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ABSTRACT OF THE DISSERTATION

Local existence and breakdown of scattering behavior for semilinear Schrödinger equations

by

Gyu Eun Lee

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Rowan Brett Killip, Co-Chair

Professor Monica Vişan, Co-Chair

In this thesis, we study the behavior of solutions to some semilinear Schrödinger equations

at short and long time scales. We first consider the nonlinear Schrödinger equations with

power-type nonlinearity in three dimensions with periodic boundary conditions. We show

that this equation is locally well-posed in critically scaling Sobolev spaces Hs(T3). We then

investigate the long-time asymptotic behavior of solutions to NLS in Euclidean space with

defocusing, mass-subcritical power-type and Hartree nonlinearities. We discuss the divide

between the wealth of results on the scattering theory for these equations in weighted L2

spaces and the paucity of analogous results in L2(Rd). To explain this, we show that the

scattering problems for these equations are well-posed in weighted L2 spaces in the sense

that the scattering operators attain their natural and maximal regularity. Furthermore, we

show that these scattering problems are ill-posed in L2 in the sense that the scattering

operators cannot be extended to all of L2 without losing a positive (and, in the case of

Hartree, infinite) amount of regularity.
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CHAPTER 1

Introduction

1.1 Nonlinear Schrödinger equations

In this thesis we study aspects of the short-time and long-time behavior of solutions to certain

nonlinear Schrödinger equations (NLS), which are a class of nonlinear partial differential

evolution equations taking the form

i∂tu+ ∆u = F (u, t, x). (1.1.1)

Here t ∈ R, x ∈ X for an appropriate choice of spatial domain X (typically Euclidean space

Rd or the torus Td), and u : R × Rd → C complex spacetime scalar field. Such equations

comprise a wide class of models for describing various wave phenomena.

The name derives from their close relationship with the free/linear Schrödinger equation

i∂tu+ ∆u = 0. (1.1.2)

Solutions to this equation satisfying u(t = 0) = u0 are denoted eit∆u0, where eit∆ is known

as the free/linear propagator for the Schrödinger equation.

The behavior of solutions to the free Schrödinger equation is characterized by dispersion,

referring to the fact that different frequency components of a solution travel at different

velocities, which manifests as a tendency for solutions to spread out in space while decaying

in amplitude over time. Nonlinear Schrödinger equations tend to inherit significant aspects

of their behavior from the properties of the free evolution. As such, they are classic examples

of another large class of evolution equations known as nonlinear dispersive PDEs, which
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are equations characterized by a dispersive component to their behavior. In such equations,

the analysis of solutions typically centers around understanding the interaction between the

dispersive effect and the effects of the nonlinearity F .

Within this thesis we are interested in two cases of the nonlinearity F : the power-type

nonlinearity F (u) = ±|u|pu, corresponding to the power-type nonlinear Schrödinger equation

(pNLS)

i∂tu+ ∆u = ±|u|pu, (1.1.3)

and the Hartree nonlinearity F (u) = ±(|x|−γ ∗ |u|2)u, corresponding to the Hartree equation

(HNLS)

i∂tu+ ∆u = ±(|x|−γ ∗ |u|2)u. (1.1.4)

These are among the most widely studied nonlinear Schrödinger equations, both as objects

of mathematical interest and as physical models. pNLS, for instance, is a universal model

of wave propagation in weakly nonlinear media, and arises in the study of water waves in

deep ocean, light propagation in fiber optics, and Langmuir waves in hot plasmas, while both

NLS and Hartree arise as limiting effective equations in the study of many-body quantum

systems.

From the mathematical perspective, the primary objectives in the study of nonlinear

Schrödinger equations are the following:

1. Local existence and well-posedness: the existence and continuous dependence of solu-

tions upon initial data in an appropriately chosen function space, at least up to short

times.

2. Global existence and well-posedness: the extension of the aforementioned local-in-time

solutions to all times, or the demonstration of finite-time blowup.

3. Behavior: the detailed description of how solutions behave at various time scales, for

instance as t→ ±∞.
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Our results in this thesis are mainly related to the first and third of these objectives.

1.2 Local well-posedness for periodic NLS

We first turn our attention to the question of local existence and well-posedness. We focus

in particular on the Cauchy problem for pNLS with periodic boundary conditions, i.e. with

spatial domain X = Td, where Td = (R/Z)d is the d-dimensional torus:
i∂tu+ ∆u = ±|u|pu, (t, x) ∈ R× Td,

u(0, x) = u0(x).

(1.2.1)

Here, we allow for the case of an irrational rectangular torus by embedding the irrationality

into our choice of Riemannian metric, and denoting the corresponding Laplace-Beltrami

operator by ∆.

This equation, when posed on Rd, admits a scaling symmetry: if u(t, x) is a solution to

(1.2.1), then so is uλ(t, x) = λ−2/pu(λ−2t, λ−1x). This yields the notion of scaling-critical

regularity sc = d
2
− 2

p
, which is the regularity s at which the Ḣs(Rd)-norm is invariant under

the scaling, i.e. ‖uλ‖Hsc (Rd) = ‖u‖Hsc (Rd). We carry this notion into the Td setting as well.

The problem of local well-posedness for periodic NLS in critically scaling Sobolev spaces

has a rich and storied history. Critical local well-posedness in the periodic setting has always

been a greater challenge than in the Euclidean space setting. This is because the disper-

sive effect of the free Schrödinger evolution is weaker on compact manifolds since different

frequency components can interact with each other repeatedly over long times, whereas in

Euclidean space high-frequency components quickly move out to spatial infinity and have

limited interactions with low-frequency components. This manifests through the Strichartz

estimates, which are estimates on spacetime norms of the free Schrödinger propagator eit∆.

Though scaling-invariant Strichartz estimates are easily obtainable in Euclidean space, the

corresponding estimates in the periodic setting are noticeably more challenging to come by.
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Scaling-invariant Strichartz estimates are crucial to solving the periodic Cauchy problem

in critically-scaling Sobolev spaces. The first such estimates for the Schrödinger equation on

Td are due to Bourgain [5], who obtained a range of scale-invariant Strichartz estimates on

square tori and applied them to the local and small-data global theory for periodic NLS. In

the same paper (and its companion work [6]), Bourgain introduced the idea of working in

function spaces which are adapted to the dispersive symbol of the linear propagator, in this

case the Xs,b spaces.

Since then, progress on the scaling-critical Cauchy problem has progressed largely along

these two ideas. Herr, Tataru, and Tzvetkov introduced the adapted function spaces Xs and

Y s in [30], and used them to prove local wellposedness for the H1-critical pNLS on a partially

irrational torus in d = 4. This built off earlier work by Hadac, Herr, and Koch [25], which

introduced the atomic spaces Up and V p (precursors to Xs and Y s), and by Herr, Tataru, and

Tzvetkov [29], which established local wellposedness and small-data global wellposedness for

H1-critical pNLS on a square torus with d = 3. Ionescu and Pausader extended the result

of [30] to obtain large-data global wellposedness H1-critical defocusing pNLS on T3 [32]. In

[24], Guo, Oh, and Wang proved a range of new scale-invariant Strichartz estimates for the

linear Schrödinger evolution on irrational tori. As an application, they extended the result

of [29] to a partially irrational torus with d = 3. They also established local wellposedness

for Equation (1.2.1) for d ∈ {2, 3, 4} and certain choices of p = 2k, k ∈ N: d = 2 and k ≥ 6;

d = 3 and k ≥ 3; and d ≥ 4 and k ≥ 2. Strunk extended this result to d = 2, k ≥ 3 and

d = 3, k = 2, using multilinear Strichartz estimates [54].

The problem has seen an explosion of progress in the last six years. This is due to the proof

of the `2-decoupling conjecture by Bourgain and Demeter [8], which implies the full range of

scale-invariant Strichartz estimates on square tori. Killip and Vişan extended these estimates

to rectangular irrational tori, and used them to prove local wellposedness for H1-critical NLS

for such tori with d = 3, 4 [34]. Notably, they proved a bilinear version of the scale-invariant

Strichartz estimates, which allowed for the proof to avoid the use of complicated multilinear
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estimates which were prevalent in earlier results.

The first of the results we will discuss in this thesis is a continuation of the above works:

Theorem 1.2.1 (Local well-posedness in Hsc(T3) [40]). Let p ≥ 2, and fix d = 3. Then

Equation (1.2.1) is well-posed in Hsc(T3). In particular, for any u0 ∈ Hsc(T3), there exists

a time of existence T = T (u0) and a unique solution u ∈ Ct([0, T );Hsc(T3))∩Xsc([0, T )) to

(1.2.1).

Chapter 2 is devoted to the proof of this result. Notably, this result recovers the H
1
2 -

critical NLS in three dimensions, corresponding to the cubic NLS p = 2. It also covers

fractional-power nonlinearities, whereas all previous results were limited to even powers p

in order to take advantage of the algebraic nature of the nonlinearity |u|pu for even p. Our

proof relies primarily on the bilinear scale-invariant Strichartz estimates of [34]. To address

the case of fractional p, this is combined with a paradifferential linearization introduced by

Bony [4] in order to perform a frequency analysis of the nonlinearity.

1.3 Mass-subcritical scattering

Next we turn to the problem of describing the long-time behavior of solutions to nonlinear

Schrödinger equations set in Euclidean space. Here the distinction between the signs in the

nonlinearities ±|u|pu, ±(|x|−γ ∗ |u|2)u becomes relevant. The + sign is referred to as defocus-

ing, while the − sign is referred to as focusing. In the focusing case, the nonlinearity tends

to fight the dispersive nature of the Laplacian, potentially leading to finite-time blowup and

soliton formation. In the defocusing case, the nonlinearity tends to cooperate with the dis-

persion, and consequently dies out due to dispersive decay. This leads to long-time behavior

which is strongly influenced by the free evolution.

In this thesis we are primarily concerned with the defocusing case. We restrict our at-

tention to the mass-subcritical regimes for Equations (1.1.3) and (1.1.4) with defocusing

5



nonlinearity, which are 0 < p < 4
d

for pNLS and 0 < γ < 2 for HNLS. These equations obey

conservation laws for mass

M(u(t)) =

∫
Rd
|u(x)|2 dx = M(u(0)) (1.3.1)

and energy

E(u(t)) =
1

2

∫
Rd
|∇u(x)|2 +Q(u(t)) = E(u(0)), (1.3.2)

where the potential energy term Q(u(t)) is given by

Q(u(t)) =
1

p+ 2

∫
Rd
|u(x)|p+2 dx (1.3.3)

in the case of pNLS and by

Q(u(t)) =
1

4

∫
Rd

(|x|−γ ∗ |u|2)|u(x)|2 dx (1.3.4)

in the case of HNLS. The standard conjecture for the asymptotic long-time behavior of

defocusing semilinear nonlinear Schrödinger equations like these is scattering, i.e. convergence

to a free evolution.

For X a Banach space, we say that asymptotic completeness holds (in forward time) for

a general nonlinear Schrödinger equation (1.1.1) if for all initial data u0 ∈ X, there exists

u+ ∈ X such that the global solution u ∈ Ct,locX to Equation (1.1.1) with Cauchy data

u(t = 0) = u0 satisfies the asymptotic relation

lim
t→+∞

‖e−it∆u(t)− u+‖X = 0.

When this occurs, we say that u(t) scatters to u+. In this case we may define the initial-to-

scattering-state operator

S : X → X : S(u0) = u+. (1.3.5)

Similarly, we say that the (forward) wave operator exists on X for Equation (1.1.1) if for

all final states u+ ∈ X, there exists a unique global solution u ∈ Ct,locX to Equation (1.1.1)

which scatters to u+. When this holds, we may define the wave operator

W : X → X :W(u+) = u(t = 0). (1.3.6)
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When the two operators exist, they are necessarily inverses of each other. Analogous def-

initions can be made in backwards time, i.e. as t → −∞. When asymptotic completeness

holds and the wave operator exists on X (in both forward and backward time), we say that

scattering holds for the equation on X. Scattering theory for these equations revolves around

the question of the existence of these operators.

The existing scattering theory for defocusing pNLS and HNLS in the mass-subcritical

regime is largely limited to data in weighted spaces X = Σ`,m, which are Hilbert spaces

defined by the norms

‖f‖2
Σ`,m = ‖f‖2

L2 + ‖|∇|`f‖2
L2 + ‖|x|mf‖2

L2 . (1.3.7)

The case Σ1,1 is denoted by Σ = H1 ∩ FH1, and Σ0,k is also denoted FHk.

We briefly review the literature on the scattering theory of mass-subcritical pNLS and

HNLS. We begin with pNLS: for the reader’s convenience, these results are summarized in

Table 1.1. The global theory for pNLS effectively begins with the work of Ginibre and Velo

[18,19], who proved who established local and global well-posedness, rigorously justified the

conservation laws, and proved scattering in Σ for initial/final data in Σ, under the restriction

d ≥ 2, 4
d
≤ p < 4

d−2
. The first extension to mass-subcritical NLS is due to Tsutsumi [57],

who extended the range of nonlinearities to α(d) < p < 4
d
, where α(d) =

2−d+
√

(d−2)2+16d

2d
is

known as the Strauss exponent, a threshold exponent demarcating pNLS nonlinearities for

which critically scaling global spacetime bounds for the solutions can be proved using the

pseudoconformal energy law. Hayashi and Tsutsumi [27] gave another proof of scattering in

the same range of p that avoided the use of the pseudoconformal transform, and also showed

that the scattering operators are continuous on Σ. Cazenave and Weissler [11] improved the

range to 4
d+2
≤ p < 4

d
assuming small data, and recovered p = α(d) for large data, d ≥ 3.

Ginibre, Ozawa, and Velo [17] further improved the small-data range to 4
d+2s

< p < 4
d

by

working in Σs,s, 0 < s < 2. Nakanishi and Ozawa [48] recovered p = 4
d+2s

≤ p < 4
d

for

small data in Σs,s, and p = α(d) for large data in Σ without restriction on dimension. Kita

[36], Kita and Ozawa [37], and Masaki [42] investigated the asymptotic expansions of the
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scattering solutions near t = ∞. More results are available if one relaxes the topology of

convergence to the free evolution. Tsutsumi and Yajima [58] showed that if 2
d
< p < 4

d

(the short-range regime), then global solutions with initial data in Σ scatter in L2 norm.

Nakanishi [47] showed that under the same hypotheses, every final state in L2 has a global

solution which scatters to it in L2, and Murphy [46] showed that such a global solution is

almost surely unique in a probabilistic sense, establishing the almost-sure existence of wave

operators in the L2 topology. These results are optimal in light of the work of Glassey [21],

Strauss [51], and Barab [2], which established that there is no nontrivial scattering theory for

defocusing pNLS in the long-range regime 0 < p ≤ 2
d
: any solution which converges to a free

evolution in the L2 topology must be the zero solution. Instead, in the long-range regime the

conjectured behavior is modified scattering, i.e. convergence to a free evolution modulated

by a nonlinear phase.

The scattering theory of HNLS mirrors that of pNLS; these results are summarized in

Table 1.2. The first positive results on scattering are due to Ginibre and Velo [20], who

established local and global well-posedness and scattering in Σ`,1 for ` ≥ 1 assuming 2 <

γ < min(4, d), which corresponds to a range of mass-supercritical nonlinearities. The first

results in the mass-subcritical range were obtained by Strauss [52,53], who proved existence

of wave operators on L
4d

2d+γ ∩ L2 for 4
3
< γ < min(4, d). The exponent γ = 4

3
plays a role for

HNLS similar to that played by the Strauss exponent α(d) for pNLS. This was then brought

into the setting of weighted spaces by Hayashi and Tsutsumi [28], who proved scattering in

Σ`,m, `,m ≥ 1, for d ≥ 2 and the same range of γ. Hayashi and Ozawa [26] were able to drop

the regularity assumption on the scattering data, showing existence of the wave operators

on FHk, k ≥ 1, in d ≥ 3, 4
3
< γ < 2. Nawa and Ozawa [49] improved this result to d ≥ 2,

1 < γ < 2. Masaki [43] showed global well-posedness and scattering in the critically scaling

weighted L2 spaces FḢsc , where sc = 1 − γ
2
, 1 < γ < 2, d ≥ 2, assuming global spacetime

bounds for the solution in FḢsc . Again, relaxing the topology of convergence to the free

evolution results in a greater range of results. Hayashi and Tsutsumi [28] proved that for

8



d ≥ 2 and 1 < γ < min(4, d), global solutions with initial data in Σ scatter in L2. Hayashi

and Ozawa [26] showed the analogous result for initial data in FH1 for 1 < γ < min(2, d).

As for the problem of the wave operators, Holmer and Tzirakis [31] showed that for d = 2

and 1 < γ < 2, for any H1 scattering state there exists a global H1 solution u which scatters

to it. However, because this global solution u is not known to be uniquely determined by u+,

this falls short of defining the wave operator. In all of these results, the lower threshold γ = 1

is sharp, playing a role analogous to p = 2
d

for pNLS: for γ ≤ 1, it was shown by Glassey

[22] and Hayashi and Tsutsumi [28] that no nontrivial scattering theory with convergence in

L2-norm exists. Cho, Hwang, and Ozawa [12,13] extended these results to potentials V with

Fourier transform behaving like |ξ|−(d−γ) near the origin, 0 < γ ≤ 1. Thus the scattering

problem for mass-subcritical HNLS also splits along the short-range regime 1 < γ < 2, for

which a nontrivial scattering theory is possible, and the long-range regime 0 < γ ≤ 1 for

which no such theory exists. The conjectured asymptotic behavior in the long-range regime

is modified scattering in the HNLS case as well.

Our work in this thesis addresses a defect in the scattering theory for short-range defocus-

ing mass-subcritical pNLS and HNLS, which is the lack of a scattering theory on L2. Indeed,

we are in a rather curious position when it comes to the understanding of the long-time

behavior of solutions to these equations in L2. Both equations are well-known to be globally

well-posed in L2, a consequence of their mass-subcritical nature and the conservation of mass

(1.3.1). However, all positive results on the short-range scattering theory impose a weighted

condition on the initial or scattering data, even if (as in the case of [26,28,58]) the scattering

behavior is only obtained in the weaker topology L2. Therefore although we know that all L2

solutions to our equations exist and are global, we have no understanding of their asymptotic

behavior outside a small subset of solutions. Although Σ is not a totally unnatural space to

consider Schrödinger equations (it emerges as the energy space after a Lens transform [55]),

the situation in L2 does leave something to be desired. Our work aims to explain this defect

in the theory by showing that the scattering problem in L2 is ill-posed.
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Table 1.1: Summary of scattering theory for mass-subcritical pNLS

Type of result Result

Scattering in Σ

Ginibre-Velo ’79: 4
d
≤ p < 4

d−2
, d ≥ 2: LWP, GWP, conservation

laws, first scattering result in Σ

Tsutsumi: ’85: α(d) < p < 4
d
: scattering in Σ

Hayashi-Tsutsumi ’87: α(d) < p < 4
d
: S and W are continuous

Cazenave-Weissler ’92: p ≥ 4
d+2

: small data scattering; p = α(d),

d ≥ 3: large data scattering

Ginibre-Ozawa-Velo ’94: p > 4
d+2s

: small data scattering in Σs,s

Nakanishi-Ozawa ’01: p = 4
d+2s

: small data scattering in Σs,s); p =

α(d): large data scattering in Σ

Kita ’03, Kita-Ozawa ’05: p > α(d): obtained first term in asymp-

totic expansion of u(t)− eit∆u+

Masaki ’09: α(d) ≤ p < 4
d−2

: Taylor expansion of u(t)− eit∆u+ near

t =∞ to maximal order allowed by nonlinearity

Asymptotic

completeness

Tsutsumi-Yajima ’84: 2
d
< p < 4

d
: scattering in L2 for initial data

in Σ

Final-state

problem

Nakanishi ’01: 2
d
< p < 4

d
: every L2 scattering state has L2 global

solution scattering to it

Murphy ’19: 2
d
< p < 4

d
: final-state problem has unique solution

almost surely

Negative results Glassey ’73, Strauss ’73, Barab ’84: 0 < p ≤ 2
d
: all global solutions

in Σ scattering in L2-norm are trivial
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We now state the second result we will prove and discuss in this thesis, which addresses

the case of pNLS.

Theorem 1.3.1 (Breakdown of regularity of the pNLS scattering operators [41]). Let d ≥ 1,

and consider pNLS with α(d) < p < 4
d
. Then:

1. The scattering operators S,W for pNLS are well-defined as maps Σ → L2, and are

maximally regular at 0 ∈ Σ in the sense that they are Hölder continuous of order 1 + p

at 0, but not of any higher order.

2. There exists β = β(d, p) ∈ (0, p) such that S,W admit no extensions to maps L2 → L2

which are Hölder continuous of order 1 + β on any ball B ⊂ L2 containing the origin.

