convergence, but the elements enabling higher speed

make usually not possible to implement distributed computation designs. There are sev-

eral works oriented to demand response and electric vehicle coordination, that are based

on a hierarchical information exchange [10, 11, 12, 13, 14].

In chapters 2, 3, and 4 we explore the so called hierarchical architecture for

the proposed algorithms. In this configuration, all customers, e.g., PEVs, buildings,

etc., possess computation capacity and communicate directly with agents in the power

grid such as the utility, the Independent System Operator (ISO), distribution buses with

computational power. Then, customers receive from them a coordination signal based

on the system objectives. The larger amount of the computation is carried out in the

customer side, while the grid side only computes and transmits a single coordination
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signal.

In chapter 5, we present a more horizontal architecture, in which resources in a

microgrid, i.e., generators and storage systems, communicate with each other in order

to optimize the performance of the microgrid. No agent within this architecture requires

to perform centralized aggregation or computation for the execution of the proposed

algorithms.

Chapter 6 explores the continuous-time best response dynamics. This can be

used on a multi-agent coordination setting in which the problem is formulated as a con-

tinuous game. Our main contribution in this chapter is turning the continuous-time best

response dynamics into a self-triggering algorithm that does not need permanent com-

munication between agents, but agents estimate when to communicate based on their

own needs. The challenging part of the self-triggering algorithm design is choosing a

communication triggering law that leads to a provably convergent algorithm to a desired

solution of the game.

1.1 Notations

In what follows, Rwill denote the set of real numbers, R>0 the set of real-positive

numbers, N the set of natural numbers, and C the set of complex numbers. For x ∈ R,

|x| denotes the absolute value of x. The complex exponential function is denoted as

e jx, for x ∈ R. notation ‖X‖ denotes the Euclidean norm of the element X ∈ Rm×n,

while ‖X‖C ∈ Rm×n
≥0 is understood as an array whose entries are the magnitude of each

entry of the variable X ∈ C
m×n. The operator ∠X denotes the phase angle of all the

complex entries of X. We let el ∈ Rn be a vector whose l + 1 entry is equal to one,

for l ∈ {0, . . . , n − 1}, while all other entries are zero, and 1 ∈ Rn be a vector which

entries are all equal to one. Dimension of el and 1 depends on the context. The notation

0m×n ∈ Rm×n represents a matrix whose entries are zero.

For A,B ∈ X, where X is some set, A \ B , {a ∈ A | a < B}. Given the finite

set A, |A| denotes its cardinality. For n ∈ N, In denotes the identity matrix in Rn×n.

Consider a set τ = {1, . . . , T }, and let x ∈ C|A|T , with entries xl(t) ∈ C, for all l ∈ A,

t ∈ τ; that is, x = [x1(1) . . . , x|A|(1), . . . , x1(T ), . . . , x|A|(T )]⊤. Then, x(t) ∈ C|A| denotes
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the vector x(t) = [x1(t), . . . , x|A|(t)]
⊤, for each t ∈ τ. Similarly, xl ∈ C⊤ denotes the

vector xl = [xl(1), . . . , xl(T )]⊤, for each l ∈ A.

For a complex square matrix A, we denote its spectrum as spec(A) and its spectral

radius as ρ(A). For the matrix A, Ai j represents its (i, j) entry. If A is block partitioned,

(A)i j represents its (i, j) block. For x ∈ C
n, d(x) denotes the diagonal matrix such that

d(x)ii = xi, for i ∈ {1, . . . , n}, while for a complex square matrix A, d(A) is a diagonal

matrix such that d(A)ii = Aii. Let C be a complex array in Cm×n, we denote the null

space of C as null(C) , {x ∈ Cn | Cx = 0}. The row space of C, defined as the set of

all linear combinations of the rows of C, is denoted as row(C). Finally, Ĉ denotes the

conjugate transpose of C.

For r > 0, define Br(z) = {y ∈ Rq | ‖z − y‖ ≤ r}. Let S be a set in Rq. Then,

S + Br(0) = {y ∈ Rq | ∃z ∈ S s.t. ‖z − y‖ ≤ r}. Let B ⊆ Rn be a convex set. Then, for

x ∈ Rn, dist(x,B) , infy∈B ‖x − y‖. Given functions f : Rm → R and g : Rm → Rn,

we denote the “small-o” notation g(x) = o ( f (x)) if lim‖x‖→∞ g(x) f (x)−1 = 0. For a

vector x ∈ Rn, x � 0 indicates that all entries of x are nonnegative. For a function

V : Rq → Rs, and the set-valued map F : Rm ⇒ Rq, define V ◦ F : Rm ⇒ Rs, such that

V ◦ F(z) = {y ∈ Rs | ∃ξ ∈ F(z) s.t. W(ξ) = y}. For a function f : R → R, let us denote

the derivative of f by f ′.

Note: Some notations that are particular to each chapter, will be introduced at

the beginning of the chapter itself.

1.2 Organization of the thesis

The contents of this thesis can be summarized as follows: Chapter 2 presents a

hierarchical algorithm for the charging of Plug-in Electric Vehicles (PEVs) with usage

constraints. The algorithm aims to optimize the price of energy provided to all PEV

and non-PEV loads over a time horizon. The algorithm works on a one-to-all topology,

where an aggregator provides a coordination signal that is the energy price at each time

of the horizon, and PEVs update their charging strategies based on the coordination

signal.

Chapter 3 introduces a hierarchical algorithm for charging of PEVs which in-
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cludes line capacity constraints in the distribution grid, and considers V2G interaction,

i.e., PEVs can also inject power into the grid. To this end, the power grid is modeled

as a rooted tree, where the root node provides a coordination signal based on the energy

price which depends on the total demand. Then, such signal is modified by nodes in

the distribution-side of the grid according to whether power flows reaching them are

satisfying line capacity constraints. Finally, all PEVs use those coordination signals to

decide on their charging/discharging strategy for the upcoming time horizon.

Chapter 4 introduces a greedy-like algorithm for the management of demand

response events with on/off loads. The algorithm also follows a one-to-all topology, in

which two steps are executed sequentially: i) convex optimization and ii) thresholding

to account for the on/off loads. Both steps can be carried out in the aforementioned

topology using algorithms that are guaranteed to converge to the centralized solution of

the problem.

Chapter 5 presents a formulation for the distributed control of storage and reac-

tive power in microgrids, with two algorithms to address the formulated problem. The

first algorithm is a dual decomposition approach that solves an approximation of the AC

optimal power flow problem over a time horizon. Given the slow rate of convergence

that the algorithm exhibits in simulation, we introduce an algorithm that accounts for

local constraints using projections onto the feasible sets. This algorithm is shown to

outperform the rate of convergence of the dual decomposition algorithm by two orders

of magnitude. Both algorithms work over a communication graph that depends on the

graph that represents the microgrid.

Chapter 6 introduces the self-triggered best response dynamics, which is the self-

triggered implementation of the well known best response dynamics. The best response

dynamics is represented by a differential inclusion in which players of a continuous

game move their strategies towards the best response set for the current action of other

players. The self-triggered version of such dynamics restricts the knowledge players

have about other players’ actions to a discrete sequence of time instants. The idea is

finding a sequence of times at which each player must update information on other

players’ actions, in such a way that the dynamics still converges to the Nash equilibrium

of the game. We characterize sufficient conditions on the game structure for the self-
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triggered best response dynamics to reach the Nash equilibrium of the game.



Chapter 2

Hierarchical plug-in electric vehicle

V1G charging control

Plug-in Electric Vehicles are being proposed as an important element in flexi-

ble load control that can both help alleviate environmental transportation costs and our

dependency on petroleum energy sources.

However, a large penetration of PEVs may also negatively affect the operation of

the power system, by creating new demand peaks and system overload. These phenom-

ena incur into additional stress on generation, transmission and distribution systems,

which translates into increased costs for users and electric generation companies. In

order to lower the burden PEVs create on power systems, and at the same time decrease

end-user costs, new algorithmic approaches on PEV charging are being designed with

the goal of achieving peak-shaving solutions. This chapter contributes in this regard

by proposing a novel algorithm that allocates PEV load at low-demand hours, while

accounting for planned PEV scheduling constraints.

Diverse control architectures have been proposed to minimize power demand

and to avoid the rise of new load peaks: centralized, distributed, and hierarchical. In

a fully distributed setting, the network is solely comprised of PEVs, which exchange

information with a subset of neighboring PEVs and make decisions based on that infor-

mation. In a hierarchical architecture (also referred to as “decentralized” in the litera-

ture), agents engage in a similar process, but employing a special tree communication

structure and minimal communication interaction. According to this distinction, we find

7
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the following related works in the literature.

The paper [15] formulates an optimization problem which is solved in a cen-

tralized manner to come up with a valley-filling solution. In [16], a centralized PEV

charging coordination strategy is proposed in order to shave demand peaks as well as

minimize distribution losses. A supervisor controls the battery charging policies for all

the PEVs in [17], with the aim of minimizing costs and regulating voltage. In [18], a

distributed online approach is followed, in order to decide charging rates for each time.

To this end, each electric vehicle uses measures of the instantaneous congestion of those

nodes of the grid, by which power flows towards it. The authors of [19] introduce a

pricing-based two-layer control algorithm for charging/discharging of PEVs. The algo-

rithm is distributed, exploiting consensus-algorithm ideas. The characterization of the

solutions and performance analysis are made via game theory and nonlinear analysis.

Neither of the above works considers constraints based on usage schedule.

In [20], optimal charging trajectories are computed using linear programming.

The authors propose two hierarchical algorithms to solve the problem. The first requires

information about a centralized solution, particularly about the cost function gradient,

while the second one assumes that each PEV computes a valley-filling solution based

on the average charge requirements from all PEVs. No guarantee of optimality is pro-

vided. The work [10] introduces an algorithm that computes optimal charging strategies

for a large population of PEVs. A bargain is performed between an energy coordinator

and the PEVs, which leads to a valley-filling solution that minimizes the overall energy

price. In this work, all PEVs are considered to have the same charging schedule. The

paper [11], generalizes the setting of the previous work. The bargaining idea is similar

to the one in [10], but it is assumed that PEVs have constraints on the maximal amount

of energy that can be charged into their batteries at each time, as well as deadlines for

complete charge. The result in [11] is also extended to an asynchronous iteration, under

mild connectivity assumptions and for non-anonymous interactions between the utility

and PEVs. The works [11, 10] present algorithms that are based on the solution of local

convex optimization problems in a repeated way. Although convex optimization prob-

lems can be efficiently solved, each iteration involves several computationally expensive

steps (e.g., solution of linear equations systems) which must be carried out sequentially.
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These algorithms have been proven to exhibit asymptotic convergence to the optimal

solution of the problem. More recently, the work [21] presents various algorithms for

hierarchical V1G over a grid with line capacity constraints. The proposed algorithms

require the execution of inner loops, which significantly increase computational and

communication cost.

The contributions of this chapter are twofold. We present a novel hierarchical

approach, the Price Leveling algorithm, based on local interaction rules that meet usage

schedule constraints. In this way, our algorithm is represented by a nonlinear differ-

ence equation, which only involves sums, and products. This improves on the required

computational effort as compared to [11, 10], in which at each iteration a convex op-

timization problem must be solved by each PEV. This presents two main advantages.

First, algorithms with lower computational requirements reduce errors in online imple-

mentations. Secondly, they allow for the use of cheaper computational devices in offline

implementations, which is of concern to both grid operators and users.

The usage constraints we consider are described by energy requirements that

must be achieved by each PEV before certain times of the day, in order to meet user

needs. In addition, this algorithm also respects the bounds on the charging rate for

each PEV battery. We further present a Non-Anonymous Price Leveling algorithm, a

version of our algorithm in a non-anonymous interaction setting under communication

failures. In order to analyze our algorithms, we present an invariance result for discrete-

time set-valued systems, which is more general than the LaSalle invariance principle

for difference inclusions. This result is instrumental for our proof of convergence to an

optimal generalized valley-filling solution. Simulations demonstrate the validity of the

theoretical results, and illustrate how the algorithm would perform under anonymous

time-varying interactions.

This chapter is organized as follows: in Section 2.1, we formulate the PEV

charging problem under scheduling constraints, as an optimization problem, and we

also present some results to characterize the optimal solution of this problem. In Sec-

tion 2.2, we introduce the Price Leveling algorithm, and present some characterization

of its behavior, as well as the convergence analysis towards the set of optimal solutions

of the PEV charging problem. In Section 2.3, we present the Non-Anonymous Price
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Leveling algorithm to work in a scenario with communication failures. In Section 2.4,

we show simulation results for a specific scenario with communication failures.

2.1 Problem formulation

In this section, we describe the PEV charging problem of our interest. In simple

words, a large group of PEVs must determine how to charge their batteries during a

certain period of time, e.g., a day by interacting with an energy provider, in a way that

alleviates the additional burden from the power grid. This energy must suffice to satisfy

the user’s needs at different times of the day, while keeping some amount of energy

(possibly zero) in the battery at the end of the day. To this end, we first introduce a

battery model and a usage schedule model. Then, we present PEV charging as a convex

optimization problem. Further, we present some results that characterize any solution of

the optimization problem.

Let us consider a set I = {1, . . . ,N} of PEVs, where each PEV i ∈ I is supplied

by a battery with maximum capacity βi > 0. Based on the usage information, which is

assumed to be known either from a forecasting process, or provided by the user, each

PEV must plan the charging strategy for the upcoming day. The energy is obtained

from an energy provider or utility through the power grid. For the remaining of this

manuscript we assume that the power grid is able to provide enough power to supply

any population of PEVs, along with the demand that does not come from PEVs. In

order to characterize the PEV usage, the day is divided into T ∈ N time slots with equal

duration. Define the set τ = {1, . . . , T } as the set of time slots in a day. Each slot t ∈ τ
has a non-PEV demand Dt associated to it. This non-PEV demand is assumed to be

known by the utility via demand forecast. Let Wi ⊆ τ for each i ∈ I, be the set of time

slots at which the vehicle will be in use, this is, the time slots at which the vehicle is not

connected to a power supply. The estimated energy usage of each PEV at each t ∈ Wi

will be characterized as a percentage of βi. Formally, for each t ∈ Wi and each i ∈ I, we

define wi,t ∈ [0, 1] as the amount of energy (in percentage of the battery capacity) the

vehicle aims to spend during the tth time slot. Let us denote the set τ \ Wi as Zi for all

i ∈ I. This is the set of all time slots at which a PEV is connected to any power source
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that is fed by the power grid.

Remark 2.1. Note that during the time horizon, a PEV can be taking energy from dif-

ferent locations at different times, e.g., at the user’s home, or at a parking lot. All such

times are included in the set Zi. The set Zi is independent of the charging point location,

and is solely defined by whether or not there is an available power source for the PEV

at each time.

Following, we define wi,t for t ∈ Zi as wi,t = 0, for all i ∈ I, i.e., there is no energy

usage during the charging time. Then, a linear model for the battery state at the end of

each time slot is given by:

ϑi,t = ϑi,t−1 +
αi

βi

ui,t − wi,t, i ∈ I,

for all t ∈ τ, where ui,t is the amount of energy collected by the ith PEV during the tth

time slot, and ϑi,t is the state-of-charge (SOC) of the ith PEV battery at the end of the tth

time slot. The parameter αi ∈ (0, 1) models the efficiency of the battery/charger system,

which presents losses due to the internal resistance of the battery, parasitic currents in

the charger, etc. This model is a simple representation of energy balances at each time

slot, and has been widely used in the literature (see [12, 11, 10]). The explicit solution

for ϑi,t, t ∈ τ, i ∈ I is given by:

ϑi,t = ϑi,0 +
αi

βi

t
∑

q=1

ui,q −
t

∑

q=1

wi,q. (2.1)

Since the ith PEV has no available power supply at time slots t ∈ Wi, we define ui,t = 0

for all t ∈ Wi. Certainly, there exist constraints on the amount of energy the ith PEV

battery is able to get during a time slot t ∈ τ, which cannot be larger than some value

ui,max > 0, given by the battery/charger specifications, for i ∈ I. Based on this battery

model, which includes the aforementioned physical constraints, we define a charging

strategy for the ith PEV as a vector ui ∈ RT
≥0, where ui = [ui,1, . . . , ui,T ]⊤, ui,t = 0 for all

t ∈ Wi, with ui,t ∈ [0, ui,max] for t ∈ τ, such that wi,q ≤ ϑi,q−1 is guaranteed for all q ∈ Wi.

This inequality means that the energy stored in the PEV battery at the beginning of

the qth time slot must be enough to provide the usage requirement wi,q. The conditions
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wi,q ≤ ϑi,q−1 for each q ∈ Wi, hereinafter called usage satisfaction constraints can be

rewritten from (2.1) as:

βi

αi

















t
∑

q=1

wi,q − ϑi,0

















≤
t−1
∑

q=1

ui,q, (2.2)

for all t ∈ τ, and i ∈ I. In order to include the need for a minimum amount of energy at

the end of the day, we can define a virtual slot T + 1, and wi,T+1 as the percentage of the

battery charge that must remain in the battery by the end of the T th time slot. Thus, we

say that (2.2) must hold for all t ∈ τ∪ {T + 1}. Notice that this condition also guarantees

that ϑi,t ≥ 0 for all t ∈ τ ∪ {T + 1}, and for all i ∈ I. The last feasibility conditions,

from now on called state-of-charge capacity constraints (SOC constraints) regarding

the amount of energy in the battery, are written as:

ϑi,t , ϑi,0 +
αi

βi

t
∑

q=1

ui,q −
t

∑

q=1

wi,q ≤ 1, (2.3)

for all t ∈ τ, i ∈ I, given by the fact that ϑi,t ∈ [0, 1] for all i ∈ I, t ∈ τ.

Remark 2.2. In general it is not desired that a battery reaches states of charge of 0 or 1.

Reaching such values can seriously damage the battery. Our framework allows to easily

replace the operation interval from [0, 1] to [ϑi,min, ϑi,max], for 0 < ϑi,min < ϑi,max < 1.

However, for simplicity in the notation we keep considering an operation interval of

[0, 1].

For convenience, let us introduce the notation u for the charging profile of the

entire set of PEVs, namely, u , {ui}i∈I.

2.1.1 A closer look into usage schedules

In order to better understand the way in which we model usage schedules, let us

take a closer look into the set Wi, for each i ∈ I.

The first important thing to realize is that for some i ∈ I it could be that 1 ∈ Wi. It

means that the ith PEV may have a planned continuous usage for time slots {1, . . . , t0} ⊂
Wi, for some t0 ≥ 1, such that t0+1 ∈ Zi. Since there is no time before that usage at which
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the battery can be charged, the feasibility of the problem will be subject to whether the

initial battery state ϑi,0 is enough to satisfy the usage during time slots {1, . . . , t0}. In

order to allow for feasibility of the problem, we constrain our interest to the case in

which if 1 ∈ Wi for some i ∈ I, then
∑t0

q=1 wi,q ≤ ϑi,0. Next, for each i ∈ I, let us define

the set W0
i

as:

W0
i =























∅, if 1 ∈ Zi

{1, . . . , t0}, if 1 ∈ Wi.

Since we take for granted that the energy usage for W0
i

will be satisfied, the solution to

the optimization problem described below focuses on charging the battery to fulfill the

energy requirement for the time determined by the set (Wi∪{T +1}) \W0
i
, for each i ∈ I.

Next, we introduce partitions on the sets (Wi ∪ {T + 1}) \W0
i

and Zi, for all i ∈ I.

Each element of the partition of (Wi ∪ {T + 1}) \ W0
i

represents an uninterrupted time

period of usage for the ith PEV. Likewise, each element in the partition of Zi represents

an uninterrupted time period during which the battery can be recharged. Thus, the W

and the Z are complementary in the timeline. This new notation allows us to reduce

the amount of usage constraints in the model, and is also used to introduce the Price

Leveling algorithm in Section 2.2.

First, let us partition the set (Wi ∪ {T + 1}) \ W0
i

in connected components as

(Wi ∪ {T + 1}) \ W0
i
=

⋃mi

ℓ=1
Wℓ

i
, for each i ∈ I. That is, Wn

i
is such that if q, t ∈ Wn

i
,

q ≤ t, then {q, . . . , t} ⊆ Wn
i
. In this way, the collection of sets {Wℓ

i
}mi

ℓ=0
is a partition of the

set Wi. Notice that the elements of the collection are indexed following the order of the

time slots in τ, i.e., n < ℓ if and only if q < t for all q ∈ Wn
i

and t ∈ Wℓ
i
. Further, let us

define a partition {Zℓ
i
}mi

ℓ=1
of Zi by its connected components, similarly to the partition of

Wi ∪ {T + 1}. That is, each set in the partition is clustering consecutive time slots; see in

Figure 2.1 the sets associated with two PEVs, such that m1 = 3 and m2 = 2.

In order to ease the problem description, we introduce further notation as fol-

lows. We let Z j

i
=

⋃ j

r=1
Zr

i
, for j ∈ {1, . . . ,mi}, andW j

i
=

⋃ j

r=0
Wr

i
, for j ∈ {0, . . . ,mi}.

The number n(i, t), for each t ∈ Zi, i ∈ I, represents the set of the partition {Zℓ
i
}mi

ℓ=1
that

contains t. As an example, for t = 11 in Figure 2.1, we have that n(2, 11) = 1. In terms
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Figure 2.1: Time window representation, and Zi, Wi for i = 1, 2.

of the new notation, we can recast our constraints using the partitions {Wℓ
i
}mi

ℓ=1
, {Zℓ

i
}mi

ℓ=1
,

for all i ∈ I. Since ui,t = 0 for all t ∈ Wi, we have that if u satisfies the condition

ϑi,t−1 ≥ wi,t for the last t ∈ Wr
i
, r ∈ {1, . . . , ni}, then, the condition is fulfilled for all

s ∈ Wr
i . Then, the user satisfaction constraints can be recast as:

βi

αi



















∑

q∈Wn
i

wi,q − ϑi,0



















≤
∑

q∈Zn
i

ui,q, (2.4)

for i ∈ I, n ∈ {1, . . . ,mi}. Notice that the summations above are performed over the

sets that are denoted by calligraphic letters, i.e., Wn
i

and Zn
i
. Clearly, if (2.4) holds

for n = mi, wi,T+1 ≤ ϑi,T , the requirement of minimum energy at the end of the day is

fulfilled. The SOC constraints, can be given in terms of the partitions {Wℓ
i
}ni

ℓ=1
, {Zℓ

i
}mi

ℓ=1
as

follows:

ϑi,tn , ϑi,0 +
αi

βi

∑

q∈Zn
i

ui,q −
∑

q∈Wn−1
i

wi,q ≤ 1, (2.5)

for all i ∈ I, n ∈ {1, . . . ,mi}, where tn , maxZn
i
= max Zn

i
. Likewise, the summations

in (2.5) are carried out over the sets that are denoted by calligraphic letters. As wi,q = 0

for all q ∈ Zn
i
, we have that if (2.5) holds, the battery state is less or equal than one for

all q ∈ Zn
i
. Furthermore, it follows that since ui,q = 0 for all q ∈ Wi, then ϑi,q ≤ 1 for all

q ∈ Wn
i
.

We establish next some verifiable conditions on the parameters of the PEV
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charging problem so that it is feasible.

Lemma 2.1 (Verification of feasibility). Define the recursion:

An
i = Bn−1

i +
αi

βi

|Zn
i |min

{

ui,max, (1 − Bn−1
i )

βi

αi|Zn
i
|

}

, (2.6)

Bn−1
i = An−1

i −
∑

t∈Wn−1
i

wi,t,

for all n ∈ {1, . . . ,mi}, i ∈ I. Define A0
i
= ϑi,0, for all i ∈ I. Then, the PEV charging

problem is feasible if and only if for all n ∈ {0, . . . ,mi} and for all i ∈ I, it holds that

An
i
≥ ∑

t∈Wn
i

wi,t, and An
i
= ϑi,tn , where tn = max Zn

i
, given the charging strategy:

ui,t = min

{

ui,max, (1 − Bn−1
i )

βi

αi|Zn
i
|

}

,

for all n ∈ {1, . . . ,mi}, i ∈ I.

Proof. We will first verify the if part of the result. Assume that An
i
≥ ∑

t∈Wn
i

wi,t for all

n ∈ {1, . . . ,mi}. First, we will show that i) A1
i is the state at the end of the time slot

t1 = max Z1
i , given the charging strategy:

ui,t = min

{

ui,max, (1 − Bn−1
i )

βi

αi|Zn
i
|

}

, (2.7)

for n = 1, t ∈ Z1
i
, ii) ui,t ∈ [0, ui,max], for t ∈ Z1

i
, and iii) A1

i
≤ 1. In order to show i),

notice that the battery state at the end of t1 can be written as:
ϑi,t1 = ϑi,0 −

∑

q∈W0
i

wi,q +
∑

q∈Z1
i

ui,q

= A0
i −

∑

q∈W0
i

wi,q +
αi

βi

min















ui,max, (1 − B0
i )

βi

αi|Z1
i
|















|Z1
i |

= B0
i +

αi

βi

min















ui,max, (1 − B0
i )

βi

αi|Z1
i
|















|Z1
i |

= A1
i .

Equalities above hold by definition of A1
i

and B0
i

in (2.6) and ui,t in (2.7) for t ∈ Z1
i
. Now,

to show ii), we must prove that 1−B0
i
≥ 0. This comes from the fact that

∑

q∈W0
i

wi,q ≥ 0,
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then B0
i
= A0

i
− ∑

q∈W0
i

wi,q ≤ A0
i
≤ 1. Then, since ui,max > 0, from (2.7) it follows that

ui,t ≥ 0. The upper bound ui,t ≤ ui,max follows directly from (2.7). Next, let us show iii).

From (2.6) we have that:

A1
i = B0

i +
αi

βi

min

{

ui,max, (1 − B0
i )

βi

αi|Z1
i
|

}

|Z1
i |

≤ B0
i +

αi

βi

|Z1
i |(1 − B0

i )
βi

αi|Z1
i
|
≤ 1.

An identical analysis allows us to conclude that for n = 2, A2
i
= ϑi,t2 , for t2 = max Z2

i
,

due to the charging strategy in (2.7), and A2
i
≤ 1. Since A1

i
≤ 1 and

∑

q∈W1
i

wi,q ≥ 0,

then it holds that 1 − B1
i
≥ 0 and, following similar arguments as before, by (2.7),

ui,t ∈ [0, ui,max], for all t ∈ Z2
i
. We can repeat this procedure recursively, to conclude that

if An−1
i

is the battery state at the end of tn−1 = max Zn−1
i

, then An
i

is the battery state at

the end of tn = max Zn
i
, and An

i
≤ 1, with ui,t ∈ [0, ui,max] for t ∈ Zn

i
, for n ∈ {1, . . . ,mi}.

Thus, An
i
= ϑi,tn for all n ∈ {1, . . . ,mi}. Then, the SOC constraints and the upper bound

on ui,t hold for all t, Zn
i
. The assumption An

i
≥ ∑

t∈Wn
i

wi,t for all n ∈ {1, . . . ,mi} accounts

for the user satisfaction constraints, given that An
i
= ϑi,tn . Then ui,t as defined in (2.7), is

a feasible solution of the problem, hence the problem is feasible.

The only if part follows easily from the fact that ui,t, for t ∈ Zn
i
, given by (2.7)

charges the maximum amount of energy that does not violate ui,t ∈ [0, ui,max] or the

SOC constraints during Zn
i
, for each n ∈ {1, . . . ,mi}. Thus, if for some n ∈ {1, . . . ,mi},

An
i
<

∑

t∈Wn
i

wi,t, it is not possible to increase any ui,t, t ∈ Z j

i
, without violating the

aforementioned constraints. Then, the problem is not feasible. �

The charging strategy in Lemma 2.1 consists on getting the largest amount of

energy possible at each time. Therefore, if such strategy does not meet the user satis-

faction constraints, there is no charging strategy that meets them, and the problem is

infeasible.



17

2.1.2 Optimization problem

The PEV charging strategy is chosen to be optimal in the following way. Con-

sider the cost function:

J(u) =
∑

t∈τ
p(Dt +

∑

j∈I

u j,t)

















Dt +
∑

j∈I

u j,t

















,

where D ∈ RT
≥0 is a known vector that represents the demand on the grid that comes

from non-PEV loads, and p : R≥0 → R≥0 is a continuous function that relates the instant

demand with the electricity price. Then, finding the optimal strategy for each PEV will

be equivalent to solving the following optimization problem:

min
u∈RNT

≥0

J(u),

subject to u ∈ F , (2.8)

where F =∏

i∈I Fi. Each Fi corresponds to the set of feasible charging strategies of the

ith PEV, i.e., ui ∈ Fi ⊂ RT
≥0 if and only if ui,t ∈ [0, ui,max], the SOC constraints, and the

user satisfaction constraints hold.

Assumption 2.1 (Properties of the price function p). The function p is convex, strictly

increasing for all its domain. �

Notice that the cost function, along with assumptions on the function p cap-

ture the fact that the higher the demand, the higher the production cost is, and, as a

consequence, the higher the end-user price becomes. This same model has been used

in [22, 10, 11]. Given that the function p is convex, it follows that the cost function

of (2.8) is convex, and since all the constraints are affine, the optimization problem is

convex, with a convex optimal solution set.

Finally, we introduce some additional shorthand notation. For each t ∈ τ, we

let xt =
∑

i∈I ui,t, and given u⋆, an optimal solution to the problem in (2.8), we define

x⋆t =
∑

i∈I u⋆
i,t

.

Remark 2.3. Notice that, trivially, no solution is optimal if
βi

αi

(

∑

q∈Wi∪{T+1} wi,q − ϑi,0

)

≤
∑

q∈Zi
ui,q does not hold with a strict equality for all i ∈ I. If the equality does not hold
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for some i ∈ I, for some optimal solution u⋆, there must exist some t ∈ τ such that the

amount of energy i obtains at t, i.e., u⋆
i,t

, can be decreased while all other components of

u⋆ remain equal. The new vector would satisfy all constraints, and, by monotonicity of

p, it produces a lower J, contradicting the fact that u⋆ is optimal. Therefore, we slightly

change the user satisfaction constraints by replacing the inequality in (2.2), for t = T +1

(equivalently the inequality in (2.4), for n = mi) by an equality, for all i ∈ I, without

modifying the solution set of the problem. �

Next, we characterize the solution to this problem.

Lemma 2.2 (Optimal solutions). Let u⋆ be an optimal solution for the optimization

problem in (2.8). Then, for each i ∈ I:

O1: For s, q ∈ Zℓ
i
, such that u⋆

i,q
, u⋆

i,s
∈ (0, ui,max), it holds that Dq + x⋆q = Ds + x⋆s , for

all ℓ ∈ {1, . . . ,mi}.

O2: For q ∈ Zℓ
i

such that u⋆
i,q
= 0, it must be that Dq + x⋆q ≥ Ds + x⋆s , for all s ∈ Zℓ

i
such

that u⋆
i,s
> 0, for ℓ ∈ {1, . . . ,mi}.

O3: For q ∈ Zℓ
i

such that u⋆
i,q
= ui,max, it must be that Dq + x⋆q ≤ Ds + x⋆s , for all s ∈ Zℓ

i

such that u⋆
i,s
∈ (0, ui,max), for ℓ ∈ {1, . . . ,mi}.

O4: For all s ∈ Zℓ
i
, q ∈ Zn

i
, with ℓ, n ∈ {1, . . . ,mi}, n < ℓ, such that u⋆

i,s
∈ (0, ui,max),

u⋆
i,q
∈ [0, ui,max), and the SOC constraints are not active, i.e., ϑi,0 +

αi

βi

∑

t∈Zr
i
u⋆

i,t
−

∑

t∈Wr−1
i

wi,t < 1 for all r ∈ {n, . . . , ℓ − 1}, it must hold that Ds + x⋆s ≤ Dq + x⋆q .

O5: For all s ∈ Zℓ
i
, q ∈ Zn

i
, with ℓ, n ∈ {1, . . . ,mi}, n > ℓ, such that u⋆

i,s
∈ (0, ui,max),

u⋆
i,q
∈ [0, ui,max), and the user satisfaction constraints are not active, i.e.,

βi

αi

(

∑

t∈Wr−1
i

wi,t − ϑi,0

)

<
∑

t∈Zr−1
i

u⋆
i,t

, for all r ∈ {ℓ, . . . , n − 1}, it must hold that

Ds + x⋆s ≤ Dq + x⋆q .

Proof. The Lagrangian of the optimization problem in (2.8) is given by:
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L(u, λ, η, µ, ν) = J(u) −
∑

t∈τ

∑

i∈I

λi,tui,t

+
∑

i∈I

mi
∑

n=1























∑

t∈Zn
i

ui,t −
βi

αi























∑

t∈Wn−1
i

wi,t − ϑi,0 + 1













































ξi,n

−
∑

i∈I

mi
∑

n=1





















∑

t∈Zn
i

ui,t −
βi

αi





















∑

t∈Wn
i

wi,t − ϑi,0









































ηi,n

+
∑

i∈I

∑

t∈τ

(

ui,t − ui,max
)

µi,t +
∑

i∈I

∑

t∈Wi

ui,tνi

+
∑

i∈I

















∑

t∈Zi

ui,t −
βi

αi

















∑

t∈Wi∪{T+1}
wi,t − ϑi,0

































ρi,

where λi,t ≥ 0, µi,t ≥ 0 for t ∈ τ, ηi,n ≥ 0, ξi,n ≥ 0, for n ∈ {1, . . . ,mi}, ρi ∈ R,

and νi ∈ R, for all i ∈ I are the Lagrange multipliers. The multiplier ρ accounts for the

equality constraint that we employ instead of the user satisfaction constraints in (2.2) for

t = T + 1, following the discussion of Remark 2.3. Define σi = [λ⊤i , µ
⊤
i , η

⊤
i , ξ

⊤
i , ρi, νi]

⊤.

We have that the Jacobian of the Lagrangian with respect to u is such that, for i ∈ I and

t ∈ τ:

∂L
∂ui,t

=
∂J

∂ui,t

− λi,t −
mi
∑

r=n(i,t)

ηi,r

+

mi
∑

r=n(i,t)

ξi,r + µi,t + νi1Wi
(t) + ρi, (2.9)

where recall that n(i, t) is the index of the set Zℓ
i

such that t ∈ Zℓ
i
, and 1Wi

(t) is the

indicator function, such that 1Wi
(t) = 1 if t ∈ Wi, and zero otherwise, and:

∂J

∂ui,t

=p′(Dt +
∑

j∈I

u j,t)(Dt +
∑

j∈I

u j,t) + p(Dt +
∑

j∈I

u j,t).

O1: For s, q ∈ Zℓ
i
, such that u⋆

i,q
, u⋆

i,s
∈ (0, ui,max), applying the KKT conditions associated

to the constraints 0 ≤ ui,q ≤ ui,max, and 0 ≤ ui,s ≤ ui,max, it holds that λ⋆
i,q
, λ⋆

i,s
, µ⋆

i,q
, µ⋆

i,s
= 0

by complementary slackness. Given that q, s ∈ Zℓ
i
, it follows that q, s < Wi, then

ν⋆
i
1Wi

(q), ν⋆
i
1Wi

(s) = 0. Since q, s ∈ Zℓ
i
, we have n(i, q) = n(i, s) = ℓ, then

∑mi

r=n(i,q)
η⋆

i,r
=
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∑mi

r=n(i,s) η
⋆
i,r

, and
∑mi

r=n(i,q) ξ
⋆
i,r
=

∑mi

r=n(i,s) ξ
⋆
i,r

. Then, from (2.9), by using the KKT condi-

tions ∂L
∂ui,q

∣

∣

∣

∣

σ⋆
i

= 0, ∂L
∂ui,s

∣

∣

∣

∣

σ⋆
i

= 0, we obtain that ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

= ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

. Since p is increasing and

convex in its argument, ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

is also increasing and convex for all t ∈ τ. Then it must

hold that Dq + x⋆q = Ds + x⋆s .

O2: If q ∈ Zℓ
i

such that u⋆
i,q
= 0, and s ∈ Zℓ

i
such that u⋆

i,s
> 0, it holds that

λ⋆
i,s
= 0 and λ⋆

i,q
≥ 0, by complementary slackness. Since u⋆

i,q
= 0, ui,max − u⋆

i,q
> 0,

then, again by complementary slackness, we obtain µ⋆
i,q
= 0. By definition, µ⋆

i,s
≥ 0. As

q, s ∈ Zi, ν
⋆
i
= 0. Since q, s ∈ Zℓ

i
, n(i, s) = n(i, q), then

∑mi

r=n(i,s)
η⋆

i,r
=

∑mi

r=n(i,q)
η⋆

i,r
, and

∑mi

r=n(i,s) ξ
⋆
i,r
=

∑mi

r=n(i,q) ξ
⋆
i,r

. Therefore, from (2.9) and the KKT conditions ∂L
∂ui,q

∣

∣

∣

∣

σ⋆
i

= 0,

∂L
∂ui,s

∣

∣

∣

∣

σ⋆
i

= 0, we have that ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

+ µ⋆
i,s
= ∂J

∂ui,q

∣

∣

∣

∣

σ⋆
i

− λ⋆
i,q

. Then, ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

≤ ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

, and the

result follows similarly to the proof of O1.

O3: Using complementary slackness, we have that λ⋆
i,q
= λ⋆

i,s
= 0, µ⋆

i,q
≥ 0,

while µ⋆
i,s
= 0. Since n(i, s) = n(i, q), then

∑mi

r=n(i,s)
η⋆

i,r
=

∑mi

r=n(i,s)
η⋆

i,r
and

∑mi

r=n(i,s)
ξ⋆

i,r
=

∑mi

r=n(i,q)
ξ⋆

i,r
. Since q, s < Wi, ν

⋆
i
= 0. Then, using (2.9) and the KKT conditions ∂L

∂ui,q

∣

∣

∣

∣

σ⋆
i

=

0, ∂L
∂ui,s

∣

∣

∣

∣

σ⋆
i

= 0, we obtain ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

= ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

+ µ⋆
i,q

. Hence, we have that ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

≥ ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

and the result follows.

O4: By complementary slackness, λ⋆
i,s
= µ⋆

i,s
= µ⋆

i,q
= 0 and ξ⋆

i,r
= 0 for each

r ∈ {n . . . , ℓ − 1}. It means that
∑mi

r=ℓ
ξ⋆

i,r
=

∑mi

r=n ξ
⋆
i,r

. Since n < ℓ, we have that
∑mi

r=n η
⋆
i,r
=

∑mi

r=ℓ
η⋆

i,r
+

∑ℓ−1
r=n η

⋆
i,r

. From (2.9) and the KKT condition ∂L
∂ui,q

∣

∣

∣

∣

σ⋆
i

= 0, we obtain ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

−
∑mi

r=ℓ
η⋆

i,r
−∑ℓ−1

r=n η
⋆
i,r
−λ⋆

i,q
= 0. From (2.9) and the KKT condition ∂L

∂ui,s

∣

∣

∣

∣

σ⋆
i

= 0, we have that

∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

−∑mi

r=ℓ
η⋆

i,r
= 0. We connect these two expressions to obtain ∂J

∂ui,q

∣

∣

∣

∣

σ⋆
i

− ∑ℓ−1
r=n η

⋆
i,r
−

λ⋆
i,q
= ∂J

∂ui,s

∣

∣

∣

∣

σ⋆
i

. Then, it must hold that ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

≤ ∂J
∂ui,q

∣

∣

∣

∣

σ⋆
i

, and the result follows.

O5: By complementary slackness, we have λ⋆
i,s
= µ⋆

i,s
= µ⋆

i,q
= 0 and η⋆

i,r
= 0

for each r ∈ {ℓ, . . . , n − 1}. Therefore,
∑mi

r=ℓ
η⋆

i,r
=

∑mi

r=n η
⋆
i,r

. Then
∑mi

r=ℓ
ξ⋆

i,r
=

∑mi

r=n ξ
⋆
i,r
+

∑n−1
r=ℓ ξ

⋆
i,r

. We can proceed as in the proof of O4, by using the KKT conditions ∂L
∂ui,q

∣

∣

∣

∣

σ⋆
i

= 0,

∂L
∂ui,s

∣

∣

∣

∣

σ⋆
i

= 0, to obtain ∂J
∂ui,q
− λ⋆

i,q

∣

∣

∣

∣

σ⋆
i

= ∂J
∂ui,s

∣

∣

∣

∣

σ⋆
i

+
∑n−1

r=ℓ ξ
⋆
i,r

, then it follows that Dq + x⋆q ≥
Ds + x⋆s . �

Given u⋆ we define a partition of the set τ, denoted as {Υl}m+1
l=1 , m ≤ T , cor-

responding to the connected clusters of times where the load price is constant at the
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optimal solution, and there is PEV load greater than zero. In other words, for any pair

t, q ∈ Υl, l ∈ {1, . . . ,m}, it holds that x⋆t , x⋆q > 0 and p(Dt + x⋆t ) = p(Dq + x⋆q ). The

set Υm+1 consists of those t ∈ τ such that x⋆t = 0. The collection {Υl}m+1
l=1 is ordered

according to the corresponding price values, from the cheapest to the priciest. In other

words, l1 < l2, l1, l2 ∈ {1, . . . ,m}, if and only if p(Dt + x⋆t ) < p(Dq + x⋆q ) for all t ∈ Υl1 ,

and q ∈ Υl2 .

