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Abstract 

Illusory causation is a consistent error in human learning in 
which people perceive two unrelated events as being causally 
related. Causal illusions are greatly increased when the target 
outcome occurs frequently rather than rarely, a characteristic 
known as the outcome density bias. Unlike most experimental 
designs using binary outcomes, real-world problems to which 
illusory causation is most applicable (e.g. beliefs about 
ineffective health therapies) involve continuous and variable 
consequences that are not readily classifiable as the presence 
or absence of a salient event. This study used a causal 
learning task framed as a medical trial to investigate whether 
outcome density effects emerged when using a continuous 
and variable outcome that appeared on every trial.  
Experiment 1 compared the effects of using fixed outcome 
values (i.e. consistent low and high magnitudes) versus 
variable outcome values (i.e. low and high magnitudes 
varying around two means in a bimodal distribution).  
Experiment 2 compared positively skewed (low density) and 
negatively skewed (high density) continuous distributions.  
These conditions yielded comparable outcome density effects, 
providing empirical support for the relevance of the outcome 
density bias to real-world situations in which outcomes are 
not binary but occur to differing degrees.  

Keywords: illusory causation; outcome density; causal 
learning; contingency learning 

Introduction 
Many of the decisions we make in everyday life are 
motivated by beliefs about cause and effect.  Based on the 
perceived contingencies between events, humans act on the 
environment in order to maximize desirable outcomes (e.g. 
taking vitamin supplements to improve health) or prevent 
undesirable ones (e.g. using insect repellent to prevent 
mosquito bites).  A strategy people often rely on to make 
inferences about causal relationships is that the occurrence 
of the potential cause should alter the probability of the 
outcome (Jenkins & Ward, 1965). Simple contingency 
learning experiments test this premise. Typically, they 
involve two binary events—one potential cause or cue (C) 
and one outcome (O)—yielding four possible combinations 
of cause and outcome, shown in Table 1.   

Manipulations of the covariation between cue and 
outcome are possible by varying the relative frequency of 
each trial type, with the resulting contingency conveniently 
quantified using the ∆p metric (Allan, 1980), according to 
Equation 1. 

 
Table 1: Contingency matrix showing the four different trial 
types as a function of whether the cue and outcome are 
present or absent. 

  Outcome Present Outcome Absent 
Cue Present  a  b 
Cue Absent  c  d 
 

Equation 1: 
∆p = p(O|C) – p(O|~C) = [a/(a+b)] – [c/(c+d)] 

According to this rule, the contingency between two 
events is dependent on the probability of the outcome 
occurring when the cue is present and when the cue is 
absent. If a cue generates the outcome, ∆p is positive, 
whereas if a cue prevents the outcome from occurring, ∆p 
has a negative value (i.e. the outcome is more likely to occur 
when the cue is absent). Importantly, when a cue has no real 
effect on the outcome, p(O|C) = p(O|~C), ∆p is zero. 

Although people are often accurate when assessing causal 
relationships (Wasserman, 1990), research has shown that 
under certain conditions, we are misled to believe a causal 
link between a potential (but ineffective) cause and an 
outcome (Alloy & Abramson, 1979). Specifically, 
judgments of causation consistently deviate from the ∆p rule 
when there is no contingency between the cue and the 
outcome (i.e. ∆p = 0) and, as described below, when the 
frequency of a trial types is relatively high.  

The illusion of causality is an important phenomenon 
because it represents a consistent error in human learning 
that is thought to contribute to the development and 
maintenance of superstitious beliefs and pseudoscientific 
thinking (Matute, Yarritu & Vadillo, 2011).  
Pseudoscientific beliefs are grounded in causal illusions, 
whereby two unrelated events such as consuming echinacea 
(i.e. an action or cue) and common cold prevention (i.e. 
outcome) are believed to be related in some meaningful way 
(Karsch-Völk, Barrett & Linde, 2015; Allan & Arroll, 
2014). Despite the lack of supporting evidence for the 
efficacy of certain complementary and alternative medical 
treatments, many people still believe in their effectiveness 
and may even prefer such treatments over those that are 
scientifically validated (Lilienfeld, Ritschel, Lynn, Cautin, 
& Latzman, 2014). 
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Illusory causation and event densities 
Manipulations that increase cue-outcome coincidences (i.e. 
trial type a in Table 1) appear to be particularly effective in 
inflating causal judgment, regardless of whether the two 
events are actually causally associated with one another 
(Wasserman, 1990; Blanco, Matute & Vadillo, 2013).  
Many of the studies on illusory causation have thus 
explored the frequency of the cue and outcome on 
generating a false association. 