In particular:

Corollary 1.3.2. Assume d ≥ 1 and α(d) < p < 4
d
. Then:

1. Let s > 1 + p, and let n be the integer part of s. Then S and W, regarded as maps

Σ→ L2, cannot have an n-th Gateaux derivative defined about 0 ∈ Σ which is Hölder

continuous of order s− n.

2. Let s = 1 + β, where β is as in Theorem 1.3.1, and let n be the integer part of s. Then

S and W cannot be extended to maps L2 → L2 that admit an n-th Gateaux derivative

defined about 0 ∈ L2 which is Hölder continuous of order s− n.

The proof of this theorem is the focus of Chapter 3.

We interpret this result as a well-posedness result on the scattering problem for pNLS

for initial/final data in Σ, and as an ill-posedness result for the scattering problem for data
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Table 1.2: Summary of scattering theory for mass-subcritical HNLS

Type of result Result

Scattering in Σ

Ginibre-Velo ’80: 2 < γ < min(4, d): LWP, GWP, conservation laws,

first scattering result in Σ

Strauss ’81: 4
3
< γ < min(4, d): wave operators on L

4d
2d+γ ∩ L2

Hayashi-Tsutsumi ’87: 4
3
< γ < min(4, d), d ≥ 2: scattering in Σ

Hayashi-Ozawa ’88: 4
3
< γ < 2, d ≥ 3: wave operators on FHk

Nawa-Ozawa ’92: 1 < γ < 2, d ≥ 2: wave operators on FHk

Masaki ’19: 1 < γ < 2: GWP and scattering in FḢsc given global

spacetime bounds

Asymptotic

completeness

Hayashi-Tsutsumi ’87: 1 < γ < min(4, d), d ≥ 2, scattering in L2

for initial data in Σ

Hayashi-Ozawa ’88: 1 < γ < min(2, d), scattering in L2 for initial

data in Σ

Final-state

problem

Holmer-Tzirakis ’10: 1 < γ < 2, d = 2: every H1 scattering state

has H1 global solution scattering to it

Negative results Glassey ’77, Hayashi-Tsutsumi ’87: 0 < γ ≤ 1: all global solutions

in Σ scattering in L2-norm are trivial

Cho-Hwang-Ozawa ’16: F(V )(ξ) ∼ |ξ|−(d−γ) near 0, 0 < γ ≤ 1:

nonexistence of L2 scattering for Hs data
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in L2 in the sense of Bourgain [7]. It states that any hypothetical extension of the scattering

theory of pNLS from Σ to L2 must come at a cost. Such an extension of the theory would

amount to an extension of the scattering operators S and W from Σ → L2 to L2 → L2.

Theorem 1.3.1 states that these hypothetical extensions of the scattering operators can only

be defined at the cost of losing a positive amount of regularity through the extension. In

particular, at the origin they fail to have the expected regularity C1+p that one would expect

from the smoothness of the pNLS nonlinearity F (u) = |u|pu, which the scattering operators

do enjoy as maps Σ→ L2.

Finally, we state the third and last of the results we will prove and discuss in this thesis,

which is a stronger version of Theorem 1.3.1 for the mass-subcritical HNLS.

Theorem 1.3.3 (Analyticity of the HNLS scattering operators [39]). Let d ≥ 2 and 4
3
<

γ < 1. Let T ∈ {S,W}. Then:

1. T is well-defined as a map Σ→ Σ, and is analytic in the sense that for all u0 ∈ Σ and

v ∈ Σ, T admits the power series expansion

T (u0 + εv) = T (u) +
∞∑
k=1

εkwk

for all sufficiently small ε > 0, where (wk) ⊂ Σ and the series converges in Σ-norm.

2. The same result holds with the space FH1 replacing Σ.

Theorem 1.3.4 (Breakdown of analyticity of the HNLS scattering operators [39]). Let d ≥ 2

and 4
3
< γ < 2. Let T ∈ {S,W}.

1. Let s > 5+5γ
3+γ

. Then T : Σ → L2 admits no extension to a map L2 → L2 which is

Hölder continuous of order s on any ball B containing 0 ∈ L2.

2. Let s > 4+4γ
2+γ

. Then there exists R > 0 such that for any ball B ⊂ BR(0) ⊂ Σ (not

necessarily containing the origin), T : B → L2 admits no extension to a map L2 → L2

which is Hölder continuous of order s at any point in B ∩ L2.

13



These results are the focus of Chapter 4. We note that for 4
3
< γ < 2, 5+5γ

3+γ
< 4+4γ

2+γ
.

Thus the breakdown of regularity we obtain is more severe at the origin than elsewhere.

In particular, we see that T : Σ → L2 has no C3 extension to a map L2 → L2. The

lower range of s for which Hölder continuity fails is s > 5+5γ
3+γ

> 35
13
≈ 2.69 for part 1, and

s > 4+4γ
2+γ

> 14
5

= 2.8 for part 2.

Theorems 1.3.3 and 1.3.4 are direct analogues of Theorem 1.3.1 for the Hartree equation.

Theorem 1.3.3 states that the scattering problem for HNLS is analytically well-posed for

initial/final data in Σ and FH1. The analyticity is consistent with the fact that the Hartree

nonlinearity F (u) = (|x|−γ∗|u|2)u depends analytically on the solution u. We isolate Theorem

1.3.3 as a separate result from Theorem 1.3.4 because we consider it to be one of independent

interest for the scattering theory of HNLS. Theorem 1.3.4 states that despite Theorem 1.3.3,

which says that the scattering problem in Σ for HNLS is as well-posed as it can possibly be,

the analogous problem in L2 exhibits at best a finite amount of regularity with respect to

the initial/final data.

Theorems 1.3.3 and 1.3.4 improve on Theorem 1.3.1 in the following ways:

1. They comprise an infinite loss of regularity between the scattering problems in Σ and

in L2, whereas in Theorem 1.3.1 the loss of regularity is finite in magnitude. This

suggests that the smoothness of the nonlinearity does not play a significant role in the

Σ − L2 disparity in the scattering theory for mass-subcritical nonlinear Schrödinger

equations. (However, we note that the gauge invariance of the nonlinearity does play

an important role in all of our results.)

2. The expansion of T and the breakdown of regularity are proved at points u0 6= 0

as well. In Theorem 1.3.1 the analogous claims are only proved at the origin, due to

technical difficulties in working with the fractional power |u|pu arising from its lack of

smoothness.

A key component of the proof of Theorems 1.3.1 and 1.3.4 is the L1
t -norm of the potential
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energy ∫ ∞
0

Q(u(t)) dt,

where Q is the potential energy functional 1.3.3, 1.3.4. This quantity can be thought of as

measuring the rate of decay of u(t). Boundedness equates to decay consistent with or faster

than the dispersive decay of free evolutions, which is a necessary condition for scattering.

This idea appeared in [11] in order to define a nation of “rapidly decaying” solution to

pNLS and an associated scattering criterion. We obtain the breakdown of regularity in the

scattering operators by relating this statement to the fact that by scaling, this energy-type

functional cannot be bounded in L2 for a scattering solution.

1.4 Notation

In this section we establish the notation we will employ for the remainder of this thesis.

Let X and Y be two quantities. We write X . Y if there exists a constant C > 0 such

that X ≤ CY . If C depends on parameters a1, . . . , an, i.e. C = C(a1, . . . , an) and we wish to

indicate this dependence, then we will write X .a1,...,an Y . If X . Y and Y . X, we write

X ∼ Y . If the constant C is small, then we write X � Y . We also employ the asymptotic

notation O(f) and o(f) with their standard meanings.

We adopt the Japanese bracket notation 〈x〉 = (1 + |x|2)
1
2 .

1.4.1 Notation for Chapter 2

We define the symmetric spacetime norms

‖u‖Lpt,x([0,T )×T3) =

(∫ T

0

∫
T3

|u(t, x)|p dxdt
) 1

p

where 1 ≤ p ≤ ∞, with obvious changes if p =∞. We often suppress the spacetime domain

and write ‖u‖Lpt,x .
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Let φ : Rd → [0,∞) be a smooth radial cutoff with φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for

x ≥ 2. We take the convention 0 ∈ N. For N ∈ 2N a dyadic integer, write φN(x) = φ(x/N)

and ψN(x) = φN(x)−φN
2

(x), with the convention ψ1(x) = φ(x). For f : Td → C with Fourier

coefficients f̂(ξ), ξ ∈ Zd, we define the Littlewood-Paley projections as Fourier multipliers:

û≤N(ξ) = P̂≤Nf(ξ) = φN(ξ)f̂(ξ), ûN(ξ) = P̂Nf(ξ) = ψN(ξ)f̂(ξ), ξ ∈ Zd.

In Chapter 2, integers denoted by N , N0, N1, and the like will be implicitly assumed to be

dyadic integers.

1.4.2 Common notation and estimates for Chapters 3 and 4

We will be working with the mixed spacetime Lebesgue spaces LqtL
r
x(I × Rd), with norms

‖u‖LqtLrx(I×Rd) =

(∫
I

(∫
Rd
|u(t, x)|r dx

) q
r

dt

) 1
q

.

We will abbreviate the norm as ‖u‖LqtLrx(I×Rd) = ‖u‖LqtLrx(I). When I is clear from context we

will further abbreviate the norm as ‖u‖q,r. For purely spatial integration, we write ‖f‖Lr(Rd) =

‖f‖r. For 1 ≤ r ≤ ∞, we denote by r′ the Hölder conjugate: 1 = 1
r

+ 1
r′

. We will also

occasionally use the mixed Lorentz-Lebesgue spaces Lq,pt Lrx(I × Rd), where for 1 ≤ p < ∞,

Lq,pt (I) denotes the Lorentz space defined by the quasinorm

‖f‖Lq,pt (I) = q
1
p

(∫ ∞
0

tp|{s ∈ I : |f(s)| ≥ t}|
p
q
dt

t

) 1
q

,

and Lq,∞ denotes weak Lq.

We recall the following fundamental estimates for the Schrödinger equation.

Proposition 1.4.1 (Dispersive estimate). Let 2 ≤ r ≤ ∞. Then for all t 6= 0,

‖eit∆φ‖Lrx(Rd) .r,d |t|
d
2
− d
r ‖φ‖Lr′ (Rd).

Definition 1.4.1 (Admissible pair). Let d ≥ 1 and 2 ≤ q, r ≤ ∞. We say that (q, r) is an

admissible pair if it satisfies the scaling relation 2
q

+ d
r

= d
2

and (d, q, r) 6= (2, 2,∞). We say

that (α, β) is a dual admissible pair if (α′, β′) is an admissible pair.
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Proposition 1.4.2 (Strichartz estimates). Let d ≥ 1, let (q, r) be an admissible pair, and

let (α, β) be a dual admissible pair. Then for any interval I ⊂ R,

‖eit∆φ‖LqtLrx(I×Rd) . ‖φ‖L2(Rd),∥∥∥∥∫
R
e−is∆F (s) ds

∥∥∥∥
L2(Rd)

. ‖F‖Lαt Lβx(R×Rd),∥∥∥∥∫
s<t

ei(t−s)∆F (s) ds

∥∥∥∥
LqtL

r
x(R×Rd)

. ‖F‖Lαt Lβx(R×Rd).

Also, the following Lorentz space versions of these estimates hold for 2 < q <∞:

‖eit∆φ‖Lq,2t Lrx(I×Rd) . ‖φ‖L2(Rd),∥∥∥∥∫
s<t

ei(t−s)∆F (s) ds

∥∥∥∥
Lq,2t Lrx(R×Rd)

. ‖F‖
Lq
′,2
t Lr′x (R×Rd)

.

Lastly, we define the notion of pointwise Hölder regularity.

Definition 1.4.2 (Pointwise Hölder space [1]). Let X and Y be Banach spaces. Let x0 ∈ X

and U a convex open neighborhood of x0. Fix s > 0, and let n be the integer part of s. For

s > 0, we say that the map G : X → Y belongs to the pointwise Hölder space Cs(x0) if for

all h ∈ X with ‖h‖X = 1, there exist coefficients {aj(x0;h)}nj=0 ⊂ Y such that

‖G(x0 + εh)−G(x0)−
n∑
j=1

εjaj(x0;h)‖Y . εs

for all ε > 0 sufficiently small, with the implicit constant independent of the direction h.

Our main interest in Cs(x0) is that membership in Cs(x0) is a necessary, though not

sufficient, condition for a stronger notion of regularity of order s:

Lemma 1.4.3. Let X and Y be Banach spaces. Let U ⊂ X be a convex neighborhood of

x0 ∈ X. Let G : U → Y be a map, and suppose G /∈ Cs(x0) with n < s < n + 1. Then

dnG(x;h) (the n-th Gateaux derivative of G), if it exists for x ∈ U , cannot be a Hölder

continuous function of x of order s− n with Hölder seminorm uniformly bounded in h.

For the proof of Lemma 1.4.3, as well as the relationship between Definition 1.4.2 and

other notions of regularity, we refer the reader to Appendix A.
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CHAPTER 2

Local well-posedness for periodic NLS in

scaling-critical Sobolev spaces in dimension three

In this chapter we prove Theorem 1.2.1, which we restate for the reader’s convenience:

Theorem 2.0.1. Let p ≥ 2, and fix d = 3. Then Equation (1.2.1) is well-posed in Hsc(T3).

In particular, for any u0 ∈ Hsc(T3), there exists a time of existence T = T (u0) and a unique

solution u ∈ Ct([0, T );Hsc(T3)) ∩Xsc([0, T )) to (1.2.1).

Let us summarize the main ideas of the proof. The construction of the solution proceeds

via a standard contraction mapping argument. The key tool in our analysis is the scale-

invariant bilinear Strichartz estimate proved in [34], which straightforwardly handles the

case of even values of p.

The main technical difficulty in this theorem arises when p is a non-even, possibly frac-

tional power. In this case we lose access to some algebraic simplifications which would nor-

mally allow for an immediate decomposition of the nonlinearity along various frequency

interactions. For instance, in the cubic case p = 2, we can write

|u|2u =
∑
L,M,N

uLuMuN ,

and the sum can then be further decomposed by classifying the types of these frequency

interactions (high-high-high, high-high-low, etc.). However, when p is not an even integer

this is not immediately possible.

We overcome this by iterating a paradifferential linearization technique of Bony, which

allows us to isolate out various frequency interactions from the nonlinearity as long as we can
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continue to differentiate it. However, since the nonlinearity is differentiable only finitely many

times, we eventually run into the limits of this technique. We overcome this last hurdle using

the idea that a (well-behaved) nonlinear function of a low-frequency projection still lives at

low frequencies, which manifests in the form of estimates such as the nonlinear Bernstein

inequality. This allows us to obtain a sufficiently detailed decomposition of the nonlinearity

into frequency interactions to close the contraction mapping estimate.

2.1 Preliminary definitions and estimates

We define the adapted function spaces Up, V p, Xs, and Y s. We restrict ourselves to stating

the definitions and basic properties. For a more complete reference, see [38]. Fix a finite time

interval [0, T ). Let H be a separable Hilbert space over C; for our purposes, this will be C,

L2(T3), or Hsc(T3). Let Z be the set of finite partitions 0 = t0 < t1 < · · · < tK ≤ T . We

adopt the convention that v(T ) = 0 for all functions v : [0, T )→ H.

Definition 2.1.1. Let 1 ≤ p <∞. A Up-atom is a function a : [0, T )→ H of the form

a =
K−1∑
k=0

1[tk,tk+1)φk,

where {tk} ∈ Z and {φk} ⊂ H with
∑K−1

k=0 ‖φk‖
p
H ≤ 1. The space Up([0, T );H) is the space

of all functions u : [0, T )→ H admitting a representation of the form

u =
∞∑
j=1

λjaj,

where aj are Up-atoms and (λj) ∈ `1(C). Up([0, T );H) is a Banach space under the norm

‖u‖Up = inf

{ ∞∑
j=1

|λj| : u =
∞∑
j=1

λjaj with (λj) ∈ `1(C) and aj U
p − atoms

}
.

Definition 2.1.2. Let 1 ≤ p <∞. V p([0, T );H) is the space of all functions v : [0, T )→ H

with finite V p-seminorm ‖v‖V p , where

‖v‖V p = sup
{tk}∈Z

(K−1∑
k=1

‖v(tk)− v(tk−1)‖pH
) 1

p

.
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The space V p
rc is the subspace of V p consisting of right-continuous functions in V p, normalized

so that limt→0+ v(t) = 0. The V p-seminorm restricts to a norm on V p
rc, and V p

rc is a Banach

space under this norm.

Definition 2.1.3. Let s ∈ R, d ≥ 1. We define Xs([0, T )) and Y s([0, T )) to be the Banach

spaces of all functions u : [0, T ) → Hs(Td) such that for every ξ ∈ Zd, the map t 7→
̂e−it∆u(t)(ξ) is in U2([0, T );C) and V 2

rc([0, T );C) respectively, with norms

‖u‖Xs([0,T )) =

(∑
ξ∈Zd
〈ξ〉2s‖ê−it∆u(t)(ξ)‖2

U2

) 1
2

,

‖u‖Y s([0,T )) =

(∑
ξ∈Zd
〈ξ〉2s‖ê−it∆u(t)(ξ)‖2

V 2

) 1
2

.

Again, we will typically suppress the spacetime domain in our notation when it is obvious.

Xs and Y s have a dual pairing in the following sense:

Proposition 2.1.1 (Xs-Y s duality; [29, Proposition 2.11]). Let s ≥ 0 and T > 0. For

f ∈ L1([0, T );Hs(Td)) we have∥∥∥∥∫ t

0

ei(t−s)∆f(s) ds

∥∥∥∥
Xs([0,T ))

≤ sup
‖v‖Y−s([0,T ))=1

∣∣∣∣ ∫ T

0

∫
T3

f(t, x)v(t, x) dxdt

∣∣∣∣.
Remark 2.1.1. We have a continuous embedding Xs ↪→ Y s. We also have

‖u‖L∞t Hs
x
. ‖u‖Xs ,∥∥∥∥∫ t

0

ei(t−s)∆F (s) ds

∥∥∥∥
Xs

. ‖F‖L1
tH

s
x
.

Remark 2.1.2. The spaces Xs and Y s have the scaling of L∞t H
s
x and enjoy several of its

Fourier-based properties: for instance, we have

‖PNu‖Y s ∼ N s‖PNu‖Y 0

and

‖u‖Y s =

(∑
N

‖PNu‖2
Y s

) 1
2

.
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We now state the main tools of our analysis.

Theorem 2.1.2 (Strichartz estimates [34]). Fix d ≥ 1, 1 ≤ N ∈ 2N, and p > 2(d+2)
d

. Then

‖PCu‖Lpt,x([0,1]×Td) . N
d
2
− d+2

p ‖PCu‖Y 0(Td)

for all p > 2(d+2)
d

, where C ⊂ Rd is a cube of side length N and PC denotes the Fourier

projection to C.

As a direct consequence of Theorem 2.1.2, we have:

Lemma 2.1.3 (Bilinear Strichartz estimate [34, Lemma 3.1]). Fix d ≥ 3 and T ≤ 1. Then

for all 1 ≤ N2 ≤ N1,

‖uN1vN2‖L2
t,x

. N
d−2

2
2 ‖uN1‖Y 0‖vN2‖Y 0 .

The implicit constant does not depend on T .

Lastly, we state some useful fractional calculus estimates:

Proposition 2.1.4 (Fractional product rule). Let d ≥ 1, s > 0, 1 < p < ∞, and 1 <

p2, q2 ≤ ∞ such that 1
p

= 1
p1

+ 1
p2

= 1
q1

+ 1
q2

. Then

‖|∇|s(fg)‖Lp(Td) . ‖|∇|sf‖Lp1 (Td)‖g‖Lp2 (Td) + ‖|∇|sg‖Lq1 (Td)‖f‖Lq2 (Td).

Proposition 2.1.5 (Fractional chain rule). Suppose F : C → C satisfies |F (u) − F (v)| .

|u − v|(G(u) + G(v)) for some G : C → [0,∞). Let d ≥ 1, 0 < s < 1, 1 < p < ∞, and

1 < p2 ≤ ∞, such that 1
p

= 1
p1

+ 1
p2

. Then

‖|∇|sF (u)‖Lp(Td) . ‖|∇|su‖Lp1 (Td)‖G(u)‖Lp2 (Td).

Proposition 2.1.6 (Nonlinear Bernstein). Let G : C → C be Hölder continuous of order

α ∈ (0, 1]. Let d ≥ 1 and 1 ≤ p ≤ ∞. Then for u : Td → C smooth and periodic, we have

‖PNG(u)‖Lp/α(Td) . N−α‖∇u‖αLp(Td)

for all N > 1.
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In the Euclidean setting Propositions 2.1.4 and 2.1.5 are due to Christ and Weinstein

[14]. Proposition 2.1.6 in the Euclidean setting appears in [33]. These results can be extended

to the periodic setting via estimates on the periodic Littlewood-Paley convolution kernels.