Lemma 2.3 (Uniqueness of x⋆, Υ1, . . . ,Υm+1). Let u⋆, and v⋆ be optimal solutions of

problem in (2.8) with associated aggregated loads x⋆1,t ,
∑

i∈I u⋆
i,t

and x⋆2,t ,
∑

i∈I v⋆
i,t

,

respectively. Then x⋆1,t = x⋆2,t, for all t ∈ τ, and {Υl}m+1
l=1

is unique.

Proof. The proof is similar to that of Theorem 1 in [11]. We only include it here for the

sake of completeness.

With a slight abuse of notation, denote J(x) =
∑

t∈τ p(Dt + xt)(Dt + xt). Consider

the set B = {x ∈ RT
≥0 | ∃u ∈ F s.t. x =

∑

i∈I ui}. If u⋆ and v⋆ are optimizers of J in

F , then x⋆1 and x⋆2 are optimizers of J in B. Then, by the convexity of J in x, it must

hold that ∇J(x⋆1 ) · (x − x⋆1 ) ≥ 0, ∇J(x⋆2 ) · (x − x⋆2 ) ≥ 0 for all x ∈ B. Therefore, in

particular it must hold that ∇J(x⋆1 ) · (x⋆2 − x⋆1 ) ≥ 0, ∇J(x⋆2 ) · (x⋆1 − x⋆2 ) ≥ 0. Hence,

(∇J(x⋆1 ) − ∇J(x⋆2 )) · (x⋆2 − x⋆1 ) ≥ 0. We can write this expression out as:

∑

t∈τ
(∇t J(x⋆1 ) − ∇t J(x⋆2 ))(x⋆2,t − x⋆1,t) ≥ 0, (2.10)

where ∇t J(x) = p′(Dt + xt)(Dt + xt) + p(Dt + xt), for all t ∈ τ. Since p is convex, then

p′ is increasing in its argument, and given that p is also increasing, it follows that ∇t J

is strictly increasing in xt. Then, we have that (∇t J(x⋆1 ) − ∇t J(x⋆2 ))(x⋆1,t − x⋆2,t) ≥ 0 for

all t ∈ τ; hence, from (2.10),
∑

t∈τ(∇t J(x⋆1 ) − ∇t J(x⋆2 ))(x⋆1,t − x⋆2,t) = 0, and the result

follows. �

Lemma 2.3 allows us to establish that if a charging profile u does not satisfy that
∑

i∈I ui,t = x⋆, then u is not optimal.

Lemma 2.4 (Properties of optimal solutions). Consider any t ∈ Υl, such that for some

i ∈ I, u⋆
i,t
> 0. Let ℓ ∈ {1, . . . ,mi} be such that t ∈ Zℓ

i
. Then, the following holds:
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C1: If there exists q ∈ Zn
i
∩ ⋃l−1

s=1Υs, for some n ∈ {1, . . . , ℓ − 1}, then it must be that

at least one of the following conditions hold: i) u⋆
i,q
= ui,max, or ii) the maximum

battery capacity constraint is active, i.e., ϑi,tr = ϑi,0 +
αi

βi

∑

s∈Zr
i
u⋆

i,s
−∑

s∈Wr−1
i

wi,s =

1, for some r ∈ {n, . . . , ℓ − 1}.

C2: If there exists q ∈ Zℓ
i
∩⋃l−1

s=1Υs, then it must be that u⋆
i,q
= ui,max.

C3: If there exists q ∈ Zn
i
∩⋃l−1

s=1 Υs, for some n ∈ {ℓ + 1, . . . ,mi}, then, it must be that

at least one of the following conditions hold: i) u⋆
i,q
= ui,max, or ii) the user sat-

isfaction constraint is active, i.e.,
βi

αi

(

∑

q∈Wr−1
i

wi,q − ϑi,0

)

=
∑

q∈Zr−1
i

u⋆
i,q

, for some

r ∈ {ℓ + 1, . . . , n}.

Proof. Assume that for t ∈ Υl ∩ Zℓ
i
, for some ℓ ∈ {1, . . . ,mi}, for i ∈ I, it holds that

u⋆
i,t
> 0.

C1: We employ a contradiction argument. Assume that there exists q ∈ Zn
i
∩

⋃l−1
s=1Υs, for some n ∈ {1, . . . , ℓ − 1}, with u⋆

i,q
∈ [0, ui,max), and ϑi,0 +

αi

βi

∑

s∈Zr
i
ui,s −

∑

s∈Wr−1
i

wi,s < 1, i.e., the maximum battery capacity constraint is not active for all

r ∈ {n, . . . , ℓ − 1}. By definition of {Υl}m+1
l=1 , we have that since q ∈ Υs, t ∈ Υl, and s < l,

then Dq + x⋆q < Dt + x⋆t . On the other hand, the assumptions satisfy O4 in Lemma 2.2,

then we have that Dq + x⋆q ≥ Dt + x⋆t , which is a contradiction.

C2: We employ a contradiction argument again. Assume that there exists a

q ∈ Zℓ
i
∩⋃l−1

s=1 Υs, such that u⋆
i,q
∈ [0, ui,max). We must consider two cases: i) u⋆

i,t
= ui,max,

and ii) u⋆
i,t
< ui,max. Let us consider the first case. Since the assumptions satisfy O3 in

Lemma 2.2, we have that Dt + x⋆t ≤ Dq + x⋆q . Recall that since q ∈ Υs, t ∈ Υl, and s < l,

then Dq+ x⋆q < Dt+ x⋆t , a contradiction. In the second case, the assumptions hold for O1

in Lemma 2.2, then Dq+ x⋆q = Dt+ x⋆t , which contradicts the fact that Dq+ x⋆q < Dt+ x⋆t ,

given by q ∈ Υs, t ∈ Υl, and s < l.

O3: Once more we proceed by contradiction. Assume that there exists a q ∈ Zr
i
∩

⋃l−1
s=1Υs, for some r ∈ {1, . . . , ℓ}, such that u⋆

i,q
∈ (0, ui,max), and

βi

αi

(

∑

q∈Wr−1
i

wi,q − ϑi,0

)

<
∑

q∈Zr−1
i

u⋆
i,q

, i.e., it holds that the user satisfaction constraint is not active for all r ∈
{ℓ + 1, . . . , n}. All these assumptions allow us to employ O5 in Lemma 2.2, to conclude

that Dq + x⋆q ≥ Dt + x⋆t . However, since q ∈ Υs, t ∈ Υl, and s < l, it must be that

Dq + x⋆q < Dt + x⋆t , reaching a contradiction. �
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The following result implies that each PEV will charge as much as possible at

the times for which the prices are the lowest, provided no constraints are violated. In

other words, if a PEV charges at time slots with higher prices, it is because at the lower-

price slots at least one constraint is becoming active. This comes in handy in the proof

of convergence of the proposed Price Leveling algorithm.

Lemma 2.5 (Properties of optimal solutions). For each Υl, l ∈ {1, . . . ,m}, and any

feasible u, if xt = x⋆t for all t ∈ Υr, for all r < l, then it holds that
∑

t∈Υl
xt ≤

∑

t∈Υl
x⋆t .

Proof. Due to the extension of the proof we show a simpler form of it, assuming that

for any i ∈ I, mi = 2. Define Θl =
⋃m+1

r=l Υr. First, we show that if
∑

t∈τ\Θl
xt >

∑

t∈τ\Θl
x⋆t

for some feasible u, then we reach a contradiction with either the feasibility of u or with

a property of the optimal solutions that has been established in Lemma 2.4. Then, we

will be able to conclude our result.

Assume that for some feasible u,
∑

t∈τ\Θl
xt >

∑

t∈τ\Θl
x⋆t . Since u⋆

i,t
≥ 0 for all

t ∈ τ, i ∈ I, it must be that there exists some i ∈ I such that
∑

t∈τ\Θl
ui,t >

∑

t∈τ\Θl
u⋆

i,t
.

Since ui,t = 0, u⋆
i,t
= 0 for all t < Zi, we have that

∑

t∈Zi\Θl
ui,t >

∑

t∈Zi\Θl
u⋆

i,t
. Hence, there

must be some ℓ ∈ {1, 2} such that
∑

t∈Zℓ
i
∩(τ\Θl)

ui,t >
∑

t∈Zℓ
i
∩(τ\Θl)

u⋆
i,t

. In this way, there

exists t ∈ Zℓ
i
∩ (τ \ Θl), such that ui,max ≥ ui,t > u⋆

i,t
.

On the other hand, since
∑

t∈Zi
ui,t =

∑

t∈Zi
u⋆

i,t
, which follows from Remark (2.3),

then it must hold that
∑

t∈Θl
ui,t <

∑

t∈Θl
u⋆

i,t
. Furthermore, it must be that for some n ∈

{1, 2}, ∑t∈Zn
i
∩Θl

ui,t <
∑

t∈Zn
i
∩Θl

u⋆
i,t

, and in particular, for some t ∈ Zn
i
∩ Θl, 0 ≤ ui,t < u⋆

i,t
.

First assume that ℓ = n. By Lemma 2.4, Part C2, since u⋆
i,t
> 0, and t ∈ Θl ∩ Zn

i
,

it must be that for all t ∈ Zn
i
\ Θl, u⋆

i,t
= ui,max. However, by the assumption that ℓ = n,

t ∈ Zn
i
\Θl, then, u⋆

i,t
= ui,max. However, by definition of t, it must hold that ui,max ≥ ui,t >

u⋆
i,t

, a contradiction.

Now, let us assume that ℓ , n. We have two cases: i) ℓ = 1, n = 2 and ii) n = 1,

ℓ = 2.

Suppose that ℓ = 1, n = 2. Since u⋆
i,t
> 0, t ∈ Z2

i ∩ Θl and t ∈ Z1
i \ Θl we can

employ Part C1 in Lemma 2.4, and given that ui,max ≥ ui,t > u⋆
i,t

, it must hold that:

ϑi,0 +
αi

βi

∑

t∈Z1
i

u⋆i,t −
∑

t∈W0
i

wi,t = 1. (2.11)
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Moreover, notice that if there is q ∈ Z1
i ∩ Θl such that u⋆q,t > 0, then by Part C2 in

Lemma 2.4, u⋆
i,t
= ui,max, which is a contradiction. Then, it must be that for all q ∈ Z1

i ∩Θl,

u⋆q,t = 0. Then, given that
∑

t∈Zℓ
i
∩(τ\Θl)

ui,t >
∑

t∈Zℓ
i
∩(τ\Θl)

u⋆
i,t

, we obtain:

∑

t∈Z1
i

ui,t >
∑

t∈Z1
i

u⋆i,t.

Then, from (2.11), it follows that:

ϑi,0 +
αi

βi

∑

t∈Z1
i

ui,t −
∑

t∈W0
i

wi,t > 1,

which means that u does not satisfy the maximum battery capacity constraint in (2.5), a

contradiction with the feasibility of u.

Now, let us assume that n = 1, ℓ = 2. Similarly to the previous case, we can see

that it is possible to apply Part C3 in Lemma 2.4, and given that ui,max ≥ ui,t > u⋆
i,t

, we

conclude that:

ϑi,0 +
αi

βi

∑

t∈Z1
i

u⋆i,t =
∑

t∈W1
i

wi,t. (2.12)

Now, by Part C2 in Lemma 2.4, it holds that if there is q ∈ Z1
i \ Θl, then, it must be that

u⋆
i,q
= ui,max. Then, since

∑

t∈Zn
i
∩Θl

u⋆
i,t
>

∑

t∈Zn
i
∩Θl

ui,t, it must hold that:

∑

t∈Z1
i

u⋆i,t >
∑

t∈Z1
i

ui,t.

Therefore, from (2.12), we obtain that:

ϑi,0 +
αi

βi

∑

t∈Z1
i

ui,t −
∑

t∈W1
i

wi,t < 0,

which means that u does not satisfy the user satisfaction constraint in (2.4), a contradic-

tion.

We have shown that
∑

t∈τ\Θr
xt ≤

∑

t∈τ\Θr
x⋆t , for all r ∈ {1, . . . ,m}. Now, let us

assume as in the statement of the lemma that for some l ∈ {1, . . . ,m}, and a feasible
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solution u, xt = x⋆t for all t ∈ ⋃l−1
s=1Υs. Then, since

⋃l−1
s=1Υs = τ \ Θl, we can write

τ \ Θl+1 = (τ \ Θl) ∪ Υl. This leads to:

∑

t∈τ\Θl+1

xt ≤
∑

t∈τ\Θl+1

x⋆t

∑

t∈τ\Θl

xt +
∑

t∈Υl

xt ≤
∑

t∈τ\Θl

x⋆t +
∑

t∈Υl

x⋆t

∑

t∈Υl

xt ≤
∑

t∈Υl

x⋆t ,

completing the proof. �

2.2 Price Leveling algorithm for PEV charging

In this section, we introduce a dynamics that allows agents to reach a charging

profile that is arbitrarily close to an optimal solution of the optimization problem in (2.8)

by means of local interactions, i.e., in a hierarchical way. This dynamics is a modifica-

tion of the Price Leveling algorithm that was introduced in [12], to account for usage

schedule constraints and battery physical constraints. These constraints do not exist in

the problem presented in [12], because in that work the charging objective is to obtain

a full charge by the end of the day, without bounds on the charging rate. The algorithm

follows a load-balancing policy by moving energy consumption from time slots with

higher prices to slots with lower prices.

In order to achieve the optimal solution, the set of PEVs performs an iterative

process which includes two steps at each iteration k ∈ N: i) each PEV transmits its

charging profile uk
i
∈ RT

≥0 to the utility, and ii) the utility aggregates the charging profiles

from all PEVs, and adds them to the non-PEV demand, to further use the pricing func-

tion p for determining and transmitting the price per kWh at each time t ∈ τ, which is

represented by pk , [pk
1, . . . , pk

T
]⊤ ∈ RT

≥0, to all PEVs, where:

pk
t , p(Dt +

∑

i∈I

uk
i,t).

Then, for the next iteration, the PEVs use the pricing signal to update their charging
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1 2 3 N − 2 N − 1 N

Aggregator

pk
uk
1

uk
2

uk
3

ukN−2
ukN−1

ukN

Figure 2.2: Communication scheme for the Price Leveling algorithm. The circles rep-

resent all PEVs, and the arrows represent the information that is sent by each element at

iteration k.

profiles, and repeat the process. Most of the computation required by the algorithm is

carried out in a parallel way by processors at the PEVs. The aggregator only has to col-

lect the charging information, aggregate it and compute the pricing signal for the PEVs’

coordination. Figure 2.2 shows how the information flows from each PEV towards the

aggregator in the utility and back. By means of our scheme, the aggregator does not need

to know the usage schedule of any of the PEVs, since they compute their own charg-

ing profile, and neither other PEVs need to know this from other PEVs. In this way, i)

the scheme preserves user’s privacy and ii) it is computationally scalable, since there is

no computational procedure at any of the components of the system that grows signif-

icantly as the number of PEVs increases. This communication structure is widespread

in demand-dispatch papers [13, 14], as well as in PEV coordination works [11, 10],

where algorithms are termed as “decentralized.” To alleviate the communication burden

between the aggregator and PEVs, several several layers of aggregators transmitting

aggregated signal to parent aggregators can be considered.

Next, let us introduce the computation on the PEV side for each iteration of the

algorithm. For each i ∈ I, and for each t ∈ τ, define the vector yi,t = [yi,t,1, . . . , yi,t,mi
]⊤ ∈

R
mi

≥0
, the vector yi = [y⊤

i,1, . . . , y
⊤
i,T

]⊤ ∈ RT ·mi

≥0
, and finally y = [y⊤1 , . . . , y

⊤
N

]⊤ ∈ Rd
≥0

, where

d = NT
∑

i∈I mi. Each component of this vector is a state of the algorithm, related to

t ∈ τ, and i ∈ I, and:

uk
i,t =

mi
∑

ℓ=1

yk
i,t,ℓ.
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Z1

i Z2

i Z3

i

W 1

i W 2

i W 3

i

1 T

yi,5,1

yi,5,2

yi,5,3

t
=
5

yi,14,2

yi,14,3 yi,19,3

t
=
1
4

t
=
1
9

Figure 2.3: Algorithm state and its relation with the PEV charging problem, for a fixed

PEV i ∈ I. Each color represents variables yi,t,ℓ for all t ∈ Zℓ
i
, for a fixed ℓ ∈ {1, . . . ,mi}.

Figure 2.3 shows how different states of the algorithm are related to time slots and

charging strategies of the PEV charging problem, for a fixed PEV i ∈ I.

The introduction of y is based on the following idea. Note that in Figure 2.3

there are several rows in different colors. Each level is aimed to satisfy a different usage

constraint; e.g. the darker grey is for W3
i
, the lighter grey is for W2

i
, and the white color

is for W1
i
. In this way, the further away Wℓ

i
is, the more opportunity there is to charge

during previous times and so the length of these rows is larger. The column on top of

each time t represents how the amount charged in the battery at time t is divided between

the upcoming usage constraints. That is, for t = 5, we have an amount yi,5,1, to satisfy

W1
i
, a yi,5,2 for W2

i
, and an amount yi,5,3 for W3

i
.

The dynamics governing these states is aimed to update each part of the vector y

to satisfy the constraints while minimizing price. Mathematically,

yk+1
i,t,ℓ =























fi,t,ℓ(y
k), if t ∈ Zℓ

i

0, otherwise,
(2.13)
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where fi,t,ℓ(y
k) is given by:

fi,t,ℓ(y
k) = yk

i,t,ℓ+
∑

q∈Zℓ
i

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t , 0})

−
∑

q∈Zℓ
i

∆k
i,ℓ(t, q)ψi(max{pk

t − pk
q, 0}), (2.14)

for all i ∈ I, ℓ ∈ {1, . . . ,mi}, and t ∈ Zℓ
i
, where:

∆k
i,ℓ(q, t) =

min{yk
i,q,ℓ
, γk

1(i, t), γk
2(i, t, q)}

T
,

and γk
1(i, t), γk

2(i, t, q) are given by:

γk
1(i, t) = T

ui,max − uk
i,t

∑mi

s=n(i,t)

∣

∣

∣Zs
i

∣

∣

∣

,

γk
2(i, t, q) =



































































T min
r∈{n(i,t),...,n(i,q)}

βi

αi
(1 − ϑk

i,tr
)

|Zr
i
|∑mi

s=r

∣

∣

∣Zs
i
\ Zr

i

∣

∣

∣

,

if n(i, q) > n(i, t)

+∞,

if n(i, q) ≤ n(i, t).

The function ψi : R≥0 → [0, 1] is continuous, increasing on its argument, with ψi(0) = 0.

The value of γk
1(i, t) is associated to how much the ith PEV can increase ui,t without

violating ui,t ≤ ui,max, and γk
2(i, t, q) is related to how much the amount of charge that i

obtains at any t ∈ Zi, can increase without leading to ϑi,t > 1, for some q ∈ τ, n(i, q) >

n(i, t). Notice that the algorithm is trying to implement a load balancing protocol over

the time slots in τ, subject to constraints and driven by the price difference between slots.

Although the PEV charging problem introduces several constraints, we present

a way of choosing the algorithm initial state, so that u0 ∈ F , provided the PEV charging

problem is feasible. The procedure is described in Algorithm 1. Loosely speaking,

the algorithm finds the first element (denoted r) in the partition {Zs
i
}mi

s=1 such that Wr
i

cannot be satisfied only using the initial energy stored in the battery. It implies that

each PEV has to obtain energy to satisfy usage periods given by Wℓ
i
, for ℓ ∈ {r, . . . , ni}.
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Algorithm 1 Initial Conditions

if ϑi,0 ≥
∑

t∈Wi
wi,t then

y0
i,t,ℓ
= 0 for all t ∈ Zℓ

i
, for all ℓ ∈ {1, . . . ,mi}

else

for ℓ ∈ {r, . . . ,mi} do

for n ∈ {1, . . . , ℓ} do

Bn
i
= An−1

i
−∑

t∈Wn−1
i

wi,t +
αi

βi

∑

ℓ∈{r,...,ℓ−1}
∑

t∈Zn
i

y0
i,t,ℓ

y0
i,t,ℓ
= min(ui,max, (1 − Bn

i
)

βi

αi |Zn
i
| ,
βi

αi

Rℓ
i

|Zn
i
| ), for all t ∈ Zn

i

Rℓ
i
= Rℓ

i
− αi

βi

∑

t∈Zn
i

y0
i,t,ℓ

An
i
= Bn

i
+

αi

βi

∑

t∈Zn
i

y0
i,t,ℓ

end for

end for

end if

Then it distributes the amount of energy required during Wℓ
i
, among states yi,t,ℓ for all

t ∈ Zℓ
i
. This distribution is done by assigning identical values to all yi,t,ℓ, for t ∈ Zn

i
,

and all n ∈ {1, . . . , ℓ} in ascending order, in a way that neither the constraint on charging

rate nor the constraint on the battery size are violated. The assignment is also done in

ascending order for ℓ ∈ {r, . . . , ni}. A rigorous proof of the feasibility of this solution,

follows along the lines of Lemma 2.1.

By means of the next result, we state the fact that if u0 is a feasible charging

profile, then for any iteration of the algorithm, uk is a feasible profile.

Lemma 2.6 (Invariance of the set F ). The set F is invariant under the dynamics defined

in (2.14).

Proof. For the proof of this result, we need to show that if uk is feasible, then, for uk+1, it

holds that i) the constraint in (2.4) is satisfied for n ∈ {1, . . . ,mi}, i ∈ I, ii) ui,t ∈ [0, ui,max]

for all t ∈ τ, i ∈, and iii) the constraint in (2.5) holds for all n ∈ {1, . . . ,mi}, i ∈ I.

First, it is straightforward to show that if uk is such that the user satisfaction

constraint is satisfied, for all i ∈ I, t ∈ τ, and ℓ ∈ {1, . . . ,mi}, then, it also holds for uk+1.

To see this, it is enough to perform a sum on both sides of the equality in (2.14) for all

t ∈ Zℓ
i
, to obtain

∑

q∈Zℓ
i
yk+1

i,q,ℓ
=

∑

q∈Zℓ
i
yk

i,q,ℓ
, and the result follows.

Next, since the sum with negative sign on the right-hand side of (2.14) is less or

equal than yk
i,t,ℓ

, then yk+1
i,t,ℓ
≥ 0, hence uk+1

i,t
≥ 0, for all i ∈ I, t ∈ τ. Now, let us show that
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if uk satisfies that uk
i,t
≤ ui,max, then uk+1

i,t
≤ ui,max, for all i ∈ I, t ∈ τ. Since the second

sum in (2.14) is nonpositive, and ψi is upper-bounded by 1, then we have:

yk+1
i,t,ℓ ≤ yk

i,t,ℓ+
∑

q∈Zℓ
i

ui,max − uk
i,t

∑mi

s=n(i,t)

∣

∣

∣Zs
i

∣

∣

∣

.

By definition of yk
i,t,ℓ

, we have that
∑mi

ℓ=1
yk

i,t,ℓ
=

∑mi

ℓ=n(i,t)
yk

i,t,ℓ
. By summing both sides of

this expression in ℓ ∈ {n(i, t), . . . ,mi}, we obtain:

uk+1
i,t ≤ uk

i,t +
ui,max − uk

i,t
∑mi

s=n(i,t)

∣

∣

∣Zs
i

∣

∣

∣

mi
∑

ℓ=n(i,t)

∣

∣

∣Zℓ
i

∣

∣

∣ = ui,max.

Finally, we show that if yk is such that uk satisfies the maximum battery capacity con-

straint, for all r ∈ {1, . . . ,mi−1}, for i ∈ I, then, the maximum battery capacity constraint

is also satisfied by uk+1. Notice that from (2.13), it follows that:

∑

t∈Zr
i

uk+1
i,t ≤

∑

t∈Zr
i

uk
i,t

+
∑

t∈Zr
i

mi
∑

ℓ=r+1

∑

q∈Zℓ
i
\Zr

i

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t , 0}).

Since ℓ ∈ {r+1, . . . ,mi} in the sum above, then it follows that r ∈ {n(i, t), . . . , n(i, q)} and

given that q ∈ Zℓ
i
\ Zr

i
, it follows that n(i, q) > n(i, t). Therefore, given the definition of

∆k
i,ℓ

(q, t), we can upper-bound it by γk
2(i, t, q), to obtain:

∑

t∈Zr
i

uk+1
i,t ≤

∑

t∈Zr
i

uk
i,t +

∑

t∈Zr
i

mi
∑

ℓ=r+1

∑

q∈Zℓ
i
\Zr

i

βi

αi
(1 − ϑk

i,tr
)

|Zr
i
|∑mi

s=r

∣

∣

∣Zs
i
\ Zr

i

∣

∣

∣

=
∑

t∈Zr
i

uk
i,t +

βi

αi
(1 − ϑk

i,tr
)

|Zr
i
|∑mi

s=r

∣

∣

∣Zs
i
\ Zr

i

∣

∣

∣

∣

∣

∣Zr
i

∣

∣

∣

mi
∑

ℓ=r+1

∣

∣

∣Zℓ
i \ Zr

i

∣

∣

∣ .

Then, from the definition of ϑk
i,tn

, it follows that:

∑

t∈Zr
i

uk+1
i,t ≤

βi

αi

(1 − ϑi,0) +
βi

αi

∑

s∈Wr−1
i

wi,s,

which corresponds exactly to the maximum battery capacity constraint, for r ∈ {1, . . . ,mi−
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1}. For r = mi, the constraint is satisfied given that
∑

q∈Zmi
i

yk+1
i,q,ℓ
=

∑

q∈Zmi
i

yk
i,t,ℓ

, then we

sum on both sides over ℓ ∈ {1, . . . ,mi}, and the result follows. �

Let us define the set F = {y ∈ Rd | u ∈ F , ui,t =
∑mi

ℓ=1
yi,t,ℓ}. This is the set of

admissible states of the Price Leveling algorithm, meaning that it comprises all states

that define a feasible charging profile. By Lemma 2.6, F is invariant under the dynamics

of the Price Leveling algorithm.

Let us define Lt = Dt + xt, for all t ∈ τ and Lmin = mint∈τ(Dt + xt). Notice that

from Remark 2.3, the amount of charge the set of PEVs takes during the time window

is finite. Then, there exists an upper bound L such that L ≥ Lk
t for all t ∈ τ, k ∈ N. The

following is a sufficient condition that allows us to prove convergence of the algorithm.

Assumption 2.2 (Properties of the functions ψi). Let xmax be such that xt ≤ xmax, for all

t ∈ τ. The function ψi is Lipschitz, with Lipschitz constant ri
ψ such that ri

ψ < T/((T −
1)xmax p′(L)), for all i ∈ I. �

The above can be understood as a “coordinating property” of the PEVs’ update

law, and will be employed as follows. Since p is convex and increasing, we have that

p′(L) ≥ p′(Lk
t ), and p′(L) is the Lipschitz constant of p for the interval [0, L]. Then, we

have that:

p(L1) − p(L2) ≤ p′(L)(L1 − L2),

with L1 ≤ L2. Since ψi is increasing and Lipschitz we have:

ψ(p(L1) − p(L2)) ≤ ψi(p′(L)(L1 − L2))

≤ ri
ψp′(L)(L1 − L2).

Using Assumption 2.2, with L2 = Lmin, we obtain:

ψi(p(Lk
t ) − p(Lk

min)) <
T

(T − 1)xmax

(Lk
t − Lk

min), (2.15)

for all i, t, k.
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The following result establishes the convergence of any trajectory of the Price

Leveling algorithm towards the set of optimal solutions of the PEV charging problem.

Theorem 2.1 (Convergence). The Price Leveling algorithm defined by equation (2.14)

converges to the set of optimal solutions of the PEV charging problem.

Proof. Let us define functions Vl, for l ∈ {1, . . . ,m}:

Vl(y) = min
q∈Θl

(Dq + x⋆q ) −min
t∈Θl

(Dt + xt), (2.16)

Θl = ∪m+1
r=l Υr. (2.17)

Recall that xt =
∑

i∈I ui,t and ui,t =
∑mi

ℓ=1
yi,t,ℓ. Let us consider the sets El, for l ∈

{1, . . . ,m}, such that El = {y ∈ F | xt = x⋆t ,∀t ∈ ⋃l
r=1Υr and Dq + xq ≥ Dt + xt,∀q ∈

Θl,∀t ∈ Υl}. Intuitively, this set contains all those states y of the algorithm that generate

charging strategies u that determine optimal values for each t ∈ ⋃l
r=1Υr and such that

for each time slot q ∈ Θl \ Υl the price is not less than that of the slots in Υl. Define

also E0 = F . Note that by this definition, Em ⊂ Em−1 ⊂ . . . ⊂ E1 ⊂ E0, and Em is the

set of optimizers of the PEV charging problem. We aim to employ the invariance theory

introduced in Section 2.5 with height functions Vl, manifolds El−1 and submanifolds El,

in a nested way, for l ∈ {1, . . . ,m} to conclude our result.

This is carried out by performing the following steps: first we show that the

functions Vl are strictly positive in El−1 \ El, and zero in El, for l ∈ {1, . . . ,m}. Next, we

show that each function Vl is strictly decreasing along the dynamics yk+1 = g(yk) that

represent the Price Leveling algorithm, for any y ∈ El−1 \ El, and Vl(g(y)) − V(y) = 0

if y ∈ El, for l ∈ {1, . . . ,m}. Then, each function Vl allows us to narrow down the set in

which the omega-limit set of a solution of yk+1 = g(yk) into El, via the invariance theory

in Section 2.5. After m steps of this procedure, we obtain that the omega-limit set of

an arbitrary solution of the Price Leveling algorithm converges to the set Em, which

corresponds to the set of optimal solutions of the PEV charging problem. �
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2.3 Hierarchical PEV control under communication fail-

ures

Thus far, we have only considered the Price Leveling algorithm working under

the assumption that for each iteration k ∈ N, every PEV i ∈ I sends information to the

utility, so that the utility can accurately compute the price pk
t for all t ∈ τ. However, if

communication between the utility and PEVs presents failures, we must evaluate how it

affects the evolution of the system state.

In order to capture the communication failures of the system we define a se-

quence of sets {Ik}∞k=0 such that Ik ⊆ I and it holds that at the kth iteration only the PEVs

in Ik receive price information from the utility. Likewise, only those PEVs in Ik send the

charging strategy uk+1
i

that is computed using pk
t back to the utility. This characteriza-

tion allows for two different types of interactions between PEVs and the utility. On the

one hand, we can consider an anonymous setting in which the utility does not know the

identity of each PEV. On the other hand, we can assume that the utility knows for which

PEVs the strategy did not arrive at each k. Then, the utility can reconstruct information

on the electricity price at each time.

2.3.1 Non-Anonymous Price Leveling algorithm under communica-

tion failures

Let us assume that every PEV i ∈ I executes the Price Leveling algorithm as has

been introduced in Section 2.2. However, for any iteration k such that i < Ik, pk
t , t ∈ τ,

is not available to i. Then, since pk
t , t ∈ τ, is required to compute uk+1

i
, for the next step

agent i sets uk+1
i
= uk

i
. For each i ∈ I, k ∈ N, define kupd(i, k) = max{s ∈ {0, . . . , k} | i ∈

Is}. This leads to the Non-Anonymous Price Leveling algorithm:

yk+1
i,t,ℓ =







































fi,t,ℓ(y
k), if i ∈ Ik and t ∈ Zℓ

i

0, if i ∈ Ik and t < Zℓ
i

yk
i,t,ℓ
, otherwise,

(2.18)
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where fi,t,ℓ is given by equation (2.14), with a difference in pk
t , which will be computed

using the last available information to the utility, i.e., the charging strategy of i at the

iteration kupd(i, k). Then, pk
t = p(Dt +

∑

i∈I u
kupd(i,k)

i,t
), for each t ∈ τ. Nonetheless, we can

see that given the dynamics in (2.18), for all i ∈ I, u
kupd(i,k)

i,t
= uk

i,t
, then the actual price at

the kth iteration can be reconstructed by the aggregator.

Now, we study convergence of the Non-Anonymous Price Leveling algorithm

under communication failures. Clearly, with this modification, we can express our sys-

tem as:

yk+1 = g(yk, Ik),

where g(yk, Ik) is an execution of the Non-Anonymous Price Leveling algorithm subject

to communication failures Ik ⊆ I. In the following we provide conditions for conver-

gence.

Theorem 2.2 (Convergence). The Non-Anonymous Price Leveling algorithm in Equa-

tion (2.18) converges to the set of optimal solutions of the PEV charging problem with

communication failures Ik ⊆ I, k ∈ N if there is a number n ∈ N such that for all k ∈ N
it holds that

⋃n
ℓ=0 Ik+ℓ = I.

Proof. We define set valued map R : Rd
≥0 ⇒ R

d
≥0 such that R(ξ) = {z ∈ Rd

≥0 | ∃{zℓ}nℓ=0 ⊂
Rd
≥0, {Iℓ}n−1

ℓ=0 , Iℓ ⊆ I s.t. z0 = ξ, zℓ = z, zℓ+1 = g(zℓ, Iℓ),∀ℓ ∈ {1, . . . ,N},
⋃n−1

ℓ=0 Iℓ = I}.
Further, let us define the difference inclusion yk+1 ∈ R(yk). Clearly, each solution of this

system is a subsequence of a solution of yk+1 = g(yk, Ik), for any possible sequence of

communication failures such that given a number n ∈ N, all PEVs communicate with

the utility at least once every n iterations. Notice that for each ξ in the domain of R, the

set-valued map returns less than 2Nn points in Rd. Since R(ξ) is finite, then it is compact

for all ξ. The upper semicontinuity of R follows easily from the fact that each element

of R comes from the composition of n continuous maps g(· · · g(g(ξ, Ik), Ik+1), · · · , Ik+n),

since this composition is also continuous in ξ. Then, using the fact that
⋃n

ℓ=1 Ik+ℓ = I,

and similarly to Part 2 in the proof of Theorem 2.1, it follows that if yk ∈ El−1, then for

each ζ ∈ [Vl ◦ R − Vl](y
k), it holds that ζ ≤ 0. Moreover, 0 ∈ [Vl ◦ R − V](yk) only if

yk ∈ El, for all l ∈ {1, . . . ,m}.
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Finally, we use Theorem 2.3 exactly as it has been used in Part 3 of the proof of

Theorem 2.1, to conclude convergence of each solution of the Non-Anonymous Price

Leveling algorithm with communication failures towards the set of optimal charging

strategies. �

Remark 2.4. Notice that the communication failures defined at the beginning of this

section are symmetric, i.e., the communication link fails at iteration k in both directions.

However, it is not always the case. If the link fails only in the communication from the

aggregator to the ith PEV, but the PEV can successfully transmit its charging profile at

iteration k, the algorithm still converges. The analysis in Theorem 2.2 remains valid.

This is because the PEV will simply not modify its charging profile. On the other hand,

it may happen that the ith PEV successfully receives the pricing information from the

aggregator at iteration k, but the aggregator does not receive the new charging profile

from i. In this case, a standard communication protocol with reception confirmation

fixes the problem. As soon as the ith PEV learns that the aggregator did not receive its

new charging profile uk+1
i

, it simply goes back to its previous algorithm state yk
i
.

2.3.2 Anonymous Price Leveling algorithm under communication

failures

The Anonymous Price Leveling algorithm should follow the dynamics in (2.18),

with the difference that the feedback control signal pk
t must be computed with only the

information available at iteration k. A first approach would be pk
t = p(Dt +

∑

i∈Ik
uk

i,t
),

for all t ∈ τ. Notice that the aggregator does not know the set Ik, then it cannot identify

which PEV’s information was obtained at iteration k.

Simulations show that executions of the Anonymous Price Leveling algorithm

with communication failures, lead to a neighborhood of the optimal cost. The size of

this neighborhood depends on the reliability of the communication network.

The reason why the Anonymous Price Leveling dynamics does not converge to

the optimal solution of the PEV charging problem is the following. Let us assume that

for some k, yk is such that uk = u⋆ for some u⋆ optimal. In order for the algorithm

to converge to u⋆, it should happen that yk is a fixed point of the algorithm under any
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iteration, i.e., yk = g(yk, Ik), for any Ik ⊂ I. However, if Ik ( I, there is a q such that

pk
q = p(Dq+

∑

i∈Ik
uk

i,q
) < p(Dt+x⋆t ), for some t < argmins∈τ p(Ds+x⋆s ). Then, an iteration

of the Anonymous Price Leveling algorithm aims to make uk+1 optimal with respect to

JIk
(u) =

∑

t∈τ p(Dt +
∑

i∈Ik
ui,t)(Dt + xt). Since in general uk is not optimal with respect to

JIk
, then uk+1 will not coincide with uk.

2.4 Simulations

The first part of this section, we present the results of a simulation carried out

using the Non-Anonymous Price Leveling algorithm. In the second part we use the

Anonymous Price Leveling algorithm with a different scenario.

Part 1: In order to demonstrate the Non-Anonymous Price Leveling algorithm

performance, we carry out simulations for a 24 hour scenario, starting at 12:00 pm

and ending at the same time the next day. This time window is divided in 48 time

slots with equal duration, that is, each slot is half-an-hour long. We use a non-PEV

forecasted demand profile that follows a realistic behavior, but with some scaling factor,

and a population of 20 PEVs. This population is divided into four groups according to

their forecasted usage schedules: the first group contains four PEVs that will be used

from 4 : 30 pm to 7 : 30 pm, requiring during that period a normalized amount of

energy between 0.6 and 0.9, depending on each i ∈ I. They are also required to have

a normalized amount of energy between 0.25 and 1 by the end of the day, depending

on each i ∈ I. The second group contains six PEVs that will be used from 2 : 00 pm

to 4 : 00 pm, requiring the battery to be fully charged for that period. They are also

required to have a normalized amount of energy of 0.8 by the end of the day. The third

group only has two PEVs which will have two usage periods: the first goes from 12 : 00

pm to 1 : 00 pm with 0.3 normalized energy consumption, and a second usage period

between 4 : 30 am and 6 : 00 am with energy requirement of 0.8 and 0.9 respectively.

They are required to have a normalized amount of energy of 0.8 and 1 respectively, by

the end of the day. The last group has eight PEVs which will be used between 4 : 30 am

and 7 : 00 am. Their normalized consumption during that time is 5/9, and by the end of

the day they are expected to have a normalized energy of 0.8.
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Figure 2.4: Top figure: initial estimated demand profile. Bottom: optimal estimated

demand profile. The non-PEV demand is shown in light grey. Other colors show each

PEV’s charging profile.

Each PEV has a different battery capacity, and a different charging rate bound.

For this particular example, PEVs 11 and 12 have been given a charging rate bound such

that it is not possible to obtain enough energy for the requirement at the end of the day

by only charging after the second usage lapse.

We consider a function p given by p(x) = x2, x ≥ 0. The functions ψi are linear

functions of the form ψi(x) = ri
ψx, with ri

ψ = rψ for all i ∈ I. Even though our theoretical

result presents an upper bound on the Lipschitz constant for the functions ψi, we use

constants larger than the bound, which still leads to convergence in a smaller number of

iterations. The number of iterations may vary depending on the initial conditions and

the parameters D, {Wi}, {wi} for all i ∈ I.

In our scenario, failures are modeled as IID random variables, which represent

the active links at iteration k. This means that for each iteration k, each link has a

failure probability 1 − P. In Figure 2.4, the non-PEV demand profile is shown in in

light grey color, while the PEV demand is shown in dark colors. The plot on the top

corresponds to the initial estimated charging strategies for all PEVs, along with the

estimated non-PEV demand profile. More specifically, these initial charging strategies
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satisfy the forecasted usage, while the estimated non-PEV demand profile is the one

that is used for the computation of the optimal charging strategy for each PEV. The

bottom plot shows the optimal estimated demand profile after the execution of the Non-

Anonymous Price Leveling algorithm. It can be seen that the solution provided by

the Non-Anonymous Price Leveling algorithm is converging to a strategy that levels

prices as much as possible, given the problem constraints. The load profile we show

corresponds to the truncation of the algorithm execution at iteration 150. This is a valley-

filling-like solution for the charging problem, while respecting their usage constraints,

along with the physical battery constraints. We have also verified in this simulation

that the solution provided by the algorithm does not vary along the execution. This

means that the algorithm converges to a specific optimal charging profile as opposed to

having agents constantly switching between optimal charging profiles. We emphasize

this fact, since we were not able to prove convergence of the algorithm to a point in the

invariant set but just asymptotic convergence to the set of optimal solutions. This is a

consequence of applying a LaSalle-like type of invariance result like ours. Nevertheless,

previously proposed algorithms are not able to guarantee this property either, because

standard LaSalle results are used there as well. Figure 2.5 shows how the overall energy

cost decreases along the algorithm execution, for two different values of P, namely 0.3

and 0.8. As it is expected, the cost decreases faster when the communication links are

more reliable (P = 0.8).