Outcome density (OD) bias refers to the tendency to 
overestimate the relationship between cue and outcome 
when the outcome occurs frequently.  In a classic example, 
Alloy and Abramson (1979) asked participants to determine 
the degree of control they possessed over the onset of a 
green light by pressing a button. In conditions where the 
button press had absolutely no effect on the light, 
participants were more likely to overestimate the action-
outcome relationship when the light frequently turned on 
than when it rarely turned on. This outcome density effect 
has now been replicated across a wide variety of learning 
tasks with zero-contingency events (e.g. Blanco & Matute, 
2015). A high outcome density increases the frequency of a 
and c trials relative to b and d trials (Table 1), even though 
contingency remains zero.  Similarly, when the probability 
of the cue is high (inflating the frequency of a and b trials 
relative to c and d trials), participants typically report 
greater causal judgments than when the cue rarely occurs 
(Allan & Jenkins, 1983). 

Causal learning about real-world outcomes 
Illusory causation is highly applicable to the formation and 
maintenance of beliefs about alternative therapies for minor 
illness. For example, complementary and alternative 
medicine is regarded as the preferred treatment for back 
pain in the United States (White House Commission on 
Complementary and Alternative Medicine Policy, 2002); an 
illness with a high rate of spontaneous remission analogous 
to the light bulb spontaneously turning on frequently in 
outcome density experiments (e.g. Alloy & Abramson, 
1979; Blanco & Matute, 2015). 

Not surprisingly, the assessment of treatment-outcome 
relationships in the real world often proves to be more 
difficult than when emulated in the laboratory. Complex, 
continuous, and variable consequences experienced and 
observed in the real world differ substantially from the 
deliberately simple, unambiguous and binary outcomes used 
in most contingency learning experiments (e.g. a light bulb 
turning on or not). Real-world outcomes often involve 
continuous and variable changes that do not fit neatly into 
the outcome-present versus outcome-absent dichotomy.  

This issue was highlighted by Marsh and Ahn (2009) in 
the context of parsing ambiguous cues. They noted that the 
task of parsing events into discrete categories is often not a 
trivial problem, yet is ignored by simple covariation-based 
models. Covariation-based models, including associative 
learning models (e.g. Rescorla & Wagner, 1972), as well as 
causal induction models (e.g. Cheng, 1997) anticipate 

illusory learning effects, and the outcome density bias in 
particular, by assuming a certain mental representation of 
cue-outcome coincidences. These models are usually 
implemented by classifying, in a dichotomous fashion, 
whether the cue and outcome are each present or absent, in 
line with the four discrete trial types shown in Table 1. In 
other words, each experience can be classified as supporting 
or disconfirming the putative causal relationship.  

Most real-life situations are sufficiently complex, which 
presents a problem to the way in which these models are 
applied. To illustrate, most medical treatments produce 
some outcome in varying degrees (e.g. patient is still sick or 
patient gets better), and rarely if ever produce no outcome at 
all. However, it is unclear whether people readily parse their 
experiences of continuous variable events into the presence 
versus absence of a target outcome. As such, it is important 
to test whether continuous outcomes produce lawful 
variations in illusory causal judgments in the same way as a 
simple binary outcome. Thus, we were interested in 
measuring illusory causation and outcome density effects 
using continuous and variable outcomes that are always 
present to some extent and may be difficult to dichotomize. 

The current study 
The aim of the current study was to test whether illusory 
causation and outcome density effects could be generated 
using an outcome that always occurred but to a varying 
degree. Our study used a contingency learning task framed 
as a medical trial for a new fictitious drug. Participants were 
presented with a causal scenario and instructed to make 
judgments about the relationship between a drug cue and 
health improvements. Rather than using discrete outcome 
events, an outcome was presented on every trial, but its 
magnitude varied along a continuous scale. Participants then 
observed a series of trials with and without the drug, with 
the drug actually having no impact whatsoever on recovery 
(∆p = 0 and precisely the same distribution of outcome 
magnitudes for trials with and without the drug). In both 
Experiments 1 and 2, participants were separated into Low 
and High Outcome Density (OD) conditions, where the 
outcome was improvement in patient's health. Low OD 
participants observed outcomes that were predominantly 
low in magnitude (i.e. little improvement in health) with 
some high-magnitude outcomes (i.e. large improvement in 
health), whereas High OD participants observed 
predominantly high-magnitude with some low-magnitude 
outcomes.  

 In Experiment 1, we used distributions of outcomes 
centered on a high (80) and low (20) mean value, and tested 
whether the presence of variability in the outcome around 
these mean outcomes affected illusory causation and 
outcome density effects (Variable vs. Fixed outcomes).  In 
Experiment 2, all participants were presented with 
continuous and variable outcomes sourced from a single 
skewed distribution, with either a high or low modal value 
(see Figure 1). As in most OD studies, the critical measure 
was participants' causal judgments about the cue, in this 
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case measured using ratings of how effective the drug was 
in treating the disease relative to no treatment. 