2.2 Contraction mapping

Fix an initial datum u0 ∈ Hsc(T3). Consider the Duhamel operator

Φ(u)(t) = eit∆u0 − i
∫ t

0

ei(t−s)∆F (u(s)) ds,

where F (u) = ±|u|pu. As the choice of sign is irrelevant for everything that follows, we will

take F (u) = |u|pu from here on.

The proof of Theorem 2.0.1 proceeds via a standard contraction mapping argument in

the space Ct([0, T );Hsc(T3)) ∩Xsc([0, T )). For initial data u0 it suffices to show that there

exists a time T and a ball B ⊂ Ct([0, T );Hsc(T3)) ∩ Xsc([0, T )) on which Φ is a self-map

and contraction mapping. Then the Banach fixed-point theorem implies that Φ has a unique

fixed point in B, which is the solution to (1.2.1) we seek. The goal of this section is the

contraction mapping estimate:

Proposition 2.2.1. Fix p ≥ 2. Let 0 < T ≤ 1. Then∥∥∥∥∫ t

0

ei(t−s)∆[F (u+ w)(s)− F (u)(s)] ds

∥∥∥∥
Xsc ([0,T ))

. ‖w‖Xsc ([0,T ))(‖u‖Xsc ([0,T )) + ‖w‖Xsc ([0,T )))
p.

The implicit constant does not depend on T .

Proposition 2.2.1, together with Propositions 2.1.4 and 2.1.5, imply that Φ is indeed a

self-map and contraction mapping on some ball in Xsc([0, T ])∩CtHsc
x ([0, T ]×T3), provided

that T is chosen sufficiently small. As just one example of this argument, we refer the reader

to Section 4 of [34] for the details in the case of the H1-critical cubic and quintic NLS.
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Therefore, we focus our attention on the proof of Proposition 2.2.1 for the remainder of this

paper.

First we make some reductions. By Xs-Y s-duality (Proposition 2.1.1) and self-adjointness

of Littlewood-Paley projections,∥∥∥∥∫ t

0

ei(t−s)∆P≤N [F (u+ w)(s)− F (u)(s)] ds

∥∥∥∥
Xsc ([0,T ))

≤ sup
‖ṽ‖Y−sc=1

∣∣∣∣ ∫ T

0

∫
T3

P≤N [F (u+ w)(t)− F (u)(t)]ṽ(t, x) dxdt

∣∣∣∣
= sup
‖ṽ‖Y−sc=1

∣∣∣∣ ∫ T

0

∫
T3

[F (u+ w)(t)− F (u)(t)]P≤N ṽ(t, x) dxdt

∣∣∣∣
We will prove the following estimate:∣∣∣∣ ∫ T

0

∫
T3

v(t, x)[F (u+ w)(t)− F (u)(t)] dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p. (2.2.1)

Taking v = P≤N ṽ and letting N →∞ then gives us Proposition 2.2.1.

Let us give a brief outline of the proof of (2.2.1). This estimate is easiest to prove when

p is an even integer. In this case, expanding u and w in terms of their Littlewood-Paley

decompositions, we can write F (u+w)−F (u) as a sum of products of frequency projections

of u, u, w, w, and emulate earlier arguments such as those in [29, 32, 34]. We will provide an

explicit argument for p = 2 in Section 2.2.1. This is also necessary, as some of our estimates

for the case p > 2 do not extend down to the endpoint.

The remainder of the paper treats p > 2. When p is not an even integer, the above

argument can no longer be carried out exactly. However, the nonlinearity can be rewritten

in a more manageable form using a paradifferential calculus technique known as the Bony

linearization formula: we write F (u) = F (u≤1) +
∑

N≥2[F (u≤N) − F (u≤N
2

)], and use the

fundamental theorem of calculus to rewrite the differences, obtaining expressions essentially

of the form F (u) ∼
∑

N≥1 uN |u≤N |p. Iterating this sort of argument gives us an expression

for F (u+ w)− F (u) that is essentially multilinear and treatable with known technology.
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2.2.1 Proof of Theorem 2.0.1 for the cubic NLS

We first consider the H
1
2 -critical cubic NLS, the case p = 2 of Theorem 2.0.1. This proof is

very similar to the proof of the contraction estimate for the H1-critical cubic NLS on T4 in

[34]. By the previous discussion, to prove Theorem 2.0.1 for p = 2 it suffices to prove (2.2.1)

for p = 2.

Proof of (2.2.1) for p = 2. Expanding u and w by their Littlewood-Paley decompositions

and doing some combinatorics, (2.2.1) reduces to an estimate of the form

∑
N0≥1

∑
N1≥N2≥N3≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0u
(1)
N1
u

(2)
N2
u

(3)
N3

dxdt

∣∣∣∣ . ‖v‖Y − 1
2

3∏
j=1

‖u(j)‖
X

1
2
, (2.2.2)

where u(j) are chosen from {u, u, w, w}. In order for the integrals in (2.2.2) to be nonzero,

the two highest frequencies must be comparable. Therefore the sum splits into two cases:

1. N0 ∼ N1 ≥ N2 ≥ N3. We use the following idea which appeared in [29,34]. Let Z3 =
⋃
j Cj

be a partition of frequency space Z3 into cubes Cj of side length N2. We write Cj ∼ Ck

if the sum set Cj + Ck overlaps the Fourier support of P≤2N2 . For a given Ck, there are

a bounded number (independent of k and N2) of Cj such that Cj ∼ Ck. By Hölder,
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Strichartz, and summing via Cauchy-Schwarz, we estimate:∑
N0∼N1≥N2≥N3≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0u
(1)
N1
u

(2)
N2
u

(3)
N3

dxdt

∣∣∣∣
=

∑
N0∼N1≥N2≥N3

∑
Cj∼Ck

∣∣∣∣∫ T

0

∫
T3

(PCjvN0)(PCku
(1)
N1

)u
(2)
N2
u

(3)
N3

dxdt

∣∣∣∣
≤

∑
N0∼N1≥N2≥N3

∑
Cj∼Ck

‖PCjvN0‖L18/5
t,x
‖PCku

(1)
N1
‖
L

18/5
t,x
‖u(2)

N2
‖
L

18/5
t,x
‖u(3)

N3
‖L6

t,x

.
∑

N0∼N1≥N2≥N3

∑
Cj∼Ck

N
1
3

2 N
2
3

3 ‖PCjvN0‖Y 0‖PCku
(1)
N1
‖Y 0‖u(2)

N2
‖Y 0‖u(3)

N3
‖Y 0

.
∑

N0∼N1≥N2≥N3

∑
Cj∼Ck

(
N3

N2

) 1
6

‖PCjvN0‖Y − 1
2
‖PCku

(1)
N1
‖
Y

1
2
‖u(2)

N2
‖
Y

1
2
‖u(3)

N3
‖
Y

1
2

. ‖v‖
Y −

1
2

3∏
j=1

‖u(j)‖
Y

1
2
.

From here (2.2.2) follows from the embedding Xs ↪→ Y s.

2. N0 ≤ N1 ∼ N2 ≥ N3. For this sum we can estimate with just Hölder, Strichartz, and

Cauchy-Schwarz: ∑
N0≤N1∼N2≥N3≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0u
(1)
N1
u

(2)
N2
u

(3)
N3

dxdt

∣∣∣∣
.

∑
N0≤N1∼N2≥N3≥1

‖vN0‖L18/5
t,x
‖u(1)

N1
‖
L

18/5
t,x
‖u(2)

N2
‖
L

18/5
t,x
‖u(3)

N3
‖6

.
∑

N0≤N1∼N2≥N3≥1

N
1
9

0 N
1
9

1 N
1
9

2 N
2
3

3 ‖vN0‖Y 0‖u(1)
N1
‖Y 0‖u(2)

N2
‖Y 0‖u(3)

N3
‖Y 0

∼
∑

N0≤N1∼N2≥N3≥1

N
11
18

0 N
1
6

3

N
7
18

1 N
7
18

2

‖vN0‖Y − 1
2
‖u(1)

N1
‖
Y

1
2
‖u(2)

N2
‖
Y

1
2
‖u(3)

N3
‖
Y

1
2

. ‖v‖
Y −

1
2
‖u‖

Y
1
2

∑
N1∼N2

(
N1

N2

) 2
9

‖u(1)
N1
‖
Y

1
2
‖u(2)

N2
‖
Y

1
2

. ‖v‖
Y −

1
2

3∏
j=1

‖u(j)‖
Y

1
2
.

Remark 2.2.1. Essentially the same proof will also give the contraction estimate for p =

4, 6, 8, . . .. We can even take the same Hölder exponents for the four highest frequencies; any
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remaining lower-frequency terms can be placed in L∞t,x, and a similar argument as above will

establish the claim.

2.2.2 Paradifferential linearization

We now extend the argument of the previous section to the case of general p > 2. Our

main tool is the following paradifferential formula, which appeared in [4] with alternative

hypotheses. See [56] for a textbook treatment of this subject.

Proposition 2.2.2 (Bony linearization formula). Let g ∈ Hsc(Td), d ≥ 3, and let F (z) =

|z|pz for z ∈ C, p ≥ 0. Then for all 1 ≤ q < d
2
, we have

F (g) = lim
N→∞

F (g≤N) = lim
N→∞

F (g≤1) +
∑

2≤M≤N

[F (g≤M)− F (g≤M
2

)], (2.2.3)

where the limit is in the Lq(Td)-topology.

Proof. By the bound |F (g)− F (h)| . |g − h|(|g|p + |h|p) and Sobolev embedding, we have

‖F (g)− F (g≤N)‖Lq . ‖g − g≤N‖Ldq/(d−2q)(‖g‖p
Ldp/2

+ ‖g≤N‖pLdp/2)

. ‖g − g≤N‖Ldq/(d−2q)(‖g‖pHsc + ‖g≤N‖pHsc ).

Under the given hypotheses, 1 < dq
d−2q

<∞. Therefore g≤N → g in Ldq/(d−2q). So in the limit,

we obtain

lim
N→∞

‖F (g)− F (g≤N)‖Lq . ‖g‖pHsc lim
N→∞

‖g − g≤N‖Ldq/(d−2q) = 0.

We combine Proposition 2.2.2 and a linearization of F (h≤N)−F (h≤N
2

). Using the identity

F (u+ w)− F (u) = w

∫ 1

0

∂zF (u+ θw) dθ + w

∫ 1

0

∂zF (u+ θw) dθ, (2.2.4)

we obtain

F (u≤N)− F (u≤N
2

) = uN

∫ 1

0

∂zF ((P≤N
2

+ θPN)u) dθ

+ uN

∫ 1

0

∂zF ((P≤N
2

+ θPN)u) dθ. (2.2.5)
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The above expression is essentially of the form F (u≤N)−F (u≤N
2

) ∼ uN |u≤N |p for the purpose

of estimation, and thus (2.2.1) is morally equivalent to an estimate like

∑
N0≥1

∑
N1≥1

∫ T

0

∫
T3

vN0 [(uN + wN)|u≤N + w≤N |p − uN |u≤N |p] dxdt

. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

We now make this precise. Under the convention g≤ 1
2

= 0, Proposition 2.2.2 implies the weak

convergence statement

∑
N≥1

〈F (g≤N)− F (g≤N
2

), ϕ〉L2 = 〈F (g), ϕ〉L2

for all ϕ ∈ C(Td). We now apply this to the integral appearing in (2.2.1). Noting that

vN0(t) ∈ C(Td) for all v ∈ Y −sc([0, T )) and 1 ≤ N0 ∈ 2Z, we obtain∫ T

0

∫
T3

v(t, x)[F (u+ w)− F (u)](t, x) dxdt

=
∑
N0≥1

∫ T

0

∫
T3

vN0(t, x)[F (u+ w)− F (u)](t, x) dxdt

=
∑
N0≥1

∑
N1≥1

∫ T

0

∫
T3

vN0 [(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

)

− (F (u≤N1)− F (u≤N1
2

))](t, x) dxdt.

We split the inner sum into three regimes: N0 � N1, N0 � N1, and N0 ∼ N1, so that (2.2.1)

reduces to the following:

Proposition 2.2.3. Fix p ≥ 2. Let 0 < T ≤ 1. Then∣∣∣∣ ∑
N0≥1

∑
N1�N0≥1

∫ T

0

∫
T3

vN0 [(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

))

− (F (u≤N1)− F (u≤N1
2

))](t, x) dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p
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and ∣∣∣∣ ∑
N0≥1

∑
1≤N1�N0

∫ T

0

∫
T3

vN0 [(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

))

− (F (u≤N1)− F (u≤N1
2

))](t, x) dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

Proposition 2.2.4. Fix p ≥ 2. Let 0 < T ≤ 1. Then∣∣∣∣ ∑
N0≥1

∑
N0∼N1≥1

∫ T

0

∫
T3

vN0 [(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

))

− (F (u≤N1)− F (u≤N1
2

))](t, x) dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

We treat each of these separately. The integrals in Proposition 2.2.4 can be controlled

essentially as they are, while those in Proposition 2.2.3 are still difficult to estimate and

require further linearization using Proposition 2.2.2 and Equation (2.2.5).

2.2.3 Controlling sums over incomparable frequencies

In this subsection we prove Proposition 2.2.3. We first express the integrands in Proposition

2.2.3 in a more manageable form. Linearizing via (2.2.5), we write

(F (u≤N + w≤N)− F (u≤N
2

+ w≤N
2

))− (F (u≤N)− F (u≤N
2

))

= wN

∫ 1

0

∂zF ((P≤N
2

+ θPN)(u+ w) dθ

+ wN

∫ 1

0

∂zF ((P≤N
2

+ θPN)(u+ w)) dθ

+ uN

∫ 1

0

[∂zF ((P≤N
2

+ θPN)(u+ w))− ∂zF ((P≤N
2

+ θPN)u)] dθ

+ uN

∫ 1

0

[∂zF ((P≤N
2

+ θPN)(u+ w))− ∂zF ((P≤N
2

+ θPN)u)] dθ.
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In the last two terms, we may linearize the difference again using (2.2.4), obtaining:

uN

∫ 1

0

[∂zF ((P≤N
2

+ θPN)(u+ w))− ∂zF ((P≤N
2

+ θPN)u)] dθ

= uN

∫ 1

0

(P≤N
2

+ θPN)w

∫ 1

0

∂2
zF ((P≤N

2
+ θPN)(u+ ηw))] dηdθ

+ uN

∫ 1

0

(P≤N
2

+ θPN)w

∫ 1

0

∂z∂zF ((P≤N
2

+ θPN)(u+ ηw))] dηdθ

and similarly for the term involving uN . We summarize these calculations in the form

(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

))− (F (u≤N1)− F (u≤N1
2

))

= wN1

∫ 1

0

∂zF ((P≤N1
2

+ θPN1)(u+ w) dθ + similar terms

+ uN1

∫ 1

0

(P≤N1
2

+ θPN)w

∫ 1

0

∂2
zF ((P≤N1

2
+ θPN1)(u+ ηw))] dηdθ

+ similar terms. (2.2.6)

where by “similar terms” we indicate the same expression up to complex conjugates and

conjugate derivatives in the appropriate places.

We now recall our heuristic: this expression is morally of the form

(F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

))− (F (u≤N1)− F (u≤N1
2

))

∼ wN1∂zF (u≤N1 + w≤N1) + uN1w≤N1∂
2
zF (u≤N1 + w≤N1)

Inspired by this, we claim that Proposition 2.2.4 follows from the following:

Proposition 2.2.5. Fix p ≥ 2. Let 0 < T ≤ 1. Then∑
N0�N1≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0gN1DN1F (h≤N1) dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc max{‖g‖Y sc , ‖h‖Y sc}‖h‖p−1

Y sc

and ∑
N0�N1≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0gN1DN1F (h≤N1) dxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc max{‖g‖Y sc , ‖h‖Y sc}‖h‖p−1

Y sc .
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where g ∈ {u,w}, DN1 ∈ {∂z, ∂z} if g = w, and DN1 ∈ {w≤N1∂
2
z , w≤N1∂z∂z, w≤N1∂

2
z} if g = u.

First, let us see how this simplified estimate leads to Proposition 2.2.3.

Sketch of Proposition 2.2.3 assuming Proposition 2.2.5. By our work to this point, Proposi-

tion 2.2.3 can be proved by establishing the corresponding estimate for each term in Equation

(2.2.6). Suppose, for instance, that we wish to prove the estimate∣∣∣∣ ∑
N0�N1

∫ T

0

∫
T3

vN0wN1

∫ 1

0

∂zF ((P≤N1
2

+ θPN1)(u+ w)) dθdxdt

∣∣∣∣
. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

Applying Fubini, it is sufficient to show that∑
N0�N1

∫ 1

0

(∫ T

0

∫
T3

|vN0wN1∂zF ((P≤N1
2

+ θPN1)(u+ w))| dxdt
)
dθ

. ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

Take g = w, DN1 = ∂z, and h = (P≤N
2

+ θPN)(u + w). Then the first line in the above

estimate is very nearly the expression that is estimated in Proposition 2.2.5. As we will

point out after the proof of Proposition 2.2.5, the projection P≤N1
2

+ θPN1 can be replaced

by P≤N1 by a simple argument, and consequently the integral in θ can be eliminated, leaving

us with precisely the expression in Proposition 2.2.5. The point is that Proposition 2.2.5 is

fairly lenient when it comes to choosing the functions g and h, in a way which will become

apparent during its proof. See Remark 2.2.3. We thus obtain∑
N0�N1

∫ 1

0

(∫ T

0

∫
T3

|vN0wN1∂zF ((P≤N1
2

+ θPN1)(u+ w))| dxdt
)
dθ

. ‖v‖Y −sc‖w‖Y sc max{‖w‖Y sc‖u+ w‖p−1
Y sc , ‖u+ w‖pY sc}

≤ ‖v‖Y −sc‖w‖Y sc (‖u‖Y sc + ‖w‖Y sc )p.

Lastly, to completely prove Proposition 2.2.3 we must obtain the analogous estimate for the

remaining five terms in the expression (2.2.6), and also the corresponding estimates for the
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sum over N0 � N1. A similar argument as above shows how to go from Proposition 2.2.5 to

the required estimate in each case.

Before we prove Proposition 2.2.5, let us outline the proof. The point of isolating the

regimes N0 � N1 and N0 � N1 is that in these cases, we can further restrict the nonlinear

factor DN1F (h≤N1) to the highest frequencies; e.g. if N0 � N1, we can replace DN1F (h≤N1)

with P∼N0(DN1F (h≤N1)) inside the integral. We may then differentiate this term to obtain

some extra decay in the highest frequency. When 2 < p < 4, the first and second derivatives

of F (z) = |z|pz admit one full derivative, while when p ≥ 4 they admit two full derivatives.

This produces enough decay to defeat the critical regularity: sc < 1 for 2 < p < 4, and sc < 2

for p ≥ 4. We will therefore be able to obtain an estimate for

∑
N0�N1≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0gN1DN1F (h≤N1) dxdt

∣∣∣∣
which we will be able to sum much like as in the proof of Proposition 2.2.1 for the cubic

NLS.

We record some useful estimates before proceeding.

Lemma 2.2.6 (Scaling-critical Strichartz estimate). For p > 4
3
,

‖u‖
L

5p/2
t,x ([0,T )×T3)

. ‖u‖Y sc . (2.2.7)

Also, if r > 5p
2

with p > 4
3
, then

‖u≤N‖Lrt,x([0,T )×T3) . N
2
p
− 5
r ‖u≤N‖Y sc . (2.2.8)

Proof. By the square-function estimate,

‖u‖
L

5p/2
t,x
∼ ‖(

∑
N

|uN |2)
1
2‖

L
5p/2
t,x
≤ (
∑
N

‖uN‖2

L
5p/2
t,x

)
1
2 .

Here we have used p > 4
3
> 4

5
, which ensures that ‖ · ‖

L
5p/4
t,x

is a norm and not merely a

quasinorm. The condition p > 4
3

also ensures that 5p
2
> 10

3
. Therefore we may apply the
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Strichartz estimate and obtain

(
∑
N

‖uN‖2

L
5p/2
t,x

)
1
2 . (

∑
N

N2sc‖uN‖2
Y 0)

1
2 ∼ ‖u‖Y sc .

This proves (2.2.7). We proceed similarly for (2.2.8): by the square-function estimate, Strichartz,

and Cauchy-Schwarz, we obtain

‖u≤N‖Lrt,x . (
∑
M≤N

‖uM‖2
Lrt,x

)
1
2 . (

∑
M≤N

(M
2
p
− 5
r )2‖uM‖2

Y sc )
1
2

. N
2
p
− 5
r ‖u≤N‖Y sc .