In Figure 2.6, we show the demand profile for an implementation of the optimal

charging strategies provided by the Non-Anonymous Price Leveling algorithm on a re-

alistic scenario. To this end, i) we take the estimated non-PEV demand profile and we

corrupt it with additive white Gaussian noise to simulate the actual non-PEV demand

profile, and ii) we randomly introduce mild modifications on the estimated usage sched-

ule for the PEVs in order to simulate the actual usage schedules. The modifications

simply correspond to extending or shortening the usage intervals Wℓ
i

by one or two time

slots, and randomly generating additional usage requirements in case the usage interval

is extended. Notice that in the actual scenario, usage schedules might not be satisfied by

the computed charging strategies, therefore we assume that each PEV has some ancil-

lary energy supply (e.g., fuel as in the case of a hybrid vehicle) that can take care of the
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Figure 2.5: Evolution of the estimated cost function for the

Non-Anonymous Price Leveling with P = 0.3, dashed line and P = 0.8, solid

line.
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Figure 2.6: Actual demand profile using the optimal charging strategy. The non-PEV

demand is shown in light grey. Other colors show each PEV’s charging profile.
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Figure 2.7: Overall cost of the consumed energy (PEV and non-PEV) for: P = 0.2 solid

line, P = 0.4 dashdot line, P = 0.6 dashed line, P = 0.8 dotted line.

extra need.

It can be seen that even though the demand profile does not have a valley-filling-

like shape due to the uncertainty, the PEV demand does tend to relocate in times when

the non-PEV demand is lower.

Part 2: In order to show the behavior of the Anonymous Price Leveling algo-

rithm, we define a simpler scenario, with 20 PEVs, the same values for D, but generat-

ing two groups of PEVs: the first group, given by PEVs from 1 to 6, has Wi = ∅, and

wi,T+1 = 1 for all i ∈ {1, . . . , 6}. The second group, i.e., PEVs from 7 to 20 are such

that have a unique usage lapse from 2 : 00 am to 4 : 30 am. For each time slot in this

period, wi,t = 0, for all i ∈ {7, . . . , 20}. It means that PEVs do not charge, but they do

not consume energy on that time. It also holds for all i ∈ {7, . . . , 20}, that wi,T+1 = 1.

In Figure 2.7, we show how the cost evolves for different values of the link reliability

parameter P. It can be seen that the higher P is, the lower average cost can be achieved.
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2.5 Auxiliary section: invariance theory

Consider a discrete-time dynamical system given by the difference inclusion

zk+1 ∈ F(zk), k ≥ 0, (2.19)

where the state zk belongs to a compact manifoldM of Rn, and F :M→M is an upper-

semicontinuous, closed set-valued map with non-empty values. Since M is compact,

F(z) is compact for all z ∈ M by definition. We denote by φ(k, z0), k ≥ 0, a solution

starting from the initial condition z0 ∈ M. Note that any solution of (2.19) will be

bounded, hence compact.

Definition 2.1 (Limit point, Omega-limit set). Consider a solution of (2.19), φ(·, z0),

with initial condition z0. A point p is said to be a limit point of φ if there exists a sequence

{k j}∞j=0, with k j → ∞ as j→ ∞, such that lim j→∞ φ(k j, x0) = p. The omega-limit set of φ

denoted as Ω(φ) is the set of all limit points of φ.

Since M is compact and φ ⊂ M, the omega-limit set of φ is nonempty, and

closed.

Assumption 2.3 (Height function on S ). Assume that:

• Ω(φ) is contained in a submanifold S ⊆ M.

• There exists a compact neighborhood K of Ω(φ) inM, such that O = int(K) is an

open neighborhood of Ω(φ).

• There is a continuous function W : K → R such that ζ ≤ 0 for all ζ ∈ [W ◦
F − W](z), for all z ∈ S ∩ O. Let E be the set defined as E = {z ∈ S ∩ O | 0 ∈
[W ◦ F −W](z)}. Then ζ < 0, for all ζ ∈ [W ◦ F −W](z), z ∈ (S ∩ O) \ E.

Assume that the continuous function W satisfies ζ ≤ 0 for all ζ ∈ [W ◦F −W](z)

for all z ∈ S + Bǫ(0), ǫ > 0. Since limk→∞ dist(φ(k, z0),Ω(φ)) = 0, it follows that there

is some k1 < ∞ such that φ(k, z0) ∈ S + Bǫ(0). Then, it is easy to conclude that φ

converges to the largest weakly positively invariant set contained in {z ∈ S + Bǫ(0) | 0 ∈
[W ◦ F −W](z)}. However, if there are ζ ∈ [W ◦ F −W](z) for some z ∈ (S+ Bǫ(0)) \ S,
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such that ζ > 0, it is not possible to conclude a similar result, since the set S can be

reached only in infinite time. The following results circumvent this problem, by using

properties of omega-limit sets, and the continuity of W.

Lemma 2.7. Let C be a compact set. Define G : C ⇒ R, as a closed, bounded, upper-

semicontinuous set-valued map. If G(z) < 0 for all z ∈ C, then, there is a δ < 0 such

that for all z ∈ C, it holds that ξ ≤ δ < 0, for all ξ ∈ G(z).

Proof. Let us proceed by contradiction. Assume that there is no such δ. Then, there is

a sequence zk → z, zk ∈ C, with ξk → ξ such that ξk ∈ G(zk) and limk ξk = 0. Since G is

closed and upper-semicontinuous, it holds that ξ ∈ G(z). Since C is compact, we have

that z ∈ C, thus, ξ < 0 for all ξ ∈ G(z), a contradiction. �

The following results are inspired by [23]. The invariance Lemma 2.3 admits

an immediate generalization to systems which do not evolve in compact manifolds, but

simply have trajectories that remain bounded. Another generalization of Lemma 2.3, is

E being contained in a countable number of level sets of W with no accumulation points

as in [23]. Nonetheless, we state a version that is sufficient to prove our main result.

Lemma 2.8. Let Assumption 2.3, on the existence of a height function on S containing

Ω(φ), hold. Then, it must be that Ω(φ) ∩ E , ∅.

Proof. Assume that Ω(φ)∩E = ∅ to reach a contradiction. By the compactness ofΩ(φ),

it holds that the continuous function W attains its minimum inΩ(φ). SinceΩ(φ)∩E = ∅,
by Lemma 2.7 it also holds that W(ζ) −W(z) ≤ δ < 0, ζ ∈ F(z), for each z ∈ Ω(φ).

Since Ω(φ) is weakly positively invariant under the dynamics in (2.19), then

for each z0 ∈ Ω(φ), there is a solution ϕ starting at z0 that remains in Ω(φ) for all

k. Consider a solution ϕ(k, z0), with z0 ∈ Ω(φ). We have W(ϕ(K, z0)) − W(z0) =
∑K−1

k=0

(

W(ϕ(k + 1, z0)) −W(ϕ(k, z0))
)

≤ ∑K−1
k=0 δ. This implies that limK→∞W(ϕ(K, z0)) =

−∞, which contradicts that W attains a minimum in Ω(φ). Then it must be that Ω(φ) ∩
E , ∅. �

Theorem 2.3 (Invariance Result). Let Assumption 2.3, on the existence of a height func-

tion on S containingΩ(φ) hold. If E is contained in a single level set of W, then Ω(φ) is

contained in E.
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Proof. Suppose first that Ω(φ) is contained in a single level set of W, say L. Since E

lies in a single level set of W, as we have that Ω(φ) ∩ E , ∅, by Lemma 2.8, then

E ⊆ L. Given that Ω(φ) is weakly positively invariant, there exists a solution ϕ starting

at any point z0 ∈ Ω(φ) \ E, such that ϕ(k, z0) ∈ Ω(φ) ⊆ L for all k. But if z0
< E, then

W(ϕ(1, z0)) − W(ϕ(0, z0)) < 0, which means that W(ϕ(1, z0)) < W(ϕ(0, z0)), therefore

ϕ(1, z0) < L, a contradiction. Then, it must be that z0 ∈ E for all z0 ∈ Ω(φ).

We proceed again by contradiction, assuming that Ω(φ) is not contained in a

single level set of W. Given that W is continuous and Ω(φ) is compact, then W(Ω(φ)) ⊆
[min,max] where [min,max] is an interval of the real line. Define ωE = Ω(φ) ∩ E , ∅,
and let w be the value of W on ωE.

Consider Ω(φ) + Bǫ(0). Given that Ω(φ) ⊂ Ω(φ) + Bǫ(0), and the solution φ

converges asymptotically to its omega limit set, which is the smallest closed attracting

set of φ, there exists some time k0 such that φ(k, z0) ∈ Ω(φ) + Bǫ(0) for all k ≥ k0, and

for all ǫ > 0. Let us consider only those ǫ such that Ω(φ) + Bǫ(0) ⊂ O. Recall that

O = int(K) is an open neighborhood ofΩ(φ). Let us defineU1 as an open neighborhood

of E inM, and for a given ǫ,U1(ǫ) = U1 ∩ (Ω(φ)+ Bǫ(0)). Denote b
1
= infz∈U1(ǫ) W(z),

b1 = supz∈U1(ǫ) W(z). Since E ∩ Ω(φ) is closed, we can choose some point p ∈ Ω(φ) \ E

(which exists by the assumption that Ω(φ) is not contained in a single level set), with

a neighborhood Up ⊂ O. Define, for a given ǫ, Up(ǫ) = Up ∩ Bǫ(Ω(φ)) and consider

b
p
= infz∈Up(ǫ) W(z), bp = supz∈Up(ǫ) W(z). There are two possible cases: i) W(p) < w

or ii) W(p) > w. Let us consider the first case. Recall that ωE ⊂ U1 is the only subset

of S ∩ O for which there exists some ζ ∈ F(z) such that W(ζ) − W(z) = 0, and for all

z ∈ (S ∩ O) \ E, it holds that W(ζ) − W(z) < 0, for all ζ ∈ F(z). By continuity of

W and given that F is upper-semicontinuous, W ◦ F −W is upper-semicontinuous [24,

Proposition 1.4.14]. Since F(z) is compact for all z, then [W ◦F −W](z) is also compact

for all z.

Using this fact, along with Lemma 2.7, there is a δ1 < 0 such that for all z ∈
(S ∩ O) \ U1, it holds that W(ζ) −W(z) ≤ δ1 < 0, for all ζ ∈ F(z).

Next, by upper-semicontinuity of W ◦ F −W, for any δ2, there is ǫ such that for

every y ∈ Bǫ(z), it holds that [W ◦ F −W](y) ⊆ [W ◦ F −W](z)+ Bδ2
(0). Let us fix some

δ2 ∈ (δ1, 0). Then, we can choose ǫ such that:
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max[W ◦ F −W](y) ≤ max B|δ2|([W ◦ F −W](z)) ≤ δ1 + |δ2|, (2.20)

for all y ∈ Bǫ(Ω(φ) \ U1). It immediately implies that:

sup
z∈Bǫ(Ω(φ))\U1(ǫ)

[

max
ξ∈F(z)

(W(ξ) −W(z))

]

≤ δ1 − δ2 = δ < 0. (2.21)

Therefore, if the set K = {z ∈ Bǫ(Ω(φ)) | ∃a ∈ [W ◦ F − W](z), a > 0} is nonempty, it

must be that K ⊂ U1(ǫ). Let us fix U1, Up, satisfying b1 > bp. Since p is a limit point

of φ, there is a k1 such that φ(k1, z
0) ∈ Up(ǫ). Pick a point q ∈ E ∩Ω(φ) , ∅. Then, as q

is a limit point of φ, there is a first k2 > k1 such that dist(φ(k2, z
0), q) < ǫ and φ(k2, z

0) ∈
U1(ǫ). However, due to (2.21) W(φ(k2, z

0)) −W(φ(k1, z
0)) ≤ ∑k2

l=k1
δ < 0, which means

that W(φ(k2, z
0)) ≤ bp < b

1
, a contradiction with the fact that φ(k2, z

0) ∈ U1(ǫ).

For the second case, i.e., W(p) > w let us choose U1, Up and ǫ as follows:

U1 small enough so that max[W ◦ F − W](v) < ǫ2, ǫ2 > 0, for all v ∈ U1 (it can be

done by upper-semicontinuity of W ◦ f −W, in a similar way as we reached the bound

δ in (2.21)), U1, Up such that b
p
> b1 + ǫ2. Next, let us choose ǫ small enough so

that (2.21) holds. Since Ω(φ)∩E , ∅, there is a k1 such that φ(k1, z
0) ∈ U1(ǫ). However,

we have that W(φ(k1 + 1, z0)) −W(φ(k1, z
0)) < ǫ2 < b

p
− b1, and since φ(k1, z

0) ∈ U1(ǫ),

it holds that W(φ(k1, z
0)) ≤ b1, therefore W(φ(k1 + 1, z0)) < b

p
, which implies that

φ(k1 + 1, z0) < Up(ǫ). Hence, there are two possibilities: either φ(k1 + 1, z0) ∈ U1(ǫ), in

which case we can repeat out previous analysis to conclude that φ(k1 + 2, z0) < Up, or

φ(k1 + 1, z0) ∈ Bǫ(Ω(φ)) \ (U1(ǫ) ∪ Up(ǫ)) ⊆ Bǫ(Ω(φ)) \ U1(ǫ). Since Up(ǫ) contains

a limit point of φ(k, z0), there has to be a first k1 + n > k1 such that φ(k1 + n, z0) ∈
Bǫ(Ω(φ)) \ (U1(ǫ) ∪ Up(ǫ)) but φ(k1 + n + 1, z0) ∈ Up(ǫ). In other words, by the

above process we may construct a sequence {φ(k1 + l, z0)}n−1
l=1
⊆ U1(ǫ) \ Up(ǫ), with

φ(k1 + n, z0) ∈ Bǫ(Ω(φ)) \ (U1(ǫ) ∪ Up(ǫ)), but φ(k1 + n + 1, z0) ∈ Up(ǫ). However, in

this case we have that W(φ(k1 + n + 1, z0)) −W(φ(k1 + n, z0)) ≤ δ2 < 0 by (2.21), which

implies that W decreases. Therefore, φ(k1 + n + 1, z0) < Up(ǫ) since the above implies

that W(φ(k1 + n + 1, z0)) < W(φ(k1 + n, z0)) < b1 < b
p
, a contradiction. Then it must be

that Ω(φ) is in a single level set of W. Hence, we follow the proof of the first case in this

lemma to show that Ω(φ) ⊆ E. �
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2.6 Details of the proof of Theorem 2.1

Our proof is divided in three parts: in Part 1, we show that Vl(y) ≥ 0 for all

y ∈ El−1, and in fact Vl(y) = 0 if and only if y ∈ El, for l ∈ {1, . . . ,m}, with Vl and El in-

troduced in the proof sketch of Theorem 2.1. In Part 2, we show that Vl is monotonically

non-increasing along any solution of the system yk+1 = g(yk) given by the Price Level-

ing algorithm, starting at some point in El−1, for all l ∈ {1, . . . ,m}. Finally, we conclude

the convergence of the solutions towards the set of optimal charging strategies, using

Theorem 2.3, which can be found in Section 2.5.

Part 1: We have as a direct consequence of Lemma 2.5 that there must exist

q ∈ Υl such that Dq+ x⋆q −Dq+ xq ≥ 0, for all y ∈ El−1. Since Dq+ x⋆q = mint∈Θl
(Dt+ x⋆t ),

and by definition of El−1, mint∈Θl
(Dt + xt) ≤ (Dq + xq), it follows that Vl(y) ≥ 0, for all

y ∈ El−1. If y ∈ El−1\El, then, i) there is q ∈ Υl such that mint∈Θl
(Dt+x⋆t ) > Dq+xq, then it

follows that Vl(y) > 0, or ii) there exists some q ∈ Υl such that mint∈Θl
(Dt+x⋆t ) < Dq+xq,

then, from Lemma 2.5, there must exist t ∈ Υl such that mint∈Θl
(Dt+x⋆t ) > Dt+xt, hence,

Vl(y) > 0.

Next, by definition of the set El, if y ∈ El, it holds that for t ∈ Υl ⊂ Θl, Dt +

xt = minq∈Θl
(Dq + xq), and Dt + xt = Dt + x⋆t , for all t ∈ ⋃l

r=1Υr. Recall that by

definition of the partition {Υr}m+1
r=1 , if t ∈ Υl, Dt + x⋆t ≤ Dq + x⋆q for all q ∈ Θl, then

Dt + x⋆t = minq∈Θl
(Dq + x⋆q ) = minq∈Θl

(Dq + xq). Hence, if y ∈ El, Vl(y) = 0.

Part 2: Next, let us show that each function Vl is monotonically non-increasing

along the system solutions inside the set El−1, and it is decreasing for all y ∈ El−1 \ El.

Assume that yk ∈ El−1. Consider the dynamics in (2.14). Then, we can write xk+1
t , by

summing in both sides over all ℓ ≥ n(i, t), i ∈ { j ∈ I | t ∈ Zℓ
i
} as follows:

xk+1
t =xk

t +
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t , 0})

−
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i

∆k
i,ℓ(t, q)ψi(max{pk

t − pk
q, 0}), (2.22)

for all t ∈ τ. Let us analyze what happens with any xk
t , t ∈ Θl, when yk ∈ El−1. Notice

that by definition of El−1, uk
i,s
= u⋆

i,s
, for some u⋆ optimal, for all s ∈ ⋃l−1

r=1Υr, for all i ∈ I.

Also note that for a fixed j ∈ I, depending on W j,w j, we can have i)
∑

q∈W j∪{T+1} w j,q =
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α j

β j

∑

s∈⋃l−1
r=1 Υr

u⋆
j,s
+ ϑ j,0, meaning that the PEV j optimally gets all the battery charge

necessary for the usage schedule, during time slots in
⋃l−1

r=1Υr, or ii)
∑

q∈W j∪{T+1} w j,q >
α j

β j

∑

s∈⋃l−1
r=1 Υr

u⋆
j,s
+ ϑ j,0. In the first case, we have that for every t ∈ Θl, uk

j,t
= 0, therefore,

the terms in the negative sum in (2.22) associated to j (i.e., yk
j,t,ℓ

, for ℓ ∈ {1, . . . ,m j}) are

zero. If the second case holds, from Remark 2.3, in order for uk to be feasible, there

must exist some Υr, r ≥ l such that uk
j,s
> 0 for some s ∈ Υr. Then, we can fix t ∈ Θl,

for which u⋆
i,t
> 0. Let ℓ be such that t ∈ Zℓ

j
. Then, we have three different types of slots

q ∈ ⋃l−1
r=1Υr:

B1: First, for each q ∈ ⋃l−1
r=1Υr such that q ∈ Zn

j
, n ∈ {1, . . . , ℓ−1}, by C1 in Lemma 2.4

it must hold that either i) uk
j,q
= u⋆

j,q
= u j,max, then γk

1( j, q) = 0, or ii) the maximum

battery capacity constraint is active some r ∈ {n, . . . , ℓ − 1}, i.e., there is r ∈
{n, . . . , ℓ − 1} such that ϑ j,0 +

α j

β j

∑

s∈Zr
j
uk

j,s
−∑

s∈Wr−1
j

w j,s = 1, then γk
2( j, q, t) = 0.

In any of these cases, the terms in the negative sum of (2.22) associated to j ∈ I

and q ∈ ⋃l−1
r=1Υr are zero.

B2: Now, for each q ∈ ⋃l−1
r=1Υr such that q ∈ Zn

j
, n ∈ {ℓ + 1, . . . ,m j}, it must hold

by C3 in Lemma 2.4 that either i) u⋆
j,q
= ui,max, then, since uk

i,q
= u⋆

i,q
for some

u⋆ optimal, it follows that γk
1( j, q) = 0, or ii) the user satisfaction constraint

is active for some r ∈ {ℓ + 1, . . . , n}, i.e.,
β j

α j

(

∑

q∈Wr−1
j

w j,q − ϑ j,0

)

=
∑

q∈Zr−1
j

uk
j,q

,

where uk
i,q
= u⋆

i,q
, for some r ∈ {ℓ + 1, . . . , n}. The second case implies that

∑

s∈Wr−1
j

w j,s =
α j

β j

∑

s∈Zr−1
j

uk
j,s
+ ϑ j,0, for some r ∈ {ℓ + 1, . . . , n}. Recall that

since uk
j,s
=

∑mi

σ=1
yk

j,s,σ
, we have

α j

β j

∑

s∈Zr−1
j

∑mi

σ=1
yk

j,s,σ
+ ϑ j,0 =

∑

s∈Wr−1
i

w j,s. In

addition, notice that summing on both sides of the expression in (2.14) over Zσ
i
,

for i = j and any σ ∈ {1, . . . ,m j}, we obtain
∑

s∈Zσ
j

yk+1
j,s,σ
=

∑

s∈Zσ
j

yk
j,s,σ

, for all

k ∈ N. Then, given the selection of initial conditions of the Price Leveling

algorithm, i.e., y0 such that,
α j

β j

∑

s∈Zr−1
j

∑r−1
σ=1 y0

j,s,σ
=

∑

s∈Wr−1
j

w j,s − ϑ j,0, we ob-

tain
α j

β j

∑

s∈Zr−1
j

∑r−1
σ=1 yk

j,s,σ
+ ϑ j,0 =

∑

s∈Wr−1
j

w j,s. Therefore,
∑r−1
σ=1

∑

s∈Zr−1
j

yk
j,s,σ
=

∑

s∈Zr−1
j

uk
j,s

, hence it must be that y j,t,σ = 0 for (t, σ) ∈ Zr
j×{r+1, . . . ,m j}. In both

cases the terms in the negative sum of (2.22) related to j and q are zero.

B3: Finally, consider the case when q ∈ Zℓ
j
. By C2 in Lemma 2.4, we have u⋆

i,q
= ui,max,

hence γk
1( j, q) = 0.
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It is easy to see that since yk ∈ El−1, p(Dt + xk
t ) > p(Dq + xk

q) for all t ∈ Θl,

q ∈ ⋃l−1
r=1Υr. Therefore, in the equation (2.22) for any t ∈ Θl, the terms in the positive

sum associated to q ∈ ⋃l−1
r=1Υr are zero.

With this analysis, we have shown that for yk ∈ El−1, xk+1
t for each t ∈ Θl, depends

uniquely on values of yk
i,q,ℓ

, with q ∈ Θl. Thus, we can write (2.22) as:

xk+1
t = xk

t+
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t , 0})

−
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(t, q)ψi(max{pk

t − pk
q, 0}), (2.23)

for each t ∈ Θl. Define ψ(z) = maxi(r
i
ψ)z, that is, a linear function which is zero at zero,

with slope equal to the maximum Lipschitz constant of a ψi over all i ∈ I. Next, let us

write a lower bound for xk+1
t by replacing the negative sum as follows:

∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

t − pk
q, 0})

≤
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Θl

∆k
i,ℓ(q, t)ψ(max{pk

t − pk
q, 0})

≤
∑

q∈Θl

xk
t

T
ψ(max{pk

t − pk
q, 0}).

In the first inequality we simply replaced the sum of q ∈ Zℓ
i
∩ Θl, such that q ∈ Θl, by

the sum on q ∈ Θl, and we upper bounded the functions ψi by ψ. As Zℓ
i
∩ Θl ⊂ Θl,

the inequality holds. For the second inequality, we dropped the minimum operator that

determines ∆k
i,ℓ

(q, t), and replaced it by yk
i,t,ℓ

. Then, we exchanged the summation order

to obtain xk
t . Therefore, we have:

xk+1
t ≥ xk

t+
∑

i∈I

mi
∑

ℓ=n(i,t)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t , 0})

−∑

q∈Θl

xk
t

T
ψ(max{pk

t − pk
q, 0}). (2.24)

Define Hl(x) = {t ∈ τ | t ∈ argminq∈Θl
(Dq+xq)}. Recall that Lk

min
= mint∈Θl

(Dt+xk
t ). Since

p is strictly increasing, p(Lk
min

) = mint∈τ p(Dt + xk
t ). Take (2.24) for t = t1, t1 ∈ Hl(xk+1),

and sum Dt1 − Lk
min

on both sides. Then, we obtain:
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Lk+1
t1
−Lk

min ≥ Lk
t1
− Lk

min −
∑

q∈Θl

xk
t1

T
ψ(max{pk

t1
− pk

q, 0})

+
∑

i∈I

mi
∑

ℓ=n(i,t1)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t1
, 0}).

Using the inequality in (2.15):

Lk+1
t1
−Lk

min ≥ Lk
t1
− Lk

min −
xk

t1

xmax
(Lk

t1
− Lk

min)

+
∑

i∈I

mi
∑

ℓ=n(i,t1)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t1
, 0}).

This allows us to conclude that at any iteration yk+1 = g(yk) we have Vl(y
k+1)−Vl(y

k) ≤ 0,

due to Lk
t1
− Lk

min
≥ 0, for yk ∈ El−1. Moreover, for any yk ∈ El−1 \ El, by Lemma 2.5 it

stands that Lk
min

< L⋆q for q ∈ Υl. Thus, we have two possibilities:

A1: Hl(xk)∩Hl(xk+1) = ∅. Then, it must be that Lk
t1
−Lk

min
> 0, and Vl(y

k+1)−Vl(y
k) < 0.

A2: t1 ∈ Hl(xk)∩Hl(xk+1). It implies that Lk
t1
−Lk

min
= 0. Since Lk

min
< L⋆q , for all q ∈ Θl,

there must be some i ∈ I with {t, t1} ⊆ Θl ∩ Zi, t < Hl(xk) such that uk
i,t
> 0, and

a small change in uk where ūk
i,t1
= uk

i,t1
+ ǫ and ūk

i,t
= uk

i,t
− ǫ, ǫ > 0 small enough,

while keeping all other components of uk unchanged leads to a feasible solution

of the system. When this happens, we obtain:

mi
∑

ℓ=n(i,t1)

∑

q∈Zℓ
i
∩Θl

∆k
i,ℓ(q, t)ψi(max{pk

q − pk
t1
, 0}) ≥

∆k
i,ℓ(t, q)ψi(max{pk

t − pk
t1
, 0}) > 0.

Then, we can conclude that Vl(y
k+1) − Vl(y

k) < 0, whenever yk ∈ El−1 \ El. This implies

that for any yk+1 = g(yk), Vl(y
k+1) − Vl(y

k) < 0, whenever yk ∈ El−1 \ El.

Take yk ∈ El. From Part 1, we have that Vl(y
k) = 0. Because we have that

Vl(y) ≥ 0, and Vl(g(y)) − Vl(y) ≤ 0 for all y ∈ El−1, and given that El ⊂ El−1, it follows

that Vl(y
k+1) − Vl(y

k) ≤ 0, hence Vl(y
k+1) ≤ 0, then, it must be that V(yk+1) = 0, which

means that Vl(y
k+1) − Vl(y

k) = 0.

Part 3: Consider compact manifolds El, for l ∈ {0, . . . ,m}. By definition Em ⊂
Em−1 ⊂ · · · ⊂ E1 ⊂ E0. Next, define the dynamics yk+1 ∈ G(yk), where G : Rd

≥0
⇒ Rd

≥0
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is given by G(y) = {g(y)}. Notice that since g is Lipschitz continuous on the domain F ,

then, it directly follows that G is upper-semicontinuous, with nonempty and compact

values. Therefore, we can use Theorem 2.3 for yk+1 ∈ G(yk), with height function V1,

M1 = S1 = E0. Note that E0 is strongly invariant under yk+1 ∈ G(yk). Then, we have

that for any solution φ of yk+1 ∈ G(yk), Ω(φ) ⊂ {y ∈ E0 | V1(g(y)) − V1(y) = 0}. By Part 2

of this proof, we have that {y ∈ E0 | V1(g(y)) − V1(y) = 0} = E1. Then, Ω(φ) ⊂ E1.

Further, for l = 2, we use V2 as a height function for Lemma 2.3,M2 = E0, and

S2 = E1. Since it has been shown in Part 2, that Vl(g(y)) − Vl(y) = 0, only if y ∈ El, it

immediately follows that 0 ∈ [V2 ◦G −V2](y) only if y ∈ E2. Since we saw in Part 1 that

Vl(y) = 0 for all y ∈ El, then the set E2 = {y ∈ E1 | 0 ∈ [V2 ◦G − V2](y)} is contained in

a single level set of V2. Then, we have that Ω(φ) ⊂ E2. We repeat for all l ∈ {3, . . . ,m}
the analysis performed on l = 2, then we will obtain that Ω(φ) ⊂ Em, where Em is by

definition the set of optimal solutions of the PEV charging problem.

2.7 Summary

In this work we define the PEV charging problem under usage schedule con-

straints, where PEVs have to compute charging strategies that allow them to fulfill

charging deadline requirements at different moments of the day. This must be carried out

optimally, in the sense of minimizing the aggregate energy price over the day. In order to

solve this problem in a hierarchical way, we introduce a modification of the Price Level-

ing algorithm that has been presented in [12], which accounts for the usage constraints.

Further, we introduce a mild modification of this algorithm: the Non-Anonymous Price

Leveling algorithm, to solve the same problem, assuming that communication failures

can occur. In order to show convergence in both cases, we introduce an invariance result

for discrete-time systems that are represented by a difference inclusion. We also discuss

the Anonymous Price Leveling algorithm, an anonymous setting under communication

failures, which does not converge to an optimal solution of the PEV charging problem.

It could be possible to design the aggregator for the Anonymous Price Leveling algo-

rithm as an observer where
∑

i∈Ik
ui corresponds to the measure of the output, and

∑

i∈I ui

corresponds to the real output, so that the system performance could be improved. How
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to do this while computing bounds on performance is the subject of our future work.

Simulations illustrate the algorithm performance under communication failures.
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Chapter 3

A hierarchical V2G protocol for PEVs

In the previous chapter, we discussed the challenges of the expected large pene-

tration of PEVs in the power grid. We also presented a V1G approach to address such

challenge.

In this chapter we work on the paradigm that PEVs can deliver/absorb power

to the grid in order to provide ancillary services [25]. To this end, PEVs’ batteries are

used during inactivity periods to absorb the generation excess, if any, or to inject power

power if there is demand excess. In this manuscript, we propose a hierarchical architec-

ture in which intermediate aggregators coordinate with PEVs an optimal vehicle-2-grid

(V2G) charging strategy. To do so, intermediate pricing and aggregated load signals are

employed, which helps with privacy preservation goals.

The literature for V2G includes [26], where a centralized optimization prob-

lem is solved using simulated annealing and ant-colony optimization algorithms. Fur-

ther, [27] presents a purely centralized optimal control algorithm to solve a V2G prob-

lem with uncertainty. A V2G game-theoretic formulation is given in [28], where PEVs

are modeled as batteries that aim to inject to or draw from an aggregator a certain amount

of energy in order to meet a desired energy state in such aggregator. In [28], the authors

do not consider battery dynamics.

In this chapter, we present a hierarchical V2G problem formulation for the co-

ordination of a fleet of PEVs connected to different points of the distribution side of the

power grid. For simplicity, we assume that the distribution feeder follows a tree topol-

ogy, which is consistent with the actual topology of existing settings. Then, we model

51
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the power grid as a rooted tree graph, where the root node is the generation/transmission

section of the grid, including the distribution substations. Other nodes represent buses

on the distribution feeder, and PEVs are modeled as leaves of the tree. We exploit this

hierarchy to define the communication structure of our coordination algorithm. Each

bus has a non-PEV load that must be satisfied, and lines between buses have a maxi-

mum transmission capacity. Then, we formulate the V2G hierarchical algorithm. In

this approach, all PEVs solve a local optimization problem to compute their charg-

ing/discharging profile over a finite discrete-time horizon. Then, they communicate it to

the bus at which they are connected, which aggregates its PEV and its non-PEV load and

sends it to the next bus up in the hierarchy. The aggregation is performed in a cascaded

manner until the overall load reaches the root node, which then uses such information to

compute a control signal that is down-streamed through the tree. As this signal passes

through each bus, it is modified to account for the capacity limitations of the transmis-

sion lines that carry power to such bus. Finally, a modified signal reaches each PEV in

the system, which employs it to recompute their charging/discharging profile. In this ap-

proach, PEVs do not have to provide directly private information on their usage habits to

the root, but to intermediate buses, which helps with privacy preservation. Additionally,

almost the entire computational load falls on the PEVs, while all buses in the network

only act as aggregators. This results into good scalability properties of the algorithm.

A convergence analysis is performed and simulations show the V2G hierarchical algo-

rithm performance on various scenarios.

This chapter is organized as follows: Section 3.1 presents some preliminary no-

tation on graph theory for this chapter. Section 3.2 introduces the V2G control problem

to solve. Section 3.3 presents the formulation of the V2G problem as an optimal con-

trol problem. Section 3.4 introduces the hierarchical approach to the solution of the

problem. Simulations and discussion are shown in Section 3.5.

3.1 Preliminary notation for this chapter

Consider an undirected graph G , (V,E), where V is the set of nodes and E
is the set of edges. A path P(i, j), on G for nodes j, j ∈ V, is defined as a sequence
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of nodes {n1, . . . , nq} such that n1 = i, nq = j and (nℓ, nℓ+1) is an edge of G, for all

ℓ ∈ {1, . . . , q − 1}. A graph G is a tree if there is a unique path between any two nodes

i, j ∈ V. The distance from node i to node j in G is given by the number of edges in

the path P(i, j). For an undirected tree, any r ∈ V can be called a root of G. Then, G
with root r is a rooted tree. For a node j ∈ V, the set of children ch( j) is composed

by all nodes that are connected by a single link to j, and whose distance to r is larger

than that of j. The set of descendants of j, des( j), is the set of all nodes i ∈ V \ { j}
such that j ∈ P(r, i). Similarly, the parent of j, denoted as pr( j) is the unique node that

is connected to j by a single edge, and belongs to P(r, j). The set of ancestors of j,

denoted by an( j), is the set of all nodes in P(r, j) \ { j}. A node j ∈ V is called a leaf of

G if it is only connected to one node l ∈ V.

3.2 Problem formulation

Consider a population of n plug-in electric vehicles (PEV) that is connected to

the power grid. This population is spread over a large area. The objective of each PEV

is to charge its battery in order to fulfill its user’s needs. Additionally, each PEV is able

to inject power back into the grid.

3.2.1 Structure of the power network

The power grid is composed of three easily discernible layers: generation, trans-

mission, and distribution. We assume that the distribution side of the grid is composed

of radial feeders only (with tree topology), and each feeder has a single connection point

to the transmission grid. This is a reasonable assumption, as most of the existing feeders

have this structure.

In our model, the generation/transmission side of the grid is condensed in the

root node, r, of a tree T , (V,E), where V , {1, . . . , r}, and E ⊆ V ×V. All the dis-

tribution trees that we consider in our model branch out of the root, and all buses in the

distribution feeders are represented by nodes of the tree T . In addition, PEVs attached

to such buses are also represented by nodes of T , however, they must be thought of as

leaves of the tree. Without loss of generality, let us denote by N , {1, . . . ,N} ⊂ V the
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Node rNode r

Bus Node

PEV Node

Generation

Transmission

Figure 3.1: Graph model of the power grid. Node r represents the genera-

tion/transmission part of the grid, along with the connection points of the distribution

feeders. In the zoomed area, circular nodes represent buses of the distribution feeder,

while squared nodes represent PEVs.

subset of nodes of T that are PEVs connected to the system, whileM , {N + 1, . . . , r}
consists of the buses of the distribution feeders of the system, along with the genera-

tion/transmission node r. Hence, all distribution buses belong to the setM \ {r}. In our

setting, M \ {r} does not contain nodes that represent connection points of the distri-

bution feeders to the grid, as these are already encompassed within r. Buses have an

associated non-PEV demand that must be satisfied.

As already mentioned, nodes representing PEVs have no children, i.e., ch(i) = ∅
for all i ∈ N , while for the node r, pr(r) = ∅. Each transmission line between two

connected buses, i.e. i, j ∈ M \ {r}, for which there exists (i, j) ∈ E, has an associated

parameter Pmax
i j

(t) that corresponds to an upper bound on the amount of power that can

go through the line (i, j). Likewise, there is a maximal amount of power Pmax
r (t) that the

grid generation represented by node r can provide at each time t. Figure 3.1 shows a

graphical explanation of the grid model.
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3.2.2 PEV battery model

We assume that the battery of each PEV follows the dynamics:

zi,t = zi,t−1 +
αc

i

βi

ui,t −
1

αd
i
βi

vi,t,

where ui,t ≥ 0 is the amount of energy that is charged into the battery during time interval

t ∈ N, vi,t ≥ 0 is the energy discharged from the battery during time t ∈ N, αc
i
∈ (0, 1)

is the battery system charging efficiency, αd
i
∈ (0, 1) is the battery system discharging

efficiency, βi stands for the battery capacity, and zi,t is the state of charge (SOC) at time

t ∈ N. The SOC must satisfy that zi,t ∈ [zi,min, zi,max], for 0 ≤ zi,min < zi,max ≤ 1. In

addition, some power bounds must be established in the battery charging/discharging,

namely ui,t ≤ ui,max and vi,t ≤ vi,max. Then, the charging/discharging action of each PEV,

i ∈ N , can be characterized by a demand profile di , {di,t}t∈N, where di,t , ui,t − vi,t.

3.2.3 Load buses in the distribution feeders

Each of the nodes i ∈ M represents a bus in a distribution feeder. The bus is

characterized by a non-PEV load attached to it, denoted by Li,t, which must be satisfied.

Moreover, each node i ∈ M has a demand profile di , {di,t}t∈N associated to it. This

demand is given by all the power that is injected to all loads corresponding to node i or

its children, i.e.:

di,t ,
∑

ℓ∈ch(i)

dℓ,t + Li,t. (3.1)

By this definition of d j,t, j ∈ M, di,t can be rewritten in terms of the descendants of i as

follows:

di,t , Li,t +
∑

ℓ∈des(i)∩M
Lℓ,t +

∑

j∈dN(i)

d j,t, (3.2)

for all i ∈ M, where dN( j) , N ∩ des( j). Since PEVs may be descendants of node i,

di,t may be negative, which means that power is flowing upstream from node i toward its

parent pr(i).
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Remark 3.1. Notice that the power flowing through line (i, j), i, j ∈ M at time t ∈ τ
is given by di,t, if j ∈ pr(i), and d j,t if i ∈ pr( j). This comes from the radial structure of

all distribution feeders and the fact that the demand di,t must be satisfied for all i ∈ V
and for all t ∈ τ. Given the rooted tree structure of the network, there is a one-to-one

correspondence between nodes inM\{r} and the transmission lines in the distribution-

side. Then, in order to account for the bounds in the transmission capacity, for all

distribution lines, it suffices to pose the following constraints:

|d j,t| ≤ Pmax
j pr( j)(t), ∀t ∈ τ, j ∈ M \ {r},

where, consistent with the notation, Pmax
j pr( j)(t) is the transmission capacity of the line

between j and its parent. Therefore, for simplicity of notation, let us denote the capacity

of the line between j and its parent by Pmax
j

(t), leading to:

|d j,t| ≤ Pmax
j (t), ∀t ∈ τ, j ∈ M \ {r},

⋄

3.2.4 The generation/pricing node

The node r ∈ V, referred to as the generation/price node models the behavior of

the generation/transmission side of the power grid. For simplicity, we consider that the

transmission lines in the transmission side of the grid do not have an upper limit on the

amount of power they can carry. However, we do consider that there is an upper bound

on the amount of energy that can be generated by the generation-side of the grid.

Therefore, the node r is solely represented by the maximum amount of power

that it can provide to the distribution feeders, i.e., Pmax
r (t), and the generation cost for the

energy supplied by the grid at time t ∈ N. This generation cost is given by C : R≥0 →
R≥0, which is a convex and increasing function, with C(0) = 0. The argument of this

function corresponds to the aggregate power that is provided by the grid to the loads at

time t. The function C models a market behavior in which the price varies according to

the demand, and the whole demand must be satisfied. In case the ith PEV is providing

power at certain time, the function C will also determine the price to be paid to the
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owner of the PEV.