Lemma 2.2.7. Let p > 2 and 0 < T ≤ 1. Then

‖∇u≤N‖
L

10p
p+4
t,x ([0,T )×T3)

. N
1
2‖u≤N‖Y sc ([0,T )), (2.2.9)

‖∇u≤N‖
L

20p
p+8
t,x

. N
3
4‖u≤N‖Y sc , (2.2.10)

and

‖∆u≤N‖
L

10p
p+4
t,x

. N
3
2‖u≤N‖Y sc . (2.2.11)

Proof. Note that 10p
p+4

> 10
3

for p > 2. Applying Bernstein, Strichartz, and Cauchy-Schwarz,

‖∇u≤N‖
L

10p
p+4
t,x

≤
∑
M≤N

‖∇uM‖
L

10p
p+4
t,x

∼
∑
M≤N

M‖uM‖
L

10p
p+4
t,x

.
∑
M≤N

M
1
2‖uM‖Y sc

. N
1
2‖u≤N‖Y sc .

The other two estimates are proved similarly.

Remark 2.2.2. Since the Strichartz estimate at the L
10/3
t,x endpoint only holds with a derivative

loss, (2.2.9) and (2.2.11) do not hold for p = 2. This is one reason why we have provided a

separate argument for the cubic NLS.

Lemma 2.2.8. Let u ∈ C1(Td). If p ≥ 2 and G ∈ {∂zF, ∂zF}, then

|∇(G(u(x)))| .p |u(x)|p−1|∇u(x)|.
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and

|∆G(u(x))| .p |u(x)|p−1|∆u(x)|+ |u(x)|p−2|∇u(x)|2.

If p ≥ 3 and G ∈ {∂2
zF, ∂z∂zF, ∂

2
zF}, then

|∇(G(u(x)))| .p |u(x)|p−2|∇u(x)|

and

|∆(G(u(x)))| .p |g(x)|p−2|∆u(x)|+ |u(x)|p−3|∇u(x)|2.

The proof of Lemma 2.2.8 is a straightforward calculus exercise that we omit.

Proof of Proposition 2.2.5. Our proof splits along the cases 2 < p < 4 and p ≥ 4.

Case 1.1: (2 < p < 4, N0 � N1 ≥ 1). For fixed N0, we may write∣∣∣∣ ∫ T

0

∫
T3

vN0gN1DN1F (h≤N1) dxdt

∣∣∣∣ =

∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣.
If g = w, then DN1F = G ∈ {∂zF, ∂zF}. Therefore by Bernstein, Lemma 2.2.8, Hölder,

Lemma 2.2.6, and Lemma 2.2.7, we have

‖P∼N0(DN1F (h≤N1))‖L2
t,x

. N−1
0 ‖∇G(h≤N1)‖L2

t,x

. N−1
0 ‖|h≤N1|p−1∇h≤N1‖L2

t,x

≤ N−1
0 ‖h≤N1‖

p−1

L
5p/2
t,x

‖∇h≤N1‖
L

10p
p+4
t,x

. N−1
0 N

1
2

1 ‖h≤N1‖
p
Y sc .

If g = u, thenDN1F = w≤N1G whereG ∈ {∂2
zF, ∂z∂zF, ∂

2
zF}. In this case P∼N0(DN1F (h≤N1)) =
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w≤N1P∼N0(G(h≤N1)), and similarly to above we have

‖P∼N0(DN1F (h≤N1))‖L2
t,x

= ‖w≤N1P∼N0(G(h≤N1))‖L2
t,x

≤ ‖w≤N1‖L5p/2
t,x
‖P∼N0(G(h≤N1))‖

L
10p

5p−4
t,x

. N−1
0 ‖w≤N1‖L5p/2

t,x
‖∇(G(h≤N1))‖

L
10p

5p−4
t,x

. N−1
0 ‖w≤N1‖L5p/2

t,x
‖|h≤N1|p−2∇h≤N1‖

L
10p

5p−4
t,x

. N−1
0 ‖w≤N1‖L5p/2

t,x
‖|h≤N1‖

p−2

L
5p/2
t,x

‖∇h≤N1‖
L

10p
p+4
t,x

. N−1
0 N

1
2

1 ‖w≤N1‖Y sc‖h≤N1‖
p−1
Y sc .

We now estimate using Hölder, the bilinear Strichartz estimate (Lemma 2.1.3), and the above

estimates. When g = w we obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
. ‖vN0gN1‖L2

t,x
‖P∼N0(DN1F (h≤N1))‖L2

t,x

.
N1

N0

‖vN0‖Y 0‖wN1‖Y 0‖h≤N1‖
p
Y sc

.

(
N1

N0

)1−sc
‖vN0‖Y −sc‖wN1‖Y sc‖h≤N1‖

p
Y sc ,

while when g = u we similarly obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
.

(
N1

N0

)1−sc
‖vN0‖Y −sc‖uN1‖Y sc‖w≤N1‖Y sc‖h≤N1‖

p−1
Y sc .

Since 2 < p < 4, we have 1−sc > 0. Therefore the above estimate is summable over N0 � N1

using Cauchy-Schwarz similarly to the proof of (2.2.1) for p = 2 from Section 3.1. Performing

the sum, this part of Proposition 2.2.5 follows.

Case 1.2: ( 2 < p < 4, 1 ≤ N0 � N1). This case is similar to the previous case. Since the

highest frequency is N1, we now have∣∣∣∣ ∫ T

0

∫
T3

vN0gN1DN1F (h≤N1) dxdt

∣∣∣∣ =

∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N1(DN1F (h≤N1)) dxdt

∣∣∣∣.
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Estimating as before, when g = w we have

‖P∼N1(DN1F (h≤N1))‖L2
t,x

. N
− 1

2
1 ‖h≤N1‖

p
Y sc

while when g = u we have

‖P∼N1(DN1F (h≤N1))‖L2
t,x

. N
− 1

2
1 ‖w≤N1‖Y sc‖h≤N1‖

p−1
Y sc .

Applying Hölder, bilinear Strichartz, and the above estimates, when g = w we obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
. ‖vN0gN1‖L2

t,x
‖P∼N0(DN1F (h≤N1))‖L2

t,x

.

(
N0

N1

) 1
2

‖vN0‖Y 0‖wN1‖Y 0‖h≤N1‖
p
Y sc

.

(
N0

N1

) 1
2

+sc

‖vN0‖Y −sc‖wN1‖Y sc‖h≤N1‖
p
Y sc ,

while when g = u we obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
.

(
N0

N1

) 1
2

+sc

‖vN0‖Y −sc‖uN1‖Y sc‖w≤N1‖Y sc‖h≤N1‖
p−1
Y sc .

Again, 1
2

+ sc > 0, so this is summable over N0 � N1 and this case is proved.

Case 2.1: (p ≥ 4, N0 � N1 ≥ 1). This proof proceeds similarly to that of Case 1.1, except

that instead of a gradient we take a Laplacian. Since the highest frequency is N0, we localize

the nonlinear factor to frequencies ∼ N0. When g = w, we have (with G ∈ {∂zF, ∂zF})

‖P∼N0(DN1F (h≤N1))‖L2
t,x

. N−2
0 ‖∆G(h≤N1)‖L2

t,x

. N−2
0 ‖|h≤N1|p−1|∆h≤N1|+ |h≤N1|p−2|∇h≤N1|2‖L2

t,x

≤ N−2
0 (‖h≤N1‖

p−1

L
5p/2
t,x

‖∆h≤N1‖
L

10p
p+4
t,x

+ ‖h≤N1‖
p−2

L
5p/2
t,x

‖∇h≤N1‖2

L
20p
p+8
t,x

)

. N−2
0 N

3
2

1 ‖h≤N1‖
p
Y sc ,
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while when g = u we have (with G ∈ {∂2
zF, ∂z∂zF, ∂

2
zF})

‖P∼N0(DN1F (h≤N1))‖L2
t,x

= ‖w≤N1P∼N0(G(h≤N1))‖L2
t,x

. N−2
0 ‖w≤N1‖L5p/2

t,x
‖∆G(h≤N1)‖

L
10p

5p−4
t,x

. N−2
0 ‖w≤N1‖Y sc‖|h≤N1|p−2|∆h≤N1|+ |h≤N1|p−3|∇h≤N1|2‖L2

t,x

≤ N−2
0 ‖w≤N1‖Y sc (‖h≤N1‖

p−2

L
5p/2
t,x

‖∆h≤N1‖
L

10p
p+4
t,x

+ ‖h≤N1‖
p−3

L
5p/2
t,x

‖∇h≤N1‖2

L
20p
p+8
t,x

)

. N−2
0 N

3
2

1 ‖w≤N1‖Y sc‖h≤N1‖
p−1
Y sc .

By Hölder, bilinear Strichartz, and the above estimate, when g = w we obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
. ‖vN0gN1‖L2

t,x
‖‖P∼N0(DN1F (h≤N1))‖L2

t,x

.

(
N1

N0

)2

‖vN0‖Y 0‖wN1‖Y 0‖h≤N1‖
p
Y sc

.

(
N1

N0

)2−sc
‖vN0‖Y −sc‖wN1‖Y sc‖h≤N1‖

p
Y sc

while when g = u we obtain∣∣∣∣ ∫ T

0

∫
T3

vN0gN1P∼N0(DN1F (h≤N1)) dxdt

∣∣∣∣
. ‖vN0gN1‖L2

t,x
‖‖P∼N0(DN1F (h≤N1))‖L2

t,x

.

(
N1

N0

)2

‖vN0‖Y 0‖uN1‖Y 0‖w≤N1‖Y sc‖h≤N1‖
p−1
Y sc

.

(
N1

N0

)2−sc
‖vN0‖Y −sc‖uN1‖Y sc‖w≤N1‖Y sc‖h≤N1‖

p−1
Y sc .

Since p ≥ 4, 2− sc > 0 and thus this is summable over N0 � N1.

Case 2.2: (p ≥ 4, 1 ≤ N0 � N1). This is covered by the proof of Case 1.2, since 1
2

+ sc > 0

for all p > 2.
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Remark 2.2.3. As we have alluded to earlier, these estimates are rather lenient with respect

to the precise functions inside the integrals. For instance, take g = w. If in Case 1.1

we estimate ‖P∼N0(DN1F (h≤N1
2

+ θhN))‖L2
t,x

instead of ‖P∼N0(DN1F (h≤N1)‖2
Lt,x

, then since

h≤N1
2

+ θhN = P≤2N(h≤N1
2

+ θhN) we would find via the same proof that

‖P∼N0(DN1F (h≤N1
2

+ θhN))‖2
Lt,x . N−1

0 N
1
2

1 ‖h≤N1
2

+ θhN‖pY sc

. N−1
0 N

1
2

1 (‖h≤N1
2
‖Y sc + ‖h≤N‖Y sc )p

. N−1
0 N

1
2

1 ‖h≤N‖
p
Y sc .

This sort of argument can be used to fill in the remaining gaps in our sketch of the proof of

Proposition 2.2.3 from Proposition 2.2.5.

2.2.4 Controlling sums over comparable frequencies

In this section we prove Proposition 2.2.4. In the regime of comparable frequencies N0 ∼ N1,

the methods in the previous section cannot be used because there is no way to restrict the

nonlinear factor to a specific frequency. Instead, we aim to recreate the case of p = 2 as best

as possible by iterating the paradifferential linearization technique used earlier. The precise

details of how this is done differ between the cases p ≥ 3 and 2 < p < 3, and we treat them

separately. The difference arises from the regularity of F (z) = |z|pz, which determines how

many times we may iterate the linearization.

2.2.4.1 The case p ≥ 3

Let p ≥ 3. In this case, F (z) = |z|pz admits four derivatives, and hence we may iterate our

paradifferential linearization process four times. We begin with the formal expression arising
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from Proposition 2.2.2:

F (u+ w)− F (u) =
∑
N≥1

[F (u≤N + w≤N)− F (u≤N
2

+ w≤N
2

)]

−
∑
N≥1

[F (u≤N)− F (u≤N
2

)]

where we interpret this equality in terms of convergence in Lq, 1 ≤ q < d
2
, and in particular

weak convergence against continuous functions. Fixing N0, we throw away the summands

with N � N0 and N � N0, and apply (2.2.5) to obtain

∑
N0∼N1≥1

(uN1 + wN1)

∫ 1

0

∂zF ((P≤N1
2

+ θPN1)(u+ w)) dθ + similar terms

−
∑

N0∼N1≥1

uN1

∫ 1

0

∂zF ((P≤N1
2

+ θPN1)u) dθ + similar terms.

We now apply Proposition 2.2.2 and (2.2.4) again to the terms inside the integral: that is,

we write

∂zF ((P≤N1
2

+ θPN)u) =
∑
N≥1

[∂zF (P≤N(P≤N1
2

+ θPN)u)− ∂zF (P≤N
2

(P≤N1
2

+ θPN)u]

=
∑
N≥1

PN(P≤N1
2

+ θPN)u

∫ 1

0

∂2
zF ((P≤N

2
+ ηPN)(P≤N1

2
+ θPN)u) dη

+ simliar terms,

and substitute these inside the integrals. Note that PN(P≤N1
2

+ θPN1) = 0 for N > 2N1,

and PN(P≤N1
2

+ θPN1) is equivalent to PN for N ≤ 2N1 for the purpose of estimates in

the manner that we have explained in our sketch of Proposition 2.2.3 and Remark 2.2.3.

Similarly, we may treat (P≤N
2

+ ηPN)(P≤N1
2

+ θPN1) as P≤N for N ≤ 2N1 for the purpose of

proving Proposition 2.2.4.

We summarize these ideas and calculations in the notation ∼. For two expressions A and

B, we say A ∼ B if A and B are related by collapsing Littlewood-Paley projections (e.g.

PN(P≤N1
2

+θPN1) ∼ PN for N ≤ 2N1), removing integrals over [0, 1], and conjugating factors
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or derivatives (as is encapsulated in the phrase “similar terms” as we have used up to this

point). If A ∼ B, then A and B should admit the same type of estimates in the manner we

have described in the sketch of Proposition 2.2.3 and Remark 2.2.3. Thus we may succinctly

express our first two iterations of the linearization in the following way:

∑
N0∼N1≥1

[F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

)]−
∑

N0∼N1≥1

[F (u≤N1)− F (u≤N1
2

)]

∼
∑

N0∼N1≥1

(uN1 + wN1)∂zF (u≤N1 + w≤N1)−
∑

N0∼N1≥1

uN1∂zF (u≤N1)

∼
∑

N0∼N1&N2≥1

(uN1 + wN1)(uN2 + wN2)∂2
zF (u≤N2 + w≤N2)−

∑
N0∼N1&N2≥1

uN1uN2∂
2
zF (u≤N2).

From here on we will use the symbol ∼ to summarize all calculations involving Proposition

2.2.2, (2.2.4), and (2.2.5). We now linearize with Proposition 2.2.2 and (2.2.5) once more,

then shift terms and linearize with (2.2.4) one last time to obtain:

∑
N0∼N1&N2≥1

(uN1 + wN1)(uN2 + wN2)∂2
zF (u≤N2 + w≤N2)−

∑
N0∼N1&N2≥1

uN1uN2∂
2
zF (u≤N2)

∼
∑

N0∼N1&N2&N3≥1

(uN1 + wN1)(uN2 + wN2)(uN3 + wN3)∂3
zF (u≤N3 + w≤N3)

−
∑

N0∼N1&N2&N3≥1

uN1uN2uN3∂
3
zF (u≤N3)

∼
∑

N0∼N1&N2&N3≥1

u
(1)
N1
u

(2)
N2
u

(3)
N3
∂3
zF (u≤N3 + w≤N3)

−
∑

N0∼N1&N2&N3≥1

uN1uN2uN3 [∂3
zF (u≤N3 + w≤N3)− ∂3

zF (u≤N3)]

∼
∑

N0∼N1&N2&N3≥1

u
(1)
N1
u

(2)
N2
u

(3)
N3
∂3
zF (u≤N3 + w≤N3)

−
∑

N0∼N1&N2&N3≥1

uN1uN2uN3w≤N3∂
4
zF (u≤N3 + w≤N3).

Here u(j) ∈ {u,w} with at least one u(j) = w. Note that in the last step of this linearization,

we require p ≥ 3 so that the fourth-order derivatives of F in z and z are well-defined.

Therefore to establish Proposition 2.2.4 for p ≥ 3, it suffices to prove:
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Proposition 2.2.9. Fix p ≥ 3. Let 0 < T ≤ 1. Then∑
N0∼N1&N2&N3≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0u
(1)
N1
u

(2)
N2
u

(3)
N3
DN3F (h≤N3) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u(1)‖Y sc‖u(2)‖Y sc‖u(3)‖Y sc max{‖w‖Y sc , ‖h‖Y sc}‖h‖p−3

Y sc ,

where

DN3 ∈ {∂3
z , ∂

2
z∂z, ∂z∂

2
z , ∂

3
z} if u(j) = w for some j = 1, 2, 3,

and

DN3 ∈ {w≤N3∂
4
z , w≤N3∂

3
z∂z, w≤N3∂

2
z∂

2
z , , w≤N3∂z∂

3
z , w≤N3∂

4
z} if u(j) 6= w for all j = 1, 2, 3.

Remark 2.2.4. The condition p ≥ 3 is only required for the estimates where u(j) 6= w for

j = 1, 2, 3, since these require the fourth-order derivative of F to be defined. For the estimates

where some u(j) = w, we need only p ≥ 2. This will be useful in the next section.

Proof. For any integer 0 ≤ k < p + 1, and any k-th order derivative G of F (z) = |z|pz, we

have |G(z)| . |z|p−k. Therefore

|DN3F (h≤N3)| . max{|w≤N3|, |h≤N3|}|h≤N3|p−3.

Therefore by Lemma 2.2.6 we have

‖DN3F (h≤N3)‖L∞t,x . N
2(p−2)
p max{‖w≤N3‖Y sc , ‖h≤N3‖Y sc}‖h≤N3‖

p−3
Y sc .

Estimating the integral by Hölder, bilinear Strichartz, and Strichartz, we have∣∣∣∣ ∫ T

0

∫
T3

vN0u
(1)
N1
u

(2)
N2
u

(3)
N3
DN3F (h≤N3) dxdt

∣∣∣∣
. ‖vN0u

(2)
N2
‖L2

t,x
‖u(1)

N1
u

(1)
N3
‖L2

t,x
‖DN3F (h≤N3)‖L∞t,x

.

(
N0

N1

)sc (N3

N2

)sc− 1
2

‖vN0‖Y −sc‖u
(1)
N1
‖Y sc‖u(2)

N2
‖Y sc‖u(3)

N3
‖Y sc

·max{‖w≤N3‖Y sc , ‖h≤N3‖Y sc}‖h≤N3‖
p−3
Y sc .

Summing with Cauchy-Schwarz first over N2 & N3, then over N0 ∼ N1 establishes the

desired estimate.
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2.2.4.2 The case 2 < p < 3

The last case to consider is 2 < p < 3. In this case, F does not admit four derivatives, so we

cannot obtain the linearized expression we used for the case p ≥ 3. However, F admits three

derivatives and the third derivatives of F are Hölder continuous, which we can “differentiate”

to obtain sufficient decay to sum.

First we obtain the linearization of the nonlinearity. Employing the notation ∼ as in the

previous section, we obtain:

∑
N0∼N1≥1

[F (u≤N1 + w≤N1)− F (u≤N1
2

+ w≤N1
2

)]−
∑

N0∼N1≥1

[F (u≤N1)− F (u≤N1
2

)]

∼
∑

N0∼N1≥1

(uN1 + wN1)∂zF (u≤N1 + w≤N1)−
∑

N0∼N1≥1

uN1∂zF (u≤N1)

∼
∑

N0∼N1&N2≥1

(uN1 + wN1)(uN2 + wN2)∂2
zF (u≤N2 + w≤N2)

−
∑

N0∼N1&N2≥1

uN1uN2∂
2
zF (u≤N2)

∼
∑

N0∼N1&N2≥1

u
(1)
N1
u

(2)
N2
∂2
zF (u≤N2 + w≤N2)

+
∑

N0∼N1&N2≥1

uN1uN2 [∂2
zF (u≤N2 + w≤N2)− ∂2

zF (u≤N2)]

∼
∑

N0∼N1&N2&N3≥1

u
(1)
N1
u

(2)
N2

(uN3 + wN3)∂3
zF (u≤N3 + w≤N3)

+
∑

N0∼N1&N2≥1

uN1uN2w≤N2∂
3
zF (u≤N2 + w≤N2).

The first summation in the last line is precisely of a form that is controlled by Proposition

2.2.9; see Remark 2.2.4. Writing w≤N2 =
∑

N2≥N3
wN3 , to establish Proposition 2.2.4 for

2 < p < 3, it suffices to prove the following estimate:
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Proposition 2.2.10. Fix 2 < p < 3. Let 0 < T ≤ 1. Then∑
N0∼N1&N2≥N3≥1

∣∣∣∣ ∫ T

0

∫
T3

vN0uN1uN2wN3G(h≤N2) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u‖2

Y sc‖w‖Y sc‖h‖
p−2
Y sc

where G ∈ {∂3
zF, ∂

2
z∂zF, ∂z∂

2
zF, ∂

3
zF}.

Proof. Proposition 2.2.10 follows from the following two estimates:∑
N0∼N1≥N2≥N3

∣∣∣∣ ∫ T

0

∫
T3

vN0uN1uN2wN3P≤N2(G(h≤N2)) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u‖2

Y sc‖w‖Y sc‖h‖
p−2
Y sc , (2.2.12)

∑
N0∼N1≥N2≥N3

∑
N>N2

∣∣∣∣ ∫ T

0

∫
T3

vN0uN1uN2wN3PN(G(h≤N2)) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u‖2

Y sc‖w‖Y sc‖h‖
p−2
Y sc . (2.2.13)

Proof of (2.2.12): For a given N2, let Z3 =
⋃
j Cj be a partition of frequency space into

cubes Cj of side length N2. We write Cj ∼ Ck if the sum set Cj + Ck intersects the Fourier

support of P≤3N2 . For a given Cj, there are finitely many Ck with Cj ∼ Ck, and the number

of such Ck is uniformly bounded independently of N2.

To prove (2.2.12) it then suffices to prove∑
N0∼N1≥N2≥N3

∑
Cj∼Ck

∣∣∣∣ ∫ T

0

∫
T3

(PCjvN0)(PCkuN1)uN2wN3P≤N2(G(h≤N2)) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u‖2

Y sc‖w‖Y sc‖h‖
p−2
Y sc .

First let us proceed formally. Note that |G(z)| . |z|p−2. By Hölder and Strichartz, we have∣∣∣∣ ∫ T

0

∫
T3

(PCjvN0)(PCkuN1)uN2wN3P≤N2(G(h≤N2)) dxdt

∣∣∣∣
≤ ‖PCjvN0‖Lr0t,x‖PCkuN1‖Lr0t,x‖uN2‖Lr0t,x‖wN3‖Lr1t,x‖P≤N2(G(h≤N2))‖L∞t,x

.

(
N0

N1

)sc (N3

N2

) 3
2
− 5
r1
−sc
‖PCjvN0‖Y −sc‖PCkuN1‖Y sc‖uN2‖Y sc‖wN3‖Y sc‖h≤N2‖

p−2
Y sc ,
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provided that rj are Hölder exponents with rj >
10
3

, j = 0, . . . , 4. The lowest frequency is

summable if r1 >
5p
2

. We take r0 = 15p
5p−2(1−ε) and r1 = 5p

2(1−ε) . Then for ε = ε(p) sufficiently

small, we have r0, r1 >
10
3

. Summing using Cauchy-Schwarz, (2.2.12) follows.

Proof of (2.2.13): As before, let Z3 =
⋃
j Cj be a partition of frequency space into cubes,

except that the Cj now have side length N and Cj ∼ Ck if Cj + Ck intersects the Fourier

support of P≤3N . Then like the previous proof, (2.2.13) follows from

∑
N0∼N1≥N2≥N3

∑
N>N2

∑
Cj∼Ck

∣∣∣∣ ∫ T

0

∫
T3

(PCjvN0)(PCkuN1)uN2wN3PN(|h≤N2|p−2) dxdt

∣∣∣∣
. ‖v‖Y −sc‖u‖2

Y sc‖w‖Y sc‖h‖
p−2
Y sc .

The new ingredient relative to the preceding is the following estimate: for 2 < p < 3 and

r > 10
3

,

‖PN(G(h≤N2))‖
L
r/(p−2)
t,x

. N−(p−2)N
( 5

2
− 5
r4
−sc)(p−2)

2 ‖u≤N2‖
p−2
Y sc . (2.2.14)

This estimate follows from Lemma 2.1.6 and the Littlewood-Paley square-function estimate.

Choosing r0 = r1 = 20p
(1−ε)p2+(1+5ε)p+4ε

, r2 = 10p
2p2−4−3(1− ε

3
)p(p−2)

, r3 = 5p
2(1−ε) , and r4 = 10

3(1−ε) ,

and taking ε = ε(p) > 0 small, we find that rj >
10
3

for j = 0, 1, 2, 3, 4. Proceeding as above,

by Hölder, Bernstein, and (2.2.14) we obtain∣∣∣∣ ∫ T

0

∫
T3

(PCjvN0)(PCkuN1)uN2wN3PN(G(h≤N2)) dxdt

∣∣∣∣
. ‖PCjvN0‖Lr0t,x‖PCkuN1‖Lr1t,x‖uN2‖Lr2t,x‖wN3‖Lr3t,x‖PN(G(h≤N2))‖

L
r4/(p−2)
t,x

.

(
N0

N1

)sc
N

5( 1
r2

+ 1
r3

+ p−2
r4

)−p
N
−5( 1

r2
+ p−2

r4
)+p− 2

p

2 N
2
p
− 5
r3

3

· ‖PCjvN0‖Y −sc‖PCkuN1‖Y sc‖uN2‖Y sc‖wN3‖Y sc‖h≤N2‖
p−2
Y sc .

Our choices of rj also ensure that this is summable over N0 ∼ N1 & N2 & N3, N > N2.

Performing the summation establishes (2.2.13).
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CHAPTER 3

Breakdown of regularity for the scattering operators of

the defocusing mass-subcritical NLS

In this chapter we prove Theorem 1.3.1, which we restate for the reader’s convenience:

Theorem 3.0.1. Let d ≥ 1, and consider pNLS with α(d) < p < 4
d
. Then:

1. The scattering operators S,W for pNLS are well-defined as maps Σ → L2, and are

maximally regular at 0 ∈ Σ in the sense that they are Hölder continuous of order 1 + p

at 0, but not of any higher order.

2. There exists β = β(d, p) ∈ (0, p) such that S,W admit no extensions to maps L2 → L2

which are Hölder continuous of order 1 + β on any ball B ⊂ L2 containing the origin.

Here, the notion of Hölder continuity of order s at a point x0 is defined as membership

in the class Cs(x0); see Definition 1.4.2.

We now summarize the main ideas in the proof of this theorem. This discussion also

applies to the proof of part (1) of Theorem 1.3.4. The basic strategy is one that has been ap-

plied by various authors (e.g. [3,15,35]) to obtain ill-posedness results such as norm inflation

for nonlinear dispersive equations in low-regularity spaces. The first step is to decompose

the solution operator into a main term, which we expect to exhibit ill-posedness properties,

as well as an error term. This decomposition is generally performed in a stronger topology

which contains the low-regularity topology as a dense subspace. The next step is to prove

that the main term exhibits the desired ill-posedness properties when considered in the low-

regularity topology. The final step is to show that the error term is subdominant to the main
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term in the regime where the main term exhibits ill-posedness, thus establishing that the

full solution operator inherits this behavior.

For us, the stronger topology is Σ, and the weaker topology where we expect ill-posedness

is L2. We begin by obtaining an asymptotic expansion of the scattering operator T with

respect to the initial/scattering data which holds in Σ. Such expansions for pNLS and HNLS

scattering operators have been considered previously in the work of Kita [36], Kita and

Ozawa [37], Carles and Ozawa [10], Carles and Gallagher [9], Masaki [42], and Miao, Wu,

and Zhang [44]. This expansion take the form

T (φ) = φ± i
∫ ∞

0

e−is∆F (eis∆φ) ds+ e(φ),

where F denotes the nonlinearity and e(φ) is an error term. Here φ is the first derivative

term in the expansion of T : Σ→ L2.

The key idea is that the term

i

∫ ∞
0

e−is∆F (eis∆φ) ds, (3.0.1)

which corresponds to a certain order of derivative in the Taylor expansion of T , is well-

behaved for φ ∈ Σ but poorly behaved on L2 in the sense that (3.0.1) cannot be bounded

in terms of ‖φ‖L2 . The reason for this misbehavior is the failure of “nonlinear free energy”

estimates of the form ∫ ∞
0

Q(eit∆φ) dt . ‖φ‖α2 , α > 0, (3.0.2)

which is entirely due to scaling; here we recall that Q(u) is the potential energy functional

(1.3.3), (1.3.4). The rest of the argument is to control the L2-norm of the error e(φ), in order

to ensure that the bad behavior in (3.0.1) is the dominant behavior. By doing so, we can

show that no estimates of the form

‖T (φ)− φ‖L2

‖φ‖sL2

= O(1) as ‖φ‖L2 → 0

can hold for certain values of s, which implies the desired breakdown of regularity of T at

least at the origin.
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3.1 Preliminary definitions and estimates

We define the energy functional

E(v) =

∫
Rd

1

2
|∇v|2 +

1

p+ 2
|v|p+2 dx.

We will need the following effective version of the pseudoconformal energy law:

Lemma 3.1.1 (Pseudoconformal energy estimate). Let 0 < p < 4
d

and φ ∈ Σ. Let u be the

global solution to (1.1.3) with initial data φ. Then for all t ≥ 1,

‖u(t)‖p+2

Lp+2
x

.d,p t
− dp

2 (‖u(1)‖2
Σ + ‖u(1)‖p+2

Σ ). (3.1.1)

Moreover, if ε = ε(d, p) > 0 is sufficiently small and ‖φ‖Σ < ε, then for all t ≥ 0

‖u(t)‖p+2

Lp+2
x

.d,p 〈t〉−
dp
2 ‖φ‖2

Σ. (3.1.2)

Lemma 3.1.1 has a well-known formal proof for regular solutions via the virial identity,

though it is usually stated without the explicit dependence on u(1) or the small-data state-

ment. We reproduce it here for the reader’s convenience; our proof follows the presentation

in [45]. A proof that recovers Lemma 3.1.1 for rougher solutions can be found in [16].

Proof. Let J(t) = x+ it∇. (3.1.1) follows from the more general inequality

‖J(t)u(t)‖2
L2
x

+ ‖u(t)‖p+2

Lp+2
x

.d,p t
− dp

2 (‖u(1)‖2
Σ + ‖u(1)‖p+2

Σ ).

Expanding,

‖J(t)u(t)‖2
L2
x

=

∫
|x|2|u|2 − 2tIm(u∇u · 2x) + 4t2|∇u|2 dx.

Next, we invoke the virial identity for solutions to (1.1.3):

d2

dt2

∫
|x|2|u|2 dx =

d

dt
2Im

∫
u∇u · 2x dx =

∫
4dp

p+ 2
|u|p+2 + 8|∇u|2 dx.

It follows that

d

dt

∫
|x|2|u|2 − 2tImu∇u · 2x dx = −

∫
4dpt

p+ 2
|u|p+2 + 8t|∇u|2 dx.
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By conservation of energy,

4t2
d

dt

∫
|∇u|2 dx = −8t2

d

dt

∫
1

p+ 2
|u|p+2 dx.

Combining, we obtain

d

dt

∫
|J(t)u(t)|2 dx = −

∫
4dpt

p+ 2
|u|p+2 − 8t2

d

dt

∫
1

p+ 2
|u|p+2 dx.

Defining

e(t) =

∫
|J(t)u(t)|2 +

8t2

p+ 2
|u|p+2 dx,

we find that

ė(t) =
4t(4− dp)
p+ 2

∫
|u|p+2 dx =

2− dp
2

t

8t2

p+ 2

∫
|u|p+2 dx.

With

U(t) =
8t2

p+ 2

∫
|u|p+2 dx,

it follows that

U(t) ≤ e(t) = e(1) +

∫ t

1

ė(s) ds = e(1) +

∫ t

1

2− dp
2

s
U(s) ds.

By Gronwall’s inequality and Sobolev embedding, we conclude that

U(t) ≤ e(1) exp

(∫ t

1

2− dp
2

s
ds

)
. (‖u(1)‖2

Σ + ‖u(1)‖p+2
Σ )t2−

dp
2

which gives the claim. The small-data statement now follows from the local well-posedness

theory for NLS in Σ developed in [18].

3.2 Small-data expansion of the scattering operators

In this section we perform the small-data expansion of the wave operator and the initial-to-

scattering-state map.

Henceforth we take q = 4(p+2)
dp

; then (q, p + 2) is an admissible pair. We write T− = S,

T+ =W , regarding them as maps T± : Σ→ L2.
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Proposition 3.2.1 (Small-data expansion). Let α(d) < p < 4
d
. Then there exists ε =

ε(d, p) > 0 small so that if ‖φ‖Σ < ε, then

T±(φ) = φ± i
∫ ∞

0

e−is∆F (eis∆φ) ds+ e±(φ)

where the error term e±(φ) satisfies

‖e±(φ)‖2 .d,p ‖φ‖
2(2p+1)
p+2

Σ . (3.2.1)

The proof of Proposition 3.2.1 is based on the proof of scattering in Σ above the Strauss

exponent established in [18, 19], combined with the effective pseudoconformal energy law

3.1.1. It follows from the following two estimates:

Lemma 3.2.2. Let d ≥ 1, α(d) < p < 4
d
, and φ ∈ Σ. Then there exists ε = ε(d, p) > 0 small

so that if ‖φ‖Σ < ε, then

‖u‖ pq
q−2

,p+2 + ‖u‖q,p+2 .d,p ‖φ‖
2
p+2

Σ .

Proof. By Lemma 3.1.1,

‖u‖ pq
q−2

,p+2 .

(∫ ∞
0

(〈t〉−
dp

2(p+2)‖φ‖
2
p+2

Σ )
pq
q−2 dt

) q−2
pq

= ‖φ‖
2
p+2

Σ

(∫ ∞
0

〈t〉−
2p
q−2 dt

) q−2
pq

.

The integral in time is finite provided 2p
q−2

> 1, which is true whenever p > α(d). A similar

argument shows that

‖u‖q,p+2 . ‖φ‖
2
p+2

Σ

(∫ ∞
0

〈t〉−2 dt

) 1
q

. ‖φ‖
2
p+2

Σ .

Lemma 3.2.3. Let d ≥ 1, α(d) < p < 4
d
, and φ ∈ Σ. Then

‖eit∆φ‖ pq
q−2

,p+2 .d,p ‖φ‖Σ.
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Proof. The dispersive estimate (Proposition 1.4.1), combined with the Gagliardo-Nirenberg

inequality and the embedding Σ ↪→ Lq ( 2d
d+2

< q ≤ 2), gives us the decay estimate

‖eit∆φ‖p+2 . 〈t〉−
dp

2(p+2)‖φ‖Σ.

From here the proof is nearly identical to that of Lemma 3.2.2, where we invoke the above

decay estimate in place of the pseudoconformal energy estimate.

Proof of Proposition 3.2.1. By the construction of the wave operator given in [11], for a given

final state φ ∈ Σ the global solution u to (1.1.3) with final state φ satisfies

u(t) = eit∆φ+

∫ ∞
t

ei(t−s)∆F (u)(s) ds

= eit∆φ+

∫ ∞
t

ei(t−s)∆F (eis∆φ)(s) ds+ r+(φ)(t),

where

r+(φ)(t) = u(t)− eit∆φ−
∫ ∞
t

ei(t−s)∆F (eis∆φ)(s) ds.

Sending t→ 0, we obtain

W(φ) = u(0) = φ+

∫ ∞
0

e−is∆F (eis∆φ)(s) ds+ e+(φ)

where e+(φ) = r+(φ)(0). A similar expression holds for S(φ): we have

S(φ) = [S(φ)− e−it∆u(t)] +

[
φ− i

∫ t

0

e−is∆F (eis∆φ) ds

]
+ e−it∆r−(φ)(t), (3.2.2)

where

r−(φ)(t) = u(t)− eit∆φ+ i

∫ t

0

ei(t−s)∆F (eis∆φ) ds.

By the definition of S(φ), we have ‖S(φ) − e−it∆u(φ)(t)‖2 → 0 as t → ∞. Sending t → ∞

in (3.2.2), we obtain

S(φ) = φ− i
∫ ∞

0

e−is∆F (eis∆φ) ds+ e−(φ),

where e−(φ) = limt→∞ e
−it∆r−(φ)(t). Therefore we have

‖e±(φ)‖2 ≤ ‖r±(φ)‖∞,2.
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Since u satisfies the integral equation, we may write

r±(φ)(t) = ±i
∫ t

0

ei(t−s)∆[F (u(φ)(s))− F (eis∆φ)] ds.

By repeated applications of the Strichartz inequality (Proposition 1.4.2) and Hölder, we

obtain

‖r±(φ)‖∞,2 =

∥∥∥∥∫ t

0

ei(t−s)∆[F (u(φ)(s))− F (eis∆φ)] ds

∥∥∥∥
∞,2

.d,p (‖u‖ pq
q−2

,p+2 + ‖eit∆φ‖ pq
q−2

,p+2)‖u− eit∆φ‖q,p+2

.d,p (‖u‖ppq
q−2

,p+2
+ ‖eit∆φ‖ppq

q−2
,p+2

)‖u‖ppq
q−2

,p+2
‖u‖q,p+2.

Using Lemmas 3.2.2 and 3.2.3 to control the terms in the last line, and noting that ‖φ‖
2
p+2

Σ �

‖φ‖Σ for ‖φ‖Σ small, we obtain Proposition 3.2.1.

3.3 Breakdown of regularity

We are now ready to proceed with the proof of Theorem 3.0.1.

3.3.1 Proof in high dimensions

First we restrict to the case d ≥ 4. This choice is entirely for expository reasons: it simplifies

some technical details, while preserving the essence of the proof.

Proof of Theorem 3.0.1, d ≥ 4. Our first goal is part (1) of Theorem 3.0.1. First we show

that T± : Σ→ L2 is of class Cs(0) for all 0 < s ≤ 1 + p. Applying Strichartz and arguing as

in the proof of Lemma 3.2.3, we have the estimate∥∥∥∥∫ ∞
0

e−is∆F (eis∆φ) ds

∥∥∥∥
2

. ‖φ‖1+p
Σ .

Therefore Proposition 3.2.1 gives us

T±(φ)− φ = OL2(‖φ‖1+p
Σ ) +OL2(‖φ‖

2(2p+1)
p+2

Σ )
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whenever ‖φ‖Σ is small. Noting that 2(2p+1)
p+2

> 1 + p (the condition is equivalent to p < 1,

which holds for mass-subcritical NLS whenever d ≥ 4), we find that

T±(φ)− φ = OL2(‖φ‖1+p
Σ ).

From this we conclude that T± : Σ → L2 belongs to the class Cs(0) for all 0 < s ≤ 1 + p.

Moreover, this identifies the first variation of T± at 0 as dT±(0)(φ) = φ.

Next we show that T± : Σ→ L2 fails to be of class Cs(0) whenever s > 1 + p. It suffices

to show that

T±(φ)− φ 6= OL2(‖φ‖sΣ) (3.3.1)

as ‖φ‖Σ → 0 for any s > 1 + p; see Lemma A.0.3.

By Proposition 3.2.1, L2 duality, and the unitarity of the linear propagator, we have

‖T±(φ)− φ‖2 ≥
∥∥∥∥∫ ∞

0

e−is∆F (eis∆φ) ds

∥∥∥∥
2

− ‖e±(φ)‖2

≥ 1

‖φ‖2

∣∣∣∣∫ ∞
0

〈e−is∆F (eis∆φ), φ〉L2
x
ds

∣∣∣∣− ‖e±(φ)‖2

=
‖eit∆φ‖p+2

p+2,p+2

‖φ‖2

− ‖e±(φ)‖2.

Therefore (3.3.1) is proved if we exhibit a sequence (φn) ⊂ Σ with ‖φn‖Σ → 0 and

‖eit∆φn‖p+2
p+2,p+2

‖φn‖2‖φn‖sΣ
− ‖e±(φn)‖Σ

‖φn‖sΣ
→∞.

Let φ ∈ Σ with ‖φ‖2 = 1, and for ε, σ > 0 define

φε,σ(x) =
ε

σ
d
2

φ
(x
σ

)
.

Then φε,σ satisfies the following scalings:

‖φε,σ‖2 = ε, ‖∇φε,σ‖2 ∼
ε

σ
, ‖φε,σ‖Σ ∼ ε(1 +

1

σ
+ σ),

and

‖eit∆φε,σ‖p+2
p+2,p+2 ∼ εp+2σ2− dp

2 ,
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where for the last expression we have used the parabolic scaling symmetry of the linear

Schrödinger equation.