Assumption 3.1 (Derivative of C is Lipschitz). The function C is such that C′ is Lips-

chitz in its domain, with Lipschitz constant lC . ⋄

3.3 Optimal control problem

The charging strategy is devoted to minimize a function corresponding to the

total cost of the energy provided by the utility during a finite horizon τ , {1, . . . , T },
subject to user needs and line capacity constraints. In addition, let Zi ⊂ τ, for all i ∈ N
be a set of times at which the ith vehicle has access to the power grid. This set can

be used to model deadlines in the charging time for each PEV. Taking into account the

consideration in Remark 3.1, we formulate the following optimization problem:

Problem 1: minu,vJ(u, v)

subject to:

(ui, vi) ∈ Fi, ∀i ∈ N , (3.3a)

di,t = ui,t − vi,t, ∀t, i ∈ N , (3.3b)

d j,t =
∑

ℓ∈ch( j)

dℓ,t + L j,t, ∀t, j ∈ M, (3.3c)

|d j,t| ≤ Pmax
j (t), ∀t, j ∈ M \ {r}, (3.3d)

dr,t ≤ Pmax
r (t), ∀t. (3.3e)

Here,

J(u, v) =

T
∑

t=1

C(dr,t), (3.4)
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and (ui, vi) ∈ Fi if the following constraints hold:

zi,t = zi,0 +
1

βi

t
∑

ℓ=1

(

αc
i ui,ℓ −

1

αd
i

vi,ℓ

)

, t ∈ τ, (3.5a)

zi,min ≤ zi,t ≤ zi,max, t ∈ τ, (3.5b)

0 ≤ ui,t ≤ ui,max, t ∈ τ, (3.5c)

0 ≤ vi,t ≤ vi,max, t ∈ τ, (3.5d)

ui,t = 0, t < Zi ⊆ τ, (3.5e)

vi,t = 0, t < Zi ⊆ τ, (3.5f)

zi,T = zi,max, (3.5g)

ui,tvi,t = 0, t ∈ τ. (3.5h)

Notice that the constraint (3.5h) is not convex. The following results allow us to

relax the constraint without affecting the solution of the problem.

Lemma 3.1. Let u, v be a feasible solution to the relaxed version of Problem 1. Then,

there exists some s ∈ τ, such that for all t ∈ {s, . . . , T } ⊂ τ, and for all ℓ ∈ M, dℓ,s ≥ 0.

Proof. The result follows easily by observing that if u, v is feasible, zi,T = zi,max, for all

i ∈ N . Then, for dℓ,T to be negative, there must be at least some i ∈ dN(ℓ), such that

ui,T − vi,T < 0. Then it must be that zi,T−1 > zi,max, which contradicts the feasibility of

u, v. �

Lemma 3.2. Let u, v be a feasible solution to the relaxed version of Problem 1, with

some i ∈ N such that for some t ∈ τ, vi,t > ui,t. Construct a new solution u1, v1 based

on u, v, such that u1
i,t
= ξ1ui,t, v1

i,t
= ξ1vi,t, ξ1 ∈ (0, 1), u1

i,q
= ξ2ui,q, v1

i,q
= ξ2vi,q for all

q ∈ {t+ 1, . . . , T }, where ξ2 ∈ (0, 1) is chosen as ξ2 , 1+
(1−ξ1)(αc

i
αd

i
ui,t−vi,t)

∑T
q=t+1(αc

i
αd

i
ui,q−vi,q)

, while all other

components of u1, v1 are identical to those of u, v. This solution is such that u1
j , v

1
j ∈ F̄ j,

for all j ∈ N .

Proof. Since (u1
j , v

1
j) = (u j, v j) for all j ∈ N \ {i}, then it holds that (u1

j , v
1
j) ∈ F̄ j. More-

over, since (u1
i,q, v

1
i,q) = (ui,q, vi,q) for all q ≤ t, all the constraints (3.5a) through (3.5f)

hold for i until time q = t − 1. Then, to prove our statement, we only need to show that
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the constraints (3.5a) through (3.5f) hold for i for all times q ≥ t, and also that (3.5g)

holds. Since ξ1 ∈ (0, 1), it follows that u1
i,t ∈ [0, ui,max], v1

i,t ∈ [0, vi,max]. Moreover,

since vi,t > ui,t, it also holds that 0 > ξ1(αc
i
ui,t − (αd

i
)−1vi,t) > αc

i
ui,t − (αd

i
)−1vi,t. Then,

given that z1
i,t−1 = zi,t−1, and the fact that 0 > ξ1(αc

i
ui,t − (αd

i
)−1vi,t) it follows that

zi,max ≥ zi,t−1 > z1
i,t > zi,t ≥ zmin,i. Next, let us show that ξ2 ∈ (0, 1). Notice that

from the constraints (3.5a), (3.5g), we have that:

0 ≤ zi,max − zi,t =
1

βi

(αc
i ui,t − (αd

i )−1vi,t) +
∑T

q=t+1
1
βi

(αc
i
ui,q − (αd

i
)−1vi,q).

Since αc
i
ui,t − (αd

i
)−1vi,t < 0 by the assumption of the lemma, we move it to the left side

of the inequality above and it follows that:

− 1

βi

(αc
i ui,t − (αd

i )−1vi,t) <

T
∑

q=t+1

1

βi

(αc
i ui,q − (αd

i )−1vi,q).

Then, after dividing both sides for the positive term on the right-hand side, it follows

that ξ2 ∈ (0, 1). It immediately implies that u1
i,q
∈ [0, ui,max] and v1

i,q
∈ [0, vi,max], for q ∈

{t+ 1, . . . , T }. Next, let us show that the constraint (3.5b) holds for all q ∈ {t+ 1, . . . , T }.
From (3.5a) and the fact that (u1

i,q
, v1

i,q
) = (ξ2ui,q, ξ2vi,q), q ∈ {t + 1, . . . , T }, we have that:

z1
i,q =zi,t−1 +

ξ1

βi

(

αc
i ui,t −

1

αd
i

vi,t

)

+
ξ2

βi

q
∑

ℓ=t+1

(

αc
i ui,ℓ −

1

αd
i

vi,ℓ

)

.

If the third summand in the expression above is less than zero, by negativity of αc
i
ui,t −

(αd
i
)−1vi,t, it holds that zi,max ≥ zi,t−1 > z1

i,q
. Moreover, since ξ1, ξ2 ∈ (0, 1), it follows by

definition of zi,q and z1
i,q

that z1
i,q
> zi,q ≥ zi,min.

If the third summand in the expression above is greater or equal than zero, then

we have:

z1
i,q =zi,t−1 +

ξ3(1 − ξ1) + ξ1

βi

(

αc
i ui,t −

1

αd
i

vi,t

)

+
1

βi

q
∑

ℓ=t+1

(

αc
i ui,ℓ −

1

αd
i

vi,ℓ

)

, (3.6)

where:
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ξ3 =

1
βi

∑q

ℓ=t+1

(

αc
i
ui,ℓ − 1

αd
i

vi,ℓ

)

1
βi

∑T
w=t+1

(

αc
i
ui,w − 1

αd
i

vi,w

) .

Clearly, ξ3 ∈ (0, 1). Then, ξ3(1 − ξ1) + ξ1 < 1, and since αc
i
ui,t − (αd

i
)−1vi,t < 0, it follows

that z1
i,q
≤ zi,q, for all q > t, and from (3.6) we have:

z1
i,q ≥zi,t−1 +

1

βi

(

αc
i ui,t −

1

αd
i

vi,t

)

+
1

βi

q
∑

ℓ=t+1

(

αc
i ui,ℓ −

1

αd
i

vi,ℓ

)

=zi,q.

Then, z1
i,t ≥ zi,min, for all q > t. The constraint (3.5g) can be easily verified by replacing

ξ2 in the battery dynamics. Then, u1
i , v

1
i ∈ F̄i, and the result follows. �

Lemma 3.3 (Exact convex relaxation of Problem 1). The constraint ui,tvi,t = 0, for all

t ∈ τ, i ∈ N can be relaxed and the optimal solutions of the relaxed problem are exactly

the optimal solutions for Problem 1. ⋄

Proof. For the proof of this result, we proceed by contradiction, by showing that if

u⋆, v⋆ is an optimal solution to Problem 1, without the nonconvex constraint (3.5h),

but there is some i ∈ N , t ∈ τ, such that u⋆
i,t

v⋆
i,t
> 0, then we can construct a solution

that outperforms u⋆, v⋆. Assume that u⋆, v⋆ is an optimizer of Problem 1 without the

nonconvex constraint (3.5h), and there is some i ∈ N and t such that u⋆
i,t
> 0 and v⋆

i,t
> 0.

Consider a solution û⋆,1, v̂⋆,1, such that (û⋆,1
j,q
, v̂

⋆,1
j,q

) = (u⋆
j,q
, v⋆

j,q
) for all ( j, q) , (i, t),

t, q ∈ τ, j ∈ N , and û
⋆,1
i,t
= max{0, u⋆

i,t
− (αc

i
αd

i
)v⋆

i,t
}, and v̂

⋆,1
i,t
= max{0, v⋆

i,t
− (αc

i
αd

i
)u⋆

i,t
}.

Clearly, û⋆,1, v̂⋆,1 is such that û
⋆,1
j
, v̂

⋆,1
j
∈ F̄ j for all j ∈ N . Moreover, since u⋆

i,t
, v⋆

i,t
≥ 0, it

is easy to see that:

max{u⋆i,t − (αc
iα

d
i )−1v⋆i,t, (α

c
iα

d
i )u⋆i,t − v⋆i,t} < u⋆i,t − v⋆i,t. (3.7)

Therefore, the only constraints that û⋆,1, v̂⋆,1 may not satisfy are: −Pmax
ℓ

(t) ≤ d̂⋆,1
ℓ,t

for

some ℓ ∈ an(i).

If for all ℓ ∈ M, it holds that −Pmax
ℓ

(t) ≤ d̂⋆,1
ℓ,t

, then, û⋆,1, v̂⋆,1 is feasible to

Problem 1 with relaxed nonconvex constraint, and from (3.7), it follows that û⋆,1
i,t
−
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v̂
⋆,1
i,t

< u⋆
i,t
− v⋆

i,t
, therefore,

∑

j∈N (û⋆,1
j,t
− v̂

⋆,1
j,t

) <
∑

j∈N (u⋆
j,t
− v⋆

j,t
), and

∑

j∈N (û⋆,1
j,q
− v̂

⋆,1
j,q

) =
∑

j∈N(u⋆
j,q
− v⋆

j,q
), for all q , t, q ∈ τ. Given that the function C is convex and increasing,

J(û⋆,1, v̂⋆,1) < J(u⋆, v⋆), which contradicts the fact that u⋆, v⋆ is optimal.

Let us consider the opposite case, i.e., there is some ℓ ∈ an(i) such that −Pmax
ℓ

(t) >

d̂
⋆,1
ℓ,t

. Let us fix such ℓ. Then, there is a nonempty set D(ℓ, û⋆,1, v̂⋆,1) ⊂ dN(ℓ) such

that û⋆,1
j,t
− v̂⋆,1

j,t
< 0 for all j ∈ D(ℓ, û⋆,1, v̂⋆,1). Then, we construct a solution û⋆,2, v̂⋆,2

based on û⋆,1, v̂⋆,1 as described in Lemma 3.2, with (û⋆,2
j,t
, v̂⋆,2

j,t
) = (ξ1û⋆,1

j,t
, ξ1v̂⋆,1

j,t
), for all

j ∈ D(ℓ, û⋆,1, v̂⋆,1), where ξ1 is chosen as:

ξ1 , 1 −
(−Pmax

ℓ
(t) − d̂

⋆,1
ℓ,t

)
∑

s∈D(ℓ,û⋆,1 ,v̂⋆,1)(û
⋆,1
s,t − v̂

⋆,1
s,t )

,

(û⋆,2
j,q
, v̂

⋆,2
j,q

) = (ξ2û
⋆,1
j,q
, ξ2v̂

⋆,1
j,q

), q ∈ {t + 1, . . . , T }, for all j ∈ D(ℓ, û⋆,1, v̂⋆,1), and ξ2 as

specified in Lemma 3.2. By definition ofD(ℓ, û⋆,1, v̂⋆,1) and d̂
⋆,1
ℓ,t

, it holds that ξ1 ∈ (0, 1).

Then, we choose all other components of û⋆,2, v̂⋆,2, equal to those of û⋆,1, v̂⋆,1, according

to Lemma 3.2, to obtain û⋆,2, v̂⋆,2 such that û
⋆,2
j
, v̂

⋆,2
j
∈ F̄ j for all j ∈ N . It can be

seen that the choice of û⋆,2, v̂⋆,2 leads to −Pmax
ℓ

(t) = d̂
⋆,2
ℓ,t

, for all j ∈ dN(ℓ), and also

d̂
⋆,2
ℓ,q
≤ d̂

⋆,1
ℓ,q

for all q ∈ {t + 1, . . . , T }. Next, if for all q ∈ {t + 1, . . . , T }, −Pmax
ℓ

(q) ≤ d̂
⋆,2
ℓ,q

,

it means that û⋆,2, v̂⋆,2 is feasible for the relaxation of Problem 1. Hence, we can follow

the same reasoning as in the case where û⋆,1, v̂⋆,1 was feasible to get J(û⋆,2, v̂⋆,2) <

J(u⋆, v⋆), which contradicts the optimality of u⋆, v⋆. If there is some q ∈ {t + 1, . . . , T }
for which d̂⋆,2

ℓ,q
< −Pmax

ℓ
(q), we repeat the same procedure to find a solution û⋆,3, v̂⋆,3 such

that d̂⋆,2
ℓ,q
= −Pmax

ℓ
(q). Then, since T is finite, and by Lemma 3.1, one can recursively

construct solutions û⋆,w, v̂⋆,w based on û⋆,w−1, v̂⋆,w−1, until eventually û⋆,w̄, v̂⋆,w̄, is feasible

for the convex relaxation of Problem 1, for some w̄ ≤ T − t. Given the construction of

û⋆,w̄, v̂⋆,w̄, it outperforms u⋆, v⋆. Since we assume that u⋆, v⋆ is optimal, then we reach a

contradiction. �

The next result is an adaptation of Theorem 1 in [11], and shows the uniqueness

of the optimal demand profile generated by the optimizers of Problem 1.

Lemma 3.4. (Uniqueness of the aggregate demand profile): Let u⋆, v⋆ and û, v̂ be opti-

mizers of Problem 1. Then it holds that
∑

i∈N (u⋆
i
− v⋆

i
) =

∑

i∈N (ûi − v̂i). ⋄
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The solution of this optimization problem is valley filling and peak-shaving, i.e.,

if u, v is optimal, the PEVs will try to provide as much energy as possible in the highest-

price times and will try to obtain as much energy as possible in the lowest-price times.

In order to solve Problem 1, we use penalty functions to handle the coupling

constraints. We formulate the following relaxation of the problem:

Problem 2: minu,vJ(u, v) +

T
∑

t=1

∑

ℓ∈M
κℓΦℓ(dℓ,t)

subject to:

(ui, vi) ∈ F̄i, ∀i ∈ N (3.8a)

di,t = ui,t − vi,t, ∀t, i ∈ N (3.8b)

d j,t =
∑

ℓ∈ch( j)

(dℓ,t + L j,t), ∀t, j ∈ M, (3.8c)

where Φ j : R → R≥0 acts as a penalty function for the power constraint at node j ∈ M,

defined as:

Φ j(d j,t) , (max{0, d j,t − Pmax
j (t)})2,

and F̄i , {(u, v) ∈ R2nT | Eqns. (3.5a) –(3.5g) hold ∀i ∈ N}. Notice that:

Φ′j(d j,t) = max{0, 2(d j,t − Pmax
j (t))},

then, Φ′j(d j,t) is globally Lipschitz continuous with Lipschitz constant lB = 2, for all

j ∈ M.

Remark 3.2. Notice that we are using only a penalty function for inequalities dℓ,t ≤
Pmax
ℓ

(t), for all ℓ ∈ M \ {r}, ℓ ∈ ch( j), leaving aside −Pmax
ℓ

(t) ≤ dℓ,t. This is done for

simplicity of presentation of the method and its analysis. The inclusion of a penalty

function for the lower bound on dℓ,t, can be treated in an analogous way.
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3.3.1 Analysis and design of the penalty method

From [29], it is known that for the penalty method to yield a feasible solution to

the original problem, it is necessary to use non-differentiable penalty functions, except

for selected cases, which our problem does not satisfy. Clearly, the quadratic penalty

functions are continuously differentiable, therefore the solution to Problem 2 may not

be feasible for Problem 1. However, It is also known that if κℓ → +∞, for all ℓ ∈ M, the

solution to Problem 2 gets arbitrarily close to a solution to Problem 1.

Lemma 3.5. If an optimal solution to Problem 2 satisfies the constraints (3.3d), then

such solution is also an optimal solution of Problem 1. ⋄

By the result above, we have that a solution to Problem 2 is not a solution to

Problem 1 only if it violates at least one of the constraints given by (3.3d). Therefore,

a suitable way to study how close the solution to Problem 2 is to a solution to Prob-

lem 1, is to analyze the maximum amount of constraint violation for a given value of

the parameters κℓ, for all ℓ ∈ M. In this way, one can design parameters κℓ that lead to a

desired tolerance on the constraint violation.

To this end, we introduce the following assumption.

Assumption 3.2 (Slater’s Condition). There exists a feasible solution u†, v† to Problem

1, such that:

|d†
ℓ,t
| ≤ Pmax

ℓ (t) − ε, ℓ ∈ M,

for all t ∈ τ, such that Pmax
ℓ

(t) − ε > 0, ε > 0 and does not depend on ℓ. ⋄

The following result establishes how to choose all parameters κℓ.

Proposition 3.1 (Characterization of κℓ). Fix σ ∈ (0, 1) and let :

κℓ >
√

|M|T Jmax/(εσmin
ℓ.t

Pmax
ℓ (t)),

for all ℓ ∈ M, where

Jmax ,

T
∑

t=1

C(Pmax
r (t)),
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Let u⋆, v⋆ be a solution to Problem 2. Then, u⋆, v⋆ satisfies:

d⋆ℓ,t ≤ Pmax
ℓ (t)(1 + σ),

for all ℓ ∈ M. ⋄

Proof. First, consider an optimal solution û, v̂ to Problem 2, and an optimal solution

u⋆, v⋆ to Problem 1. Notice that:

T
∑

t=1

∑

ℓ∈M
κℓΦℓ(d

⋆
ℓ,t) = 0,

since u⋆, v⋆ satisfies all constraints (3.3d). Then, by optimality of û, v̂ in Problem 2, we

have that:

J(û, v̂) +

T
∑

t=1

∑

ℓ∈M
κℓΦℓ(d̂ℓ,t) ≤ J(u⋆, v⋆). (3.9)

Next, define λ⋆
ℓ,t

, for all ℓ ∈ M, as the optimal Lagrange multipliers associated to the

constraints in (3.3d) in Problem 1, which exist by Assumption 3.2 (Slater’s condition).

Let us define also the Lagrangian function for Problem 1 as follows:

L(u, v, λ) , J(u, v) +

T
∑

t=1

∑

ℓ∈M
λℓ,t(dℓ,t − Pmax

ℓ (t)).

By Duality Theory [30] and also Assumption 3.2 (Slater’s condition), it follows that:

J(u⋆, v⋆) = L(u⋆, v⋆, λ⋆) ≤ L(û, v̂, λ⋆). (3.10)

Now, let us proceed by contradiction, to show that:

max{0, d̂ℓ,t − Pmax
ℓ (t)} ≤

maxη,t λ
⋆
η,t

minι κι

√

|M|T , (3.11)

for all ℓ ∈ M and t ∈ τ. For the sake of clarity, let us introduce the vector g(u, v) ∈ Rs,

where s , |M|T , whose components are max{0, dℓ,t − Pmax
ℓ

(t)}, for all ℓ, t.

Assume that û, v̂ is such that max{0, d̂ℓ,t − Pmax
ℓ

(t)} >
√

sξ, where we define
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ξ , maxη,t λ
⋆
η,t/minι κι, for some ℓ ∈ M, t ∈ τ. It is equivalent to saying that ‖g(û, v̂)‖∞ >

√
sξ. Since

√
sξ > 0, we can multiply on both sides by ‖g(û, v̂)‖1 and move

√
s to

obtain ‖g(û, v̂)‖1‖g(û, v̂)‖∞/
√

s > ξ‖g(û, v̂)‖1. By properties of norms, we have that

‖g(û, v̂)‖2 ≥ ‖g(û, v̂)‖∞, and also ‖g(û, v̂)‖2 ≥ ‖g(û, v̂)‖1/
√

s. Then, it follows that

‖g(û, v̂)‖22 ≥ ‖g(û, v̂)‖1‖g(û, v̂)‖∞/
√

s > ξ‖g(û, v̂)‖1, which implies that:

T
∑

t=1

∑

ℓ∈M
Φ(d̂ℓ,t) >

T
∑

t=1

∑

ℓ∈M
ξmax{0, dℓ,t − Pmax

ℓ (t)}

≥
T

∑

t=1

∑

ℓ∈M

maxη,t λ
⋆
η,t

minι κι
(dℓ,t − Pmax

ℓ (t)).

The equation above implies that:

T
∑

t=1

∑

ℓ∈M
κℓΦ(d̂ℓ,t) >

T
∑

t=1

∑

ℓ∈M
λ⋆ℓ,t(dℓ,t − Pmax

ℓ (t)),

which in turn implies that:

L(û, v̂, λ⋆) < J(û, v̂) +

T
∑

t=1

∑

ℓ∈M
κℓΦℓ(d̂ℓ,t) (3.12)

From Equations (3.9), (3.10), and (3.12), it follows that J(u⋆, v⋆) < J(u⋆, v⋆), a contra-

diction, hence, (3.11) holds for all ℓ ∈ M, t ∈ τ.

Now, from [31, Chapter 10], we have that:

max
ℓ,t

λ⋆ℓ,t ≤
1

γ
(J(ū, v̄) − J̄),

where J̄ = J(ũ, ṽ), ũ, ṽ is a solution to Problem 1, without the constraints (3.3d), ū, v̄ is a

Slater vector of Problem 1, and γ , minℓ,t Pmax
ℓ

(t)− d̄ℓ,t. Note that by definition of Slater

vector, u†, v† as described in Assumption 3.2 is a Slater vector of Problem 1. By the

same assumption, we have that γ ≥ ε. This, together with the fact that J̄ is nonnegative,

leads us to:

max
ℓ,t

λ⋆ℓ,t ≤
1

ε
J(ū, v̄),
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Figure 3.2: Grid hierarchical structure. Dashed lines indicate communication links

while solid lines represent power links.

Finally, from the constraint in (3.3e), we have that:

J(ū, v̄) ≤ Jmax, (3.13)

with Jmax as defined in Lemma 3.1. Finally, from the choice of κℓ presented in the

statement of the Lemma, we have:

Jmax

√
|M|T

minℓ κℓ
≤ σmin

ι,t
Pmax
ι (t) ≤ σPmax

ℓ (t).

Then the result follows by combining it with (3.11) and (3.13). �

3.4 A hierarchical control architecture

Our main interest is to solve Problem 1 using a decentralized/hierarchical com-

munication and control architecture that allows for distributed computation, scalability,

and privacy. Next, we introduce a hierarchical approach for the solution of Problem 2.

For now on, let us assume that the optimization problem is feasible.
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3.4.1 V2G hierarchical algorithm

Our approach endows each congestible element in the grid with computation

and communication capacity. Communications over the network follow the same tree

topology as the power network. In this way, each element i ∈ V \ {r} sends its parent

the demand profile di and if ch(i) , ∅, implying that i is not a PEV, it sends its children

a control signal which comes from the generation/pricing node r, and the amount of

violation on the maximum power constraints of i’s ancestors.

The V2G hierarchical algorithm is inspired by the works presented in both [10,

11] but we modify the approach to account for the penalty functions of Problem 2. This

is an iterative procedure in which at iteration k ∈ N, each PEV generates a demand

profile dk
i,t
= uk

i,t
− vk

i,t
, for all t ∈ τ, that is feasible for its own battery constraints.

Then, it transmits the profile to its parent, which in turn computes its own demand

profile according to (3.1). This is done until the node r computes its demand profile; see

Figure 3.2 for an illustration of the information flow over the communication network.

Based on this demand profile, the node r computes and transmits a coordination

signal pk
r , [pk

r,1 . . . , pk
r,T

]⊤ ∈ RT , such that:

pk
r,t , ηC′(dk

r,t) + bk
r,t,

for all t ∈ τ, η > 0, with bk
r,t = ηκrΦ

′
r(d

k
r,t), and Φ′ as introduced with Problem 2,

and κ j > 0, for all j ∈ M. Then, each node j ∈ M \ {r} computes the control signal

pk
j
, [pk

j,1 . . . , pk
j,T

]⊤ ∈ RT :

pk
j,t , pk

pr( j),t + bk
j,t,

for all t ∈ τ, where:

bk
j,t = ηκ jΦ

′
j(d

k
j,t).

Recall that pr( j) denotes the node that is parent of node j. Further, as the signal reaches

each PEV, it computes its next battery control by solving the following optimization
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problem:

(uk+1
i , vk+1

i ) = argminui,vi
Ji(ui, vi) (3.14)

subject to:

(ui, vi) ∈ F̄i,

where:

Ji(ui, vi) =

T
∑

t=1

pk
pr(i),t(ui,t − vi,t) +

1

2
‖ui − vi − dk

i ‖2. (3.15)

The procedure must be iterated until a stopping criterion is reached.

Theorem 3.1 (Convergence result). The V2G hierarchical algorithm converges to an

optimizer of Problem 2 as k → ∞, provided Assumption 3.1 (Derivative of C is Lips-

chitz) holds and η < min{η1, η2}, where:

η1 , min{(NlC(1 + | an(i)|))−1 | i ∈ N},

η2 , min{(2κℓ| dN(ℓ)|(1 + | an(i)|))−1 | i ∈ N , ℓ ∈ an(i)}.

Proof. Let us choose the Lyapunov function:

V(u, v) =

T
∑

t=1

















C(dr,t) +
∑

ℓ∈M
κℓΦ(dℓ,t)

















.

Then, we aim to show that V(uk+1, vk+1) ≤ V(uk, vk), for all k ∈ N and V(uk+1, vk+1) =

V(uk, vk) only if (uk, vk) is a fixed point of the algorithm. Finally we show that a fixed

point of the algorithm is an optimizer of Problem 2.

From the convexity of C we have that:

C(dk+1
r,t ) ≤ C(dk

r,t) +C′(dk+1
r,t )(dk+1

r,t − dk
r,t).
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Similarly, we have that:

Φℓ(d
k+1
ℓ,t ) ≤ Φℓ(dk

ℓ,t) + Φ
′
ℓ(d

k+1
ℓ,t )(dk+1

ℓ,t − dk
ℓ,t),

for all ℓ ∈ M. Then, it follows that:

V(uk+1,vk+1) ≤
T

∑

t=1

(

C(dk
r,t) +C′(dk+1

r,t )(dk+1
r,t − dk

r,t)
)

+

T
∑

t=1

∑

ℓ∈M
κℓ

(

Φℓ(d
k
ℓ,t) + Φ

′
ℓ(d

k+1
ℓ,t )(dk+1

ℓ,t − dk
ℓ,t)

)

. (3.16)

Using the fact that C′ is Lipschitz continuous, it holds that:

C′(dk+1
r,t )(dk+1

r,t − dk
r,t) ≤ C′(dk

r,t)(d
k+1
r,t − dk

r,t) + lC |dk+1
r,t − dk

r,t|2, (3.17)

likewise, since Φ′ is also Lipschitz continuous with Lipschitz constant equal to 2:

κℓΦ
′
ℓ(d

k+1
ℓ,t )(dk+1

ℓ,t − dk
ℓ,t) ≤

1

η
bk
ℓ,t(d

k+1
ℓ,t − dk

ℓ,t) + 2|dk+1
ℓ,t − dk

ℓ,t|2. (3.18)

In the last expression we replaced κℓΦ
′(dk

ℓ,t
) according to the definition of bk

ℓ,t
, ℓ ∈ M.

Also we use the expression in (3.2) and the fact L j,t does not depend on k, for all j ∈ M,

to obtain:

dk+1
ℓ,t − dk

ℓ,t =
∑

i∈dN(ℓ)

(uk+1
i,t − vk+1

i,t − uk
i,t + vk

i,t). (3.19)

for all ℓ ∈ M. Then, using (3.17) and (3.18), to upper bound (3.16), and then plug-
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ging (3.19) into the result, we obtain:

V(uk+1,vk+1) ≤ V(uk, vk) (3.20)

+

T
∑

t=1

lC

∣

∣

∣

∣

∣

∣

∣

∑

i∈N
(uk+1

i,t − vk+1
i,t − uk

i,t + vk
i,t)

∣

∣

∣

∣

∣

∣

∣

2

+

T
∑

t=1

∑

i∈N

1

η
pk

r,t(u
k+1
i,t − vk+1

i,t − uk
i,t + vk

i,t)

+

T
∑

t=1

∑

ℓ∈M\{r}

∑

i∈dN(ℓ)

1

η
bk
ℓ,t(u

k+1
i,t − vk+1

i,t − uk
i,t + vk

i,t)

+ 2

T
∑

t=1

∑

ℓ∈M
κℓ

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈dN(ℓ)

(uk+1
i,t − vk+1

i,t − uk
i,t + vk

i,t)

∣

∣

∣

∣

∣

∣

∣

∣

2

.

In (3.20) we have used again (3.2) to write the whole expression in terms of u and v, and

we have also written C′(dr,t) + κrΦ
′(dr,t) as 1

η
pk

r,t, for all t ∈ {1, . . . , T }.
Further, from the definition of the dynamics, (uk+1

i
, vk+1

i
) fulfills the optimality

condition of Lemma 3.6 for the local PEV problem. Then, we obtain:

T
∑

t=1

















pk
r,t +

∑

ℓ∈an(i)\{r}
bk
ℓ,t

















(uk
i,t − vk

i,t − uk+1
i,t + vk+1

i,t ) − ‖uk+1
i − vk+1

i − uk
i + vk

i ‖2 ≥ 0, (3.21)

where we have written out the definition of pk
pr(i),t. Now, we sum both sides of (3.21)

over all i ∈ N and then we use Lemma 3.7 to change the summation indices, to obtain:

T
∑

t=1

∑

i∈N
pk

r,t(u
k+1
i,t − vk+1

i,t − uk
i,t + vk

i,t) (3.22)

+

T
∑

t=1

∑

ℓ∈M\{r}

∑

i∈dN(ℓ)

bk
ℓ,t(u

k+1
i,t −vk+1

i,t − uk
i,t + vk

i,t)

≤ −
∑

i∈N
‖uk+1

i − vk+1
i − uk

i + vk
i ‖2.

On the other hand, from Hölder’s inequality we have that:

∣

∣

∣

∣

∑

i∈I
(uk+1

i,t − vk+1
i,t − uk

i,t + vk
i,t)

∣

∣

∣

∣

2

≤ |I|
∑

i∈I
|uk+1

i,t − vk+1
i,t − uk

i,t + vk
i,t|2, (3.23)
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for any subset of I ⊂ V. Our next step is to use (3.23) to bound the second and last

summands of (3.20), with I = N and I = dN(ℓ) respectively, then use the bound

from (3.22) on the third and fourth summands of (3.20), and finally apply Lemma 3.7

on the last summand of (3.20). This yields:

V(uk+1, vk+1) ≤ V(uk, vk) (3.24)

+
∑

i∈N
lCN‖(uk+1

i − vk+1
i − uk

i + vk
i )‖2

−
∑

i∈N

1

η
‖uk+1

i − vk+1
i − uk

i − vk
i ‖2

+
∑

i∈N

∑

ℓ∈an(i)

| dN(ℓ)|2κℓ‖(uk+1
i − vk+1

i − uk
i + vk

i )‖2.

Note that in (3.24) we used the fact that
∑T

t=1 |zt|2 = ‖z‖2, for any vector z ∈ RT . Now, it

is easy to see that:

1

η
‖uk+1

i − vk+1
i − uk

i − vk
i ‖2 =

1

η(1 + | an(i)|)‖u
k+1
i − vk+1

i − uk
i − vk

i ‖2

+
∑

ℓ∈an(i)

1

η(1 + | an(i)|)‖u
k+1
i − vk+1

i − uk
i − vk

i ‖2,

for all i ∈ N . This follows from the fact that the term inside the sum does not depend

on the index of such sum. Then, replacing the expression above in (3.24), it follows:

V(uk+1, vk+1) ≤ V(uk, vk) (3.25)

+
∑

i∈N

(

NlC −
1

η(1 + | an(i)|)

)

‖(uk+1
i − vk+1

i − uk
i + vk

i )‖2

+
∑

i∈N

∑

ℓ∈an(i)

(

| dN(ℓ)|2κℓ −
1

η(1 + | an(i)|)

)

× · · ·

‖(uk+1
i − vk+1

i − uk
i + vk

i )‖2.
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This means that V(uk+1, vk+1) ≤ V(uk, vk), if:

1

η(1 + | an(i)|) > 2κℓ| dN(ℓ)|, ∀ℓ ∈ an(i), i ∈ N

1

η(1 + | an(i)|) > NlC , ∀i ∈ N .

In fact, V(uk+1, vk+1) < V(uk, vk) whenever uk+1
i
−vk+1

i
, uk

i
−vk

i
, then the V2G hierarchical

algorithm converges to the set of points S , {(uk+1, vk+1) ∈ R2nT | uk+1
i
− vk+1

i
=

uk
i
− vk

i
, and uk+1, vk+1 are given by Equation (3.14), ∀i ∈ N}. Finally, if we use the op-

timality condition in Lemma 3.6 for the local problem in (3.14), then we sum over all

i ∈ N and next we use the fact that uk+1
i
− vk+1

i
= uk

i
− vk

i
, we recover the optimality

condition for Problem 2, which implies that any point in S is an optimizer of Problem 2,

completing the proof. �

3.5 Simulations and discussion

Our simulation scenario consists in the rooted tree shown in Figure 3.3, where

the circles represent the PEVs and the squares represent the nodes in M, with V =
{1, . . . , 25},N = {1, . . . , 20}, pr(i) = 21, for i ∈ {1, . . . , 5}, pr(i) = 22, for i ∈ {6, . . . , 10},
pr(i) = 23, for i ∈ {11, . . . , 15}, and pr(i) = 24, for i ∈ {16, . . . , 20}. The initial condi-

tions, efficiency and battery capacities have been chosen to be different for all the PEVs.

We establish bounds for the power to go through lines N + 1 to N + 3 and N + 2 to N + 3

21 as: Pmax
N+1

(t) = 8.5 and Pmax
N+2

(t) = 14.5, respectively, for all t ∈ τ. There is no bound

for other lines in the distribution feeders. The function C is chosen to be C(x) = x2. All

non-PEV demand, as well as the initial conditions, efficiency and battery capacities can

be found at http://fausto.dynamic.ucsd.edu/andres.

Figure 3.4 shows the optimal aggregate demand for all the PEVs in N , for a

centralized solution of the exact problem, i.e., without penalty functions (red curve),

and the aggregate demand given by the V2G hierarchical algorithm after 3000 itera-

tions (black curve). It can be observed that the hierarchical solution almost matches the

aggregate given by the centralized benchmark. Figure (3.5) show the aggregate PEV

and non-PEV demand for the centralized solution (red) and for the hierarchical solution
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r

N + 1 N + 2N + 3

N + 4

Figure 3.3: Topology for the simulation scenario. Black circles denote buses in distri-

bution feeders, while squares denote PEVs.

(black). In addition, we show in blue the non-PEV demand. It can be seen that the

optimal solution is peak-shaving and valley-filling, since PEVs tend to provide energy

between 12:00 and 17:00, and they charge between 22:00 and 8:00. Figure 3.6 shows

the demand curve for the node N + 1, with the corresponding transmission line bound

(green) for both centralized (red) and hierarchical (black) cases. It can be seen that the

solution of the V2G hierarchical algorithm satisfies the constraint for all time. Fig-

ure 3.7 shows the same features for the demand at node N + 2. In order to evaluate

the impact of the number of PEVs on the V2G hierarchical algorithm performance, we

have generated four scenarios with 20, 80, 140, and 200 PEVs respectively. In all cases,

battery sizes as well as initial conditions and deadlines have been chosen to be random,

but with comparable sizes. The distribution feeder configuration is the same for all sce-

narios, and corresponds to that shown in Figure 3.3. The top plot of Figure 3.8 shows

the evolution of J(uk, vk)−J(u⋆, v⋆) vs iterations of the V2G hierarchical algorithm. On

the bottom plot, we show the optimal aggregate demand for each scenario. We can see

on the top plot that the more PEVs we incorporate in the scenario, and consequently the

larger demand that they generate, the higher the value of J(uk, vk) − J(u⋆, v⋆). However,

for all cases, we have that after 3000 iterations, J(uk, vk) − J(u⋆, v⋆) lies within 4% of

the optimal cost for each scenario.
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Figure 3.4: The optimal aggregate EV demand is shown in red. The aggregate EV

demand from the V2G hierarchical algorithm is shown in black.

3.6 Auxiliary results for this chapter

The following result has been taken from [30].

Lemma 3.6. For the feasible convex optimization problem:

minimize: f (x),

subject to:

x ∈ X,

with x ∈ Rn, x⋆ is an optimizer if and only if:

∇ f (x⋆)⊤(x − x⋆) ≥ 0,

for all x ∈ X.
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Figure 3.5: The non-PEV demand is shown in blue. The aggregate optimal demand is

shown in red. The aggregate demand obtained through the V2G hierarchical algorithm

is shown in black.

Lemma 3.7 (Counting of edges in T ). The equality:

∑

ℓ∈M\{r}

∑

i∈dN(ℓ)

AiBℓ =
∑

i∈N

∑

ℓ∈an(i)\{r}
AiBℓ,

holds for any terms Ai, Bℓ.

Proof. It is easy to show that each of the summands accounts for one path between each

PEV and each of its ancestors. �

3.7 Summary

We present a hierarchical protocol for a vehicle-to-grid (V2G) system in which

a fleet of plug-in electric vehicles must coordinate their charging/discharging strategies

to minimize a cost function consisting in the price of the total energy provided by the

utility during a finite discrete-time horizon.The power flow leaves the transmission side

of the power grid and enters the distribution side. It is modeled as a rooted tree, where
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Figure 3.6: The non-PEV demand is shown in blue. The optimal aggregate demand is

shown in red. The aggregate demand obtained through the V2G hierarchical algorithm

is shown in black. The green line shows the upper bound for the power capacity.

nodes represent buses in distribution feeders, as well as PEVs. Our model also accounts

for power capacity constraints in the distribution lines. In order to account for these con-

straints, we use penalty functions. We characterize the size of the constraint violation

in terms of the penalty parameters and the parameters of the problem. This characteri-

zation provides a design methodology for the choice of the penalization parameters in

terms of a desired performance. The presented V2G hierarchical algorithm does not

require communication between PEVs, and the coordination signal is transmitted from

the utility down the tree network, while being modified at each non-PEV node, until it

reaches the PEVs. Then, each PEV uses it to iterate over its charging/discharging pro-

file. We show that the V2G hierarchical algorithm converges to the optimizer of the

cost function given the network constraints. Simulations show the system behavior for

a particular testbed.

As a future direction, we aim to address the power constraints in the congestible

elements using non-differentiable penalty functions that allow exact solutions of the

original problem, but require a subgradient-based algorithm for the solution, with the
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ensuing complications in the analysis.

Acknowledgments

Parts of this chapter have been published in the following works:

• A. Cortés and S. Martı́nez, “A Hierarchical Demand-Response Algorithm for

Vehicle-to-Grid Integration,” submitted to the IEEE Transactions on Control Sys-

tems Technology (2015).

• A. Cortés and S. Martı́nez, “A Hierarchical Demand-Response Algorithm for Op-

timal Vehicle-to-Grid Coordination,” in the proceedings of the European Control

Conference (2015).



78

1000

2000

2000 3000

4000

4000 5000

6000

102

103

104

105

106

20 80 140 200
0

0
Iteration (k)

No. of PEVs

J
k
−

J
⋆

A
g

g
.

D
em

an
d

Figure 3.8: Top figure: Evolution of J(uk, vk) − J(u⋆, v⋆) vs number of iterations, for

four scenarios with different No. of PEVs. Bottom figure: Optimal aggregate demand

for each scenario.



Chapter 4

Hierarchical demand response with

on/off Loads

Demand response, by which a virtual reserve capacity can be created, is an idea

under investigation that can help integrate renewables into the power grid. By modifying

the state of flexible loads, the rapidly changing outcome of renewable generation can be

matched by the demand and achieve power balancing required for stability. However,

demand response can severely affect power-grid users, not only due to a potential power

shortage and reduced quality of service, but also because they may require the disclosure

of private information. Therefore, the development of smarter load control strategies is

necessary to enable this technology in a beneficial way.

Model predictive control (MPC), which can provide suboptimal control strate-

gies for modeled systems subject to uncertainty, is a promising tool in this regard. How-

ever, its practical implementation requires adaptation on two fronts. Firstly, its required

computational time needs to be lowered. This becomes specially critical for flexible

loads, most of which are on/off and lead to hard problems. Secondly, users’ privacy

must be preserved. This requires sufficiently fast decentralized algorithms which do not

slow down convergence. Motivated by this, we propose here a decentralized demand

response strategy, which is embedded in an MPC framework and which accounts for

thermal and on/off loads.