We will work in the regime ε � 1, σ � 1, and εσ � 1. These together imply that

‖φε,σ‖Σ ∼ εσ � 1, and therefore we are in the small-data regime of Proposition 3.2.1.

By the error estimate (3.2.1) of Proposition 3.2.1, we have

‖e±(φε,σ)‖2 . (εσ)
2(2p+1)
p+2 .

Next we assume that ε = σ−j with j > 1. Since σ � 1, under this assumption that we

still have εσ � 1. We now compute:

‖eit∆φε,σ‖p+2
p+2,p+2

‖φε,σ‖2

− ‖e±(φε,σ)‖2 & εp+1σ2− dp
2 − (εσ)

2(2p+1)
p+2

= σ−j(p+1)+2− dp
2 − σ

2(2p+1)
p+2

(1−j).

We wish for the main term to dominate the error term in the regime σ � 1. Since we are

free to take j arbitrarily large, the main term will dominate provided p+ 1 < 2(2p+1)
p+2

; as we

have already observed, this is automatically satisfied whenever d ≥ 4.

Therefore we have

‖T±(φε,σ)− φε,σ‖2 & σ−j(p+1)+2− dp
2 (3.3.2)

and thus

‖T±(φε,σ)− φε,σ‖2

‖φε,σ‖sΣ
& σj[s−(p+1)]+2− dp

2
−s.

Since s > 1 + p, for j sufficiently large we have j[s − (p + 1)] + 2 − dp
2
− s > 0. Taking j

large to guarantee this inequality and that the main term dominates the error, then taking

σ →∞, we find that
‖T±(φε,σ)− φε,σ‖2

‖φε,σ‖sΣ
→∞.

We thus conclude, as desired, that T± is not of class Cs(0) as a map Σ → L2 whenever

s > 1 + p.
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We proceed to part (2) of Theorem 3.0.1. It suffices to show there exists 0 < β < p so

that

T±(φ)− φ 6= OL2(‖φ‖1+β
2 ) (3.3.3)

as ‖φ‖L2 → 0. For suppose T± ∈ C1+β(0). Then T±(εφ) − εa(φ) = OL2(ε1+β) for ‖φ‖2 = 1

and ε > 0 small. Dividing through by ε, noting T±(0) = 0, and letting ε → 0, we find that

a(φ) = dT±(0)(φ), the first variation of T± at 0 in the direction φ; but we already know

that dT±(0)(φ) = φ when T± is regarded as a map Σ → L2, and by density this would be

preserved if T± were to admit an extension to L2. Therefore T±(φ)−φ is the only expression

that has any hope of satisfying the O(‖φ‖1+β
2 ) bound; showing that this fails proves that

T± /∈ C1+β(0) as a map L2 → L2.

From here the proof is similar to the proof we gave for (3.3.1). Arguing identically as

before, (3.3.3) is proved if we exhibit a sequence (φn) ⊂ Σ with ‖φn‖Σ → 0 and

‖eit∆φn‖p+2
p+2,p+2

‖φn‖2+β
2

− ‖e±(φn)‖2

‖φn‖1+β
→∞.

We take σ � 1, ε = σ−j, and j sufficiently large. Starting from (3.3.2) and dividing through

by ‖φε,σ‖1+β
2 , we obtain

‖T±(φε,σ)− φε,σ‖2

‖φε,σ‖1+β
2

& σj(β−p)+2− dp
2

For this to be large in the regime σ � 1, we require j(β − p) + 2 − dp
2
> 0, or equivalently

β > p − 1
j
(2 − dp

2
). This shows that if j is sufficiently large and this inequality for β holds,

then T± fails to extend to a map L2 → L2 of class C1+β(0). Since the constraint on β is an

open condition, we can optimize by taking the smallest admissible value of j, which depends

only on p and d. Therefore we have found j = j(d, p) so that if β > p− 1
j
(2− dp

2
), then u+

fails to extend to a map L2 → L2 of class C1+β(0), which completes the proof.
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3.3.2 Proof in low dimensions

Here we outline the proof of Theorem 3.0.1 in d = 1, 2, 3. There is no truly serious obstruction

to be overcome to obtain the result in low dimensions; the choice to break up the proof is

entirely for expository purposes, as the proof for d ≥ 4 is particularly clean and encompasses

all of the main ideas.

The main reason why the previous proof does not extend to lower dimensions is that the

error estimate

‖e±(φ)‖2 . ‖φ‖
2(2p+1)
p+2

Σ

is no longer strong enough for the main term to dominate the error when d ≤ 3 and α(d) <

p < 4
d
. Therefore the main task is to sharpen this estimate until the error is once again

dominated by the main term.

The inefficiency in the above estimate arises from the use of the pseudoconformal energy

estimate (Lemma 3.1.1), which is obviously not scaling-invariant and thus leads to losses

every time it is invoked. However, noting that there is some slack in the integrability condi-

tions for the time integrals in the proofs of Lemmas 3.2.2 and 3.2.2, we can reduce the total

degree to which we rely on the pseudoconformal energy estimate.

As before, we write q = 4(p+2)
dp

, so that (q, p+ 2) is an admissible pair. We now state the

sharpened version of (3.2.1):

Proposition 3.3.1. Let d ≥ 1, α(d) < p < 4
d
. Define e±(φ) as before. Let q−2

2p
< η ≤ 1 and

1
2
< ν ≤ 1. Then there exists ε = ε(d, p) > 0 small so that if ‖φ‖Σ < ε, then

‖e±(φ)‖2 .d,p,η,ν ‖φ‖Q(d,p,η,ν)
Σ (3.3.4)

where

Q(d, p, η, ν) = 2p(1− η) + (1− ν) +
2

p+ 2
(2ηp+ ν).

We begin the proof. Write θ = 1 − dp
2(p+2)

. First, we have the following sharpened forms

of Lemmas 3.2.2 and 3.2.3:
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Lemma 3.3.2. Let d ≥ 1, α(d) < p < 4
d
, and φ ∈ Σ. Then there exists ε = ε(d, p) > 0 small

so that if ‖φ‖Σ < ε, then for q−2
2p

< η ≤ 1, we have

‖u(φ)‖ pq
q−2

,p+2 .d,p,η (‖φ‖θ2(E(φ)
1
2 )1−θ)1−η‖φ‖

2η
p+2

Σ ,

and for 1
2
< ν ≤ 1, we have

‖u(φ)‖q,p+2 .d,p,η (‖φ‖θ2(E(φ)
1
2 )1−θ)1−ν‖φ‖

2ν
p+2

Σ ,

Proof. We seek to control (∫ ∞
0

‖u(φ)(t)‖
pq
q−2

Lp+2
x

dt

) q−2
pq

.

Let η ∈ [0, 1]. We factor the integrand into powers ‖u(φ)(t)‖
pq
q−2

(1−η)

Lp+2
x

‖u(φ)(t)‖
pq
q−2

η

Lp+2
x

. We esti-

mate the first piece using Gagliardo-Nirenberg, and the second using the pseudoconformal

energy estimate. We obtain(∫ ∞
0

‖u(φ)(t)‖
pq
q−2

Lp+2
x

dt

) q−2
pq

=

(∫ ∞
0

‖u(φ)(t)‖
pq
q−2

(1−η)

Lp+2
x

‖u(φ)(t)‖
pq
q−2

2η
p+2

Lp+2
x

dt

) q−2
pq

≤ (‖φ‖θ2(E(φ)
1
2 )1−θ)(1−η)‖φ‖

2η
p+2

Σ

(∫ ∞
0

〈t〉−
2pη
q−2 dt

) q−2
pq

.

The last integral is finite assuming η > q−2
2p

. This establishes the first estimate in Lemma

3.3.2. The second estimate for ‖u(φ)‖q,p+2 is proved in exactly the same way: we split

‖u(φ)(t)‖Lp+2
x

= ‖u(φ)(t)‖(1−ν)

Lp+2
x
‖u(φ)(t)‖ν

Lp+2
x

, estimate the first piece using Gagliardo-Nirenberg,

and the second by the pseudoconformal energy estimate. The condition ν > 1
2

is required to

make the final integral in time finite. We leave the details to the reader.

Lemma 3.3.3. Let d ≥ 1, α(d) < p < 4
d
, and φ ∈ Σ. Then for q−2

2p
< η ≤ 1,

‖eit∆φ‖ pq
q−2

,p+2 .d,p,η (‖φ‖θ2‖∇φ‖1−θ
2 )1−η‖φ‖ηΣ.

Proof. The proof proceeds almost identically to that of the first part of Lemma 3.3.2. As

earlier, we factor ‖eit∆φ‖p+2 = ‖eit∆φ‖1−η
p+2‖eit∆φ‖

η
p+2. The first factor can be controlled using

Gagliardo-Nirenberg and the conservation of Ḣs norms under the linear Schrödinger flow.
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The second factor is controlled near time 0 by Gagliardo-Nirenberg, and at large times by the

dispersive estimate and the embedding Σ ↪→ Lq for all 2d
d+2

< q ≤ 2. The condition η > q−2
2p

ensures that the time integral that remains is finite. We leave the details to the reader.

Proof of Proposition 3.3.1. We argue as in the proof the error bound in of Proposition 3.2.1,

but using Lemmas 3.3.2 and 3.3.3. Doing so, we arrive at an estimate of the form

‖e±(φ)‖2 .d,p,η,ν ‖φ‖α2 (E(φ)
1
2 )β+δ‖φ‖γΣ + ‖φ‖α2 (E(φ)

1
2 )β‖∇φ‖δ2‖φ‖

γ+ p
p+2

ηp

Σ ,

where:

α = θ(2p(1− η) + (1− ν));

β = (1− θ)(p(1− η) + (1− ν));

γ =
2

p+ 2
(2ηp+ ν);

δ = (1− θ)p(1− η).

Note that Q(d, p, η, ν) = α + β + δ + γ. By Sobolev embedding, E(φ) is controlled by

‖φ‖2
Σ + ‖φ‖p+2

Σ , and by the assumption ‖φ‖Σ � 1 the second term is negligible. Therefore

every norm and each (E(φ))
1
2 is majorized by ‖φ‖Σ, and we have:

‖e±(φ)‖2 .d,p,η,ν ‖φ‖Q(d,p,η,ν)
Σ + ‖φ‖

Q(d,p,η,ν)+ p
p+2

ηp

Σ . ‖φ‖Q(d,p,η,ν)
Σ .

We are finally equipped to prove Theorem 3.0.1 in full generality.

Proof of Theorem 3.0.1, d = 1, 2, 3. We mention only the necessary changes relative to the

proof in dimensions d ≥ 4.

The first step is to prove that T± : Σ → L2 is of class Cs(0) for all 0 < s < 1 + p. It

suffices as before to show that

T±(φ)− φ = O(‖φ‖1+p
Σ )
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whenever ‖φ‖Σ is small. To ensure this we must show that e+(φ) is of higher order in ‖φ‖Σ

than the main term, i.e. 1 + p < Q(d, p, η, ν) for some admissible choice of η and ν. Since η

can be arbitrarily close to q−2
2p

and ν can be arbitrarily close to 1
2
, it suffices to show that

1 + p < Q

(
d, p,

q − 2

2p
,
1

2

)
.

This is equivalent to the condition

2dp2 + (11d− 8)p+ (8d− 16) > 0.

When d ≥ 2, this is automatically satisfied for p > 0 because the coefficients are nonnegative.

When d = 1, the positive root of this polynomial is smaller than 3
2
, and thus this is satisfied

for p > 2 = 2
d
.

Next we show that T± : Σ→ L2 is not of class Cs(0) for s > 1 + p, and does not extend

to a map L2 → L2 of class C1+β(0) for some 0 < β < p. As before it suffices to show that

T±(φ)− φ 6= OL2(‖φ‖sΣ) (3.3.5)

in the first case, and

T±(φ)− φ 6= OL2(‖φ‖1+β
L2 ). (3.3.6)

in the latter case. Examining the proof in d ≥ 4, we observe that the only way in which the

size of e±(φ) enters into either argument is to show that there exists a regime ε� 1, σ � 1

and εσ � 1 so that ‖φε,σ‖2 (where φε,σ is defined as before) is dominated by the main term

‖φε,σ‖−1
2 ‖eit∆φε,σ‖

p+2
p+2,p+2. Taking ε = σ−j with j > 1 to be determined, the main term is still

of size
‖eit∆φε,σ‖p+2

p+2,p+2

‖φε,σ‖2

∼ σ−j(p+1)+2− dp
2 .

We use (3.3.4) to control the error by

‖e±(φε,σ)‖2 .d,p,η,ν σ
(1−j)Q(d,p,η,ν).

Noting as before that Q(d, p, η, ν) > p + 1 for a judicious choice of η and ν, we see that

‖e±(φε,σ)‖Σ is negligible relative to the main term for j sufficiently large and σ � 1. From

here the proof of (3.3.5) and (3.3.6) proceeds exactly as when d ≥ 4.
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CHAPTER 4

Analyticity and infinite breakdown of regularity for the

mass-subcritical Hartree scattering problem

In the final chapter we prove Theorems 1.3.3 and 1.3.4, which we restate for the reader’s

convenience:

Theorem 4.0.1. Let d ≥ 2 and 4
3
< γ < 1. Let T ∈ {S,W}. Then:

1. T is well-defined as a map Σ→ Σ, and is analytic in the sense that for all u0 ∈ Σ and

v ∈ Σ, T admits the power series expansion

T (u0 + εv) = T (u) +
∞∑
k=1

εkwk

for all sufficiently small ε > 0, where (wk) ⊂ Σ and the series converges in Σ-norm.

2. The same result holds with the space FH1 replacing Σ.

Theorem 4.0.2. Let d ≥ 2 and 4
3
< γ < 2. Let T ∈ {S,W}.

1. Let s > 5+5γ
3+γ

. Then T : Σ → L2 admits no extension to a map L2 → L2 which is

Hölder continuous of order s on any ball B containing 0 ∈ L2.

2. Let s > 4+4γ
2+γ

. Then there exists R > 0 such that for any ball B ⊂ BR(0) ⊂ Σ (not

necessarily containing the origin), T : B → L2 admits no extension to a map L2 → L2

which is Hölder continuous of order s at any point in B ∩ L2.
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We now summarize the main ideas of the proofs of these results. For convenience, we

restrict our discussion to the proof of the result for S, but the discussion adapts to the case

of W easily. The proofs of Theorem 4.0.1 and part 1 of Theorem 4.0.2 have already been

outlined at the beginning of Chapter 3, so we are left to outline the proof of part 2.

Recall that when u0 = 0, the key idea of the proof of breakdown of regularity is to identify

ill-posedness behavior in the term

i

∫ ∞
0

e−is∆F (eis∆v) ds, (4.0.1)

which manifests as the failure to control the nonlinear free energy∫ ∞
0

Q(eit∆v) dt

in terms of ‖v‖L2 . The same strategy holds in the case u0 6= 0. In this case, we look to

identify the breakdown of regularity in w+
3 , the third derivative term in the expansion

S(u0 + v) = S(u0) +
∑
k≥1

w+
k .

When u= 6= 0, w+
3 is plays a role analogous to (4.0.1), and we must show it cannot be

controlled in terms of ‖v‖L2 . The basic reason is, once again, the failure of the nonlinear free

energy estimates, with w+
1 (the first derivative term in the expansion) taking the place of v

(the first derivative term when u0 = 0).

However, two complications arise when u0 6= 0. The first is that w+
1 is no longer merely

the limit of a free evolution: it arises as a limit limt→∞ e
−it∆w1(t), where w1(t) satisfies a

linear Schrödinger equation with nontrivial potential if u0 6= 0. This means that we cannot

apply the earlier scaling argument to the nonlinear free energy functional right away. We get

around this issue by using the fact that although w1(t) is not itself a free evolution, it does

converge asymptotically in time to one. We therefore decompose the integral∫ ∞
0

Q(w1(t)) dt (4.0.2)

59



into two regions, one consisting of large times where w1(t) is effectively a free evolution, and

the other consisting of short times. We then rescale in spacetime, which replaces w1 with

a rescaled version which we can effectively treat as a free evolution for all times outside of

an arbitrarily small time interval, allowing us to use the earlier scaling argument for the

nonlinear free energy.

The second complication is that w+
3 also contains additional terms which are cubic in v,

which we regard as error terms and must show are subdominant to the main term (4.0.2).

Since the main term is also cubic in v, this requires a more efficient analysis than we need

for the case u0 = 0, for which the main term is the only cubic term and all errors are strictly

higher order. For this we employ a Lorentz space refinement of the scattering theory built

in [26, 28,48] in order to obtain essentially optimal estimates on the cubic error terms.

4.1 Preliminary definitions and estimates

We will make use of the vector field J(t) = x + 2it∇, which is standard in the scattering

theory of Schrödinger equations. J obeys the identity

J(t) = M(t)(2it∇)M(−t) = eit∆xe−it∆ (4.1.1)

where M(t) = ei|x|
2/4t; it measures the evolution of the center of mass for free evolutions. It

is associated to the following decay estimate:

Lemma 4.1.1 ([49]). For 2 ≤ r < 2d
d−2

and t 6= 0, we have

‖u(t)‖r .d,r |t|−θ(d,r)‖u(t)‖1−θ(d,r)
2 ‖J(t)u(t)‖θ(d,r)2 ,

where θ(d, r) = d(r−2)
2r

.

Proof. By the decomposition J(t) = M(t)(2it∇)M(−t) (4.1.1) and the Gagliardo-Nirenberg
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inequality,

‖u(t)‖r = ‖M(−t)u(t)‖r . ‖u(t)‖1−θ(d,r)
2 ‖∇M(−t)u(t)‖θ(d,r)2

= |t|−θ(d,r)‖u(t)‖1−θ(d,r)
2 ‖J(t)u(t)‖θ(d,r)2 .

We note that for the special case r = 4d
2d−γ , θ = γ

4
; from this point on we fix this as the

value of θ.

Lastly, we will need some preliminary estimates on the nonlinearity. Define

T (u, v, w) = (|x|−γ ∗ (uv))w. (4.1.2)

Note that F (u) = (|x|−γ ∗ |u|2)u = T (u, u, u). Applications of Hölder’s inequality and the

Hardy-Littlewood-Sobolev inequality yield the following multilinear estimates:

Lemma 4.1.2 (Hartree nonlinearity estimates [28]). Let 0 < γ < d and r = 4d
2d−γ . Then for

all u, v, w ∈ Lr(Rd),

Q(u) =

∫
Rd

(|x|−γ ∗ |u|2)|u(x)|2dx . ‖u‖4
r,

‖T (u, v, w)‖r′ . ‖u‖r‖v‖r‖w‖r,

‖∇T (u1, u2, u3)‖r′ .
3∑
i=1

‖∇ui‖r
∏
j 6=i

‖uj‖r,

‖J(t)T (u1, u2, u3)‖r′ .
3∑
i=1

‖J(t)ui‖r
∏
j 6=i

‖uj‖r.

4.2 Analyticity of the Hartree scattering operators

For the remainder of this paper, we assume d ≥ 2 and 4
3
< γ < 2.

Our goal in this section is to prove Theorem 4.0.1. As we have mentioned in the intro-

duction, this proceeds largely along the lines of the framework set out in [9], adapted to the

estimates we have for the mass-subcritical Hartree equation.
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We first address the analyticity of the wave operator. Let u+ ∈ Σ be a scattering state,

and let v ∈ Σ with ‖v‖Σ = 1 be arbitrary. By [28], under our current assumptions there

exists a unique global solution u ∈ CtΣ(R) to Equation (1.1.4) which scatters to u+, and

for each ε > 0 there exists a unique global solution uε ∈ CtΣ which scatters to u+ + εv.

Moreover, the wave operator W : Σ→ Σ is well-defined.

Write uε = u + wε. Our goal is to show that for ‖u+‖Σ sufficiently small, wε admits the

norm-convergent expansion

wε(t) =
∞∑
k=1

εkwk(t) as ε→ 0,

where (wk) are elements of an appropriate function space determined by contraction map-

ping. This argument consists of three parts:

1. determining the hierarchy of equations satisfied by the sequence (wk);

2. showing that (wk) is sufficiently strongly bounded in a global spacetime norm, so that

the series for uε is norm convergent;

3. showing that the series for wε does actually converge to wε.

It will emerge as a consequence that W admits the norm-convergent expansion

W(u+ + εv) =
∞∑
j=0

εkvk as ε→ 0

where (vk) ⊂ Σ.

4.2.1 Hierarchy equations

The coefficients (wk) of the series for uε formally satisfy a hierarchy of coupled PDEs. We

express uε in integral form, then match like powers of ε to obtain the coefficients. Let us

write

N (u, v, w)(t) = i

∫ ∞
t

ei(t−s)∆T (u, v, w) ds
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where T is the trilinear form defined in (4.1.2). Matching zero-th order terms in ε yields

w0(t) = u(t) = eit∆u+ +N (u, u, u)(t)

Matching first order terms in ε yields

w1(t) = eit∆v +N (u, u, w1)(t) +N (u,w1, u)(t) +N (w1, u, u)(t).