Demand response is currently the How to control loads for demand response

with the least impact on the users has also been studied in a significant number of works

79
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under different sets of assumptions. In [1], the authors present decentralized algorithms

for the dispatch of Distributed Energy Resources (DERs) and demand response. It com-

putes the DER controls given a signal provided by an aggregator and by interacting with

neighboring loads. In [2], the same authors address the DER control problem, by pro-

viding a decentralized solution of an optimization problem to match the grid balance

objective. This method does not require an aggregator, but agents only communicate

with each other to solve the optimization problem. In [12], the authors consider a decen-

tralized optimization approach for electric vehicle charging coordination, under usage

constraints. This leverages the storage capacity and flexibility of electric vehicle require-

ments to optimally use the grid generation resources. The use of the inherent storage

capacity of some power loads, e.g., thermal loads, has been presented in [32, 14, 33]. In

these works the authors use a centralized model predictive control (MPC) formulation to

take into account the storage capacity of some loads and forecast information available

at each time, to compute a control that holds the demand response objectives. None

of the aforementioned approaches include on/off loads. In [34] the authors introduce a

centralized MPC approach for thermal on/off loads, but they simply define a convex op-

timization problem and generate a on/off control using pulse width modulation (PWM).

In our framework, doing so may lead to violating maximum power constraints. The

paper [35] does consider on/off loads in the introduced setting, however, it is a central-

ized framework for a single household management. In [36], the load control problem

is formulated for on/off loads, with the objective of minimizing the power generation

cost. However, the authors do not explicitly address the integer constraints due to the

on/off loads in their proposed solution. In [37], not only do the authors present a frame-

work that considers on/off loads, but also they introduce an agile approach for dispatch-

ing those loads. It is shown through simulations that the performance is satisfactory.

However, their agile dispatch is a centralized process in which an aggregator directly

controls the loads associated to it. In order to solve problems with integer constraints,

the job-scheduling literature provides some approaches. One of them is based on La-

grangian relaxation [38], in which the coupling constraint is relaxed using a Lagrange

multiplier, and each agent solves local mixed-integer programs parameterized by the es-

timate of the optimal Lagrange multiplier, which is computed by the aggregator. This is
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a slow iterative process, and convergence to the optimal solution is not guaranteed. The

auction-based approach proposed in [39, 40] guarantees convergence to the optimizer to

the problem, but also requires solutions to smaller mixed-integer programs. The intense

computation effort required for these algorithms, makes them prohibitive to most real

applications.

In this chapter, we present a decentralized load control approach that explic-

itly takes into account the on/off nature of available loads, in order to fulfill a demand

response event (DRE). This formulation also accounts for the energy storage capacity

exhibited by thermal loads. To this end, we use a thermal model that includes outside

temperature as a disturbance. The problem is formulated as a mixed-integer program,

with the objective of minimizing the effect of a demand response event (DRE) on the

users’ comfort. We propose an algorithm that provides a feasible solution with a reason-

ably good performance, using only computationally tractable methods. The algorithm

solves a convex relaxation of the original problem, and uses the relaxed control input for

all on/off loads as a measure of need for power. After this, the resources are assigned

using a greedy approach that provides power to the loads that need it the most until the

maximum available power is allocated. Both, the convex optimization and the on/off

load assignment are carried out in a decentralized manner. The algorithms proposed

to this end are guaranteed to converge to the solution of the corresponding centralized

problem. Since the load models are subject to uncertainty due to forecast, e.g., outside

temperature forecast, we present an MPC implementation of this algorithm, to mitigate

the impact such uncertainty. Finally, we use a set of simulation cases to show the al-

gorithm performance under different operating conditions. These simulations illustrate

the cost of a suboptimal solution provided by our algorithm vs a lower bound on the

optimal solution, as well as a comparison between the open-loop suboptimal solution vs

the MPC implementation.

4.1 Management of demand response events

Demand-response events (DRE) result into the shaping of flexible power de-

mand over a time horizon to provide different ancillary services to the power grid. We
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associate a DRE with a coordinated action of a large amount of power loads that modify

their power consumption during a certain time lapse T , in order to maintain the gen-

eration/demand balance in the power grid. The amount of power that the DRE must

provide/withdraw from the grid is generally established from a transaction in an energy

market by a utility [41].

In order to implement this, we introduce a DRE manager, which is an entity

in charge of a large group of buildings with certain flexibility in their electric loads.

The DRE manager aims to drive all loads into satisfying the DRE requirements, while

minimizing its impact on the users’ comfort.

In this particular study, we consider thermal loads, such as air conditioners and

heaters; memoryless loads, such as light bulbs; and non-flexible loads, that must be

invariably active (or inactive) at certain times of the day. Moreover, most of these loads

are on/off loads.

The control strategy is designed to take advantage of the inherent energy storage

capacity of thermal loads, and also of the prior knowledge of variables such as temper-

ature or natural illumination, from a previously determined forecast process.

Another major interest in the computation of load control is the users’ privacy.

In general, users may not want to share their comfort model with the DRE manager.

This is why a control strategy that can be computed in a decentralized way, is a priority

in the present work.

4.1.1 Modeling a demand response event

Let us consider a DRE manager in charge of a set I , {1, . . . ,N} of buildings.

Each building i ∈ I contains five different types of loads. Let Thon/off(i) be the set of

thermal on/off loads, Thcurt(i) be the set of thermal curtailable loads, Lon/off(i) be the set

of memoryless loads, and finally, let Lcurt(i) be the set of memoryless curtailable loads

for building i ∈ I. We denote by L(i) , Thon/off(i) ∪ Thcurt(i) ∪ Lon/off(i) ∪ Lcurt(i) as the

set of flexible loads in i ∈ I.

A DRE time lapse T is divided into T time slots with duration ∆t = T /T ; we

let τ denote the sequence τ , {0, . . . , T − 1} all discrete slots associated with it.

The power consumption of each flexible load j ∈ L(i), i ∈ I, is denoted by ui j(t),
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where t ∈ τ is a discrete time instant. Since there is no feasible action for fixed loads in

the buildings, we characterize them by a value Pfix(t).

A thermal load j ∈ Th(i) is modeled by a discrete-time SISO linear system as

follows:

xi j(t + 1) = Ai jxi j(t) + B1
i jui j(t) + B2

i jT
a
i j(t),

Ti j(t) = Ci jxi j(t), (4.1)

xi j(0) = x0
i j,

where xi j(t) is the system state, Ti j(t) is the temperature inside the room corresponding

to the thermal load j, and T a
i j

(t) is the outdoors temperature for the load at time t ∈ τ.

The vector xi j(0) represents the state at the beginning of the DRE. This discrete-time

model may come from either an identification process using input-output data, or from

the discretization of a continuous-time thermal model (e.g., an RC thermal model [42])

with time step ∆t. Each load in a building has a discomfort value that is associated to its

power input. For instance, the comfort value of a thermal load j ∈ Th(i) is given by:

fi j(t) ,κi j(max{0, Ti j(t + 1) − T max
i j }

+max{0, T min
i j − Ti j(t + 1)}),

where [T min
i j
, T max

i j
] is the temperature interval in which the users of the jth thermal load

in the ith building are most comfortable, and κi j the users’ tolerance to discomfort. Note

the time shift in the temperature value, which is consistent with the fact that Ti j(t + 1)

directly depends on ui j(t) for all j ∈ Th(i), i ∈ I. For memoryless loads we introduce a

(generally nonnegative) discomfort function defined as:

fi j(t) = αi j(t)ui j(t) + βi j(t),

where αi j(t), βi j(t) ∈ R, for all t ∈ τ.

Remark 4.1. The parameters αi j(t), βi j(t) ∈ R have been chosen to be time-varying, to

model events such as the change of natural illumination inside a room during the DRE.

This event may change the impact of load j in its user’s comfort. ⋄
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The DRE itself is modeled as an upper (lower) bound on the amount of energy

the whole set of buildings can use. This information is provided by an Independent

System Operator to the DRE manager, and is based on the load forecast on the power

grid. For simplicity, we represent this bound by the constraint:

N
∑

i=1

∑

j∈L(i)

ûi j(t) ≤ Pmax(t), ∀t ∈ τ,

for all t ∈ τ.

Remark 4.2. In this study, we only consider DREs where a positive power compensa-

tion is required, i.e., the demand must be shortened. In the opposite case, the entire

procedure can be adapted analogously. ⋄

4.1.2 Optimal DRE control problem formulation

Here, we formulate an optimal control problem that results into the minimization

of the general discomfort among the users of all the loads during the DRE. An algorithm

to solve this problem is proposed in Section 4.2.

The DRE manager will aim to solve the following optimization problem:

P1 :minimizeu

T−1
∑

t=0

N
∑

i=1

∑

j∈L(i)

fi j(t) (4.2a)

subject to:

Equation (4.1), ∀ j ∈ Th(i),∀i ∈ I,∀t ∈ τ, (4.2b)

ui j(t) ∈ [0, umax
i j ], ∀ j ∈ Curt(i),∀i ∈ I,∀t ∈ τ, (4.2c)

ui j(t) ∈ {0, uon
i j }, ∀ j ∈ Onoff(i),∀i ∈ I,∀t ∈ τ, (4.2d)

N
∑

i=1

∑

j∈L(i)

ui j(t) ≤ Pmax(t), ∀t ∈ τ. (4.2e)

Notice that Notice that the state of the thermal loads at time t = 0 corresponds to the

system state immediately prior to the beginning of the DRE.

The previous problem presents a convex cost function, however, constraints de-

scribed by (4.2d) are binary, hence, the problem becomes is a mixed integer program.
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Since mixed integer programs are NP-complete, there is no algorithm that can solve it

in polynomial time, and the solution time grows exponentially as the amount of integer

variables grows.

Remark 4.3. Notice that using PWM driven by the solution to the convex relaxation to

the problem to generate an on/off load control may lead to the constraint (4.2e) to be

violated at some time instants, since there is no synchronization among all loads. ⋄

4.2 Solution approach

Privacy is a major objective for our load management solution. Thus, a central-

ized approach in which the DRE manager knows the model of all loads and discomfort

functions of users may not be acceptable. Moreover, for large amounts of buildings or

loads, the problem to be solved in a centralized way could grow too large to be manage-

able. Hence, the solution approach we consider must be susceptible of being executed

in a decentralized or parallel manner.

Our solution approach consists of two steps: convex optimization and thresh-

olding. The thresholding step is devoted to use the result from the convex relaxation of

P1(1), that is not feasible to the problem and generate a feasible solution to it, without

deteriorating the service provided to the users.

We describe the overall execution of these steps in the following, and leave the

specific details for Subsection 4.2.1 and 4.2.2. Then, we propose a decentralized imple-

mentation of these steps in Section 4.3.

We consider the problem P2(0); see Subsection 4.2.1, which is a convex re-

laxation of the problem P1 in (4.2), with the only difference that we replace the con-

straints (4.2d) by ui j(t) ∈ [0, uon
i j

], for all on/off loads. Let v⋆,0 be an optimal solution

of this relaxed problem. If we compute y⋆,0
i j

(t) , v⋆,0
i j

(t)/uon
i j
∈ [0, 1], the result can be

interpreted as the level of urgency that load j in building i has at time t ∈ τ. For the sake

of clarity, consider the time t = 0. The value of yi j(0) for all on/off loads can be used

to establish the relative priority of these loads, and thus determine what loads should be

on, based on the limited available power resources.

A threshold variable θ(0) ∈ [0, 1] is introduced to decide on the state of on/off
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loads. Thus, all on/off loads for which y
⋆,0
i j

(0) ∈ (0, 1), y
⋆,0
i j

(0) < θ(0), must turn off,

while those for which y
⋆,0
i j

(0) ≥ θ(0) must turn on, i.e.:

ûi j(0) =























uon
i j

if y⋆,0
i j

(0) ≥ θ(0)

0 otherwise,

for all j ∈ Onoff(i), i ∈ I, where ûi j(0) is defined as the control input to load j ∈ L(i),

i ∈ I. The threshold variable can always be chosen in such a way that after turning on and

off the corresponding loads, the constraint on the maximum allowed demand is satisfied

(see Lemma 4.1). Once the value for the on/off controllers ûi j(0) for all loads have been

chosen, we proceed to solve the problem P2(0) as described above, but including the

constraints:

ui j(0) = ûi j(0), ∀ j ∈ Onoff(i),∀i ∈ I.

This computation will perform two tasks: i) to refine the computed values of ûi j for all

loads j ∈ Curt(i), improving the use of resources at time t = 0, and ii) to provide a

computation of the level of urgency for all on/off loads at time t = 1. Then, a threshold

can be computed for t = 1, leading to the control values for all on/off loads at such time.

In this way, we increasingly fix the values of all on/off loads for each time t ∈
{1, . . . , T − 1}, given the previously computed control values control values for such

loads at all times q ∈ {0, . . . , t − 1}.
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4.2.1 Step 1: convex optimization

More precisely, the proposed relaxation is defined next.

P2(t) : minimizeu

T−1
∑

q=0

N
∑

i=1

∑

j∈L(i)

fi j(Q) (4.3a)

subject to:

Equation (4.1), ∀ j ∈ Th(i),∀i ∈ I,∀q ∈ τ, (4.3b)

ui j(q) ∈ [0, umax
i j ],∀ j ∈ Curt(i),∀i ∈ I,∀q ∈ {0, . . . , T − 1}, (4.3c)

ui j(q) ∈ [0, uon
i j ],∀ j ∈ Onoff(i),∀i ∈ I,∀q ∈ {t, . . . , T − 1}, (4.3d)

ui j(q) = ûi j(q),∀ j ∈ Onoff(, )∀i ∈ I,∀q ∈ {0, . . . , t − 1}, (4.3e)

N
∑

i=1

L(i)
∑

j=1

ui j(q) ≤ Pmax(q), ∀q ∈ {t, . . . , T − 1}, (4.3f)

for all t ∈ {1, . . . , T − 1}. Note that the problem P2(t) simply consists in relaxing

the integer constraints for all on/off loads for all times q ∈ {t, . . . , T − 1}, fixing the

previous computed control values for all loads at times q ∈ {0, . . . , t − 1}. Define v⋆,t ,

{v⋆,t
i j

(q)} j∈L(i),i∈I,q∈τ as the solution of the problem P2(t), for all t ∈ {1, . . . , T − 1}. This

will be used to perform the thresholding procedure for the computed control values at

time t ∈ τ.

The following result establishes the existence of a suitable threshold to compute

a feasible solution for all times t ∈ τ.

Proposition 4.1. Let v⋆,t be a solution to the convex relaxation P2(t), for all t ∈ {0, . . . ,
T − 1}. Then, there exists a θ(t) ∈ [0, 1] such that if:

ûi j(t) =























uon
i j

if y
⋆,t

i j
(t) ≥ θ(t)

0 otherwise,

(4.4)

the constraint
∑N

i=1

∑

j∈L(i) ûi j(t) ≤ Pmax(t) holds.

Proof. The result follows immediately by noting that if θ(t) = 1, only those loads for
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which y
⋆,t

i j
= 1 will be turned on. Then, clearly, for all i ∈ I:

Pmax(t) ≥
N

∑

i=1

∑

j∈L(i)

v⋆,t
i j

(t)

=

N
∑

i=1



































∑

j∈Onoff(i)

y
⋆,t
i j

(t)=1

uon
i j +

∑

j∈Curt(i)

ûi j(t)



































.

�

4.2.2 Step 2: threshold Computation

So far, we have explained how the thresholding procedure can be used to satisfy

the constraint on the maximum available power. Now, we establish a way of choosing

θ(t) so that the overall cost is minimized.

In general, we consider that the maximum available power is a scarce resource

that must be split among all loads. Then, we propose a greedy strategy in which the

“optimal” threshold is chosen in the following way.

Definition 4.1. An optimal threshold θ⋆(t) is one such that if we choose θnew(t) ,

max{y⋆,t
i j

(t) > θ⋆(t),∀y
⋆,t

i j
(t) | j ∈ Onoff(i), i ∈ I}, and the thresholding process is carried

out using θnew(t), then the solution does not satisfy
∑N

i=1

∑

j∈L(i) ûi j(t) ≤ Pmax(t). ⋄

Algorithm 2 Approximation algorithm

for t = 0 to T − 1 do

• Compute v⋆,t as an optimizer of P2(t).

• Compute threshold θ(t) and ûi j(t), for all j ∈ Onoff(i), i ∈ I, according to

Equation (4.4).

end for

Compute ûi j(t) for all j ∈ Curt(i), i ∈ I, t ∈ τ, by solving P1 with the constraint

ui j(q) = ûi j(q), q ∈ {0, . . . , T − 1}, j ∈ Onoff(i), i ∈ I.

Remark 4.4. The following drawback may affect the solution performance. A large

amount of on/off loads—possibly all of them—can result in an identical value of y
⋆,t

i j
(t) =
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Figure 4.1: Communication architecture for the decentralized implementation of the

algorithm. See Subsections 4.3.1 4.3.2 for the definition of dk
i

and ck in each case.

ȳ(t), for some t ∈ τ. This means that if all loads are on and the solution is infeasible, the

optimal threshold θ⋆(t) as introduced above is such that θ⋆(t) < ȳ(t), leading to all loads

to be off at time t. A simple way to break the symmetry is the introduction of a small per-

turbation such that the value y⋆,t
i j

(t) = v⋆,t
i j

(t)/uon
i j
+ǫi j(t), where ǫi j(t) is a random variable

with uniform distribution and very low variance. With this disturbance, the probability

that two loads have exactly the same value y
⋆,t

i j
(t) is zero, and the thresholding approach

can be carried out without significant modification. Nevertheless, it is very unlikely that,

under a large number of loads, a scenario like the above occurs in practice. ⋄

4.3 Decentralized solution

Our solution approach has been structured in a way that all computations are

amenable to decentralization. This means that the calculation of the control inputs for

all loads can be made by the agents associated to each building i ∈ I as we describe next.

Recall that our solution approach consists of two separate steps, namely, i) so-

lution of a convex relaxation and ii) thresholding. Then, we use two algorithms, one

for each step, that are executed in an iterative fashion, via an information exchange be-

tween the building agents and the DRE manager. Figure 4.1 shows the communication

structure and the information exchange of this network. At each algorithm, each agent

i ∈ I provides the DRE manager a usage signal dk
i
, while the DRE manager returns a
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coordination signal ck which depends on dk
i
. In order to respect users’ privacy, dk

i
does

not include comfort parameters or load models.

The definition of dk
i

and ck
i

will be introduced after the explanation of each step.

4.3.1 Step 1: Decentralized convex optimization

The Dual Decomposition method [31], can be used to provide a decentralized

optimization algorithm for a given problem type as P2(t) and a communication network

as in 4.1. Even though convergence guarantees may be established for this method, it

results in very slow convergence rates in general.

In order to overcome such drawback, we employ an augmented-Lagrangian

methodology from [43] which is adapted to our setting. The Distributed Augmented

Lagrangian Method (ADAL) of [43] is a provable-correct algorithm under the assump-

tion of coupling equality constraints. In order to apply this algorithm with the same

guarantees, we modify P2(t) as follows:

O1 :minimize

N+1
∑

i=1

fi(zi)

subject to:

zi ∈ Zi,∀i ∈ I ∪ {N + 1}, (4.5a)

N+1
∑

i=1

Fizi = b, (4.5b)

where each entry of the vector zi corresponds to a decision variable associated to building

i, either {xi j(q), Ti j(q)} for some load j ∈ Th(i), q ∈ τ, ui j(q) for some load j ∈ Curt(i),

q ∈ τ, or ui j(q) for some load j ∈ Onoff(i), q ∈ {t, . . . , T − 1}, for all i ∈ I. Likewise,

fi(zi) ,
∑

j∈L(i)

∑

q∈τ fi j(q), with fi j(t) as defined in Subsection 4.1.1, for all i ∈ I. After

this, Zi , {zi | Local constraints in P2(t) hold}, for all i ∈ I, where Local constraints in

P2(t) are given by Equations (4.3b) through (4.3e). In addition, Fizi ∈ RT
≥0, corresponds

to the vector with components (Fizi)ℓ ,
∑

j∈L(i) ui j(q), where (Fizi)ℓ is the ℓth component

of Fizi. This implies that Fizi is the aggregate demand profile of building i, given by

the relaxed problem P2(t). By the non-negativity of ui j(q) for all j, q and i ∈ I, it is
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evident that Fizi � 0, where the symbols �,� indicate component-wise inequalities.

Also, b ∈ RT
≥0 is such that the ℓth component of b corresponds to Pmax(ℓ − 1). Notice

that with these definitions, the inequality constraints in problem P2(t) correspond to
∑N

i=1 Fizi ≤ b. The new variable zN+1 ∈ RT
≥0 is introduced simply as a slack variable

to turn the inequality coupling constraints of P2(t) into equality constraints. Then, we

define fN+1(zN+1) = 0, FN+1zN+1 = zN+1. Since Fizi � 0 for all i ∈ I, it holds that

zN+1 ∈ ZN+1 , {y ∈ RT | 0 � y � b}. Notice that the problem P1 can be formulated as

described above for P2(t). By the ADAL algorithm, agents and DRE manager execute

the following iteration:

ẑk
i = argminzi∈Zi

Li(zi, λ
k) +

ρ

2
‖Fizi + ξ

k − Fiz
k
i ‖2,

zk+1
i = (1 − γ)zk

i + γẑk
i , (4.6)

for all i ∈ I ∪ {N + 1}, where Li(zi, λ) , fi(zi) + λ
⊤Fizi and ξk ,

∑N+1
i=1 Fiz

k
i
− b, and:

λk+1 = λk + ργξk+1, (4.7)

where λk ∈ RT is a Lagrange multiplier estimate.

Theorem 4.1. The ADAL algorithm in (4.6) - (4.7) converges to an optimal solution of

O1 for 0 < γ < 1/(N + 1).

Proof. From [43], it follows that the ADAL algorithm converges to the optimal solution

of the problem O1 if: i) the problem satisfies the Slater’s condition, ii) Zi is compact for

i ∈ I ∪ {N + 1}, and iii) the parameter γ is positive and smaller than the inverse of the

maximum number of agents involved in each coupling equality constraint. Notice that

for the problem O1, since ui j(q) is bounded for all j ∈ L(i), i∈ I, q ∈ τ, Zi is bounded,

for all i ∈ I. Since the feasible sets are closed, Zi is compact, for all i ∈ I. By definition

of ZN+1 = {y ∈ RT | 0 � y � b}, it is compact. Finally, since the problem is convex

and all constraints are affine, the problem satisfies the Slater’s condition, and the result

follows. �

Now, let us describe the decentralized implementation of the previous algorithm
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with the communication structure of Figure 4.1. At each iteration k, the values ξk, zk
N+1,

and λk are first computed by the DRE manager, which submits the signal ck = (ξk, λk)

to buildings. After this, each building computes zk
i

and dk
i
= Fiz

k
i
, for all i ∈ I. Then,

dk
i

is sent to the DRE manager for the next iteration. Recall that Fiz
k
i

corresponds to

the aggregate demand profile for the ith building, for i ∈ I, which means that the users’

privacy is preserved. The iteration is run until the constraint violation fulfills certain

tolerance value.

4.3.2 Step 2: Decentralized thresholding

In order to compute the threshold θ for time t ∈ τ in a decentralized manner,

we propose an iterative process as follows: first, the DRE manager sends an estimate

of the optimal threshold for θ(t); then, based on the estimate and the solution of the

relaxed optimization problem, the building agents compute the control inputs for all

their on/off loads. Next, all buildings submit their aggregate load to the DRE manager,

who updates the threshold estimate based on the latest information. The updating rule

for the threshold estimate is given by:

xk+1(t) =

















































































xk
1
(t)+xk

2
(t)

2

xk
2(t)























if

N
∑

i=1

∑

j∈L(i)

ûk
i j(t) ≤ Pmax(t)























xk
1(t)

xk
1
(t)+xk

2
(t)

2























otherwise.

(4.8)

θk(t) = xk
1(t),

with x0
1
(t) = 1 and x0

2
(t) = 0, for all t ∈ τ. Recall that ûk

i j
(t) is computed using the

expression (4.4), with threshold θk(t), for all j ∈ Onoff(i). Observe this is a bisection-

like search approaching asymptotically the optimal threshold θ⋆(t).

From Proposition 4.1, we have that θ0(t) provides a feasible solution for the

optimization problem P1. Furthermore, given the threshold recursion (4.8), it is easy to

see that θk provides a feasible solution to the problem, for all k ∈ N.

This algorithm can be run until the error ‖θ⋆(t) − θk(t)‖ < ε, for some ε ≪ 1.
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Since this is a bisection-based algorithm, it is clear that ‖θ⋆(t)− θk(t)‖ ≤ ‖xk
1(t)− xk

2(t)‖ ≤
(1/2)k, for all k ∈ N. Thus, the stopping criterion can be recast as k ≥ − log2 ε.

Following the communication architecture from Figure 4.1, in order to estimate

θ⋆(t), for t ∈ τ, we have that ck = θk(t), while dk
i
=

∑

j∈L(i) ûk
i j

(t).

Remark 4.5. Notice that the thresholding process aims to assign all the available power

Pmax(t) for the DRE at each time. This approach is not the best if the amount of power

that all loads need at time t is less than Pmax(t). Some thermal loads could be on in spite

of being better off switched down. A simple way to solve this problem is to compute the

power assignment using the introduced optimization/thresholding approach, and then

using a lower-level local on/off controller for those thermal loads that were assigned

power at time t. Such controller sets the input to zero if the load is hitting the upper

bound in the comfort range of temperature. ⋄

4.4 Model predictive control implementation

The model we use to construct the optimization problem P1 is subject to several

sources of uncertainty. The outside temperature T a
i j

(t) comes from a forecast process that

presents error. The thermal models themselves are not necessarily a perfect representa-

tion of the thermal loads. There can be unmodeled disturbances that affect the system

performance. The parameters αi j(t), βi j(t) may also come from forecast processes, e.g.,

if they are related to natural illumination in a room.

A way of addressing this uncertainty is via a Model Predictive Control (MPC)

methodology [44]. By means of this, an optimization problem is solved at the beginning

of each time slot t ∈ τ, in which the initial conditions for the thermal systems are

measured, and the forecast of those unknown variables is updated based on the latest

information available at the moment. Then, from the computed control input for all

time steps in {q ∈ τ | q ≥ t}, only the values corresponding to time t are applied on the

plant.
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In order to compute the control input, we define the problem:

M1(t) : minimizeu

T−1
∑

q=t

N
∑

i=1

∑

j∈L(i)

fi j(q) (4.9a)

subject to:

Dynamics in Equation (4.1), with i. c. xi j(t) = xt
i j,

∀ j ∈ Th(i),∀i ∈ I,∀q ∈ {t, . . . , T − 1}, (4.9b)

ui j(t) ∈ [0, umax
i j ],∀ j ∈ Curt(i),∀i ∈ I,∀q ∈ {t, . . . , T − 1}, (4.9c)

ui j(t) ∈ {0, uon
i j },∀ j ∈ Onoff(i),∀i ∈ I,∀q ∈ {t, . . . , T − 1}, (4.9d)

N
∑

i=1

∑

j∈L(i)

ui j(t) ≤ Pmax(t), ∀q ∈ {t, . . . , T − 1}, (4.9e)

for each t ∈ τ, where i.c. stands for initial conditions, and they are measured (or es-

timated) using the measured information at time t ∈ τ. A feasible solution ût of this

problem can be computed in a decentralized manner using the methodology presented

in Section 4.3. Moreover, since we only use the first step of the control input for each

load, i.e., ût
i j

(t) into the system, we do not need to run all the computations described in

Section 4.3. At each time t ∈ τ, we simply need to:

• Solve the convex relaxation of the problemM1.

• Run a thresholding process to compute ûi j(t) for all j ∈ Onoff(i), i ∈ I.

• Refine the solution for all ûi j(t), j ∈ Curt(i), i ∈ I, by solving the convex

relaxation of the problem M1, including the constraint ui j(t) = ûi j(t), for all

j ∈ Onoff(i), i ∈ I.

4.5 Simulations

In this section, we aim to show and discuss the performance of our decentralized

technique for demand response management.

First, we compare the ADAL approach with the widely known Dual Decomposi-

tion algorithm. To this end, we generate a random DRE scenario with 10 buildings. The

maximum flexible load is near 2 MW and the DRE maximum power constraint is 500
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kW. Then, we aim to solve the convex relaxation of the problem P1, with T = 12. Re-

call that T is the discrete duration of the DRE. Figure 4.2 shows the maximum amount

Iterations

1

2

3

4

5

6

0 20 40 60 80 100

lo
g

(M
ax

.
In

fe
as

ib
il

it
y
)

Figure 4.2: log10 of maximum constraint violation vs iterations for: the Dual Decom-

position algorithm (blue) and for the extension of the ADAL algorithm (green).

of constraint violation vs the number of executed iterations. For convenience, the ver-

tical axis is presented in a logarithmic scale. It is evident that the ADAL significantly

outperforms the Dual Decomposition algorithm in speed of convergence. Both methods

converge to the same primal solution of the problem.

Next, we run randomly generated scenarios with 10, 15, 20, 25 and 30 buildings,

where each building corresponds to an average load of 0.2 MW. In addition, for each

scenario, it is considered that the maximum available power for the entire set of build-

ings at each time is 30% of the maximum flexible load of the scenario. Figure 4.3 shows

in red the cost (discomfort) for different scenarios for our suboptimal solution approach,

while the blue bars represent a lower bound in the optimal cost. This lower bound

consists in the solution to the convex relaxation of P1 for each scenario. Recall that

the solution to the convex relaxation of P1 is not feasible for controlling on/off loads,

while our approach does provide a feasible control for on/off loads. Figure 4.4 shows

the normalized amount of energy that is provided to each type of load during the DRE

duration, by our suboptimal approach (red), and by the solution to the convex relaxation
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Figure 4.3: In blue: discomfort (cost) for the solution to the convex relaxation of the

problem P1 (infeasible). In red: normalized discomfort for solution to P1 provided by

our proposed method (feasible). Simulation over 5 different scenarios.
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Figure 4.4: In blue: energy dispatched according to the solution to the convex relaxation

of the problem P1, for each type of flexible load. In red: energy dispatched according

to our proposed method for each type of load. Simulation over 5 different scenarios.
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of P1 (blue). Notice that the solution to the convex relaxation of P1 is not feasible to

implement and it is only used as a benchmark. It can be seen that the loads in Thcurt(i)

for all i ∈ I tend to have more power availability with our approach than with the convex

relaxation of P1, while the loads in Thon/off(i) for all i ∈ I tend to receive less power.

This is consistent with the fact that on/off loads cannot be partially activated, which is

not taken into account in the convex relaxation of P1. All non-thermal loads seem to re-

ceive slightly less energy availability with our approach that in the convex relaxation of

P1. This happens because for this simulation exercise, thermal loads are on average 50

times larger than non-thermal ones. This implies that the suboptimality of our approach

affects more the larger loads than the smaller ones. A more detailed description of the

simulation scenario may be found in the extended version of this manuscript [45].

Finally, we compare the MPC implementation of our management strategy, vs

an open-loop computation at the beginning of the DRE, where there is uncertainty in

the problem parameters. We introduce normally distributed model uncertainty in the

thermal load models, and we contaminate the data on outside temperature with noise.

The variance of this noise increases as the number of steps ahead that the variable is

forecasted increases. We have used 5 randomly generated scenarios with 10, 20, 30,

40 and 50 buildings, where each building has an average load of 0.2 MW. Figure 4.5

shows how with the MPC approach the cost (discomfort) decreases for all scenarios.

This improvement occurs due to the feedback that is inherent to the MPC approach,

and the fact that the up-to-date forecast of a variable contains less error than the simple

propagation of an outdated forecast.

4.6 Summary

We propose a decentralized method for coordination of loads in a demand re-

sponse event (DRE). The method takes explicitly into account the fact that some loads

are on/off, and aims for the suboptimal solution of a mixed-integer program. The objec-

tive of this problem is the minimization of user discomfort due to the DRE. The solution

approach consists in solving a convex relaxation of the mixed-integer program, com-

bined with a decentralized greedy dispatch of the available power. While the convex
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Figure 4.5: In green: normalized discomfort (cost) for the solution provided by our

method. In blue: normalized discomfort for the MPC implementation of our method.

relaxation provides a measure of the urgency level for power of each load in the DRE,

a DRE manager must compute an urgency threshold to decide on the on/off loads that

must receive power at each time. Additionally, we present an MPC implementation of

our approach, in order to mitigate uncertainties and disturbances of the model. Simula-

tions show that the loss of optimality of our approach is acceptable, and the possibility of

computing the solution in a tractable time makes it a tool that can be used for problems

with similar structure.

As future directions, we aim to establish analytic suboptimality bounds for our

approach.
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Chapter 5

Distributed control of user-side

resources in microgrids

In order to solve problems related to voltage stability and variable load satis-

faction, several solutions are being contemplated. Additional backup generation plants

could help compensate fluctuations, but their deployment would incur significantly higher

costs for both the utilities and the users. Large-scale storage systems are proposed to

shift the energy generated during low-demand hours or that corresponding to high-solar

generation times to those of high demand. Smart inverters placed at the PV themselves

can be leveraged to inject reactive power for voltage regulation and optimization of the

network performance. In particular, since PV systems and batteries can be locally owned

and distributed throughout the network, distributed optimization algorithms can be used

to achieve the power network objectives in a faster and more robust way. These objec-

tives can be, to some extent, expressed as the well known Optimal Power Flow (OPF)

problem.

The OPF problem [46] is a non-convex, hard optimization problem that has re-

ceived wide attention in the literature. Most of the works on the OPF propose cen-

tralized solutions that consider voltage as a decision variable [47, 48]. Recently, the

papers [48, 49, 50] circumvent the nonconvexity of the OPF through a relaxation that

ensures a zero-duality gap under some general conditions. The work [51, 52] studies an

OPF setting with storage integration in which battery systems are added to some nodes

in a grid. The paper [51] addresses an OPF problem where voltages and battery charg-

99
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ing/discharging rates are taken as decision variables, simplified by assumptions such as

small-angles and infinite charging/discharging capacities. Electricity prices are assumed

to vary over time, and the objective function is the cost of the energy provided by the

utility. The paper [52] presents a more general setting in which the assumptions of [51]

are avoided and exploits the aforementioned zero-duality-gap approach.

The reactive power control problem, which consists of providing for losses with-

out producing excess heating or incurring voltage drops, has been addressed in a signifi-

cant number of works. In the 1980s, banks of capacitors and transformer taps were used

for reactive power compensation. In [53] a problem of optimal sizing for capacitors is

solved using a relaxation of the power flow equations over radial networks. An optimal

reactive power generation algorithm is introduced in [54], in order to minimize active

power losses and improve voltage regulation. More recently, research has focused on the

control of smart inverters which allow changes in the generated reactive power. In [55],

a convexification of the OPF problem is presented for grids that fulfill some assump-

tions on the input voltage and the impedance in the transmission lines. The objective

is to minimize transmission losses in the grid by varying the injected reactive power

at all generators in a distributed way. This work does not consider voltage regulation

constrains, which are addressed in [6]. Although the convexification idea of [6] remains

identical to that of [55], a different communication structure is employed.

Here, we propose an algorithm to compute both the optimal reactive power gen-

eration and storage control strategies for a microgrid over a given time horizon. This

computation is intended for use in a model-predictive control scheme that can incorpo-

rate forecasts on generation and load. In order to present a distributed algorithm based

on the dual decomposition method, we employ a convexification approach that exploits

high voltages at the connection point of the microgrid. The type of microgrid we con-

sider is endowed with generation and/or storage capacity at certain nodes. We consider

a discrete-time horizon, which, at each instant of time, has an associated electricity cost

per kWh, a forecasted active generation, and node-wise load. The algorithm utilizes

measurements and predictions of voltage in the microgrid, which have implicit informa-

tion on the power injected at the nodes, in order to choose the optimal reactive power

that must be injected by each generator, and the optimal charging/discharging rate of
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the storage at each node. The goal is to minimize a cost function that weighs in the

grid transmission losses with the overall cost of the active power provided by the utility

during the time horizon. Finally, the solution provided by the algorithm is meant to re-

spect voltage regulation constraints. The algorithm convergence analysis is performed

by characterizing the behavior of an upper bound algorithm which can be studied via

Lyapunov theory. In particular, we conclude that trajectories converge to the unique

value of reactive power injection and charging/discharging rate for each node of the mi-

crogrid. Finally, we describe a novel way of approximately predicting voltage in order

to implement the proposed algorithm.

This chapter is organized as follows. Section 5.2 presents the microgrid model

and the optimization problem we aim to solve. Section 5.3 describes the dual decom-

position algorithm to solve the optimization problem. In Section 5.4 we introduce a

different algorithm that presents better convergence rate. Section 5.5 introduces a solu-

tion to voltage prediction required by both algorithms. Simulations and comparison of

the rate of convergence for both algorithms are presented in Section 5.6.

5.1 Notions of graph theory for this chapter

Let G = (V,E, Y) be an undirected weighted graph with a setV = {0, . . . ,N−1}
of N vertices, a set of edges E and a weight matrix Y ∈ CN×N . Each edge in E is

expressed as (h, l), for h, l ∈ V. Consider some labeling of the set E with the set of

indices {1, . . . , |E|}. In addition, let us assign an arbitrary direction to each edge (h, l) ∈
E. The incidence matrix A ofG is a matrix in {0,±1}|E|×N , which depends on the arbitrary

direction associated with each edge of G, such that:

Adl =







































−1, if εd ∈ E is an outgoing edge of l ∈ V,

1, if εd ∈ E is an incoming edge of l ∈ V,

0, otherwise.

Consider a diagonal matrix C ∈ C|E|×|E| such that Cii is the weight of εi = (h, l) ∈ E
given by Yhl. Then, the Laplacian of the undirected graph associated with G is given by
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L = A⊤CA. Consider the graph G. A path P(l, h), for nodes l, h ∈ V, is defined as a

sequence of nodes {n1, . . . , nℓ} such that n1 = l, nℓ = h and (ni, ni+1) is an edge of G, for

all i ∈ {1, . . . , ℓ − 1}.

5.2 Problem statement

Consider a microgrid which is connected to the grid at a single point. The mi-

crogrid is modeled as an undirected weighted graph G = (V,E, Y),V , {0, . . . ,N − 1},
E ⊆ V × V, Y ∈ CN×N , where nodes in V represent buses and edges in E represent

the interconnection lines. Weights are given by the matrix Y and correspond to the line

admittances of such interconnection lines. We consider a microgrid with generation and

storage capacities. This microgrid has three different types of nodes: i) a single con-

nection point to the grid, represented by node 0, which acts as a slack node, with fixed

voltage and unlimited power generation, ii) a subset of nodes G with generation and

storage capacity, and iii) a setM = V \ ({0} ∪ G) of nodes with neither generation nor

storage capacity. All nodes inV \ {0} have a load that must be satisfied.

Let us consider a discrete, finite-time window τ, with T time slots, i.e., τ ,

{1, . . . , T }. Each time slot t has an electricity cost c(t) associated with it, which is the

price per kWh, given by a map c : τ → R≥0, and depends on the overall demand

satisfied by the utility. The value of c(t) for each t ∈ τ is assumed to be known to nodes

of the grid, since utility companies make it publicly available. Similarly, for each time

slot t ∈ τ there is an amount of active power that each generator can provide during

the whole time slot t, called pin,l(t) > 0, for each l ∈ G. We assume that this value

cannot be controlled, as it is the case with renewable generation, but we can estimate it

using forecasting techniques. In order to make the problem slightly more general, the

load at each node may also depend on the time slot t ∈ τ. For each l ∈ V \ {0}, let

pload,l(t) + jqload,l(t), pload,l(t) ≥ 0, be power that must be supplied to a load placed at the

node, for all t ∈ τ.

The problem we would like to solve consists in finding the optimal policy for the

reactive power injection, and for the storage charging/discharging rates, that optimizes

the microgrid operation defined by the combined objective of minimizing active power
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generation cost and distribution losses. Before stating the problem more formally, we

next describe the model we use to represent a microgrid and the elements involved in it.

5.2.1 Mathematical model of a microgrid

Let ul(t) ∈ C be the voltage at node l ∈ V, at time t ∈ τ. Let ιl(t) ∈ C be the

current flowing through node l ∈ V. Let A be the incidence matrix associated with G,

based on some given ordering on E. For node 0, let u0(t) be fixed for all t ∈ τ and

described as u0(t) = U0e jφ. Let sl(t) = ul(t)ι̂l(t) be the complex apparent power drawn

or supplied to node l at time t. Recall that sl(t) = Pl(t) + jQl(t), where Pl(t), Ql(t) are

the active and reactive power at node l ∈ V, at time t ∈ τ.

Next, we introduce some compact-form notation. Define u(t) , [u0, u
⊤
G(t), u⊤L (t)]⊤

∈ CN×N as the voltage vector for all nodes in the setV, at time t ∈ τ, where uG(t) is the

vector of all voltages at nodes in G, and uL(t) is the vector of all voltages in the setM.

Likewise, ι(t) , [ι0(t), ι⊤G(t), ι⊤L (t)]⊤, s(t) , [s0(t), s⊤G(t)s⊤L (t)]⊤, with s(t) = P(t) + jQ(t),

P(t) , [P0(t), P⊤G(t), P⊤L (t)]⊤, and Q(t) , [q0(t),Q⊤G(t),Q⊤L (t)]⊤.