Higher-order terms behave similarly, involving symmetric sums of the trilinear operators T

with arguments in {u,w1, w2, . . .}. To simplify notation, we introduce the symmetric sum

operator S which sums over all distinct permutations of the ordered triple (u, v, w). For

example,

SN (u, u, w1) = N (u, u, w1) +N (u,w1, u) +N (w1, u, u).

Such a symmetric sum has either one, three, or six summands. With this notation, the full

hierarchy of equations for the coefficients takes the following form:

w0(t) = eit∆u+ +N (u, u, u)(t), (4.2.1)

w1(t) = eit∆v + SN (u, u, w1)(t), (4.2.2)

wN(t) =
∑

j+k+`=N

N (wj, wk, w`)(t), N ≥ 2. (4.2.3)

4.2.2 Coefficient estimates

Fix r = 4d
2d−γ and q = 8

γ
; then (q, r) is a Schrödinger-admissible pair. Also fix α = 8

4−γ . With

these choices we have 1
q′

= 1
q

+ 2
α

.

For a time interval I, we define the space Y (I) via its norm

‖f‖Y (I) = ‖f‖L∞t L2
x(I) + ‖f‖LqtLrx(I).

We define the space X(I) by the norm

‖f‖X(I) = ‖f‖Y (I) + ‖J(t)f‖Y (I) + ‖∇f‖Y (I).
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Remark 4.2.1. X(I) is adapted to the Σ-norm and is thus used to prove part (1) of Theorem

4.0.1. The results of this section can also be proved in the FH1-adapted space Z(I) defined

by the norm

‖f‖Z(I) = ‖f‖Y (I) + ‖J(t)f‖Y (I).

We leave it to the reader to verify that all of the relevant estimates hold with Z(I) replacing

X(I), thus obtaining part (2) of Theorem 4.0.1 as well.

The results of this section also hold in the Lorentz-modified space X∗(I), defined analo-

gously to X(I) but replacing Y (I) by Y ∗(I), where

‖f‖Y ∗(I) = ‖f‖L∞t L2
x(I) + ‖f‖Lq,2t Lrx(I).

Since Lq,2t is normable for our choice of q, these are still Banach spaces. Again, we leave it

to the reader to check that all of the results we prove in this section can be adapted to the

X∗ setting as well: the key estimate is

‖T (u, v, w)‖
Lq
′,2
t Lr′x

. ‖u‖Lα,∞t Lrx
‖v‖Lα,∞t Lrx

‖w‖Lq,∞t Lrx

and the analogous estimates for J(t)T (u, v, w) and ∇T (u, v, w), which follow from Lemma

4.1.2 and Hölder’s inequality for Lorentz spaces. The Lorentz space refinement will become

relevant in Section 4.3.

We construct the power series expansions of the wave and scattering operators by con-

structing the coefficients (wk) on the interval [0,∞) and then taking the appropriate limits

in t. For notational convenience we construct (wk) first on [1,∞). Composing with the time-

translation symmetry of HNLS then gives us the coefficients on [0,∞).

Proposition 4.2.1. For any u+ ∈ Σ and any v ∈ Σ with ‖v‖Σ = 1, there exists a constant

Λ = Λ(R, d, γ) > 0 such that for all k ≥ 1,

‖wk‖X([1,∞)) ≤ akΛ
k,

64



where (ak) is a sequence of positive numbers satisfying

ak . (C0a1)k

for some positive constant C0.

Corollary 4.2.2. Under the same hypotheses, the series

∞∑
k=1

εkwk

converges in the norm topology of X(R) for all sufficiently small ε > 0.

Lemma 4.2.3 ([3, 35]). Let (aj) be a sequence of positive numbers satisfying

aN ≤ C
∑

j+k+`=N
j,k,` 6=N

ajaka`, N ≥ 2.

Then there exist constants C0, C1 > 0 such that

aN ≤ C1(C0a1)N

for all N ≥ 1.

Proof. We claim the stronger inequality

〈N〉2aN ≤ C1(C0a1)N . (4.2.4)

We proceed by induction on N .

First we assume C1C0 ≥ 1. Under this assumption, the base case N = 1 is trivial.
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Now assume (4.2.4) holds for 1, . . . , N − 1. We estimate:

〈N〉2aN ≤ C
∑

j+k+`=N
j,k,` 6=N

ajaka`〈j + k + `〉2

≤ CC3
1(C0a1)N

∑
j+k+`=N
j,k,` 6=N

〈j + k + `〉2

〈j〉2〈k〉2〈`〉2

≤ 3CC3
1(C0a1)N

∑
j+k+`=N
j,k,` 6=N

〈j〉2 + 〈j〉2 + 〈j〉2

〈j〉2〈k〉2〈`〉2

≤ 9CC3
1(C0a1)N

∑
j+k+`=N
j,k,` 6=N

〈j〉2

〈j〉2〈k〉2〈`〉2
.

The remaining sum we bound as follows:

∑
j+k+`=N
j,k,` 6=N

〈j〉2

〈j〉2〈k〉2〈`〉2
≤

N∑
`=0

N−∑̀
k=0

1

〈k〉2〈`〉2
≤

(
∞∑
k=0

〈k〉−2

)2

= C2
2 .

Therefore

〈N〉2aN ≤ (9CC2
1C

2
2)C1(C0a1)N .

The claim then follows by choosing C1 = (9CC2
2)−

1
2 .

Finally, we note that once C1 is fixed as above, we are free to choose C0 as large as we

like in (4.2.4). Thus we can always assume C1C0 ≥ 1, justifying our earlier assumption.

Proof of Proposition 4.2.1. We proceed by induction on k.

Take k = 1. Let I be a time interval. By Strichartz, Lemma 4.1.2, and Hölder in time,

we find that

‖1t∈Iw1‖∞,2 ≤ ‖1t∈Ieit∆v‖∞,2 + C(d, γ)‖SN (u, u, w1)‖∞,2

≤ ‖1t∈Ieit∆v‖∞,2 + C(d, γ)‖1t∈Iu‖2
α,r‖1t∈Iw1‖q,r.
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By Lemma 4.1.1 and our choice of r and α,

‖1t∈Iu‖α,r . ‖1t∈Iu‖1−θ
∞,2‖1t∈IJ(t)u‖θ∞,2

(∫
I

|t|−2γ/(4−γ) dt

)1/α

≤ ‖1t∈Iu‖X([1,∞))

(∫
I

|t|−2γ/(4−γ) dt

)1/α

.

Since γ > 4
3
, 2γ

4−γ > 1. Since u ∈ X([1,∞)), we can decompose [1,∞) into a union of finitely

many disjoint intervals Ik such that

‖1t∈Ikw1‖∞,2 ≤ ‖1t∈Ikeit∆v‖∞,2 +
1

12
‖1t∈Ikw1‖X([1,∞)).

Arguing similarly for the remaining parts of the X(I) norm, we find that

‖1t∈Ikw1‖X([1,∞)) ≤ ‖1t∈Ikeit∆v‖X([1,∞)) +
1

2
‖1t∈Ikw1‖X([1,∞)).

Since ‖1t∈A∪Bf‖X([1,∞)) ∼ ‖1t∈Af‖X([1,∞)) + ‖1t∈Bf‖X([1,∞)) whenever A and B are disjoint,

we conclude by Strichartz and (4.1.1) that

‖w1‖X([1,∞)) .d,γ ‖eit∆v‖X([1,∞)) . ‖v‖Σ = 1.

Let C(d, γ) be the implicit constant in this estimate, and set Λ = C(d, γ). This establishes

the case k = 1.

Now define the sequence (aN) by a1 = C(d, γ) from above, and

aN = C ′(d, γ)
∑

j+k+`=N
j,k,` 6=N

ajaka`,

where C ′(d, γ) is a constant to be determined. Assume the bound

‖wj‖X([1,∞)) ≤ ajΛ
j

for j = 1, . . . , N − 1, and consider wN . Working as in the previous case, we find that

‖1t∈IwN‖X([1,∞)) .
∑

j+k+`=N
j,k,` 6=N

‖1t∈ISN (wj, wk, w`)‖X([1,∞))

+ C(I)2‖1t∈Iw0‖2
X([1,∞))‖1t∈IwN‖X([1,∞)),
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where

C(I) =

(∫
I

|t|−2γ/(4−γ) dt

)1/α

.

Once again, this implies that

‖wN‖X([1,∞)) .
∑

j+k+`=N
j,k,` 6=N

‖SN (wj, wk, w`)‖X([1,∞)).

By Strichartz, Lemma 4.1.2, Hölder, Lemma 4.1.1, and invoking the induction hypothesis,

we find that

‖wN‖X[1,∞) . ΛN
∑

j+k+`=N
j,k,` 6=N

ajaka`.

The implicit constant in this estimate can be defined independently of N . Thus if we set

C ′(d, γ) to be this constant, then we arrive at

‖wN‖X([1,∞)) . aNΛN .

Invoking Lemma 4.2.3 to control the growth of (aN) completes the proof.

4.2.3 Convergence

We have shown that the series ∑
k≥1

εkwk

is norm convergent in the space X([1,∞)) for all sufficiently small ε > 0. Our next goal is

to show that it converges to the correct object.

Proposition 4.2.4. Let ε > 0 be such that
∑

k≥1 ε
kwk converges in X([1,∞)). Then∥∥∥∥∥uε − u−

N−1∑
k=1

εkwk

∥∥∥∥∥
X([1,∞))

→ 0 as N →∞.

Proof. Let W≥N = uε−u−
∑N−1

k=1 ε
kwk = uε−u−W<N . Then for N ≥ 2, W≥N satisfies the
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equation

W≥N(t) = N (uε, uε, uε)−N (u, u, u)−
N−1∑
M=1

εM
∑

j+k+`=M

SN (wj, wk, w`)

= i

∫ ∞
t

ei(t−s)∆G(u,W<N ,W≥N) ds+N (W<N ,W<N ,W<N)

−
N−1∑
M=1

εM
∑

j+k+`=M

SN (wj, wk, w`)

where G(u,W<N ,W≥N) consists of all the terms T (a, b, c) with at least one argument equal

to W≥N . Arguing as in the proof of Proposition 4.2.1, we can decompose [1,∞) into a finite

collection of disjoint intervals Ik such that∥∥∥∥1t∈Ik

∫ ∞
t

ei(t−s)∆G(u,W<N ,W≥N) ds

∥∥∥∥
X([1,∞))

≤ 1

2
‖1t∈IkW≥N‖X([1,∞)).

For the remaining terms, we write

N (W<N ,W<N ,W<N) =
N−1∑
M=1

εM
∑

j+k+`=M

SN (wj, wk, w`)

+
∑

1≤j,k≤N−1
j+k≥N

εj+kSN (u,wj, wk)

+
∑

1≤j,k,`≤N−1
j+k+`≥N

εj+k+`SN (wj, wk, w`).

The first term cancels exactly with the remaining terms in the previous expression for W≥N .

For the latter two terms, by Proposition 4.2.1 we have∥∥∥∥∥∥∥∥
∑

1≤j,k≤N−1
j+k≥N

εj+kSN (u,wj, wk) ds

∥∥∥∥∥∥∥∥
X([1,∞))

. (εΛ)N

as long as εΛ < 1, and similarly∥∥∥∥∥∥∥∥
∑

1≤j,k,`≤N−1
j+k+`≥N

εj+k+`SN (wj, wk, w`) ds

∥∥∥∥∥∥∥∥
X([1,∞))

. (εΛ)N .
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Thus we conclude that

‖W≥N‖X([1,∞)) . (εΛ)N ,

and sending N →∞ proves the desired claim.

Thus we have shown that the map Σ → X([1,∞)) that sends the scattering data u+

to the solution u : [1,∞) × Rd → C depends analytically on u+, and we can compute the

coefficients of the power series expansion around any point u+ inductively. Consequently, the

same holds for the map Σ→ Σ : u+ 7→ u(t = 1).

A similar argument applies to proving the analyticity of the initial-to-scattering state

operator S : Σ → Σ. For initial data u ∈ Σ and v ∈ Σ we define u ∈ X([0,∞)) to be

the global solution to HNLS with u(0) = u0, and uε(t) to the global solution to HNLS with

uε(0) = u0+εv; these are well-defined by the existing scattering theory in Σ. Then arguments

similar to those of Propositions 4.2.1 and 4.2.4 show that uε admits the expansion

uε = u+
∑
k≥1

εkwk

with ‖wk‖X([0,∞)) . Λk for some fixed Λ and small ε. To finish the proof of Theorem 4.0.1 it

remains to show:

Proposition 4.2.5. For all k ≥ 1, the limits

w+
k = lim

t→∞
e−it∆wk(t)

exist in Σ, and

S(u0 + εv) = u+ +
∑
k≥1

εkw+
k

with the latter series converging in Σ.

Proof. We claim that for each N ≥ 1, (e−it∆wN(t))t≥0 is Cauchy in Σ as t→∞. We have

e−it1∆wN(t1)− e−it2∆wN(t2) =
∑

j+k+`=N

−i
∫ t2

t1

e−is∆ST (wj, wk, w`) ds
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By 4.1.1, Lemma 4.1.2, Strichartz, and Hölder as before,

‖e−it1∆wN(t1)− e−it2∆wN(t2)‖Σ . I(t1, t2)
∑

j+k+`=N

‖wj‖X([1,∞))‖wk‖X([1,∞))‖w`‖X([1,∞))

where

I(t1, t2) =

(∫ t1

t2

|t|−2γ/(4−γ) dt

)2/α

.

Since the integral tends to 0 as t1, t2 → 0, the claim follows. Therefore the sequence (w+
N) ⊂ Σ

is well-defined, and for N ≥ 2 we may write

w+
N =

∑
j+k+`=N

−i
∫ ∞

0

e−is∆ST (wj, wk, w`) ds

(with appropriate changes for N = 1). Working as in the proof of Proposition 4.2.1, we can

show that there exists a constant Λ > 0 such that

‖w+
N‖Σ . ΛN .

Therefore the series
∑

k ε
kw+

k converges in Σ for ε > 0 sufficiently small, and a similar

argument to Proposition 4.2.4 shows that

S(u0 + εv) = u+ +
∞∑
k=1

εkw+
k

in the sense of convergence of the series in Σ to the LHS.

4.3 Breakdown of analyticity

We now turn to the proof of Theorem 4.0.2.

4.3.1 Breakdown at the origin

We first consider part (1) of Theorem 4.0.2. From here on, we abuse notation and redefine

N (u, v, w) = i

∫ ∞
0

e−is∆T (u, v, w) ds.
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Let T ∈ {S,W}, regarding it as a map Σ→ L2, and consider its power series expansion

T (v) =
∑

k≥1wk at 0 ∈ Σ (for small ‖v‖Σ). A careful accounting of the hierarchy of equations

governing the coefficients shows that all even-indexed terms vanish, so

T (v) = v +N (eit∆v, eit∆v, eit∆v) +
∑
k≥5
k odd

wk.

To establish part (1) of Theorem 4.0.2 it is enough to show:

Proposition 4.3.1. For any s > 5+5γ
3+γ

, we have

‖T (v)− v‖2 6= OL2(‖v‖s2).

Proof. Let v ∈ Σ be sufficiently small so that the expansion T (v) =
∑

k wk holds. By

L2-duality, Fubini, and unitarity of the free propagator eit∆ we have

‖T (v)− v‖2 ≥
1

‖v‖2

|〈N (eit∆v, eit∆v, eit∆v), v〉|‖e(v)‖2

=
1

‖v‖2

∫ ∞
0

Q(eis∆v) ds− ‖e(v)‖2

where

e(v) =
∑
k≥5
k odd

wk.

For fixed nonzero v ∈ Σ and ε, σ > 0, we define

vε,σ(x) =
ε

σ
d
2

v
(x
σ

)
.

We will show the existence of a sequence of parameters (ε, σ) such that:

1. ‖vε,σ‖Σ � 1 (so that the series expansion holds for T (vε,σ));

2. taking the limit along the sequence (ε, σ), we have

lim
(ε,σ)

1

‖vε,σ‖s2

(
1

‖vε,σ‖2

∫ ∞
0

Q(eis∆vε,σ) ds− ‖e(vε,σ)‖2

)
→∞.
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Since (vε,σ) is an L2-bounded sequence, the claim immediately follows.

We will take ε � 1 and σ � 1 with εσ � 1. The last condition keeps us in the regime

of small ‖vε,σ‖Σ, so that the power series expansion continues to hold. Then the family (vεσ)

obeys the following scalings:

‖vε,σ‖2 ∼ ε, ‖vε,σ‖Σ ∼ εσ, ‖∇vε,σ‖2 ∼ εσ−1.

Moreover, by the parabolic scaling symmetry eit∆v(x)↔ eiσ
−2t∆v(σ−1x) of the free Schrödinger

flow, ∫ ∞
0

Q(eis∆vε,σ) ds = ε4σ2−γ
∫ ∞

0

Q(eis∆v) ds ∼‖v‖Σ ε4σ2−γ.

Here, the finiteness of the integral follows from Lemmas 4.1.1, 4.1.2, and the Gagliardo-

Nirenberg inequality to control ‖eis∆v‖r near t = 0.

By Proposition 4.2.1, the error term obeys the estimate

‖e(vε,σ)‖2 . ‖vε,σ‖5
2 ∼ ε5σ5.

Therefore

‖T (vε,σ)− vε,σ‖2 & ε3σ2−γ − ε5σ5.

We now take ε = σ−j for some j > 1 we will choose momentarily; this guarantees that

‖vε,σ‖Σ ∼ εσ � 1 as σ � 1. Then

ε3σ2−γ − ε5σ5 = σ−3j+2−γ − σ−5j+5 ∼ σ−3j+2−γ

as σ →∞ so long as −3j + 2− γ > −5j + 5, which is equivalent to the condition j > 3+γ
2

.

For such j and σ � 1, we have

1

‖vε,σ‖s2
‖T (vε,σ)− vε,σ‖2 & σ(s−3)j+2−γ.

The RHS tends to ∞ as σ → ∞ provided that (s − 3)j + (2 − γ) > 0. When s ≥ 3, this is

automatically satisfied since γ < 2; when s < 3, it is equivalent to the condition j < 2−γ
3−s .

Therefore it suffices to find a j satisfying

3 + γ

2
< j <

2− γ
3− s

.
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Such a j exists whenever 3+γ
2
< 2−γ

3−s , which is equivalent to 5+5γ
3+γ

< s.

Remark 4.3.1. This proof can be done essentially without change for the power series ex-

pansion in FH1 as well.

4.3.2 Breakdown away from the origin

We now move to part (2) of Theorem 4.0.2. We adopt the following abuse of notation: w1

refers both to the function in X([0,∞)) defined by the results of Section 4.2, and also to the

map

v 7→ w1(v) = v − SN (u, u, w1).

We will use a similar convention for w+
1 .

To keep things concrete, let us work specifically with T = S; the discussion adapts easily

to W . We recall the notation

S(u0 + v) = S(u0) +
∞∑
k=1

w+
k .

Our goal here is the following:

Proposition 4.3.2. There exists R = R(d, γ) > 0 such that for all u0 ∈ Σ satisfying

‖u0‖Σ < R, all ‖v‖Σ small, and all s > 4+4γ
2+γ

, we have

‖S(u0 + v)− S(u0)− w+
1 − w+

2 ‖2 6= O(‖v‖s2).

This will emerge as a consequence of the following estimate on the third derivative term:

Proposition 4.3.3. There exists R = R(d, γ) > 0 such that for all ‖u0‖Σ < R and for

ε� 1, εσ � 1, σ � 1, we have

‖w+
3 (vε,σ)‖2 &d,γ ε

3σ2−γ.
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The crux of the proof is to identify the source of the breakdown of regularity in w+
3 ,

which has the form

w+
3 = SN (u, u, w3) + SN (u,w1, w2) +N (w1, w1, w1).

The bad behavior we seek arises from the term N (w1, w1, w1), which we expect to be domi-

nant as it is essentially a resonant interaction. We will first establish that this resonant term

has the optimal scaling ε3σ2−γ as was the case at u0 = 0, and then show that the remaining

cubic terms are subdominant.

4.3.2.1 The main term

We continue to work in the regime ε � 1, σ � 1, εσ � 1. Our goal is to establish the

following:

Proposition 4.3.4. There exists R = R(d, γ) > 0 such that if ‖u0‖Σ < R, then

‖N (w1(vε,σ), w1(vε,σ), w1(vε,σ))‖2 & ε3σ2−γ.

for all σ sufficiently large.