The convention for the active power sign is that if Pl(t) < 0, power is injected

to the lth node, while Pl(t) > 0 means that power is drawn from the lth node, for all

l ∈ V, t ∈ τ. As an example, for a node with load only, it must hold that Pl(t) ≤ 0

for all t ∈ τ. Likewise, for a node l with only generation, but neither storage nor load,

Pl(t) ≥ 0 for all t ∈ τ. Given the type of nodes we consider in the microgrid, we have

that PG(t) = pin,G(t)− pload,G(t)− v(t) , where v(t) is a vector whose lth component vl(t) is

the amount of power that is being supplied to the battery at such node, l ∈ {1, . . . , |G|}.
Similarly, PL(t) = −pload,L(t), for all t ∈ τ. Finally, we have that QG(t) = qin(t)−qload,G(t)

and QL(t) = −qload,L(t), for all t ∈ τ. The vector qin(t) ∈ R|G| represents the reactive

power that is supplied by each generator in G at time t ∈ τ.

Then, using the Kirchoff’s current and voltage laws, the relation between voltage

and current is given by:

A⊤I(t) + ι(t) = 0

Au(t) + ZI(t) = 0, (5.1)
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where I(t) ∈ C|E| is a vector with the values of current at each edge in E and time t ∈ τ,

and Z is the diagonal matrix in C|E|×|E| whose elements are the line impedances in the

microgrid.

In the following, we will make the following assumptions on the microgrid pa-

rameters. These assumptions have already been used in [55, 6], and are accurate for

actual operation conditions in real microgrids.

Assumption 5.1 (Large input voltage at the microgrid). The value of U0 is very large

as compared to the currents provided by the inverters and batteries, or supplied to the

loads.

Assumption 5.2 (Transmission lines’ reactance/resistance ratio). The microgrid has

transmission lines with the same reactance/resistance ratio. Therefore, for all edges

ℓ ∈ E, the impedance zℓ can be written as zℓ = |zℓ|e jθ.

5.2.2 Mathematical model of a battery

We model a battery with the following dynamics:

xl(t) = xl(t − 1) +
1

βl

vl(t), ∀l ∈ G, ∀t ∈ τ, (5.2)

where xl(t) ∈ [0, 1] is the battery state, βl corresponds to the battery capacity, divided

by the length of the time slot. Recall that vl(t) denotes the power injected to or drained

from the battery during the time slot t ∈ τ. Clearly, the battery has physical constraints,

formulated as vl ∈ [V l
dis
,V l

ch
], where V l

dis
< 0, −V l

dis
is the maximum amount of power

the battery can discharge during a time slot t ∈ τ, and V l
ch
> 0 is the maximum amount

the battery can charge. Note that this model assumes that the charger efficiency is one.

Assume that the initial state for the battery at node l ∈ G is xl(0). Then, for each t ∈ τ,

the battery charge is given by:

xl(t) = xl(0) +
1

βl

t
∑

ℓ=1

vl(ℓ), ∀l ∈ G, ∀t ∈ τ.

In compact form, denote by v(t) the vector of battery charge/discharge rates at time t,

for all nodes in the set G.
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5.2.3 Communication network

Generators and storage systems will coordinate operations by means of a com-

munication network. The communication topology is based on the microgrid topology

and the location of the generation/storage nodes in the microgrid.

Definition 5.1 (Communication network). The communication network is given by the

undirected graph GG = (G ∪ {0},EG), where EG ⊆ G ∪ {0} × G ∪ {0} is defined as

EG , {(l, h) ∈ G∪{0}×G∪{0} | P(h, l)∩(G∪{0}) = {h, l}}. The set of neighborsNG(l) of

l ∈ G∪ {0} in the communication network is given byNG(l) , {h ∈ G∪ {0} | (l, h) ∈ EG}.

5.2.4 The microgrid control problem

Based on the microgrid and battery models we have presented above, actuation

over the microgrid will be established through the decision variables qin,l(t), which rep-

resents the reactive power supplied by generation systems, and vl(t), which represents

the active power provided by the batteries, for all l ∈ G, while the input voltage u0, the

energy cost c(t), the loads pload,l(t) and qload,l(t) for l ∈ V \ {0}, and the forecasted active

power generation pin,l(t), for l ∈ G, are parameters of the problem, for all t ∈ τ.

Our objective is to compute optimal reactive power generation and storage con-

trol profiles for the time horizon τ. This must be done in such a way that the voltage at

each node in G is maintained within a desirable range and the storage control respects

all physical constraints related to the batteries, while a cost is minimized. The cost we

consider encompasses two possibly conflicting objectives: i) minimize the cost of active

power from the grid and ii) minimize the transmission losses in the transmission lines

present in the microgrid. Minimizing transmission losses is a significant objective in

Optimal Power Flow and it has been considered in several works [48, 52, 55, 6]. Thus,

the cost function is given by:

J(u) =
∑

t∈τ
(Jloss(u(t)) + δJpower(u(t))),

where Jloss(u(t)) represents the loss in the transmission lines of the microgrid at time slot

t, and Jpower(u(t)) is the overall cost of the active power provided by the utility at time slot
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t. The trade-off trade-off between these possibly conflicting objectives, is parameterized

by the nonnegative constant δ > 0, which is used to modify the relative importance of

Jpower(u(t)) with respect to Jloss(u(t)) in the optimization. The loss in the transmission

lines can be expressed as Jloss(u(t)) = û⊤(t)Lu(t), where L = A⊤Z−1
magA, Zmag = ‖Z‖C [6],

and the power cost is given by Jpower(u(t)) = −c(t) Re(s0(t)) = −c(t) Re(ι̂0(t)u0(t)).

The negative sign follows the introduced convention for the active power sign. Since

ι(t) can be approximated by Assumption 5.2 on the common transmission lines’ reac-

tance/resistance ratio as ι(t) = e− jθLu(t), then Jpower(u(t)) = −Re{e jθû⊤(t)Le0e⊤0 u(t)}c(t).

The following results give us a convenient way of approaching the problem, by

writing u(t) as a linear function of the decision variables.

Lemma 5.1 (Existence of matrix X [55]). There exists a unique symmetric, positive

semidefinite matrix X ∈ RN×N , which can be written as:

X =





























0 0 0

0 W F

0 F⊤ R





























,

such that XL = IN − 1(e0)⊤ and Xe0 = 0, where W ∈ R|G|×|G|, R ∈ R|M|×|M|, and F ∈
R|G|×|M|.

The physical meaning of the matrix X is widely discussed in [55], [6]. One of

the properties of X is that the product (eh − el)
⊤X(eh − el) corresponds to the effective

impedance from node h ∈ V to node l ∈ V. The following result provides a linearization

of the relation between voltages and powers on the microgrid.

Lemma 5.2 (Microgrid voltage approximation [6]). Consider (5.1), along with sl(t) =

ul(t)ι̂l(t). Then, the microgrid voltages satisfy:

































u0(t)

uG(t)

uL(t)

































= e jφ

































U01 +
e jθ

U0

































0 0 0

0 W F

0 F⊤ R

































































0

ŝG(t))

ŝL(t)

































































+ o

(

1

U0

)

. (5.3)

Notice that by Assumption 5.1 on the large magnitude of the input voltage, the

relaxation given by Lemma 5.2 provides an accurate approximation, as the term o
(

1
U0

)

vanishes for large values of U0.
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The following result follows directly from Lemmas 3 and 4 in [6].

Lemma 5.3 (Matrix G). There exists a unique symmetric matrix G, such that:

















0 0

0 W

















G = I|G|+1 − 1(e0)⊤, G1 = 0.

Moreover, the matrix G has a sparsity induced by the communication network graph,

this is, Gi j , 0 if and only if j ∈ NG(i). The matrix W is a block of the matrix X

described in Lemma 5.1.

From the result above, it is immediately noted that the matrix W is invertible.

We can also see that its inverse matrix corresponds to a block in the matrix G, which

means that it also has a sparsity induced by the communication network graph.

Replacing the approximation in (5.3), in the cost function for the problem, it can

be rewritten as a quadratic function of the decision variables qin and v. Let us define

qin ∈ R|G|T , v ∈ R|G|T as qin = [q⊤
in,1
, . . . , q⊤

in,|G|]
⊤ and v = [v⊤1 , . . . , v

⊤
|G|]
⊤, where qin,ℓ is the

vector whose entries are the generated reactive power of the ℓth generator for all times

in the horizon τ, and qin(t) is the vector whose entries are the reactive power generated

at each generator at time t ∈ τ. Vectors vℓ and and v(t) are defined similarly. After

the algebraic procedure, and removing all constant terms that do not affect the problem

solution, we obtain:

J(qin, v) =

T
∑

t=1

(

q⊤in(t)Wqin(t) + 2ξ⊤q (t)qin(t) + v⊤(t)Wv(t) + 2ξ⊤v (t)v(t)
)

+ δ

T
∑

t=1

c(t)1⊤v(t),

where ξq(t) ∈ R|G|, ξv(t) ∈ R|G| are given by:

ξq(t) = Wqload,G(t) + Fqload,L(t)

ξv(t) = −W(pin,G(t) − pload,G(t)) + F pload,L(t). (5.4)

Having established the relaxed cost function that takes into account the linear

relaxation of the power flow equations, we formulate the following valid approximation
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of the OPF problem:

min
qin,v,u

J(qin, v)

subject to:

Umin ≤ ‖ul(t)‖C ≤ Umax, l ∈ G, t ∈ τ, (5.5a)

|qin,l(t)| ≤ qin,max(t), l ∈ G, t ∈ τ, (5.5b)

V l
dis ≤ vl(t) ≤ V l

ch, l ∈ G, t ∈ τ, (5.5c)

0 ≤ xl(0) +
1

βl

T
∑

s=1

vl(s) ≤ 1, l ∈ G, t ∈ τ. (5.5d)

Clearly, the lower bound constraint on the voltage magnitude introduces a non-convex

constraint to the problem. In order to follow the convexification idea in [6], we de-

fine wG(t), as a vector in R|G|, whose components are the squares of the magnitudes of

the complex voltages ul(t), normalized by U2
0 , for l ∈ G. After some manipulation,

from (5.3), we obtain:

wG(t) =1 +
2

U2
0

(

cos θ
(

WPG(t) + FPL(t)
)

+ sin θ
(

WQG(t) + FQL(t)
)

)

+ o

(

1

U2
0

)

. (5.6)

Thus, we can write the constraints on the voltage magnitude as:

Wmin =
U2

min

U2
0

≤ wl(t) ≤
U2

max

U2
0

= Wmax, (5.7)

for all l ∈ G, t ∈ τ. Clearly, as Umin, Umax have in practice a similar order-of-magnitude

than that of U0, it holds that U−2
0 U2

min
, U−2

0 U2
max are close to one. For large values of

U0, (5.6) is affine in the decision variables qin(t), v(t), hence the constraint above is

convex.

5.3 Distributed reactive power and storage control

In order to solve the microgrid control problem in a distributed way, we propose

an extension of the dual decomposition approach presented in [6]. Here we optimize not
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only the reactive power injection, but also on the battery charge/discharge, considering

the physical constraints of the battery control. The fact that we also consider a differ-

ent cost function modifies the algorithm dynamics. The dual decomposition algorithm

consists of performing a gradient ascent on the Lagrangian with respect to the dual vari-

ables of the problem, while an unconstrained optimization with respect to the primal

variables, parameterized by the estimated dual variables is executed.

The Lagrangian for the optimization problem is given by:

L(qin,v, ψ) = J(qin, v) +

T
∑

t=1

λ⊤(t)(Wmin − wG(t)) +

T
∑

t=1

λ
⊤

(t)(wG(t) −Wmax)

+

T
∑

t=1

η⊤(t)d(∆V)−1(Vdis − v(t)) +

T
∑

t=1

η
⊤(t)d(∆V)−1(v(t) − Vch)

−
T

∑

t=1

µ⊤(t)















x(0) + d(β−1)

t
∑

h=1

v(h)















+

T
∑

t=1

µ
⊤(t)















x(0) + d(β−1)

t
∑

h=1

v(h) − 1















,

where λ(t), λ(t), η(t), η(t), µ(t), µ(t) � 0, for all t ∈ τ, are Lagrange multipliers, and

d(β−1) ∈ R|G|×|G| is a diagonal matrix such that d(β−1)ll =
1
βl

, for all l ∈ {1, . . . , |G|}. We

introduce d(∆V) ∈ R|G|×|G| as a diagonal matrix that works as a regularization parameter,

such that d(∆V)ll , V l
ch
− V l

dis
, for all l ∈ {1, . . . , |G|}. Notice that here we are not

including the constraints |qin,ℓ| ≤ qin,max for brevity, however, including them in the

procedure is very simple, by adding Lagrange multipliers.

Let us define as a compact representation of the dual variables:

• λ , [λ⊤(1), . . . , λ⊤(T )]⊤ ∈ R|G|T≥0 , resp. λ,

• η , [η⊤(1), . . . , η⊤(T )]⊤ ∈ R|G|T≥0
, resp. η,

• µ , [µ⊤(1), . . . , µ⊤(T )]⊤ ∈ R|G|T≥0
,resp. µ,

• ψ(t) , [λ
⊤

(t), λ⊤(t), η⊤(t), η⊤(t), µ⊤(t), µ⊤(t)]⊤,

and a variable: ψ , [λ
⊤
, λ⊤, η⊤, η⊤, µ⊤, µ⊤]⊤ ∈ Rr

≥0, where r , 6T |G|. The dual decom-
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position algorithm is given by:

(qk
in, v

k) = argminqin,v
(L(qin, v, ψ

k)), (5.8)

ψk+1 =
[

ψk + γ∇ψL(qk
in, v

k, ψk)
]

+
, (5.9)

where ∇ψL is the gradient of L with respect to the dual variable ψ, and [·]+ is the

projection operator onto the positive orthant. The parameter γ is a small enough positive

scalar to be characterized later.

Since the Lagrangian is a quadratic function of (qin, v), a minimizer forL(qin, v, ψ
k)

can be found directly by solving ∇qin,vL(qin, v, ψ
k) = 0. Some algebraic manipulations

lead to:

qk
in(t) = qload,G(t) +W−1Fqload,L(t) − sin θ[λ

k
(t) − λk(t)] (5.10)

vk(t) = − pload,G(t) − pin,G(t) −W−1F pload,L(t) + cos θ[λ
k
(t) − λk(t)] (5.11)

−
U2

0

2
W−1

(

d(∆V)−1(ηk(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µk(h) − µk(h)) + δc(t)1

)

,

for all t ∈ τ. Formulas (5.10), (5.11) are obtained as follows. First, the derivative of L
is computed with respect to the variables qin(t) and v(t), for all t. To this end, a chain

rule is used by which L is differentiated with respect to u(t) and wG(t), and in turn, u(t)

and wG(t) are differentiated with respect to qin,(t) and v(t). Next, terms of o

(

1
U2

0

)

are

neglected. The remaining linear equations are set equal to zero and a solution in qin(t)

and v(t), for all t ∈ τ, is found. This leads to expressions (5.10), (5.11).

Since the Lagrangian is linear in the dual variables, the derivative with respect

to each of them is merely the expression representing the constraint associated with that
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dual variable. Thus, the gradient ascent algorithm for the dual variables becomes:

λ
k+1

(t) =
[

λ
k
(t) + γ(wk

G(t) −Wmax)
]

+

,

λk+1(t) =
[

λk(t) + γ(Wmin − wk
G(t))

]

+
,

η
k+1(t) =

[

η
k(t) + γd(∆V)−1(vk(t) − Vch)

]

+
,

ηk+1(t) =
[

ηk(t) + γd(∆V)−1(Vdis − vk(t))
]

+
, (5.12)

µ
k+1(t) =




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





µ
k(t) + γ
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x(0) +

t
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+

,

µk+1(t) =















µk(t) − γ
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











x(0) +

t
∑

h=1

d(β−1)vk(h)





























+

,

for all t ∈ τ, with a common parameter γ. Following similar computations as in [6], one

can obtain the following result:

Lemma 5.4 (Distributed algorithm). The expressions in (5.10), (5.11) can be approxi-

mated by:

qk
in(t) = Im

















e− jθ[ 0 d(uk−1
G (t)) ]G


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









uk−1
0 (t)

uk−1
G

(t)


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

























+ qk−1
in (t) + o

(

1

U2
0

)

(5.13)

− sin θ[λ
k
(t) − λk(t)],

vk(t) =Re

















e− jθ

[

0 d(uk−1
G (t))

]

G

















uk−1
0 (t)

uk−1
G

(t)


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





















+ vk−1(t) + cos θ(λ
k
(t) − λk(t)) (5.14)

−
U2

0

2
W−1

(

d(∆V)−1(ηk(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µk(h) − µk(h)) + δc(t)1

)

,

+ o

(

1

U2
0

)

, (5.15)

for all t ∈ τ.

The result above provides an update rule that can be executed by each of the

nodes where some type of decision can be made, which in turn is distributed according

to the sparsity of G. The proposed updating rule described by (5.12), (5.13), and (5.14)
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is referred to as microgrid control algorithm and is summarized in Algorithm 3.

Algorithm 3 The microgrid control algorithm. Execution for node l ∈ G
Set wk−1

l
(t), ηk−1

l (t), ηk−1

l
(t), µk−1

l (t), µk−1

l
(t), qk−1

l
(t), vk−1

l
(t) (also λ

k−1

l (t), λk−1
l

(t), if l ∈
G), for all t ∈ τ
for t ∈ {1, . . . , T } do

λ
k

l (t) =
[

λ
k−1

l (t) + γ(wk−1
l

(t) −Wmax)
]

+

λk
l
(t) =

[

λk−1
l

(t) + γ(Wmin − wk−1
l

(t))
]

+

η
k
l (t) =

[

η
k−1
l (t) + γ 1

∆Vl
(vk−1

l
(t) − V l

ch
)
]

+

ηk

l
(t) =

[

ηk−1

l
(t) + γ 1

∆Vl
(V l

dis
− vk−1

l
(t))

]

+

µ
k
l (t) =

[

µ
k−1
l (t) + γ

(

xl(0) + αl

βl

∑t
h=1 vk−1

l
(h) − 1

)]

+

µk

l
(t) =

[

µk−1

l
(t) + γ

(

−xl(0) − αl

βl

∑t
h=1 vk−1

l
(h)

)]

+

end for

Gather ηk
h(t), ηk

h
(t), µk

h(t), µk

h
(t), for all t ∈ τ, for all h ∈ NS (l) \ {0}

Gather uk−1
h

(t) for all t ∈ τ, for all h ∈ NS (l) (for all h ∈ NS (l) ∪NG(l) if l ∈ G)

for t ∈ {1, . . . , T } do

vk
l
(t) = vk−1

l
(t)+cos θ(λ

k

l (t)−λk
l
(t))+

∑

h∈NG(l) Glh

(

‖uk−1
l

(t)‖C‖uk−1
h

(t)‖C cos(∠uk−1
h

(t)−
∠uk−1

l
(t)− θ)

)

+
U2

0

2

∑

h∈NG(l)\{0}Glh

(

− 1
∆Vl

(ηk
h(t)− ηk

h
(t))− 1

βh

∑T
b=t(µ

k
h(b)− µk

h
(b)) − δc(t)

)

qk
in,l

(t) = qk−1
in,l
− sin θ(λ

k

l (t)−λk
l
(t))+

∑

h∈NG(l) Glh

(

‖uk−1
l

(t)‖C‖uk−1
h

(t)‖C sin(∠uk−1
h

(t)−
∠uk−1

l
(t) − θ)

)

end for

5.3.1 Convergence analysis of the algorithm

In order to analyze convergence of the algorithm, we introduce the following

auxiliary results.

Lemma 5.5 (Optimizers and fixed points of the algorithm). The vector ψ⋆ is an opti-

mizer of the dual of the microgrid control problem, and (q⋆
in
, v⋆) is an optimizer of the

microgrid control problem if and only if (ψ⋆, q⋆in, v
⋆) is a fixed point of the iteration that

represents the microgrid control algorithm.

Proof. It is easy to show that if (ψ⋆, q⋆
in
, v⋆) is a fixed point of the dynamics in (5.12),

then (ψ⋆, q⋆
in
, v⋆) satisfies the KKT conditions for themicrogrid control problem in (5.5).
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Since the cost J is continuously differentiable and the constraints are affine functions,

the KKT conditions are sufficient and necessary, hence (ψ⋆, q⋆
in
, v⋆) is an optimizer of

the primal-dual problem. Next, let us consider any (ψ⋆, q⋆
in
, v⋆), which is an optimizer

of the microgrid control problem in (5.5). The KKT conditions must hold at this point.

Using the complementary slackness condition onto (5.12), we can see that if ψk = ψ⋆,

then ψk+1 = ψ⋆. Further, it is easy to see from the expressions in (5.10), (5.11) that

qk+1
in
= qk

in
= q⋆

in
, and vk+1 = vk = v⋆, meaning that (ψ⋆, q⋆

in
, v⋆) is a fixed point for the

algorithm. �

Definition 5.2 (Kronecker product [56]). Consider matrices A ∈ Rm×n, with entries ai j,

B ∈ Rp×q, with entries bi j. The Kronecker product C = A⊗ B returns the block matrix in

Rmp×nq such that the blocks are (C)kl = aklB, for k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}.

Definition 5.3 (Khatri-Rao product [56]). Consider matrices A ∈ Rm×n, with entries ai j,

B ∈ Rp×q, with entries bi j. Let A be block partitioned in blocks (A)kl ∈ Rmk×nl , and B in

blocks (B)kl ∈ Rpk×ql , for k ∈ {1, . . . ,K1}, l ∈ {1, . . . ,K2}. The Khatri-Rao product A ∗ B

is defined as (A ∗ B)kl = (A)kl ⊗ (B)kl.

Definition 5.4 (Matrix M). Define the matrix M as M , M1 ∗ M2 ∈ Rr×r, where M1 ∈
Rr1×r1 , r1 , 6T, is block-partitioned into 6 × 6 T-square blocks, (M1)kl ∈ RT×T , for all

k, l ∈ {1, . . . , 6}, and M2 ∈ Rr2×r2 , with r2 , 6|G|, is block-partitioned into 6 × 6 square

blocks of size G. Let M1 be defined as M1 , M1
1 ∗M2

1 , where M1
1 , 16(16)⊤ is partitioned

in 2× 2 blocks, i.e., with 3 block-rows and 3 block-columns, and M2
1 is the block matrix:

M2
1 =































IT IT U

IT IT U

L L C































, (5.16)

U ∈ RT is an upper triangular matrix with Ui j = 1 for all i ≤ j, i.e., its diagonal entries

are also one, L ∈ RT is a lower triangular matrix with Li j = 1 for all i ≥ j, C = LU. The

matrix M2 is defined as M2 , M1
2 ∗ M2

2 , where:

M1
2 , [ 1 −1 −1 1 −1 1 ]⊤[ 1 −1 −1 1 −1 1 ],
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is partitioned into 2 × 2 blocks, i.e., with 3 block-rows and 3 block columns, and M2
2 is

the block matrix:

M2
2 ,

































2
U2

0

W cos θd(∆V)−1 cos θd(β−1)

cos θd(∆V)−1 U2
0

2
d(∆V)−1W−1d(∆V)−1 U2

0

2
d(∆V)−1W−1d(β−1)

cos θd(β−1)
U2

0

2
d(β−1)W−1d(∆V)−1 U2

0

2
d(β−1)W−1d(β−1)

































. (5.17)

Lemma 5.6 (Positive semidefiniteness of the Khatri-Rao product [56]). Let A, B be

compatibly partitioned positive semidefinite symmetric matrices, with square diagonal

blocks. Then A ∗ B is positive semidefinite.

Lemma 5.7 (Properties of the matrix M). For the matrix M in Definition 5.4. The

following holds:

• M is positive semidefinite,

• null(M) has dimension 4|G|T,

• row(M) has dimension 2|G|T,

• there is a complete basis for null(M) given by:

E ,











































































I|G|T 0 0 0

I|G|T 0 0 0

0 I|G|T 0 U ⊗ (d(∆V)d(β−1))

0 I|G|T 0 −U ⊗ (d(∆V)d(β−1))

0 0 I|G|T −I|G|T

0 0 I|G|T I|G|T











































































.

In the expression above, with some abuse of notation we have omitted for simplic-

ity the dimension of the zero matrix blocks.

Proof. In order to show that M is positive semidefinite, we will show that M
j

i
in Defini-

tion 5.4 is positive semidefinite, for i, j ∈ {1, 2}, and we use Lemma 5.6 to conclude the

result. Note that M1
1 and M1

2 are trivially positive semidefinite. Likewise, notice that M2
1

can be written as M2
1 = [ IT IT U ]⊤[ IT IT U ]. It immediately implies that M2

1 is

positive semidefinite.
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In order to show the positive semidefiniteness of M2
2 , we use the Schur comple-

ment test. This consists on checking the positive semidefiniteness on one of the Schur

complements of the matrix, defined on a block partition of it [57]. Consider the partition

of M2
2 as follows:

M2
2 =

































2
U2

0

W cos θd(∆V)−1 cos θ(d(β−1))

cos θd(∆V)−1 U2
0

2
d(∆V)−1W−1d(∆V)−1 U2

0

2
d(∆V)−1W−1(d(β−1))

cos θ(d(β−1))
U2

0

2
(d(β−1))W−1d(∆V)−1 U2

0

2
(d(β−1))W−1(d(β−1))

































. (5.18)

We compute the Schur complement of 2
U2

0

W in (5.18). By definition, the Schur comple-

ment is:



















U2
0

2 d(∆V)−1W−1d(∆V)−1 U2
0

2 d(∆V)−1W−1d(β−1)
U2

0

2
d(β−1)W−1d(∆V)−1 U2

0

2
d(β−1)W−1d(β−1)



















−
U2

0

2



















cos θd(∆V)−1

cos θd(β−1)



















W−1
[

cos θd(∆V)−1 cos θd(β−1)

]

=

(1 − cos2 θ)
U2

0

2



















d(∆V)−1W−1d(∆V)−1 d(∆V)−1W−1d(β−1)

d(β−1)W−1d(∆V)−1 d(β−1)W−1d(β−1)



















.

Since 1− cos2 θ is nonnegative, and the matrix above can be expressed as the product of

the matrix [ d(∆V)−1W−1/2 d(β−1)W−1/2 ]⊤ times its transpose, we conclude that M2
2

is positive semidefinite. Since M
j

i
are positive semidefinite, for i, j ∈ {1, 2}, the result

follows from Lemma 5.6.

Now, let us prove the second, third and fourth bullets.

First let us show that rank(M) ≥ 2|G|T . This follows by the construction of M.

Consider a block partition of M in a 6 × 6 block matrix such that the block columns

have r × |G|T size. Further, denote the block columns of M as (M) j, for j ∈ {1, . . . , 6}.
Likewise, denote the block columns of E as (E) j, j ∈ {1, . . . , 4}. The block columns
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(M)1 and (M)3 can be written out as follows:

(M)1 =













































































IT ⊗ ( 2
U2

0

W)

−IT ⊗ ( 2
U2

0

W)

−IT ⊗ (cos θd(∆V)−1)

IT ⊗ (cos θd(∆V)−1)

−L ⊗ (cos θd(β−1))

L ⊗ (cos θd(β−1))













































































, (M)3 =











































































−IT ⊗ (cos θd(∆V)−1)

IT ⊗ (cos θd(∆V)−1)

IT ⊗ (
U2

0

2
d(∆V)−1W−1d(∆V)−1)

−IT ⊗ (
U2

0

2
d(∆V)−1W−1d(∆V)−1)

L ⊗ (cos θ
U2

0

2
d(β−1)W−1d(∆V)−1)

−L ⊗ (cos θ
U2

0

2
d(β−1)W−1d(∆V)−1)











































































,

(5.19)

Since W−1 has rank |G|, then, IT ⊗
U2

0

2
W−1 has rank |G|T . This means that (M)3 has rank

|G|T . Next, notice that (IT ⊗ (
U2

0

2
d(∆V)−1W−1d(∆V)−1))(IT ⊗ 2

U2
0

cos(θ)d(∆V)W) = IT ⊗

(cos θd(∆V)−1). Since Iτ⊗(
U2

0

2
d(∆V)−1W−1d(∆V)−1) is invertible from (5.19) we can con-

clude that in order for (M)1 to be linearly dependent of (M)3, (IT ⊗ (cos θd(∆V)−1))(IT ⊗
2

U2
0

cos(θ)d(∆V)W) must be equal to Iτ⊗( 2
U2

0

W). However, it is equal to IT⊗(cos2(θ) 2
U2

0

W),

which means that for θ , 0, there is no matrix X such that (M)3X = (M)1. Finally, since

W is invertible, the rank of (M)1 is equal to |G|T . Then, it follows that rank(M) ≥ 2|G|T .

Now we show that the dimension of null(M) is at least 4|G|T . The reader can

verify that the (M) j = −(M) j+1, for j ∈ {1, 3, 5}. Therefore it follows that M(E) j = 0, j ∈
{1, . . . , 3}, which means that (E)1, (E)2 and (E)3 are formed by eigenvectors associated

with zero eigenvalues. It can also be verified that (M)3(U ⊗ (d(∆V)d(β−1))) = −(M)5,

and −(M)3(U ⊗ (d(∆V)d(β−1))) = (M)6. Hence, M(E)4 = 0, which means that all

columns of (E)4 are eigenvectors of M associated with zero eigenvalues. It is also easy

to verify by sparsity of E, that E has full column rank, which means that we have found

4|G|T linearly independent eigenvectors of M with eigenvalue zero. Then, null(M) has

a dimension greater or equal than 4|G|T . This, along with the fact that rank(M) = 6|G|T ,

ends the proof, since it implies that the sum of rank(M) and the dimension of null(M) is

greater or equal than r. �

The following theorem establishes that the microgrid control algorithm con-

verges asymptotically to the optimal solution of the problem defined in (5.5), provided

the parameter γ is small enough.
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Theorem 5.1 (Algorithm convergence). Let assumptions 5.1, 5.2 on the input volt-

age magnitude and the transmission lines’ impedance angle hold. Assume that the

microgrid control problem in (5.5) is feasible. Then, for γ < 2
ρ(M)

, where M is described

in Definition 5.4, the execution of the microgrid control algorithm (Algorithm 3) by

each node l ∈ G, leads to qk
in(t) → q⋆in(t), vk(t) → v⋆(t), for all t ∈ τ, where (q⋆in, v⋆) is

the unique optimizer of the microgrid control problem.

Proof. By Lemma 5.4, we have that Algorithm 3 for each node l ∈ G is equivalent to

the dynamics described by (5.10), (5.11), and (5.12). Therefore, the following analysis

is performed directly on these expressions. Let (q⋆
in

, v⋆, ψ⋆) be a fixed point for the

algorithm. Existence is guaranteed by assuming that the problem is feasible.

Now, let us show convergence to a fixed point. Let us define variables y ,

qin − q⋆
in

, z , v − v⋆, λ , λ − λ⋆, λ , λ − λ⋆, η , η − η⋆, η , η − η⋆, µ , µ − µ⋆,

µ , µ − µ⋆. Further, define ψ , ψ − ψ⋆ ∈ Rr. Notice that ψ , [λ
⊤
, λ⊤,η

⊤
,η⊤,µ

⊤
,µ⊤]⊤.

After some computations, we obtain that:

yk(t) = −
(

λ
k
(t) − λk(t)

)

sin θ, (5.20)

zk(t) = cos θ[λ
k
(t) − λk(t)] −

U2
0

2
W−1d(∆V)−1[η

k
(t) − ηk(t)]

−
U2

0

2
W−1

T
∑

h=t

d(β−1)[µ
k
(h) − µk(h)]. (5.21)

Applying the proposed change of variables on the system described by (5.12), we obtain

a dynamics that can be expressed asψk+1 = [ f1(ψk, yk, zk, ψ⋆, q⋆
in,G
, v⋆)]+−[ f2(ψ⋆, q⋆

in
, v⋆)]+,

for linear maps f1 : R2(r+2|G|T ) → Rr, f2 : R2(r+2|G|T ) → Rr. Notice that yk and zk are sim-

ply linear functions of ψk, which do not depend on past values of y, z, hence we can write

the dynamics for ψ as ψk+1 = [ f1(ψk, g1(ψk), g2(ψk), ψ⋆, q⋆
in
, v⋆)]+ − [ f2(ψ⋆, q⋆

in
, v⋆)]+,

where g1 : Rr → R|G|T is given by the right-hand side of (5.20), and g2 : Rr → R|G|T

is given by the right-hand side of (5.21). Then, consider V(ψ) , ‖ψ‖2 as a Lyapunov

candidate function that can help us show that all the solutions of the dual decomposition

algorithm converge to ψ⋆. Moreover, following the same analysis, we show that the
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fixed point is unique, and by Lemma 5.5 we conclude that the optimizer of the problem

is unique.

Notice that from the change of variables we introduced above, we have that:

λ
k+1

(t) =
[

λ
k
(t) + γ(wk

G(t) −Wmax)
]

+

−
[

λ
⋆
(t) + γ(w⋆

G(t) −Wmax)
]

+
,

for all t ∈ τ. From the non-expansive property of the operator [·]+, i.e., ‖[a]+ − [b]+‖ ≤
‖a − b‖, we obtain:

‖λ
k+1

(t)‖ ≤
∥

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

wk
G(t) − w⋆

G(t)
)

∥

∥

∥

∥

∥

∥

,

for all t ∈ τ. Further, we replace wk
G

(t) and w⋆
G

(t) according to the expression in (5.6) in

order to obtain:

‖λ
k+1

(t)‖ ≤
∥

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

2

U2
0

(

sin θW(qk
in(t) − q⋆in(t)) − cos θW(vk(t) − v⋆(t))

)

)
∥

∥

∥

∥

∥

∥

.

Next, we replace yk(t) = qk
in

(t) − q⋆
in

(t) and zk(t) = vk(t) − v⋆(t), by the expression

in (5.20), (5.21), derive the following equation:

‖λ
k+1

(t)‖ ≤
∥

∥

∥

∥

∥

∥

λ
k
(t) + γ

(

− 2

U2
0

W(λ
k
(t) − λk(t))

+ cos θ















d(∆V)−1(η
k
(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µ
k
(h) − µk(h))















)
∥

∥

∥

∥

∥

∥

, (5.22)

for all t ∈ τ. This procedure can be repeated for λk+1(t), η
k+1

(t),η
k+1

(t), µ
k+1

(t) and

µk+1(t), for all t ∈ τ, obtaining:

‖λk+1(t)‖ ≤
∥

∥

∥

∥

∥

∥

λk(t) − γ
(

− 2

U2
0

W(λ
k
(t) − λk(t))

+ cos θ















d(∆V)−1(η
k
(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µ
k
(h) − µk(h))















)
∥

∥

∥

∥

∥

∥

,
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‖ηk+1
(t)‖ ≤

∥

∥

∥

∥

∥

∥

η
k
(t) + γd(∆V)−1

(

cos θ(λ
k
(t) − λk(t))

−
U2

0

2
W−1















d(∆V)−1(η
k
(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µ
k
(h) − µk(h))















)
∥

∥

∥

∥

∥

∥

, (5.23)

‖ηk+1(t)‖ ≤
∥

∥

∥

∥

∥

∥

ηk(t) − γd(∆V)−1

(

cos θ(λ
k
(t) − λk(t))

−
U2

0

2
W−1















d(∆V)−1(η
k
(t) − ηk(t)) +

T
∑

h=t

d(β−1)(µ
k
(h) − µk(h))















)
∥

∥

∥

∥

∥

∥

,

‖µk+1
(t)‖ ≤

∥

∥

∥

∥

∥

∥

µ
k
(t) + γ

(

cos θ

T
∑

h=1

(λ
k
(h) − λk(h))

−
U2

0

2
d(β−1)W−1

T
∑

h=1















d(∆V)−1(η
k
(h) − ηk(h)) +

T
∑

s=h

d(β−1)(µ
k
(s) − µk(s))















)
∥

∥

∥

∥

∥

∥

,

(5.24)

‖µk+1(t)‖ ≤
∥

∥

∥

∥

∥

∥

µk(t) − γ
(

cos θ

T
∑

h=1

(λ
k
(h) − λk(h))

−
U2

0

2
d(β−1)W−1

T
∑

h=1















d(∆V)−1(η
k
(h) − ηk(h)) +

T
∑

s=h

d(β−1)(µ
k
(s) − µk(s))















)
∥

∥

∥

∥

∥

∥

,

for all t ∈ τ. From (5.22) through (5.24) we can write ‖ψk+1‖2 ≤ ‖(Ir − γM)ψk‖2, for M

as defined in Lemma 5.7. It is straightforward to see that the eigenvalues of I − γM are

related to the eigenvalues of M as λi(Ir−γM) = 1−γλi(M), where λi(M) is an eigenvalue

of M, with identical eigenvectors, for i ∈ {1, . . . , r}. Then, by Lemma 5.7, Ir − γM has

r/2 eigenvalues 1, with eigenvectors in null(M). Since M is positive semidefinite, the

remaining r/2 eigenvalues lie in the interval [1 − γρ(M), 1). Hence, with 0 < γ < 2
ρ(M)

,

the spectral radius ρ(Ir − γM) = 1, but λmax,2△max{λ ∈ spec(Ir − γM) | λ , 1} is strictly

less than one.

Recall that any vector ψk ∈ Rr can be written as unique linear combination

ψk = ψk
row + ψ

k
0, where ψk

row ∈ row(M), ψk
0 ∈ null(M) and ψk

row · ψk
0 = 0. Therefore,

we obtain ‖ψk+1‖2 ≤ ‖(Ir − γM)(ψk
row + ψ

k
0)‖2. Since M is symmetric, null(M) and

row(M) are invariant under the operator M, hence (Ir − γM)ψk
row lies in row(M), and

(Ir − γM)ψk
0 = ψk

0 ∈ null(M). By orthogonality of (Ir − γM)ψk
row and ψk

0, it holds
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that ‖(Ir − γM)(ψk
row + ψ

k
0)‖2 = ‖(Ir − γM)ψk

row‖2 + ‖ψk
0‖2. With this result, we have that

‖ψk+1‖2−‖ψk‖2 ≤ ‖(Ir−γM)ψk
row‖2+‖ψk

0‖2−‖ψk‖2 = ‖(Ir−γM)ψk
row‖2−‖ψk

row‖2. It is well

known that the bound ‖(Ir − γM)ψk
row‖2 ≤ λ2

max,2‖ψk
row‖2 holds [58]. Then, we have that

V(ψk+1) − V(ψk) = ‖ψk+1‖2 − ‖ψk‖2 ≤ −(1 − λ2
max,2)‖ψk

row‖2. Using LaSalle’s invariance

principle, we have that any solution of the microgrid control algorithm converges to

the largest invariant set contained in null(M) ∩ {x ∈ Rr | ‖x‖ ≤ ‖ψ0
0
‖}.

Next, we show that for any ψ = ψ⋆ + ψ such that ψ ∈ null(M), it holds that

qin = q⋆
in

, and v = v⋆. Notice that if ψk ∈ null(M), it can be written as ψk = Eκk,

κ
k ∈ Rd, where d = 4|G|T , and E is defined in Lemma 5.7. Let us partition the vector

κ
k according to the block partition of E, as κk = [(κk

1)⊤, (κk
2)⊤, (κk

3)⊤, (κk
4)⊤]⊤, where

we concisely denote κk
1 = [κk

1(1)⊤, . . . , κk
1(T )⊤]⊤, κk

2 = [κk
2(1)⊤, . . . , κk

2(T )⊤]⊤, κk
3 =

[κk
3(1)⊤, . . . , κk

3(T )⊤]⊤, and κk
4 = [κk

4(1)⊤, . . . , κk
4(T )⊤]⊤, with κk

1(t), κk
2(t), κk

3(t), κk
4(t) ∈

R|G|, for all t ∈ τ.

Given the structure of E, it is easy to verify that λ
k
(t) = λk(t) = κk

1(t), η
k
(t) =

κ
k
2(t)+

∑T
h=t d(∆V)d(β−1)κk

4(h), ηk(t) = κk
2(t)−∑T

h=t d(∆V)d(β−1)κk
4(h), µ

k
(t) = κk

3(t)−κk
4(t)

and µ
k
(t) = κk

3(t)+κk
4(t), for all t ∈ τ. We plug these values in (5.10) and (5.11) to obtain:

qk
in(t) = qload,G(t) +W−1Fqload,L(t) − sin θ[λ

⋆
(t) + κk

1(t) − (λ⋆(t) + κk
1(t))]

= q⋆in(t),

vk(t) = − pload,G(t) − pin,G(t) −W−1F pload,L(t)

+ cos θ(λ
⋆
(t) + κk

1(t) − (λ⋆(t) + κk
1(t)))

−
U2

0

2
W−1

(

d(∆V)−1
(

η
⋆(t) + κk

2(t) +

T
∑

h=t

d(∆V)d(β−1)κk
4(h)

)

− d(∆V)−1
(

η⋆(t) + κk
2(t) −

T
∑

h=t

d(∆V)d(β−1)κk
4(h)

)

+

T
∑

h=t

d(β−1)
(

µ
⋆(h) + κk

3(t) + κk
4(t) − (µ⋆(h) + κk

3(t) − κk
4(t))

)

+ δc(t)1

)

=v⋆(t),
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for all t ∈ τ. Then, since ψk − ψ⋆ → null(M) as k → +∞, it follows that vk → v⋆,

qk
in
→ q⋆

in
as k → +∞. �

5.3.2 Study of the rate of convergence

Although the dual decomposition algorithm has been shown to converge to the

optimal solution of the microgrid control problem, simulations show that the conver-

gence rate of the algorithm is prohibitively slow.

Consider the implementation of the microgrid control algorithm on a single-

phase approximation of the IEEE 37 standard model, with the same location of gen-

erators as in [6]. In addition, we add 4 nodes that have only storage capacity and no

generation. The complete list of the simulation description and parameters, as well as

the commented simulation code we have used, can be found at

http://fausto.dynamic.ucsd.edu/andres/project reactive.html.
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Figure 5.1: a) Evolution of v4, b) evolution of q4, as a function of the iteration number

K, respectively, for each t ∈ τ. Dashed lines show the optimal values.

Figure 5.1 shows the evolution of the decision variables for the whole time hori-

zon, for node 4. Dashed lines represent the optimal values for the decision variables

(presenting some overlap). It can be seen that the algorithm leads the decision variables

to their optimizers.
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Figure 5.2: Evolution of η4, as a function of the iteration number K, respectively, for

each t ∈ τ.

Notice that there is a remarkable difference between the amount of iterations

that it takes the variable qin to converge and those for the variable v. There are two main

observed reasons for this difference: the first one is that the amount of local constraints

related to the variable v is very large as compared to those affecting qin. The second

reason is that the geometry of the feasible set given by the local constraints on v activates

some multipliers that in their optimal state should be zero. In particular, we observe a

very fast and large growth in the η multipliers. Once the satisfaction of the µ constraints

guarantee the satisfaction of the η constraints, the components of η start to decrease.

However, the nonlinear dynamics for the multipliers do not allow for a fast decrease rate.

It can be seen in Figures 5.2, 5.3 that the η, µ multipliers grow very fast, however, the

multipliers η eventually start a very slow decrease to end up reaching the optimal value

0. This slow decrease leads to very large number of iterations for convergence, which

may affect the possibility of using the algorithm in applications with short discretization

steps. Since the parameter γ is near the limit for stability, the speed of convergence

cannot be significantly improved. We have tested the speed of execution of several
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Figure 5.3: Evolution of µ4 as a function of the iteration number K, respectively, for

each t ∈ τ.

iterations of the algorithm in a computer with processor 2.8GHz Intel Core i7, and 8GB

1333 MHz RAM, and on average, each iteration takes 0.0364 seconds. Of course, the

computations for all nodes have been performed in a sequential manner, while they are

meant to be performed in a parallel way. Nevertheless, the simulation for 60 × 103

iterations that is shown in the case study required more than 36 minutes to run. This in

turn means that if the simulation was carried out in a parallel way, it would have taken

at least 4 minutes.

In practice, it implies that: i) a large amount of communication between neigh-

bors will be required to achieve a reasonable solution, and ii) the time it takes to compute

an optimal solution will not allow to perform the computation periodically in order to

account for the rapid changes in solar/wind generation.
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5.4 The microgrid optimization algorithm

In the previous Section we introduced a Dual Decomposition Algorithm for the

computation of control of storage and reactive power in a microgrid. Unfortunately, it

turned out to be too slow if we want to perform a periodic recomputation of the control,

given the rapid variability of renewable generation.

In order to circumvent this limitation, we propose a combination of the dual

decomposition algorithm to handle the coupling constraints, along with a component-

wise minimization and local projection to handle local constraints.

Let us divide the constraints of our problem into two groups: global constraints,

which are the ones related to node voltages, in (5.7) and local constraints, which are

the ones related to the storage and reactive power generation, in (5.5b), (5.5c), and

(5.5d). Let us define sets Uℓ , {vℓ | Constraints (5.5c), (5.5d) hold} and also Qℓ ,
{qin,ℓ | Constraint (5.5b) holds} for each ℓ ∈ G. Further, define U , �ℓ∈GUℓ and

Q ,�ℓ∈GQℓ.
With a slight abuse of notation, we redefine L as a Lagrangian function for the

problem in (5.5), taking into account only the global constraints:

L(qin, v, λ) ,J(qin, v) +

T
∑

t=1

λT (t)(Wmin − wG(t)) +

T
∑

t=1

λ
T

(t)(wG(t) −Wmax), (5.25)

where λ(t), λ(t) � 0 for all t ∈ τ, are Lagrange multipliers associated to the con-

straints (5.5a).

Define the function (qin, v) 7→ Lλ(qin, v) as Lλ(qin,,v) , L(qin, v, λ). Given that

Lλ is a quadratic form of (qin, v) and the matrix W is positive definite, Lλ has a unique

minimizer that can be found directly by solving ∇qin,vLλ(qin, v) = 0. Note that, by defi-

nition, minimizing Lλ(qin, v)|λ=λk is the primal step of the dual decomposition approach.

The dual decomposition iteration given the Lagrangian in (5.25) will converge

to an optimal solution of the problem without local constraints. A direct projection of

such solution onto U × Q will not be optimal unless the quadratic cost function has

spherical level sets. Hence, we can not use this on our problem directly, as it will not

lead to the optimal value of v, qin in general. Instead of a direct projection, we propose

that each node performs an approximate step in the direction of the minimizer of L,
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parameterized by the value of the decision variables that other nodes have.

To explain this idea, let us write v as (vl, v−l), with vl = [vl(1), . . . , vl(T )]⊤, for

each l ∈ G, and v−l defined as the concatenation of all vh, for h ∈ G \ {l}. Likewise, let

us write qin as (qin,l, qin,−l), for each l ∈ G.

Then, for the procedure that we propose, each node l ∈ G, computes:

v
k+1
l = (1 − η)vk

l + η argminvl
L(qk

in, vl, v
k
−l, λ

k), (5.26)

q
k+1
in,l = (1 − η)qk

in,l + η argminqin,l
L(qin,l, q

k
in,−l, v

k, λk), (5.27)

where η ∈ (0, 1),

In order to compute the expressions above, we remove from the Lagrangian the

summands that do not depend on vl for argminvl
L(qk

in
, vl, v

k
−l
, λk), and the ones that do

not depend on qin,l for argminqin,l
L(qin,l, q

k
in,−l

, vk, λk). This leads to modified expressions

for the Lagrangian as follows:

L̃(v, λ) =(v⊤(W ⊗ IT )v + 2ξ⊤v v) + δ(1 ⊗ c)⊤v + (λ − λ)⊤
(

− 2

U2
0

cos θW ⊗ IT

)

v,

where ξv ∈ R|G|T is defined as ξv = [ξ⊤
v,1, . . . , ξ

⊤
v,|G|]

⊤, and:

L̃(qin, λ) =(q⊤in(W ⊗ IT )qin + 2ξ⊤q qin) + (λ − λ)⊤
( 2

U2
0

sin θW ⊗ IT

)

qin,

where ξq ∈ R|G|T is defined as ξq = [ξ⊤
q,1, . . . , ξ

⊤
q,|G|]

⊤. Note that argminvl
L(qk

in
, vl, v

k
−l
, λk)

is the solution of ∇vl
L̃(vl, v

k
−l
, λk) = 0. Likewise, argminqin,l

L(qin,l, q
k
in,−l

, vk, λk) is the

solution of ∇qin,l
L̃(qin,l, q

k
in,−l

, λk) = 0, where:

∇vl
L̃(vl, v

k
−l, λ

k) =2WllIT vl + 2
(

Wl ⊗ IT vk −WllIT vk
l

)

+
2

U2
0

(

ξv,l − cos θWl ⊗ IT (λ
k − λk)

)

+ δc,
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and:

∇qin,l
L̃(qin,l, q

k
in,−l, λ

k) =2WllIT qin,l + 2
(

Wl ⊗ IT qk
in −WllIT qk

in,l

)

+
2

U2
0

(

ξq,l + sin θWl ⊗ IT (λ
k − λk)

)

.

It is also important to notice that ∇vl
L̃(vl, v

k
−l
, λk) = 0 and ∇qin,l

L̃(qin,l, q
k
in,−l

, λk) = 0 for

all l ∈ G can be written in compact form as:

d(W) ⊗ IT v +
(

(W − d(W)) ⊗ IT

)

vk + ξv −
1

U2
0

cos θW ⊗ IT (λ
k − λk) +

1

2
δ(1 ⊗ c) = 0,

(5.28)

and

d(W) ⊗ IT qin +
(

(W−d(W)) ⊗ IT

)

qk
in + ξq +

1

U2
0

sin θW ⊗ IT (λ
k − λk) = 0, (5.29)

respectively. From (5.26), (5.28), we obtain:

v
k+1
= (1 − η)vk + η(d(W)−1 ⊗ IT )

(

− ξv −
(

(W − d(W)) ⊗ IT

)

vk (5.30)

+
1

U2
0

cos θW ⊗ IT (λ
k − λk) − 1

2
δ(1 ⊗ c)

)

,

and from (5.27), (5.29), we obtain:

q
k+1
in =(1 − η)qk

in + η(d(W)−1 ⊗ IT )

(

− ξq −
(

(W − d(W)) ⊗ IT

)

qk
in (5.31)

− 1

U2
0

sin θW ⊗ IT (λ
k − λk))

)

.

Finally, we perform a projection in the feasible set of v and qin, i.e., vk+1 = ProjU{vk+1}
and qk+1

in
= ProjQ{q

k+1
in }. By construction, U = �l∈GUl and Q = �l∈G Ql. Then, the
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operation can be carried out in a distributed way:

vk+1
l = ProjUl

{vk+1
l }, (5.32a)

qk+1
in,l = ProjQl

{qk+1
in,l }, ∀l ∈ G. (5.32b)

The gradient ascent for the dual variables is given by:

λ
k+1

(t) =
[

λ
k
(t) + ηγ(wk

G(t) −Wmax)
]

+

,

λk+1(t) =
[

λk(t) + ηγ(Wmin − wk
G(t))

]

+
, (5.33)

for all t ∈ τ, with γ > 0.

In order to analyze this algorithm, hereinafter referred to as microgrid optimization

algorithm, we present a general quadratic problem with a structure that includes that of

the microgrid control problem.

Our problem of interest is a particular case of the following partially separable

quadratic problem, expressed as:

min
z

z⊤Az + b⊤z

subject to (5.34)

Mz � h

z ∈ Z

for z ∈ Rn, h ∈ Rκ1 , A ∈ Rn×n symmetric positive definite, M ∈ Rκ1×n, and a convex

polytope Z, which can be expressed as the set of points z such that Gz � r, for r ∈ Rκ2

and a matrix G. From now on, let us assume that the problem is feasible. Therefore,

since all the inequality constraints are affine, the partially separable quadratic problem

satisfies the Slater’s condition.

Let the components of z be assigned to a set of agents I , {1, . . . ,N}. In par-

ticular, consider that Ii , {ip}ni

p=1 be the indices of those components of z associated to

agent i, for each i ∈ {1, . . . ,N}. where
∑N

i=1 ni = n. Let zi encompass all the components

of z with indices in Ii. In addition, let Z be also separable according to the set of agents
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I, i.e., Z ,
�N

i=1 Zi, where Zi ⊂ Rni is a convex polytope, for all i ∈ I.

Assumption 5.3. (Structure of the partially separable quadratic problem): Let us write

the vector zi as zi = [z⊤
i,1, . . . , z

⊤
i,mi

]⊤ where each zi,ℓ is a vector with components of zi,

ℓ ∈ {1, . . . ,mi}, for all i ∈ I. Let us assume:

• The matrix A has a structure such that the quadratic form z⊤Az satisfies:

z⊤Az =

mi
∑

ℓ=1

ai,ℓ‖zi,ℓ‖2 + 2z⊤i Ai,12z−i + z⊤−iAi,22z−i,

where ai,ℓ is a real scalar, Ai,12 is composed by all entries Akl such that k ∈ Ii

and l < Ii and Ai,22 is composed by those entries Akl such that k, l < Ii, for all

i ∈ {1, . . . ,N}. Recall that z can be written as z = (zi, z−i) for all i ∈ I, where z−i

are the components of z that are not associated to agent i ∈ I.

• The set Zi is separable in terms of zi,ℓ, for ℓ ∈ {1, . . . ,mi}, i.e., Zi =
�mi

ℓ=1
Zi,ℓ, and

zi,ℓ ∈ Zi,ℓ.

⋄

The first part of the assumption implies that there are no cross terms between

any two entries of z associated to the same agent i ∈ I. As an example, any quadratic

form z⊤Cz with C symmetric, positive definite matrix C = C ⊗ IT , where C ∈ Rn×n, with

z = [z⊤1 , . . . , z
⊤
N

]⊤, and zi ∈ RT for all i ∈ {1, . . . ,N}, satisfies the first statement of the

assumption.

The Lagrangian function associated to the partially separable quadratic problem

is:

L(z, ψ, θ) = z⊤Az + b⊤z + ψ⊤(Mz − h) + θ⊤(Gz − r),

where ψ � 0 and θ � 0 are dual variables for the problem. Let ψ⋆, θ⋆ be an optimizer of

the dual of the partially separable quadratic problem:

max
ψ,θ�0

min
z∈Rn
L(z, ψ, θ).
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Then, since the partially separable quadratic problem is convex and satisfies the Slater’s

condition, it can be recast as:

min
z

f (z, ψ⋆)

subject to (5.35)

z ∈ Z,

where:

f (z, ψ) , z⊤Az + b⊤z + ψ⊤(Mz − h). (5.36)

Next, we write a general form of the dynamics, which we will call the constraint sepa-

ration dynamics:

ψk+1 = [ψk + ηγ(Mzk − h)]+, (5.37a)

zk+1
i = ProjZi

[(1 − η)zk
i + η argminzi∈Rni f ((zi, z

k
−i), ψ

k)], ∀i ∈ I. (5.37b)

Given the definition of f in (5.36), we can write this dynamics in a compact form

as follows:

ψk+1 = [ψk + ηγ(Mzk − h)]+, (5.38a)

zk+1 = ProjZ[zk − ηd(A)−1(Azk +
1

2
b +

1

2
M⊤ψk)]. (5.38b)

Lemma 5.8. For z⋆ = argminy∈Z f (y, ψ⋆), with f defined in Equation (5.36), where

Z =
�

i Zi, it holds that z⋆
i
= argminyi∈Zi

f (yi, z
⋆
−i
, ψ⋆), for all i ∈ {1, . . . ,N}.

Proof. Let us proceed by contradiction. Assume that for some i ∈ {1, . . . ,N}, z⋆
i
,

argminyi∈Zi
f (yi, z

⋆
−i
, ψ⋆). Then, there exists yi ∈ Zi such that f (yi, z

⋆
−i
, ψ⋆) < f (z⋆

i
, z⋆−i

, ψ⋆),

which contradicts the fact that x⋆ is an optimizer of f (·, ψ⋆) in Z. �

Proposition 5.1. If Assumption 5.3 which describes a structure for the partially separable
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quadratic problem holds, then:

argminyi∈Zi
(yi, z−i)

⊤A(yi, z−i) + b⊤(yi, z−i) + ψ
⊤(M(yi, z−i) − h)

= ProjZi
[argminyi∈Rni ((yi, z−i)

⊤A(yi, z−i) + b⊤(yi, z−i) + ψ
⊤(M(yi, z−i) − h))].

Proof. From Assumption 5.3, we have that:

z⊤Az + b⊤z + ψ⊤(Mz − h) =

mi
∑

ℓ=1

aℓ‖zi,ℓ‖2 + ϕ⊤zi + s − ψ⊤h,

where s is a bilinear function of z−i and ϕ is a linear function of z−i and ψ. Then, the

statement of the proposition can be formulated as:

argminyi∈Zi

mi
∑

ℓ=1

aℓ‖yi,ℓ‖2 + ϕ⊤yi + s − ψ⊤h = ProjZi
[argminyi∈Rni

mi
∑

ℓ=1

aℓ‖yi,ℓ‖2 + ϕ⊤yi + s].

(5.39)

Let us write out ϕ = [ϕ1, . . . , ϕmi
]⊤, such that ϕ⊤yi =

∑mi

ℓ=1
ϕ⊤
ℓ

yi,ℓ. By structure of Zi,

which is component-wise decomposable, (5.39) is equivalent to saying that:

argminyi,ℓ∈Zi,ℓ
aℓ‖yi,ℓ‖2 + ϕ⊤ℓ yi,ℓ = ProjZi,ℓ

[argminyi,ℓ
aℓ‖yi,ℓ‖2 + ϕ⊤ℓ yi,ℓ],

for all ℓ ∈ {1, . . . ,mi}. In order to show this equivalence, we have that:

ProjZi,ℓ
[ argminyi,ℓ

aℓ‖yi,ℓ‖2 + ϕ⊤ℓ yi,ℓ]

= argminq∈Zi,ℓ

(

− 1

2aℓ
ϕℓ − q

)⊤ (

− 1

2aℓ
ϕℓ − q

)

= argminq∈Zi,ℓ

(

ϕ⊤
ℓ
ϕℓ

4aℓ
+

1

aℓ
ϕ⊤ℓ q + q⊤q

)

= argminq∈Zi,ℓ
ϕ⊤ℓ q + aℓq

⊤q.

The first equality comes from the definition of the projection operator and the fact that

argminyi,ℓ
[aℓ‖yi,ℓ‖2 + ϕ⊤ℓ yi,ℓ] = − 1

2aℓ
ϕℓ. The last equality simply comes from removing

terms that do not depend on the decision variable, and use a scaling of the cost function
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by a positive constant, completing the proof. �

Lemma 5.9. Let Y ⊂ Rn be a convex closed polytope. Consider a point y < Y. Let ỹ be

the projection of y in Y, i.e., ỹ = ProjY[y]. Define q = (1 − η)y + ηỹ, for η ∈ [0, 1]. Then,

ỹ = ProjY[q].

Proof. Assume that q̃ = ProjY[q] , ỹ. By definition of q as a convex combination of y

and ỹ, it holds that ‖y − ỹ‖ = ‖y − q‖ + ‖q − ỹ‖. Then, ‖y − ỹ‖ ≥ ‖y − q‖ + ‖q − q̃‖. By the

triangular inequality, if follows that ‖y − q‖ + ‖q − q̃‖ ≥ ‖y − q̃‖, then ‖y − ỹ‖ ≥ ‖y − q̃‖,
which contradicts the fact that ỹ = argminφ∈Y ‖φ − y‖, which follows from the definition

of the projection operator. �

Remark 5.1. We would like to notice that if we apply the primal-dual subgradient

method introduced in [59] to the problem (5.35), we obtain a dynamics that is simi-

lar to the constraint separation dynamics. However, the method in [59] is intended to

optimize general convex cost functions. The proposed algorithm therein is only guaran-

teed to converge to a neighborhood of the optimizer, whose size depends on the step size

chosen for the dynamics. The result in [59, Proposition 5.1] presents an upper bound

for the cost at each iteration in terms of the optimal cost, the step size, and the iteration

number. Unlike the aforementioned paper, we present convergence result for the con-

straint separation dynamics, and characterize the step size required for convergence to

the optimizer of the problem (5.35). Moreover, in Assumption 5.3 we characterize the

type of quadratic cost functions that allow us to perform a distributed computation of

this dynamics. ⋄

Corollary 5.1. (Convergence of the microgrid optimization algorithm): The micro-

grid optimization algorithm converges to the optimal solution of the microgrid control

problem.

Proof. It follows directly by defining z = [v⊤, q⊤in]⊤.

A =

















W ⊗ IT 0

0 W ⊗ IT

















, b =

















2ξv + δ1 ⊗ c

2ξq

















ψ = [λ
⊤
, λ⊤]⊤, and Z = Ξ. It is easy to see that the problem fulfills Assumption 5.3,

where zi = [v⊤i , q
⊤
in,i]
⊤, for all i ∈ G. �
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5.4.1 Handling the non-distributed terms

Still, we can see that v
k+1 and q

k+1
in must be computed in terms of the matrix W

respectively, which is by no means sparse in the communication network. Then, v
k+1 and

q
k+1
in cannot be computed in a distributed way using the expressions (5.30) and (5.31).

To go around this problem, we define µv
k
, µ

q

k
, ζv

k
, and ζ

q

k
as follows:

µv
k =

1

η
(d(W) ⊗ IT )(vk+1 − vk) +

1

2
δ(1 ⊗ c),

ζv
k = − vk − (W−1 ⊗ IT )ξv +

1

U2
0

cos θ(λ
k − λk),

µ
q

k
=

1

η
(d(W) ⊗ IT )(qk+1

in − qk
in),

ζ
q

k
= − qk

in − (W−1 ⊗ IT )ξv −
1

U2
0

sin θ(λ
k − λk). (5.40)

Then, we can recast the equalities in (5.30) and (5.31) as:

µv
k = (W ⊗ IT )ζv

k ,

µ
q

k
= (W ⊗ IT )ζ

q

k
.

This follows from reorganizing terms in (5.30) and (5.31). Since µv
k
, and µ

q

k
are not

known, and from [60], W−1 is sparse in the sense of the communication network, we

can use a fast execution of the Jacobi overrelaxation method on the linear systems of

equations (W ⊗ IT )−1µv
k
= ζv

k
and (W ⊗ IT )−1µ

q

k
= ζ

q

k
to compute an approximation of

µv
k

and µ
q

k
. For further information on the Jacobi overrelaxation, see [61]. Let µ̃v

k
, µ̃

q

k
be

ǫ-approximations of µv
k

and µ
q

k
. Then, we compute v

k+1 and q
k+1
in as:

v
k+1
=vk + ηd(W)−1 ⊗ IT

[

µ̃v
k −

1

2
δ(1 ⊗ c)

]

,

q
k+1
in =qk

in + ηd(W)−1 ⊗ IT µ̃
q

k
,

where we neglect the approximation error.

The following result gives us a valid distributed approximation of ξq and ξv.
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Lemma 5.10 (Distributed computation). The vectors ξq and ξv are such that:

(W−1 ⊗ IT )ξq = − Im

(

e− jθ[ 0 d(ûk
G

) ](G ⊗ IT )

















uk
01

uk
G

















)

− qk
in + o

(

1

U2
0

)

, (5.41)

(W−1 ⊗ IT )ξv = −Re

(

e− jθ

[

0 d(ûk
G

)

]

(G ⊗ IT )

















uk
01

uk
G

















)

− vk + o

(

1

U2
0

)

, (5.42)

where 1 ∈ RT .

Proof. First, note that from Lemma 5.3, we have that G can be written as:

G =

















(G)11 (G)12

(G)⊤12 W−1

















,

Second, we replace this expression above and the expression for the voltage in (5.3) into

the right-hand side of (5.41), (5.42). While replacing the expression for voltage, we use

the properties of the matrix X in Lemma 5.1. Finally, we rearrange terms to obtain the

expressions in (5.4). �

Using this result in the equalities for ζv
k

and ζ
q

k
in (5.40), results in a completely

distributed optimization algorithm. However, it presents a new problem: information

on future voltages is required for computing qin(t), v(t) is required. In Algorithm 4 we

summarize the described procedure for one iteration of the control computation.

5.5 Voltage prediction

In order to compute qin(t), v(t), for t ∈ τ, the two algorithms we have introduced

in this chapter require voltage information for all t ∈ τ. However, this information is

not available for two reasons: i) voltages u(t) depend on the power injections at all the

nodes of the microgrid at time t ∈ τ, i.e., they depend on future values of the decision

variables, and ii) although for time t = 1, it is theoretically possible to inject the power

given by decision variables vk(1) and qk
in

(1) into the system, these variables are only
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Algorithm 4 Execution for each node l ∈ G
Set uk−1

l
(t), vk−1

l
(t) (also qk−1

l
(t) and λ

k−1

l (t), λk−1
l

(t), if l ∈ G) for all t ∈ τ
for t = {1, . . . , T } do

λ
k

l (t) =
[

λ
k−1

l (t) + ηγ(wk−1
l

(t) −Wmax)
]

+

λk
l
(t) =

[

λk−1
l

(t) + ηγ(Wmin − wk−1
l

(t))
]

+

end for

Initialize µ̃v
l
(t), µ̃

q

l
(t) = 0

Gather uk−1
h

(t) for all h ∈ NG(l)

for ℓ ≤ ℓmax do

Gather µ̃v
h
(t), µ̃

q

h
(t) for all h ∈ NG(l), t ∈ τ

for t = {1, . . . , T } do

µ̃v
l
(t) = (1−α)µ̃v

l
(t)− α

Gll

(

∑

h∈NG(l)\{0,l} Glhµ̃
v
h
(t)−∑h∈NG(l) Glh

(

‖uk−1
l

(t)‖C‖uk−1
h

(t)‖C

cos(∠uk−1
h

(t) − ∠uk−1
l

(t) − θ)
)

+ 1
U2

0

cos(θ)(λ
k

l (t) − λk
l
(t))

)

µ̃
q

l
(t) = (1−α)µ̃

q

l
(t)− α

Gll

(

∑

h∈NG(l)\{0,l}Glhµ̃
q

h
(t)−∑h∈NG(l) Glh

(

‖uk−1
l

(t)‖C‖uk−1
h

(t)‖C

sin(∠uk−1
h

(t) − ∠uk−1
l

(t) − θ)
)

+ 1
U2

0

sin(θ)(λ
k

l (t) − λk
l
(t))

)

end for

end for

for t = {1, . . . , T } do

v
k
l (t) = vk−1

l
(t) + η

(

µ̃v
l
(t) − 1

2
δc(t)

)

/Wll

qk
l
(t) = qk−1

l
(t) + ηµ̃

q

l
(t)/Wll

end for

vk
l
= ProjUl

{vk
l }

qk
l
= ProjQl

{vk
l }
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asymptotically feasible. Then, it may be either harmful or impossible to inject such

power values into the actual microgrid. Thus, it is necessary to use a model to predict

values of u(t), for t ∈ τ. Recall that a microgrid is modeled by the nonlinear memoryless

system of equations formulated in (5.1). Finding the solution for voltages u(t) given

P(t), Q(t) and u0 is not only a computationally expensive procedure, but it is also not

distributed. We formulate two alternatives to address this problem.

5.5.1 A multilayer control approach

A first possibility is to define an additional layer for the control, which contains

a model of the microgrid, and is such that it can exchange information with all nodes

in G. Thus, the control structure has two layers: the upper layer with a ‘super agent’

that knows the microgrid model, and the lower layer, with the node controllers. At

each iteration, nodes in G will provide the super agent in the upper layer the value

of qk
in

and vk. The agent uses these values to compute uk by solving the power flow

equations in (5.1). Then, the agent provides the node controllers with uk according to

their sparsity in the sense of the network topology of Definition 5.1. Then, the dual

decomposition algorithm is executed again. By means of this approach, part of the

computations are carried out in a centralized way. Even though part of the computations

are parallelized, i.e., the control computations, the centralized computations performed

by the super agent destroy the scalability and robustness properties that justify the use

of a distributed algorithm.

5.5.2 Distributed approximation

An alternative is the voltage prediction algorithm: a novel idea which is based

on the voltage expression given in (5.3). It consists of executing several sub-iterations

at each iteration k of the control computation, in order to approximate the voltage uk

for the computation of qk+1
in

and vk+1. Figure 5.4 shows the interaction between the

microgrid control algorithm and the voltage prediction algorithm. Let us assume that

all the loads in nodes that belong toM are constant, for all t ∈ τ, i.e., sL(t) = sL, for all

t ∈ τ. Let us consider u0 , [U0e jφ, u⊤0,G, u
⊤
0,L]⊤ ∈ RN and s0 , [S 0, s⊤0,G, s⊤

L
]⊤ ∈ RN , with
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s0,L = pL + jqL, such that the pair u0, s0 solves the power flow equations that model the

microgrid. Assume that each node l ∈ G knows u0,l and s0,l, where u0,l and s0,l denote the

lth components of u0 and s0 respectively, which means that the node l requires entirely

local information.

Using the expression in (5.3), we have that:

∆ut = e jφ

(

e jθ

U0

W∆ŝt

)

,

where ∆ut , uG(t) − uG,0, and ∆ŝt , ŝG(t) − ŝG,0, for all t ∈ {1, . . . , T }. Then, we obtain:

Re(∆ut) = W

(

cos(θ + φ)

U0

Re(∆ŝt) −
sin(θ + φ)

U0

Im(∆ŝt)

)

,

Im(∆ut) = W

(

sin(θ + φ)

U0

Re(∆ŝt) +
cos(θ + φ)

U0

Im(∆ŝt)

)

.

Notice that the lth component of ∆ŝt is known to node l ∈ G for all t ∈ τ. Since W

is invertible, it is possible to solve ∆ut, using the Jacobi overrelaxation algorithm, as

follows:

uℓ+1
e,t = (1 − h)uℓe,t − hd(We)−1

(

(We − d(We))uℓe,t − sℓe,t

)

, (5.43)

where We , I2 ⊗W−1 and:

ue,t =

















Re(∆ut)

Im(∆ut)

















,

se,t =

















cos(θ+φ)

U0
Re(∆ŝt) − sin(θ+φ)

U0
Im(∆ŝt)

sin(θ+φ)

U0
Re(∆ŝt) +

cos(θ+φ)

U0
Im(∆ŝt)

















.

By construction of W, it also holds that the diagonal elements of We are strictly posi-

tive. Then the matrix d(We)−1 is well defined. Given that W−1 is symmetric and positive

definite, We is also symmetric and positive definite. Then, it holds that if h < 2/|G|,
the Jacobi overrelaxation converges from any initial condition and also presents a linear

rate of convergence. Since W−1 is distributed in the sense of the communication net-

work in Definition 5.1, the computation of u can be made using only local information.
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Algorithm 5 summarizes the prediction procedure for each node l ∈ G. Notice that a

Algorithm 5 The voltage prediction algorithm. Execution for node l ∈ G
Get vk

l
(t), qk

in,l
(t) (if l ∈ G), for all t ∈ τ.

for t = {1, . . . , T } do

δ0
t,Re

(l) = 0

δ0
t,Im

(l) = 0

sl,t = pin,l(t) − pload,l(t) − vk
l
(t) + j(qk

in,l
(t) − qload,l(t))

bt,Re =
cos(θ+φ)

U0
Re(sl,t − sl,0) − sin(θ+φ)

U0
Im(sl,t − sl,0)

bt,Im =
sin(θ+φ)

U0
Re(sl,t − sl,0) +

cos(θ+φ)

U0
Im(sl,t − sl,0)

end for

for ℓ ∈ {1, . . . , ℓmax − 1} do

for t = {1, . . . , T } do

δℓ+1
t,Re

(l) = (1 − h)δℓ
t,Re

(l) − h
GS ,ll

(

∑

r∈NS (l)\{0,l} GS ,lrδ
ℓ
t,Re

(r) − bt,Re

)

δℓ+1
t,Im

(l) = (1 − h)δℓ
t,Im

(l) − h
GS ,ll

(

∑

r∈NS (l)\{0,l} GS ,lrδ
ℓ
t,Im

(r) − bt,Im

)

end for

end for

for t = {1, . . . , T } do

uk
l
(t) ≈ δℓmax

t,Re
(l) + jδ

ℓmax

t,Im
(l) + ul,0

end for

fast execution of this algorithm (until some error tolerance is reached) at the end of each

iteration of the dual decomposition algorithm can give an approximation of uG(t), t ∈ τ,

for the next iteration.

Let us recall that the load and the active power generation at all nodes are system

parameters that come from forecasting processes. In the particular case of load forecast-

ing, persistence models are widely used. A persistence model assumes that the best

forecast for a variable in the near future is the current value of that variable. It leads to

an estimate of a future step for loads in nodes l ∈ M computed as follows:

sL(t + 1) = sL(t).

A propagation of this estimation over the whole time horizon τ leads to a load estimation

in which sL(t) = sL for all t ∈ τ, which is the setting under which our distributed

prediction model works. Thus, even though the assumption that the load of nodes in
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Figure 5.4: Control computation using voltage prediction.

M does not vary with time seems to be restrictive, it is not introducing any additional

assumptions than those that are already posed in real applications.

5.6 Simulation results and discussion

In order to show the algorithm performance, we use single-phase versions of

the IEEE13, IEEE34, IEEE37, and IEEE123 feeders. All the data on transmission

line impedances, loads, power generation and storage capacities, as well as further

details of the simulation, and simulation files can be found in the project website:

http://fausto.dynamic.ucsd.edu/andres/project_reactive_fast. For each

testbed we implement the microgrid optimization algorithm and also the dual decom-

position algorithm introduced in [60]. To obtain the voltage prediction required for the

algorithm execution, we use in both cases the distributed prediction algorithm in [60],

which works at a fast time scale to compute an approximation of the voltage given

the values of the decision variables. The prediction algorithm has been tuned to use

the parameter that maximizes the speed of convergence. Both the dual decomposition

algorithm and the microgrid optimization algorithm have been tuned to a step size that

maximizes the speed of convergence. In Table 5.1 we show the parameters for each algo-

rithm involved in the simulation: MO stands for the microgrid optimization algorithm,



139

Table 5.1: Parameters for each testbed

MO DD Prediction

Testbed η α ℓmax γ h FE

IEEE13 0.95 0.271 30 0.0737 0.995 100

IEEE34 0.95 0.211 30 0.0052 0.995 2500

IEEE37 0.95 0.211 30 0.0728 0.995 100

IEEE123 0.95 0.095 30 0.0356 0.995 1000

Table 5.2: Practical Convergence

MO DD

Testbed OL Total OL Total

IEEE13 50 1.5 × 105 1.8 × 105 1.8 × 107

IEEE34 500 37.5 × 106 3.6 × 106 9 × 109

IEEE37 50 1.5 × 105 6 × 104 6 × 106

IEEE123 150 4.5 × 106 2 × 105 2 × 108

DD stands for the dual decomposition algorithm in [60] and prediction is the voltage

prediction algorithm. For the microgrid optimization algorithm, η is the step size as

it has been introduced in this document, α is the step size of the fast execution of the

Jacobi overrelaxation intended to estimate µ̃v
k

and µ̃
q

k
, and ℓmax is the number of iterations

that we run for such estimation. For DD, γ is a dual ascent step size as described in [60].

For the prediction algorithm, h corresponds to the Jacobi overrelaxation step size and FE

stands for the number of iterations that are executed for the voltage prediction. Notice

that the parameters η, α, γ and h have been chosen in a way that each of the algorithms

exhibits near the fastest possible convergence for the case study. The parameters FE

and ℓmax have been chosen so that each approximation that is being made via the Jacobi

overrelaxation, reaches its actual value within 3 significant figures.

It is interesting to notice that, in the case of the feeder IEEE34, the convergence

of the microgrid optimization algorithm, the convergence of the dual decomposition

algorithm, and also that of the voltage prediction algorithm, are significantly slower that

those of the other feeders we simulate. This is due to the largest electrical distance

between two actuated nodes in the network.

In Table 5.2, we compare the speed of convergence of the microgrid optimization

algorithmwith that of the dual decomposition algorithm. For the microgrid optimization

algorithm, the OL (outer loop) column indicates how many times the procedure de-
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Figure 5.5: Top: Evolution of v1(t) for all t ∈ τ, using the microgrid optimization

algorithm. Bottom: Evolution of v1(t) for all t ∈ τ using the dual decomposition

algorithm.

scribed in Algorithm 4 is repeated to reach practical convergence. This number has

been chosen in a conservative way, i.e., practical convergence is reached in a lesser

number of iterations. The column called Total shows the amount of communication

rounds executed to reach practical convergence, this is, the number of outer loop exe-

cutions, multiplied by the number of iterations used for the voltage prediction, which

corresponds to the column FE in Table 5.1, and also multiplied by the amount of itera-

tions carried out for the approximation of µv
k
, µ

q

k
, which can be found in the column ℓmax

in Table 5.1.

For the dual decomposition algorithm, we show in the OL column the amount

of iterations of Algorithm 1 in [60] necessary to reach practical convergence. In the

column labeled Total, we multiply this number by the number of iterations taken by

the voltage prediction algorithm. We can see that the amount of iterations needed for

practical convergence in the microgrid optimization algorithm is at least two orders of

magnitude less than the dual decomposition algorithm in each of the simulation cases. It

is important to highlight that if it were not for the need to use the Jacobi overrelaxation
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Figure 5.6: Top: Evolution of q1(t) for all t ∈ τ, using the microgrid optimization

algorithm. Bottom: Evolution of q1(t) for all t ∈ τ using the dual decomposition

algorithm.

in the computation of the primal step of the algorithm, the speed of convergence would

be much greater.

Figures 5.5 through 5.9 show the trajectory of all the state variables related to

node 1 in the IEEE37 feeder for both algorithms.

5.7 Summary

This chapter presents two distributed algorithm for the computation of predictive

control sequences of reactive power and storage in microgrids. The algorithms use fore-

casted parameters such as the electricity cost in time and the solar-power generation, in

order to compute the reactive power that must be injected by generators and the charg-

ing/charging rate that storage devices must follow in order to minimize electricity cost

and also transmission losses. Both designs are based on a previous convexification ap-

proach which relaxes the power flow equations onto a linear relation between power and

voltage in a microgrid, under some assumptions on impedances in the transmission lines
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(t), λ1(t) for all t ∈ τ, for the dual decomposition algorithm.

and the magnitude of the input voltage. New constraints on voltage regulation, and op-

erational constraints on the storage systems are considered. The first algorithm, a dual-

decomposition-based dynamics is thoroughly analyzed, concluding that the dynamics

globally converge to the unique optimizer of the problem. Given the slow rate of con-

vergence of this algorithm, we propose the microgrid optimization algorithm. The al-

gorithm manages the global constraints using a dual decomposition-like approach while

all the local constraints are taken care of using primal projections. This allows us to ob-

tain a much faster convergence than that of the first algorithm. We show convergence of

the microgrid optimization algorithm towards the optimizer of the microgrid control

microgrid control problem, by analyzing the constraint separation dynamics. This dy-

namics encompasses the structure of the microgrid optimization algorithm, and all its

solutions converge to an optimizer of the partially separable quadratic problem, which

has the same structure as the microgrid control microgrid control problem. Further,

we present a distributed implementation of the algorithm, which is based on an approx-

imation carried out using the Jacobi overrelaxation in a fast-time scale.
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top: η1(t) for all t ∈ τ, bottom: η
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Since the two algorithms require predicted voltage valued, we discuss two pre-

diction ways, including a novel distributed prediction model.

In order to show that the microgrid optimization algorithm is faster than the first

algorithm, we implement them in four different testbeds that are microgrids with the

structure to the IEEE13, IEEE34, IEEE37 and IEEE123 test feeders, in a single-phase

setting. All trials show that the microgrid optimization algorithm requires 1/100 of

iterations needed by the first algorithm to reach practical convergence.
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Chapter 6

Self-triggered best response dynamics

for continuous games

The last years have witnessed an intense research activity in the development of

novel distributed algorithms for multi-agent systems with performance guarantees. A

particular effort has been devoted to the study of game-theoretic approaches that can

model and regulate selfish agent interactions. By means of these, the multi-agent coor-

dination objective is formulated in terms of Nash Equilibria (NE), which correspond to

the natural emergent behavior arising from the interaction of selfish players. Due to their

modularity, game dynamics can easily be implemented by agents relying on local infor-

mation, leading to a robust performance. Even though the resulting emerging behavior

may not be optimal, it is generally expected that the behavior is as close as possible to

that of the benchmark given by a centralized design. However, finding algorithms to

reach a NE is not always an easy task, mainly due to the fact that in general, the NE is

very difficult to compute, and even some games do not have any.

In particular, the best-response dynamics can be thought of as a natural dynam-

ics describing an interaction in which each player is able to compute its own best action

against other players’ action profile. Then, the player’s action evolves continuously

towards its best-response set. Convergence of the best-response dynamics to the set

of NE has been studied for games under well defined conditions. In [62, 63], conver-

gence is proven for finite zero-sum games with bilinear payoff functions and potential

games with continuously differentiable potential functions. In [64], the authors consider

145
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best-response dynamics for two-player zero-sum games, relaxing the previous differen-

tiability assumptions to concave and convex payoff functions. Convergence to the saddle

point set is proven, since this set corresponds to the NE set of the game. The current

effort in [65] extends the above result to a two-player zero-sum continuous game with

quasi-concave and quasi-convex continuous payoff functions. Although these works

consider non-differentiable payoff functions, their approach is oriented to two-players

zero-sum games.