When u0 6= 0, the fact that w1 is no longer purely a free evolution complicates the proof

of this relationship; we cannot use the scaling argument for the potential energy∫ ∞
0

Q(eis∆v) ds

right away. We get around this issue by using the fact that w1 does behave like a free evolution

at large times, and rescaling in time so that the rescaled version of w1 behaves like a free

evolution at almost all times.

Lemma 4.3.5. There exists R = R(d, γ) > 0 such that if ‖u0‖Σ < R, then

‖w1‖Y ([0,∞)) ∼ ‖w+
1 ‖2 ∼ ‖v‖2,

‖w1‖X([0,∞)) ∼ ‖w+
1 ‖Σ ∼ ‖v‖Σ,

‖∇w1‖∞,2 . ‖v‖H1 .
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Proof. Writing w+
1 = v + SN (u, u, w1) and arguing as usual,

‖w+
1 ‖2 ≤ ‖w1‖Y ([0,∞)) . ‖v‖2 + ‖u‖2

X([0,∞))‖w1‖Y ([0,∞)).

Taking ‖u0‖Σ small, we can make ‖u‖X([0,∞)) arbitrarily small. Doing so, we find that

‖w+
1 ‖2 ≤ ‖w1‖Y ([0,∞)) . ‖v‖2.

Similarly, we have

‖v‖2 ≤ ‖w+
1 ‖2 + ‖u‖2

X([0,∞))‖w1‖Y ([0,∞)) . ‖w+
1 ‖2 + ‖u‖2

X([0,∞))‖v‖2,

and thus taking ‖u0‖Σ small we obtain

‖v‖2 . ‖w+
1 ‖2.

The other estimates follow similarly.

In particular, we have the scaling

‖w1(vε,σ)‖Y ([0,∞)) ∼ ‖w+
1 (vε,σ)‖2 ∼ ‖(w+

1 )ε,σ‖2 ∼ ε,

‖w1(vε,σ)‖X([0,∞)) ∼ ‖w+
1 (vε,σ)‖Σ ∼ ‖x(w+

1 )ε,σ‖2 ∼ εσ;

this will be useful because most quantities we estimate henceforth depend more directly on

w1 and w+
1 than on v.

Proof of Proposition 4.3.4. Fix v 6= 0. For any τ > 0, L2-duality, Fubini, and unitarity of

the free propagator we have

‖N (w1, w1, w1)‖2 ≥
1

‖w+
1 ‖2

∣∣∣∣∫ ∞
τ

〈T (w1, w1, w1), eis∆w+
1 〉L2

x
ds

∣∣∣∣
−
∥∥∥∥∫ τ

0

e−is∆T (w1, w1, w1) ds

∥∥∥∥
2

.
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We write∫ ∞
τ

〈T (w1, w1, w1), eis∆w+
1 〉L2

x
ds =

∫ ∞
τ

Q(eis∆w+
1 ) ds

−
∫ ∞
τ

〈ST (w1, w1, e
is∆w+

1 − w1), eis∆w+
1 〉L2

x
ds.

Since ‖eis∆w+
1 − w1‖Y ([τ,∞)) → 0 as τ →∞, it follows that for sufficiently large τ = τ(v) we

have ∫ ∞
τ

〈T (w1, w1, w1), eis∆w+
1 〉L2

x
ds ∼

∫ ∞
τ

Q(eis∆w+
1 ) ds

We now rescale w+
1 7→ (w+

1 )ε,σ, which (at least on L2 and Σ) is essentially equivalent to rescal-

ing v 7→ vε,σ. Under this rescaling, the parabolic scaling symmetry of the free Schrödinger

flow yields ∫ ∞
τ

Q(eis∆(w+
1 )ε,σ) ds = ε4σ2−γ

∫ ∞
τ/σ2

Q(eis∆w+
1 ) ds.

Thinking of σ being arbitrarily large, we estimate this by the integral over all of [0,∞).

Using Lemma 4.1.2 and the Gagliardo-Nirenberg inequality, this incurs an error of size∫ τ/σ2

0

Q(eis∆w+
1 ) ds .

τ

σ2
(‖w+

1 ‖1−θ
2 ‖∇w+

1 ‖θ2)4 .
τ

σ2
‖v‖4

Σ � 1.

This establishes the ε3σ2−γ scaling on the main term. By Strichartz, Gagliardo-Nirenberg,

and Lemma 4.3.5 we find that the remainder satisfies∥∥∥∥∫ τ

0

e−is∆T (w1, w1, w1) ds

∥∥∥∥
2

. ‖w1‖2
Lαt L

r
x([0,T ])‖w1‖Y ([0,T ])

.

(∫ τ

0

(‖w1‖1−θ
∞,2‖∇w1‖θ∞,2)α

)2/α

‖v‖2

. τ 2/α‖v‖3
H1 .

Since we are working in the regime σ � 1, ‖vε,σ‖H1 ∼ ε. Therefore rescaling yields∥∥∥∥∫ τ

0

e−is∆T (w1(vε,σ), w1(vε,σ), w1(vε,σ)) ds

∥∥∥∥
2

. τ 2/αε3.

Since τ depends only on v and 2− γ > 0, this term is subdominant to ε3σ2−γ for σ � 1.
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4.3.2.2 Nonresonant cubic terms

We are left to control the nonresonant cubic error terms ‖SN (u,w1, w2)‖2 and ‖SN (u, u, w3)‖2.

Proposition 4.3.6. There exists R = R(d, γ) > 0 such that for all ‖u0‖Σ < R and for

ε� 1, εσ � 1, σ � 1 we have

‖SN (u,w1, w2)‖2 + ‖SN (u, u, w3)‖2 . R2ε3σ2−γ.

Taking R small will ensure that the main term continues to dominate the errors. Together

with Proposition 4.3.4 this immediately implies Proposition 4.3.3.

The idea of this proof is that the estimate ‖w1‖α,r . ‖v‖Σ, which holds due to the fact

that |t|−αγ4 is integrable near ∞, is slack. Näıvely using it to control ‖SN (u,w1, w2)‖2 and

‖SN (u, u, w3)‖2 only yields an estimate of ε3σ3, which is not subdominant to ε3σ2−γ. For

small data, the estimate can be improved to one of the form ‖w1‖α,r . ‖v‖aΣ‖v‖b2‖∇v‖c2 by

relying less on Lemma 4.1.1. This is done analogously to how we sharpened the error estimate

in Proposition 3.2.1 to the one given in Proposition 3.3.1. The Lorentz space refinement is

used to recover an endpoint, which is necessary as the scaling ε3σ2−γ is sharp.

Lemma 4.3.7. There exists R = R(d, γ) > 0 such that if ‖u0‖Σ < R, then

‖w1‖Lα,∞t Lrx([0,∞)) . ‖v‖
1−γ/4
2 ‖v‖(4−γ)/8

Σ ‖∇w1‖(3γ−4)/8
∞,2 .

Proof. For any A ∈ [0, 1], by Lemma 4.1.1 and the Gagliardo-Nirenberg inequality we have

‖w1(t)‖r . |t|−Aγ/4‖w1(t)‖1−γ/4
2 ‖J(t)w1(t)‖Aγ/42 ‖∇w1(t)‖(1−A)γ/4

2 .

Choose A = 4
αγ

= 4−γ
2γ

. Note that for 4
3
< γ < 2, 1

2
< 4−γ

2γ
< 1. Since |t|−Aγ/4 ∈ Lα,∞t ([0,∞))

for this choice of A, we find that

‖w1‖Lα,∞t Lrx([0,∞)) . ‖w1(t)‖1−γ/4
∞,2 ‖J(t)w1(t)‖(4−γ)/8

∞,2 ‖∇w1(t)‖(3γ−4)/8
∞,2 .

The claim now follows from the Lorentz space version of Lemma 4.3.5; we leave the details

to the reader.
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Lemma 4.3.8. There exist R = R(d, γ) > 0 and L = L(d, γ) > 0 such that for all ‖u0‖Σ < R

and v ∈ Σ with ‖v‖Σ ≤ L, we have

‖∇w+
1 ‖2 + ‖∇w1‖Y ([0,∞)) . ‖∇v‖2.

Proof. By the usual estimates and Lemma 4.3.7, for all τ > 0 we have

‖∇w1‖Y ([0,τ)) .d,γ ‖∇v‖2 + ‖u‖2
X([0,τ))(‖w1‖Lα,∞t Lrx([0,τ)) + ‖∇w1‖Y ([0,τ)))

.d,γ ‖∇v‖2 +R2(‖v‖1−γ/4
2 ‖v‖(4−γ)/8

Σ ‖∇w1‖(3γ−4)/8
Y ([0,τ)) + ‖∇w1‖Y ([0,τ)))

≤ ‖∇v‖2 + δ1‖∇w1‖(3γ−4)/8
Y ([0,τ)) + δ2‖∇w1‖Y ([0,τ)),

where δ1 = δ1(R,L) and δ2 = δ2(R) can be made arbitrarily small by an appropriate choice

of R and L. The estimate for ∇w1 then follows via a bootstrap argument. The estimate for

∇w+
1 is then immediate from the definition of w+

1 .

Proof of Proposition 4.3.6. By the Lorentz space adaptations of our earlier estimates, we

have

‖SN (u,w1, w2)‖2 . ‖u‖X∗(I)‖w1‖Lα,∞t Lrx
‖w2‖Lq,2t Lrx

. ‖u‖2
X∗(I)‖w1‖2

Lα,∞t Lrx
‖w1‖Lq,2t Lrx

and

‖SN (u, u, w3)‖2 . ‖u‖2
X∗(I)‖w3‖Lq,2t Lrx

. ‖u‖2
X∗(I)(‖u‖X∗(I)‖w1‖Lα,∞t Lrx

‖w2‖Lq,2t Lrx
+ ‖w1‖2

Lα,∞t Lrx
‖w1‖Lq,2t Lrx

)

. ‖u‖2
X∗(I)(‖u‖2

X∗(I)‖w1‖2
Lα,∞t Lrx

‖w1‖Lq,2t Lrx
+ ‖w1‖2

Lα,∞t Lrx
‖w1‖Lq,2t Lrx

)

= ‖u‖2
X∗(I)(1 + ‖u‖2

X∗(I))‖w1‖2
Lα,∞t Lrx

‖w1‖Lq,2t Lrx
.

The claim now follows by taking R = R(d, γ) small, ‖u0‖Σ < R, replacing w1 with w1(vε,σ),

and applying Lemmas 4.3.5, 4.3.7, and 4.3.8.
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4.3.2.3 Conclusion of the proof

At last, we are ready to proceed with the proof of Proposition 4.3.2, thereby completing the

proof of Theorem 4.0.2.

Proof. We define vε,σ as before and work in the regime ε� 1, σ � 1, εσ � 1. We write

S(u0 + v)− S(u0)− w+
1 − w+

2 = w+
3 (v) + e(v),

where

e(v) =
∑
k≥4

w+
k .

By Propositions 4.2.1 and 4.3.3, for sufficiently small ‖u0‖Σ we have the lower bound

‖S(u0 + v)− S(u0)− w+
1 − w+

2 ‖2 ≥ ‖w+
3 (vε,σ)‖2 − ‖e(vε,σ‖2

& ε3σ2−γ − ε4σ4.

We take ε = σ−j with j > 1 to be determined: then εσ � 1 for σ � 1. For the main term to

dominate the quartic error we require −3j+2−γ > −4j+4, which is equivalent to j > 2+γ

and supersedes the condition j > 1. Assuming this condition, we have

1

‖vε,σ‖2
‖S(u0 + vε,σ)− S(u0)− w+

1 − w+
2 ‖2 & σ(s−3)j+2−γ.

The RHS is unbounded as σ → ∞ as long as (s − 3)j + 2 − γ > 0. This condition is

automatically met if s ≥ 3 since γ < 2, while if s < 3 then it is equivalent to j < 2−γ
3−s . Thus

an appropriate value of j can be found provided that 2 + γ < 2−γ
3−s , which is equivalent to the

condition s > 4+4γ
2+γ

.
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APPENDIX A

Pointwise Hölder spaces and Gateaux derivatives

In this appendix we relate the notion of pointwise Hölder regularity given in Definition 1.4.2

to more familiar notions. For convenience we reproduce the definition here:

Definition A.0.1 (Pointwise Hölder space [1]). Let X and Y be Banach spaces. Let x0 ∈ X

and U a convex open neighborhood of x0. Fix s > 0, and let n be the integer part of s. For

s > 0, we say that the map G : X → Y belongs to the pointwise Hölder space Cs(x0) if for

all h ∈ X with ‖h‖X = 1, there exist coefficients {aj(x0;h)}nj=0 ⊂ Y such that

‖G(x0 + εh)−G(x0)−
n∑
j=1

εjaj(x0;h)‖Y . εs

for all ε > 0 sufficiently small, with the implicit constant independent of the direction h.

This is related to two notions: the Peano derivative (also known as the de la Vallée-Poussin

derivative), and the Gateaux derivative.

Definition A.0.2 (Peano, de la Vallée-Poussin derivative). Let X and Y be Banach spaces.

Let x0 ∈ X, let U be a convex open neighborhood of x0, and let h ∈ X with ‖h‖X = 1. For

n ≥ 1, we say that a map G : U → Y has an n-th Peano derivative, or de la Vallée-Poussin

derivative, at x0 in the direction h if there exist {aj(x0;h)}nj=1 ⊂ Y such that

‖G(x0 + εh)−G(x0)−
n∑
j=1

1

j!
εjaj(x0;h)‖Y = o(εn;h)

as ε→ 0.
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Therefore if G ∈ Cs(x0) with s ≥ n, then G automatically has an n-th Peano derivative,

with an asymptotic bound as ε → 0 which is uniform in h; moreover, if s > n, then the

asymptotic bound is stronger.

Definition A.0.3 (Gateaux derivative [23]). Let X and Y be Banach spaces. Let x0 ∈ X

and U ⊂ X a convex neighborhood of x0. We say that the map G : U → Y is Gateaux

differentiable at x0 in the direction h ∈ X if the limit

dG(x0;h) = lim
ε→0+

G(x0 + εh)−G(x0)

ε
=

d

dε

∣∣∣∣
ε=0

G(x0 + εh)

exists in Y . In that case, we call dG(x0;h) the Gateaux derivative, or first variation, of G at

u in the direction v. If dG(x0;h) exists for all h ∈ X, we say that G is Gateaux differentiable

at x0. Similarly, we define the Gateaux derivative of order n, or n-th variation, by

dnG(x0;h) =
dn

dεn

∣∣∣∣
ε=0

G(x0 + εh).

Gateaux derivatives are homogeneous in their second argument: djG(x0; εh) = εjdjG(x0;h)

for all ε ∈ R ([23], Lemma 1.2).

It is clear that if n ≥ 1 and G : U → Y has an n-th Peano derivative an(x0;h) at x0

in the direction h, then it also has j-th Peano derivatives aj(x0;h) at x0 in the direction

h for j = 1, . . . , n − 1; moreover, G is Gateaux differentiable at x0 in the direction h with

first variation dG(x0;h) = a1(x0;h). It is not, however, true that G has variations of any

higher order, even in the real-valued case: a counterexample is f(x) = x3 sin(1/x) for x 6= 0,

f(0) = 0, for which the second Peano derivative exists at 0, but not f ′′(0) [50]. For this

reason, Cs(x0) is not exactly a replacement for the space of n-times Gateaux differentiable

maps with dnG(x0;h) Hölder continuous of order s− n in x0. When s > 2, we are not even

able to detect from the definition whether a map in Cs(x0) has a second variation at x0.

However, Cs(x0) is still a useful notion for detecting when a map fails to have a certain level

of Gateaux regularity, which is what is relevant for the breakdown of regularity statements

in Corollary 1.3.2. This arises through the generalization of Taylor’s theorem with remainder

for Banach space valued functions.
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Theorem A.0.1 (Taylor’s theorem with remainder; [23], Theorem 5). Let X and Y be

Banach spaces. Let U ⊂ X be a convex neighborhood of u ∈ X. Let G : U → Y be n-

times Gateaux differentiable on U , and let x0 ∈ X be such that dnG(x0 + sεh;h) is Riemann

integrable (defined in [23]) over s ∈ (0, 1) whenever ε > 0 is sufficiently small. Then for all

h ∈ X with ‖h‖X = 1 and ε > 0 small,

G(x0 + εh) = G(x0) +
n∑
j=1

εj

j!
djG(x0;h) + εn+1Rn+1(x0, h, ε)

where

Rn+1(x0, h, ε) =
1

n!

∫ 1

0

(1− s)ndn+1G(x0 + sεh;h) ds.

We now arrive at the main statement of interest. It states that for n < s < n + 1,

membership in Cs(x0) is necessary for a map G to be n times Gateaux differentiable with

dnG(x;h) Hölder continuous of order s − n. This gives us a way of detecting whether G

admits s derivatives in this latter sense.

Lemma A.0.2. Let X and Y be Banach spaces. Let U ⊂ X be a convex neighborhood of

x0 ∈ X. Let G : U → Y be a map, and suppose G /∈ Cs(x0) with n < s < n + 1. Then

dnG(x;h), if it exists for x ∈ U , cannot be a Hölder continuous function of x of order s− n

with Hölder seminorm uniformly bounded in h.

Proof. Suppose for contradiction that dnG(x;h) exists on U and is Hölder continuous of order

s − n in x, with Hölder seminorm uniformly bounded in h. Then all lower order Gateaux

derivatives must also exist. This implies that G satisfies the conditions of Theorem A.0.1,

and hence admits the expansion

G(x0 + εh) = G(x0) +
n−1∑
j=1

εj

j!
djG(x0;h) + εnRn(x0, h, ε)

as ε→ 0, where Rn is given as in Theorem A.0.1. By the Hölder continuity assumption, we
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have

‖Rn(x0, h, ε)−
1

n!
dnG(x0;h)‖Y

=

∥∥∥∥ 1

(n− 1)!

∫ 1

0

(1− r)n−1[dnG(x0 + rεh;h)− dnG(x0;h)] dr

∥∥∥∥
Y

≤ 1

(n− 1)!

∫ 1

0

(1− r)n−1‖dnG(x0 + rεh;h)− dnG(x0;h)‖Y dr

. εs−n
∫ 1

0

(1− r)n−1rs dr ≤ εs−n.

Therefore

G(x0 + εh) = G(x0) +
n−1∑
j=1

εj

j!
djG(x0;h) + εnRn(x0, h, ε)

= G(x0) +
n∑
j=1

εj

j!
djG(x0;h) + εn[Rn(x0, h, ε)−

1

n!
dnG(x0;h)]

= G(x0) +
n∑
j=1

εj

j!
djG(x0;h) +OY (εs).

But then G ∈ Cs(x0), contradiction.

Lastly, we need a way of checking that a given G does not belong to the class Cs(x0).

Lemma A.0.3. Let n be a positive integer, and let n < s < s+δ < n+1. Assume G ∈ Cs(x0)

with Peano derivatives {aj(x0;h)}nj=1, so that

‖G(x0 + εh)−G(x0)−
n∑
j=1

εjaj(x0;h)‖Y . εs.

Suppose also that

‖G(x0 + εh)−G(x0)−
n∑
j=1

εjaj(x0;h)‖Y 6. εs+δ.

Then G /∈ Cs+δ(x0).

The proof is based on the following uniqueness statement for the Peano derivatives:
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Theorem A.0.4 ([23], Theorem 6). Let X and Y be Banach spaces. Let U ⊂ X be a convex

neighborhood of x0 ∈ X. Let G : U → Y be a map. Then for each positive integer n, there

exists at most one expansion of the form

G(x0 + h) = G(x0) +
n∑
j=1

aj(x0;h) +Rn+1(x0, h)

satisfying aj(x0; sh) = sjaj(x0;h) and Rn+1(x0, h) = o(‖h‖nY ) as h→ 0.

Proof of Lemma A.0.3. Suppose to the contrary that G ∈ Cs+δ(x0). Then there are coeffi-

cients {bj(x0;h)}nj=1 such that

‖G(x0 + εh)−G(x0)−
n∑
j=1

εjbj(x0;h)‖Y . εs+δ.

Then we have two polynomial expansions for G(x0 + h) around x0 of degree n with o(‖h‖nY )

remainder as h → 0. By Theorem A.0.4, it follows that bj = aj. But this contradicts the

assumption that the the error in the expansion G(x0 + εh) ∼ G(x0) +
∑n

j=1 ε
jaj(x0;h) is not

O(εs+δ).

The utility of Lemma A.0.3 is that so long as we can verify one asymptotically valid

polynomial approximation of G(x0 + εh), the same polynomial approximation can be used

to check the membership of G in Cs(x0), as long as there is no need to add a higher-order

derivative term to the expansion.
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