The idea of restricting communication efforts to time instants at which it is ab-

solutely necessary to have current information leads to the self-triggered and event-

triggered concepts; e.g. see [66, 67] and references therein. This idea has been recently

extended to the context of multi-agent systems and distributed optimization with ap-

plications to cooperative control [68, 69]. The present work contributes further to this

area by studying a complementary game-theoretic setting with applications to coverage

control and deployment similarly to [70, 71]. A main difference with gradient-based

methods is given by the need of estimating the evolution of best-response sets as actions

of other agents change.

More precisely, we start by analyzing the convergence properties of the so-called

continuous-time best-response dynamics for a continuous-action-space game by means

of the invariance theory for set-valued dynamical systems. We show that all the so-

lutions of the best-response dynamics converge to the NE set of the potential game

for component-wise pseudoconcave, component-wise quasiconcave potential functions.

Next, we introduce a novel self-triggered best-response dynamics relying on Lipschitz

payoff functions. Then, we prove how this strategy still ensures convergence to the set

of NE while decreasing communication efforts. An application example can be found

in the extended manuscript [72]. The paper [73] presents an alternative self-triggered

best-response dynamics for 1D action spaces where the self-triggering condition comes

from the assumption that the best-response sets are Lipschitz set-valued maps.

Notations. In what follows, sign : R → R is defined as sign(x) = 1 if x > 0,

sign(x) = −1 if x < 0, and sign(x) = 0 if x = 0. Let S be a subset of Rn, then co(S )

denotes the convex hull of S , S denotes the closure of S , and ρ(S ) denotes the diameter

of S , ρ(S ) = supx,y∈S ‖x − y‖. If f is a map, dom( f ) represents the domain of f . The
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open ball with radius r centered at x is denoted as Br(x). Given f : Rn → R, we define

a level set of f as f −1(r) = {x ∈ dom( f ) | f (x) = r}. For A, B ⊂ Rn, we denote

A \ B = {x ∈ A | x < B}. Let A be a subset of Rn. Then, int(A) represents the interior of

A, and bnd(A) represents the boundary of A.

6.1 Game theoretical notions

In this section, we first introduce some basic definitions from Game Theory [74]

and an adaptation from [71] to deal with constrained motion coordination problems.

Definition 6.1. A continuous-action-space game is a 3-tuple Γ = (I, X, u), such that (i)

I = {1, . . . ,N} is the set of N players, (ii) X =
∏N

i=1 Xi ⊂ Rd is the action space of the

game, with Xi ⊂ Rni , i ∈ I, d =
∑

i ni, a compact and convex set representing the action

space of the ith player, and (iii) u : X → RN is a function whose component ui : X → R
defines the payoff of the ith player, i ∈ I.

Let xi ∈ Xi ⊂ Rni be the action for the ith player and x ∈ X be the action profile

for all players, such that x = (x1, . . . , xN)⊤. In the sequel, we will use the notation

x = (xi, x−i), where x−i ∈ X−i =
∏

j∈I, j,i X j, for all i ∈ I, are the actions of all players

except that of the ith player.

A repeated, continuous-time, game associated with Γ, R(Γ), is a game in which,

at each time t ∈ R≥0, each agent i ∈ I modifies xi(t) ∈ Xi simultaneously while receiving

ui(x(t)). This is in contrast to repeated, discrete-time games, which follow a discrete-

time schedule.

In the context of (vehicle) motion coordination, agents’ actions can be identified

with system states, and thus it makes sense that these change in continuous time accord-

ing to some vehicle dynamics. In particular, the way in which player i modifies xi(t) can

be constrained by a (state-dependent) set W. Let Wi(xi, x−i) ⊂ Xi be a constraint subset

associated with x ∈ X, W(x) = Πi∈IWi(x) ⊂ X, and W = ∪{(x,W(x)) | x ∈ X} ⊆ X × X.

We will refer to W as a fiber bundle over X. The introduction of W leads to the notion of

constrained repeated game associated with Γ and W, RW(Γ), and the following concept.

Definition 6.2. Let Γ = (I, X, u) be a continuous-space game and W a fiber bundle over
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X. A constrained Nash Equilibrium (NE) for Γ with respect to W is an action profile

(x⋆
i
, x⋆−i

) ∈ X such that ui(xi, x⋆−i
) ≤ ui(x⋆

i
, x⋆−i

), for all xi ∈ Wi(x⋆
i
, x⋆−i

) and all i ∈ I.

In the extended version [72], we use W to represent collision-avoidance type of

constraints, or restricted reachable sets, thus it will be additionally assumed that x ∈
W(x). Finally, we recall the following notion.

Definition 6.3 ([75]). Consider a game Γ = (I, X, u). Let us assume that there exists a

functionΦ : X → R such that sign (ui(xi, x−i)−ui(x′
i
, x−i)

)

= sign
(

Φ(xi, x−i) − Φ(x′
i
, x−i)

)

,

for xi, x′
i
∈ Xi, x−i ∈ X−i, for all i ∈ I. Then, the game is called an ordinal potential game.

6.2 Continuous-time best-response dynamics

Here, we introduce some basic facts about continuous-time best-response dy-

namics [76] and show their convergence to the set of equilibria under some general

conditions. Definitions of regularity, upper-semicontinuity, generalized gradient and

set-valued Lie derivative can be found in [72]. The generalized LaSalle’s invariance

principle for differential inclusions can be found in [77].

Let Γ = (I, X, u) be a continuous-space game, let W be a continuous fiber bundle

over X, such that Wi(x) convex and compact for all x ∈ X, i ∈ I, and consider the game

RW(Γ).

Definition 6.4. The best-response dynamics for RW(Γ) is defined by the differential in-

clusion F : X ⇒ Rd, Fi(x) = BRi(x−i) − xi = argmaxy∈Wi(x) ui(y, x−i) − xi, for all i ∈ I.

That is,

ẋi ∈ Fi(x) := BRi(x−i) − xi, i ∈ I. (6.1)

We denote F(x) = BR(x)− x for conciseness. Existence of solutions for differen-

tial inclusions is guaranteed for F, nonempty, upper semicontinuous and taking compact

and convex values. Let us assume that payoff functions ui are continuous maps on X.

By compactness of X, ui reaches its maximum value on X, and the set of maximizers

is compact. Then, Fi is nonempty and takes compact values. Further, let us assume



149

that ui is quasiconcave on W. Then, the set of maximizers of ui and Fi are convex for

each x ∈ W1. By continuity of ui on X, and continuity of W we can apply directly the

maximum theorem [78] to conclude that Fi is upper semicontinuous for each i ∈ I. Al-

ternatively, in potential games, one can exchange the continuity assumption on the ui by

continuity on the Φ. Since Fi is nonempty, compact, convex and upper semicontinuous

at every x ∈ X, and each i ∈ I, there exists a solution to (6.1) for every initial condi-

tion. These solutions are absolutely continuous functions, ϕ : [0,+∞) → X, such that

ϕ̇i(t) ∈ BRi(ϕ−i(t)) − ϕi(t), for almost every t ∈ [0,+∞), and for all i ∈ I; see [77]. The

equilibria set of system (6.1) is

X⋆ = {x ∈ X | xi ∈ BRi(x−i), ∀i ∈ {1, . . . ,N}} . (6.2)

This set corresponds exactly to the set of constrained Nash equilibria for Γ with respect

to W. The existence of a Nash equilibrium is guaranteed by the existence of a continuous

potential function that reaches its supremum over a compact action space.

The above theorem will be used to analyze the best-response dynamics associ-

ated with a potential game. The potential function should satisfy the following property.

Definition 6.5. Let Y ⊆ Rd be a convex set. A function Φ : Y → R is said to be

component-wise pseudoconcave if for every i ∈ I, and every w = (wi,w−i), y = (yi, y−i) ∈
Y, and s ∈ (0, 1), with y−i = w−i, it holds that ifΦ(w) > Φ(y), thenΦ(swi+(1−s)yi,w−i) ≥
Φ(yi,w−i) + (1 − s)sb(wi, yi) where b(wi, yi) is a positive function. The function Φ is

component-wise quasiconcave if Φ(swi + (1 − s)yi,w−i) ≥ min{Φ(yi,w−i),Φ(wi,w−i)},
for every i ∈ I, and every w = (wi,w−i), y = (yi, y−i) ∈ Y. If Φ is pseudoconcave (resp.

quasiconcave), −Φ is pseudoconvex (resp. quasiconvex).

Theorem 6.1. Let Γ = (I, X, u) be an ordinal potential game with potential function

Φ. Let W be a continuous fiber bundle over X such that Wi(x) is compact and convex

for all x ∈ X, i ∈ I. Assume that Φ is component-wise quasiconcave, component-wise

pseudoconcave with bi continuous over each W(x), x ∈ X, Lipschitz, and regular over

X. Let F : X ⇒ Rd be the best-response dynamics for RW(Γ). Then, all solutions of the

system ẋ ∈ F(x) converge to the set X⋆ of constrained Nash equilibria defined in (6.2).

1The same result holds for a potential game with a component-wise quasiconcave potential function

(Definition 6.5).
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Proof. Consider Ψ = −Φ. Since Φ is component-wise pseudoconcave, then Ψ is

component-wise pseudoconvex. We will see that Ψ is a Lyapunov function for our

set-valued map; that is, it holds that maxLFΨ(x) ≤ 0, for all x ∈ X.

Let x be a point in X. Any v ∈ F(x) has the form v = x⋆ − x, with x⋆ ∈ BR(x).

Define ΩΨ ⊂ X as the zero-measure set for which Ψ is non-differentiable. Consider a

ζ ∈ ∂Ψ(x) of the form ζ = limk ∇Ψ(yk), with yk → x, yk
< ΩΨ. If x⋆ = x, then it

trivially holds that vTζ = 0. Suppose that x⋆ , x. Since BR is nonempty and upper-

semicontinuous for all x ∈ X, it holds that there exists a sequence xk,⋆ → x⋆ such that

xk,⋆ ∈ BR(yk), for all k. Thus, we have vTζ = (x⋆ − x)T limk ∇Ψ(yk) = limk(xk,⋆ −
yk)T∇Ψ(yk) .

Let us define ∇iΨ ∈ Rni as the partial derivative ofΨwith respect to the action of

the ith player. SinceΨ is differentiable at yk, the term (xk,⋆−yk)T∇Ψ(yk) is the directional

derivative of Ψ at yk along the direction xk,⋆ − yk. In particular,

vTζ = lim
k→∞

(xk,⋆ − yk)T∇Ψ(yk)

= lim
k→∞

∑

i∈I

(x
k,⋆

i
− yk

i )∇iΨ(yk)

= lim
k→∞

∑

i∈I

(x
k,⋆

i
− yk

i , 0−i)
T∇Ψ(yk)

= lim
k→∞

∑

i∈I

lim
h→0

Ψ(yk
i
+ h(x

k,⋆

i
− yk

i
), yk
−i

) − Ψ(yk)

h
,

where in the last equality we have used the limit definition of directional derivative.

Notice that since xk,⋆ ∈ BR(yk), then it holds that Ψ(yk) ≥ Ψ(x
k,⋆

i
, yk
−i

) for any

i ∈ I. Moreover, since x , x⋆, we have that there is a k1 < ∞ for which yk
, xk,⋆ for

all k > k1. Next, assume that x < BR(x), then there is an i ∈ I such that xi < BRi(x).

By continuity of Ψ, the set BR(x) is closed, therefore for each xi ∈ Wi(x) \ BRi(x) there

exists ε such that Bε(x) ∩Wi(x) ⊂ Wi(x) \ BRi(x). Therefore, there is k2 < ∞ such that

yk
i
< BRi(xk,⋆) for all k > k2. Thus, when we study the behavior as k → ∞, we will

consider only sequences yk such that yk
, xk,⋆ and yk

< BR(yk).

Using the fact that yk
i
< BRi(y

k) and by component-wise pseudoconvexity of Ψ,

it holds that since Ψ(xk,⋆

i
, yk
−i

) < Ψ(yk), then Ψ(yk
i
+ h(xk,⋆

i
− yk

i
), yk
−i

) ≤ Ψ(yi, y
k
−i

) + (1 −
h)hbi(x

k,⋆

i
, yk

i
), for any h ∈ (0, 1), and each i ∈ I. From here, Ψ(yk

i
+ h(x

k,⋆

i
− yk
−i

), yk
−i

) −
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Ψ(yk) ≤ (1− h)hbi(x
k,⋆

i
, yk

i
), which implies that limh→0

Ψ(yk
i
+h(x

k,⋆
i
−yk

i
),yk
−i

)−Ψ(yk)

h
≤ bi(x

k,⋆

i
, yk

i
).

Now, for each j ∈ I such that yk
j
∈ BR j(y

k), we have that Ψ(yk) = Ψ(x
k,⋆

j
, yk
− j

). It means

that yk
j

and x⋆
j

are minimizers of Ψ(·, yk
− j

). By component-wise quasiconvexity, the set

of minimizers of Ψ(·, yk
− j

) is convex, then Ψ(yk
j
+ h(xk,⋆

j
− yk

j
), yk
− j

) = Ψ(yk) = Ψ(xk,⋆),

therefore we can conclude that limh→0
Ψ(yk

i
+h(x

k,⋆
i
−yk

i
),yk
−i

)−Ψ(yk)

h
= 0. Then, it follows by

using the continuity of bi that

vTζ = lim
k→∞

(xk,⋆ − yk)∇Ψ(yk)

≤ lim
k→∞

∑

i∈I
yk

i
<BRi(y

k)

bi(xk,⋆

i
, yk

i ) =
∑

i∈I
xi<BRi(x)

bi(x⋆i , xi). (6.3)

Now, consider the case when x ∈ BR(x). In this case, if x ∈ int(BR(x)), there

exists ε > 0 such that Bε(x) ⊂ BR(x). Note that for h→ 0, (xi+h(x⋆
i
− xi), x−i) ∈ Bε(x) ⊂

BR(x). Then, Ψ(xi + h(x⋆
i
− xi), x−i) = Ψ(xi, x−i), and limh→0

Ψ(xi+h(x⋆
i
−xi),x−i)−Ψ(x)

h
= 0,

for each i ∈ I. It implies that vT ζ = 0. If x ∈ bnd(BR(x)), there are: i) sequences

yk → x such that for every k, yk
< BR(yk), ii) sequences such that yk ∈ BR(yk) for all k,

and iii) sequences such that there is a subsequence {yk,l}l ⊂ BR(yk) and a subsequence

{yk,l}l ⊂ W(x) \ BR(yk). In case i) we follow the same analysis as that for x < BR(x),

then vTζ < 0, in case ii) the analysis is analogous to that for x ∈ int(BR(x)), to show that

vTζ = 0. In the third case, if x is a point of non-differentiability, the gradient of Ψ at yk

does not converge, then we do not need to consider these sequences. IfΨ is differentiable

at x, then, as xi is a minimizer of Ψ(·, x−i), for all i ∈ I, we have that vTζ = 0. Hence,

vTζ ≤ 0 for all x ∈ bnd(BR(x)). Then, we can conclude that for all x ∈ X, it holds that

vTζ ≤ 0 for all sequences yk → x, such that yk
< ΩΨ and limk ∇Ψ(yk) = ζ.

Now consider any ζ ∈ ∂Ψ(x). By the definition of generalized gradient (see [77]),

there exist α1, . . . , αl, with 0 ≤ αs ≤ 1, and α1+· · ·+αl = 1, and sequences {yk1}, . . . , {ykl}
converging to x such that ζ = α1 limk1

∇Ψ(yk1) + · · · + αl limkl
∇Ψ(ykl). Then it follows

that vTζ = α1vTζ1 + · · · + αlv
Tζl. Using the previous analysis for each ζs, it follows

that vTζ ≤ 0. From here we conclude that maxLFΨ(x) ≤ 0 for all x ∈ X. From the

generalized LaSalle invariance principle [77], we have that all solutions will converge to

the largest invariant set contained in X ∩ {x ∈ Rd | 0 ∈ LFΨ}. In the following, we prove
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that the largest invariant set is contained in X⋆.

Suppose that x < BR(x), and x belongs to the invariant set. Take a x⋆ ∈ BR(x),

define v = x⋆ − x, and take a ζ ∈ ∂Ψ(x) such that ζ = limk ∇Ψ(yk), with yk → x, when

k → +∞. From (6.3), we have that vTζ ≤ ∑

i∈I
xi<BRi(x)

bi(x
k,⋆

i
, yk

i
) < 0, where, the second

inequality follows from the fact that there is a j ∈ I such that x j < BR j(x− j). Taking the

maximum over BR(x), we have that

max
x⋆∈BR(x)

(x⋆ − x)T ζ = max
v

vTζ

≤ max
x⋆∈BR(x)

∑

i∈I
xi<BRi(x)

bi(x⋆i , xi)

=
∑

i∈I
xi<BRi(x)

bi(x̄⋆i , xi).

That is, the continuous function
∑

i∈I bi(x̄⋆
i
, xi) achieves its maximum over the compact

BR(x) at some x̄⋆ ∈ BR(x). Note that the inequality holds for all ζ of the form consid-

ered. Since x < BR(x), x̄⋆ , x, then Ψ(x̄⋆
i
, x−i) < Ψ(x) for some i ∈ I, hence we have

that
∑

i∈I
xi<BRi(x)

bi(x̄⋆
i
, xi) < 0.

Now consider any ζ that is a convex combination of ζs = lims ∇Ψ(yks). From the

above considerations, we have that

vT ζ = α1vTζ1 + · · · + αlv
Tζl

≤ α1

∑

i∈I
xi<BRi(x)

bi(x̄⋆i , xi) + · · · + αl

∑

i∈I
xi<BRi(x)

bi(x̄⋆i , xi)

=
∑

i∈I
xi<BRi(x)

bi(x̄⋆i , xi) < 0,

for all v and ζ. From here we conclude that 0 < LFΨ(x), if x < BR(x). Thus, x does not

belong to X ∩ {x ∈ Rd | 0 ∈ LFΨ}, which is a contradiction. �
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6.3 Self-triggered Communications in Best-Response Dy-

namics

In this section, we present a sufficient self-triggered communication law as in [69]

to lower the frequency at which neighbors’ information needs to be updated while still

guaranteeing convergence to the set of NE. It is worth highlighting that the amount

of neighbors from which information needs to be updated for each player, depends

uniquely on the sparsity of the game. That is, our law does not deal with generating

a distributed execution of a non-distributed game, but it rather has to do with reducing

the time-between-updates. All proofs for the results introduced in this section can be

found in [72].

Let {ti
k
}∞
k=0 ⊆ R>0, such that ti

k
< ti

k+1
, be the time sequence at which player i

updates information about other players, for each i ∈ I. Assume that the ith player has

obtained up-to-date information of agent j ∈ I \ {i} at some time ti
k
. In what follows, we

aim to estimate the largest possible time ti
k+1

> ti
k

that an agent i can wait for in order to

update information about neighbors while guaranteeing convergence to the set of NE of

the game. To do this, we assume that each player has available up-to-date information

about its own state at every time t > ti
0. The ith player’s action is driven by

ẋi(t) ∈























BRi(x−i(t
i
k
)) − xi(t), if xi(t

i
k
) < BRi(x−i(t

i
k
)),

{0}, otherwise,
(6.4)

for time t ∈ (ti
k
, ti

k+1]. See Remark 6.1 about the introduction of zero when xi(t
i
k
) ∈

BRi(x−i(t
i
k
)).

In the sequel, let us assume that each agent payoff function is Lipschitz con-

tinuous with Lipschitz constant Li > 0; that is, |ui(x1) − ui(x2)| ≤ Li‖x1 − x2‖, for any

x1, x2 ∈ X. Let us assume that player i knows Li. This will help us to compute a self-

triggering condition which makes each agent update information whenever its payoff

is no longer increasing. First, let us find an upper bound on uncertainty about other

player’s action with respect to time.

At time ti
k
, player i knows other players’ actions, and thus can compute pre-
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cisely its best-response set, as well as the value of ui(x⋆
i

(ti
k
), x−i(t

i
k
)), where x⋆

i
(ti

k
) ∈

BRi(x−i(t
i
k
)). Let j ∈ I be an arbitrary agent j , i. Let l be such that t

j

l+1
> ti

k
≥ t

j

l
for the

given k. Notice that since BR j(x− j(t
j

l
)) is compact, there exists a point xfast

j
∈ BR j(x− j(t

j

l
))

such that xfast
j
∈ argmax

y∈BR j(x− j(t
j

l
)) ‖y − x j(t

i
k
)‖. Then, the magnitude of ẋ j(t) defined

in (6.4) is maximized by xfast
j

, for all time t ∈ (ti
k
, t

j

l+1
] (i.e., ẋ j(t) = xfast

j
− x j(t) has

maximum norm). Assume that x j(t
i
k
) < BR j(t

j

l
). Thus, a fastest solution of (6.4) for t ∈

(ti
k
, t

j

l+1
], is x j(t) = xfast

j
−(xfast

j
−x j(t

i
k
))e−(t−ti

k
). This implies that the distance ‖x j(t)−x j(t

i
k
)‖

is upper bounded by ‖xfast
j
− x j(t

i
k
)‖

(

1 − e−(t−ti
k
)
)

, for t ∈ (ti
k
, t

j

l+1
]. However, the ith player

does not know the jth player’s best-response set, then, the only option is to compute

the worst possible case with the available information. Assume that all agents know

the action space X. Then, the ith agent can find a point xfar
j

(ti
k
) ∈ X j, which maximizes

the distance from the last known position of j. That is, xfar
j

(ti
k
) ∈ argmaxy∈X j

‖x j(t
i
k
) − y‖.

Then, ‖xfast
j
−x j(t

i
k
)‖

(

1 − e−(t−ti
k
)
)

≤ ‖xfar
j
−x j(t

i
k
)‖

(

1 − e−(t−ti
k
)
)

, holds for every t ∈ (ti
k
, t

j

l+1
].

Since the left-hand side of this inequality is an upper bound for the movement of j, for

t ∈ (ti
k
, t

j

l+1
], we have that

‖x j(t) − x j(t
i
k)‖ ≤ ‖xfar

j (ti
k) − x j(t

i
k)‖

(

1 − e−(t−ti
k
)
)

. (6.5)

At this point, we can neglect the assumption of x j(t
i
k
) < BR j(t

j

l
), since, if x j(t

i
k
) ∈

BR j(t
j

l
), then the solution is trivially x j(t) = x j(t

i
k
), for t ∈ (ti

k
, t

j

l+1
]. Therefore, the upper

bound in (6.5) holds.

Lemma 6.1. Inequality (6.5) holds for all ti
k
< t.

Next, we can find an upper bound for ‖x−i(t) − x−i(t
i
k
)‖ as

∑

j∈I\{i}
‖x j(t

i
k) − xfar

j (ti
k)‖

(

1 − e−(t−ti
k
)
)

≥ ‖x−i(t) − x−i(t
i
k)‖. (6.6)

This upper bound only depends on information available to player i up to time ti
k
. We

will use it next to determine the time-update instant ti
k+1

.

Next, we use the Lipschitz property of ui, to obtain

ui(x⋆i (ti
k), x−i(t)) ≥ui(x⋆i (ti

k), x−i(t
i
k)) − Li‖x−i(t) − x−i(t

i
k)‖, (6.7)
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and similarly,

ui(xi(t), x−i(t
i
k)) ≤ui(xi(t

i
k), x−i(t

i
k)) + Li‖x−i(t) − x−i(t

i
k)‖. (6.8)

The following lemma states a combination of the bounds in ui in equations (6.7), (6.8),

and the bound on ‖x−i(t) − x−i(t
i
k
)‖ from Lemma 6.1, to formulate the self-triggering

update condition for each player.

Lemma 6.2. Let Γ = (I, X, u) be an ordinal potential game with potential function Φ,

fulfilling all properties defined in Theorem 6.1. Assume that u is Lipschitz over X. Let

W be a continuous fiber bundle over X such that Wi(x) is compact and convex for all

x ∈ X, i ∈ I. Let us consider the self-triggered best-response dynamics as defined in

equation (6.4). Let ε > 0, and suppose ti
k
> t0 is the last time instant when agent i

updated information about other agents. Consider any x⋆
i
(ti

k
) ∈ BRi(x−i(t

i
k
)). Let ti

wait
be

a positive constant. If ti
k+1

> ti
k

is such that either

ui(x⋆i (ti
k), x−i(t

i
k))

− 2Li

∑

j∈I\{i}
‖x j(t

i
k) − xfar

j (ti
k)‖

(

1 − e−(ti
k+1
−ti

k
)
)

= ui(xi(t
i
k+1), x−i(t

i
k)) + ε, (6.9)

provided xi(t
i
k
) < BRi(x−i(t

i
k
)), or ti

k+1
= ti

k
+ ti

wait
, if xi(t

i
k
) ∈ BRi(x−i(t

i
k
)), then it holds that

Φ(xi(t), x−i(t)) < Φ(x⋆
i
(ti

k
), x−i(t)) for all t ∈ (ti

k
, ti

k+1
], such that xi(t

i
k
) < BRi(x−i(t

i
k
)), and

such that Φ(xi(t), x−i(t)) = Φ(xi(t
i
k
), x−i(t)), for all t ∈ (ti

k
, ti

k+1
], if xi(t

i
k
) ∈ BRi(x−i(t

i
k
)).

It also holds that ti
k+1 − ti

k
≤ max

{

log
(

2LiN max j∈I ρ(X j)

2LiN max j∈I ρ(X j)−Liρ(Xi)−ε

)

, ti
wait

}

. This upper

bound follows from (6.9), but we omit its computation for brevity. It will be important

to establish precompactness of solutions in the analysis in Section 6.4.

Remark 6.1. Here, we analyze the behavior of player i if its dynamics was given by

ẋi ∈ BRi(x−i(t
i
k)) − xi(t), (6.10)

for t ∈ (ti
k
, ti

k+1]. If for some time in (ti
k
, ti

k+1], player i is not in its best-response set,

the self-triggering time-update policy of Lemma 6.2 guarantees that the payoff at time
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t is at worst less than the last known best payoff by some ε > 0, provided xi(t
i
k
) <

BRi(x−i(t
i
k
)). Notice that ti

k+1 is the maximum time when this property holds. Then, at ti
k+1

information is updated by player i and uncertainty becomes zero again, leading to a new

best-response set. This will produce a larger or equal payoff than the current action’s

payoff. In particular, if the payoff value is the same, then xi(t
i
k+1) ∈ BRi(x−i(t

i
k+1)).

Suppose a player has reached its best-response set and follows the dynamics

given by (6.10). Once in BRi(x−i(t
i
k
)), the motion of player i can evolve arbitrarily in

the set. In the meantime, the evolution of BRi(x−i(t)) can lead to a situation where

BRi(x−i(t)) , BRi(x−i(t
i
k
)), while xi(t) ∈ BRi(x−i(t)). In this case, moving toward a

point y ∈ BRi(x−i(t
i
k
)) \ BRi(x−i(t)) will clearly produce a lower payoff. Thus, the set

of velocities that an agent can take needs to be restricted, and it makes necessary to

estimate how the best-response set will evolve. Alternatively, one can leverage the fact

that xi(t
i
k
) ∈ BRi(x−i(t

i
k
)), to prescribe the agent velocity to be zero. This motivates the

definition of a self-triggered best-response dynamics as in (6.4), and not as in (6.10).

By means of this, one can guarantee Φ(xi(t
i
k
), x−i(t)) = Φ(xi(t), x−i(t)) if and only if

xi(t) ∈ BRi(x−i(t
i
k
)). ⋄

Remark 6.2. The self-triggered best-response dynamics in (6.4) may lead to a zeno-

behavior in some examples. That is, as agents approach their best-response sets, they

may require information updates more and more often, creating an accumulation point

in the time-update sequence. This is a typical trait of general event and self-triggered

dynamics. In general, the only way to guarantee a lower bound on the time between

updates by this approach is to force it, for example by taking max{tk
i
+∆tmin, t

k+1
i
}, where

∆tmin is a small positive number. Introducing this constant is an acceptable trade-off: on

the one hand, the nature of the self-triggered approach is still preserved as much as pos-

sible, i.e., if possible, communications will be reduced by being triggered at times larger

than ∆tmin until being close to converge, leading to a type of practical convergence. On

the other hand, the zeno-behavior is forced to disappear. ⋄
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6.4 System analysis via invariance theory

In order to formally analyze the self-triggered best-response dynamics, we over-

approximate it by means of a larger hybrid system whose solutions include those of

interest. To do this, first we associate each agent with a data structure Pi = (xi, xi
−i
, ti) ∈

X × R≥0, where xi
−i
= (xi

j
) j∈I ∈ X−i represents the information that agent i maintains on

all other agents j , i, i.e., xi
−i

(t) = x−i(t
i
k
) for t ∈ (ti

k
, ti

k+1], and ti = t − ti
k

for t ∈ (ti
k
, ti

k+1].

Then, P = (P1, . . . , PN) ∈ (X × R≥0)N = O is an extended state that includes the data

structure Pi for each agent. Finally, let us define the projection π : O → ∏

i∈I R
ni as

π(P) = (πi(P)) = (x1, . . . , xN). Using this new notation, we can write the self-triggering

condition of Lemma 6.2 as ∆i(P) ≤ 0, where

∆i(P) =ui(x⋆i , xi
−i)

− 2Li

∑

j∈I\{i}
‖xi

j − xfar
j ‖

(

1 − e−ti
)

− ui(xi, xi
−i) − ε,

(6.11)

with ‖xi
j
− xfar

j
‖ = maxy∈X j

‖xi
j
− y‖, and x⋆

i
∈ BRi(xi

−i
). We now define a hybrid system

on O = (Rd × R)N as follows. First, let C ⊂ O be the set C = ∩i∈ICi = ∩i∈I({P ∈
O | ∆i(P) ≥ 0, xi ∈ Wi(xi, xi

−i
) \ BRi(xi

−i
)} ∪ {P ∈ O | ti ≤ ti

wait
and xi ∈ BRi(xi

−i
)}).

Secondly, we let D = ∪i∈I({P ∈ O | ∆i(P) ≤ 0 and xi ∈ Wi(xi, xi
−i

) \ BRi(xi
−i

)} ∪ {P ∈
O | ti ≥ ti

wait
and xi ∈ BRi(xi

−i
)}). Define the flow map F : O ⇒ O as F(P) = Πi∈IFi(P),

with Fi(P) = {(x⋆
i
− πi(P), 0, 1) | x⋆

i
∈ BRi(xi

−i
)}, for all i ∈ I. Define the jump map

G : O ⇒ O so that Y ∈ G(P) if and only if Y i ∈ {P, (xi, x−i, 0)}, for each i ∈ I. Finally,

define the hybrid systemH = (F,G,C,D) as

H :























Ṗ ∈ F(P), if P ∈ C,

P+ ∈ G(P), if P ∈ D.

Solutions for this system are given by functions φ : E → O, such that for each j ∈
N it holds that t 7→ φ(t, j) is locally absolutely continuous on the interval I j = {t ∈
R≥0 | (t, j) ∈ E}, where E is a hybrid domain; see [79] for the definition of this concept.

Let SH be the set of all solutions of H . By definition of H , for each P ∈ D, it holds
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that P ∈ G(P). It means that the hybrid system overapproximation generates solutions

that remain at the same fixed point P via infinite switching. However, note that these

are not solutions of the self-triggered best-response dynamics. Additionally, the set SH

contains trajectories that allow motion inside BRi(xi
−i

) when xi has reached BRi(xi
−i

), see

Remark 6.1. Given that ∆i is a continuous function of P, the sets C and D are closed sets

in O. Under the assumption that the ui are Lipschitz over X, and Φ is component-wise

quasiconcave, one can see that F has compact, convex values, it is also locally bounded,

and outer semicontinuous in C. The map G is outer semicontinuous by construction.

LetΨ = −Φ, and consider its extension Ψ̃ : O→ R defined as Ψ̃(P) = Ψ(π(P)) =

Ψ(x1, . . . , xN). In this way, Ψ̃ is a continuous function on O, and a locally Lipschitz func-

tion on a neighborhood of C. We now focus on the trajectories of H whose velocities

take values in a subset of the differential inclusion. In other words, we define F : O⇒ O

as F = Πi∈IF i(P), where

F i(P) =























(0, 0, 1), if xi < int(BRi(xi
−i

)),

(BRi(xi
−i

) − xi, 0, 1), otherwise.

We have that F(P) ⊆ F(P) for all P ∈ O. Note that F selects the velocities according to

the self-triggered dynamics.

Lemma 6.3. For all P ∈ C it holds that maxLFΨ̃(P) ≤ 0, and for all P ∈ D, it holds

that maxP+∈G(P) Ψ̃(P+) −Ψ̃(P) ≤ 0. Moreover, if P ∈ C is such that for some i ∈ I,

xi < BRi(xi
−i

), then maxLFΨ̃(P) < 0.

Proof. The condition maxP+∈G(P) Ψ̃(P+) − Ψ̃(P) ≤ 0 holds trivially, as Ψ̃(P+) = Ψ̃(P) for

any P ∈ O and P+ ∈ G(P). In order to verify the first condition, we follow along the

lines of the proof of Theorem 6.1.

Consider P ∈ C. Any V ∈ F(P) can be written as V = (V1, . . . ,VN), where each

component V i has the form V i = (x⋆
i
−xi, 0, 1), for some x⋆

i
∈ BRi(xi

−i
) if xi < BRi(xi

−i
), or

V i = (0, 0, 1) if xi ∈ BRi(xi
−i

). Let us write V = P⋆ − P, for an appropriate P⋆. Consider

any ζ ∈ ∂Ψ̃(P) such that ζ = limk ∇Ψ̃(Yk), with Yk → P, and Yk
< ΩΨ̃. For convenience,

let us recall that ΩΨ̃ is the set of points at which Ψ̃ is non-differentiable. Since Ψ̃ is

independent of the components xi
−i

, ti, note that ζ i = (πi(ζ), 0, 0). If V i = (0, 0, 1) for
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all i, then it holds trivially that ζT V = 0. Suppose then that V i
, 0 for some i ∈ I.

Since Yk → P we can write VTζ = limk→∞(P⋆ − Yk)∇Ψ̃(Yk). Denote and yk = π(Yk).

Using component-wise pseudoconvexity and component-wise quasiconvexity of Ψ, the

computations in the proof of Theorem 6.1 can be repeated until we reach that VTζ ≤
∑

i∈I
xi<BRi(x)

bi(x⋆
i
, xi), for all ζ ∈ ∂Ψ̃(P).

Now, for P ∈ C, either the condition ∆i(P) ≥ 0 holds for some i or xi ∈ BRi(xi
−i

),

for all i ∈ I. Then, by Lemma 6.2 it is true that Ψ(x⋆
i
, x−i) − Ψ(x) ≤ 0, for all i ∈ I.

Thus, we have that VTζ ≤ 0. The result can be extended for any ζ ∈ ∂Ψ̃(x) similarly to

Theorem 6.1. Therefore, maxF LFΨ̃(P) = maxV,ζ VTζ ≤ 0.

To prove the second part of this lemma, note that maxF LFΨ̃(P) = maxV,ζ VTζ,

and maxV,ζ VTζ ≤ maxx⋆∈{y | yi∈BRi(xi
−i

)}
∑

i∈I
xi<BRi(x)

bi(x⋆
i
, xi). Since bi(x⋆

i
, xi) is continuous

for all i ∈ I, and BRi(xi
−i

) is a compact set, the right-hand side of the above inequality

achieves its maximum at some x̄⋆
i
∈ BRi(xi

−i
) for all i ∈ I. Then, if for some i ∈ I,

xi < BRi(xi
−i

), since P ∈ C, it must be that ∆i(P) ≥ 0. By Lemma 6.2, this implies

bi(x⋆
i
, xi) < 0 for all x⋆

i
∈ BRi(xi

−i
) and, in particular, bi(x̄⋆

i
, xi) < 0. Thus, the strict

inequality maxLFΨ̃(P) < 0 follows.

�

Theorem 6.2. Let Γ = (I, X, u) be an ordinal potential game with potential function Φ,

fulfilling all properties defined in Theorem 6.1. Assume that u is a Lipschitz continuous

function over X. Let W be a continuous fiber bundle over X such that Wi(x) is compact

and convex for all x ∈ X, i ∈ I. Let (6.4) be the self-triggered best-response dynamics

for RW(Γ). Then, all precompact solutions of the self-triggered best-response dynamics

converge to the set X⋆ of constrained Nash Equilibria.

Proof. Consider a precompact solution φ of the self-triggered best response dynam-

ics which, in particular, is a precompact solution of H . Then, the ω-limit set Ω(φ)

is nonempty, compact, and weakly invariant [79]. Since Ψ̃ satisfies Lemma 6.3, then

Ω(φ) ⊆ Ψ̃−1(r) for some r. First, the conditions in Lemma 6.3 imply that Ψ̃ ◦ φ is non-

increasing and bounded below. Let r satisfy that limt→∞, j→∞ Ψ̃(φ(t, j)) = r. Take any

P ∈ Ω(φ). By definition, liml→∞ φ(tl, jl) = P, with (tl, jl) ∈ E. Since Ψ̃ is continuous,

then it holds that limk→∞ Ψ̃(φ(tk, jk)) = Ψ̃(P) = r.

Take a P ∈ Ω(φ). Since Ω(φ) is weakly forward invariant, there exists a solution
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to the self-triggered best response dynamics such that P = φ(t0, j0) for some (t0, j0).

Suppose that there is an i such that for Pi = (xi, xi
−i
, ti), we have xi < BRi(xi

−i
). Then, by

Lemma 6.3 we have that maxLFΨ̃(P) < 0. If P ∈ C, and the solution flows, then it must

be that Ψ̃(φ(t+0 , j0)) < r, which contradicts P ∈ Ψ̃−1(r). Thus, it must be that P ∈ D \ C.

This implies that there exists an i such that either ∆i(P) ≤ 0 or ti
wait ≤ ti. However, after

the jump, P = φ(t0, j0 + 1) ∈ C. Then, either we have that πi(P) ∈ BRi(π(P)), for some

i ∈ I, in which case the conclusion follows, or else it will continue flowing afterwards,

which leads to a contradiction again. �

6.5 Summary

In this chapter, we characterize the convergence properties of the continuous

time best-response dynamics for a continuous-action-space potential game, with N play-

ers and ni-dimensional action space for each player i. We show under general conditions

that all solutions of the best-response dynamics of a potential game will converge to the

set of Nash equilibria set of the game. With the aim of making the best-response dy-

namics more practical, a self-triggered communication strategy is proposed to reduce

communications among agents while still guaranteeing convergence to the desired con-

figurations. The self-triggered best response dynamics is modeled as a hybrid system,

and convergence analysis is made using analysis tools in [79].

As a future line of study, the effects of delays in the self-triggered best response

dynamics can be analyzed.
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Chapter 7

Conclusions

In this thesis, we present multi-agent algorithms for coordination of resources in

smart grids. In general, we propose various algorithms to coordinate storage, generation,

and demand resources in a power grid using distributed computation and decentralized

decision making.

We address three different energy management problems, each with a specific

algorithm, which works under particular communication assumptions.

First, we address the problem of multi-agent coordination of Plug-in Electric Ve-

hicles (PEVs) under two different paradigms, i) vehicle-1-grid (V1G), in which vehicles

only act as flexible loads that can charge whenever it is more convenient for the grid/user

performance, and ii) vehicle-2-grid (V2G), in which vehicles behave like batteries that

can inject power back into the grid if needed. Both approaches use non-PEV load and

usage forecast information for the decision making process. For the V1G problem,

we introduce a load-balancing algorithm that uses information on the aggregate energy

prices to drive PEV load to an optimal setting. The decision making process for each

PEV is carried out by an agent that controls such PEV. The V2G problem introduces

a hierarchical framework that computes an optimal V2G charging/discharging strategy,

which also satisfies line capacity constraints in the distribution side of the grid.

Following, we introduce a hierarchical approach for indirect control of deferrable

loads in a demand response event. This framework takes into account the fact that many

loads only admit on/off control, and provides an algorithm that computes a sub-optimal

solution that satisfies maximum power constraints. The algorithm does not require users
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to share private information, but only an estimate of its demand. The solution for the

on/off loads is computed in a greedy-like way, by computing a threshold to decide on

the loads that must be turned off.

Finally, we present a framework that uses optimal AC power flow to decide on

the optimal usage of storage and generation resources in a microgrid. This computation

is distributed, and requires communication between neighboring nodes of a microgrid,

according to certain network topology. This network topology is closely related to the

microgrid topology.

The algorithms that we propose throughout this thesis are provably correct, and

their convergence properties are established via theoretical results. In addition, we

present simulations that complement the theoretical results. In particular, for the prob-

lem of control of resources in microgrids, we present a simulation study to compare

the two proposed algorithms under different scenarios. We have found that the first ap-

proach was prohibitively slow, which encouraged us to develop the second approach,

which presented an improvement on the speed of convergence of more than two orders

of magnitude.

As a future direction, we propose to evaluate the practical implementation of the

proposed algorithms in real life scenarios. The impact of communications required for

the algorithms to compute a solution on the operational costs of a power systems must

be studied. Additionally, the trade-off between benefits for end-users and benefits for

utility companies and system operators in the obtained solutions is an open problem that

should be addressed.
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