 

 
Figure 1: (a) Bimodal outcome distribution presented to 
participants in Variable outcome and Low OD condition, 
where 80% of outcomes were low in magnitude. (b) 
Bimodal outcome distribution presented to participants in 
the Variable outcome and High OD condition, where 80% 
of outcomes were high in magnitude. (c) Continuous 
outcome distribution presented to participants in the Low 
OD condition, where 80% of outcomes were below an 
outcome value of 50. (d) Continuous outcome distribution 
presented to participants in the High OD condition, where 
80% of outcomes were above an outcome value of 50. 

Experiment 1 
Method 

Participants.  One hundred and twelve participants (78 
female, Mage = 22.2, SD = 5.35) completed the study for 
class participation or monetary reimbursement. Participants 
were randomly allocated to one of four experimental 
conditions according to time of arrival (n = 28 in each). 

Design.  The study used a 2 (OD: High vs. Low) x 2 
(Outcome Variability: Fixed vs. Variable) between-subjects 
design.  For participants in the Variable outcome condition, 
the observed outcome was sampled from a low distribution 
(M = 20, SD = 5, Range = 13-27) or high distribution (M = 
80, SD = 5, Range = 73-87) depending on OD group.  In 
contrast, participants in the Fixed outcome variability 
condition were presented with an exact-value outcome of 80 
on 80% of trials and 20 on 20% of trials in the High OD 
condition, and an exact-value outcome of 20 on 80% of 
trials and 80 on 20% of trials in Low OD condition.  

The experiment was programmed using Matlab and the 
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 
1997). All participants completed 100 training trials, 50 
with and 50 without the treatment cue. Trials were presented 
to participants in blocks of 10 such that each block was 
representative of the total frequency of high and low 
outcomes in the experiment (Table 2).  

Table 2: Proportion of total trials (per block and overall) in 
low and high outcome density conditions.  Blocks of 10 
trials were presented 10 times, yielding 100 trials. 

 Low OD group High OD group 

 Cloveritol No 
treatment Cloveritol No 

treatment 

High 
Outcome 0.1 0.1 0.4 0.4 

Low 
Outcome 0.4 0.4 0.1 0.1 

 
Procedure. Participants were asked to imagine they were 

a medical researcher investigating a new illness. They were 
told a new experimental drug ‘Cloveritol’ had been created 
to treat the disease.  The objective of the study was to test 
the drug’s efficacy in treating the disease.  All participants 
were told that patients usually take a long time to recover, 
and a large improvement in health is indicative of rapid 
recovery.  

During training, participants were presented with trials in 
which they were asked to predict the level of improvement 
in the patient’s health.  Each trial represented a new patient 
and participants were shown if the drug was administered 
(represented by a picture of a pill bottle and drug name), or 
not administered (‘No treatment’).  Below this cue, a scale 
was presented ranging from 0% (no improvement) to 100% 
(full recovery), and participants were required to predict the 
patient’s health in that trial by clicking on a point on the 
scale.  Once a prediction was made, an identical scale would 
appear below with the actual observed health improvement 
for that trial animated as a growing horizontal bar across the 
scale.  Task schematics are illustrated in Figure 2. 

 

 
Figure 2: Typical displays during the training phase in 
Experiment 1 and 2. Participants are presented with either 
the drug cue (Cloveritol administered) or no cue (No 
Treatment) and asked to make a prediction on the patient’s 
health improvement. Having done so, a second scale 
appears with the observed outcome for that patient. 
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During test, participants were instructed to make 
judgments about the treatment based on observations during 
training. Participants were first presented with the drug cue 
and no treatment cue separately with instructions to predict 
the level of improvement they would expect on average if a 
patient were given Cloveritol or No Treatment. Ratings 
were made on the same scale as presented during training. 
Subsequently, they were asked to rate how effective they 
thought the treatment was relative to no treatment.  Ratings 
were made on a scale from 0 (Completely Ineffective) to 10 
(Completely Effective).  
 
Results 
We focus first on the results of critical importance, namely 
the effect of outcome density, and its interaction with 
outcome variability, on judgments of treatment efficacy. 
Causal judgments of this nature have most consistently 
produced OD effects in previous studies and we expected 
these ratings to show the effect most reliably in our study. 
These efficacy ratings are illustrated in Figure 3. As 
predicted, we found a main effect of OD, F(1,108) = 11.3, p 
= .001, ηp

2 = .094, such that participants in the High OD 
condition (M = 4.73, SD = 2.69) reported significantly 
greater efficacy ratings than participants in the Low OD 
condition (M = 3.11, SD = 2.34). 

Critically, we found no significant interaction effect 
between OD and outcome variability, F(1,108) = .004, p = 
.953, ηp

2 < .001, suggesting that the OD effect did not differ 
significantly between groups. Indeed, significant OD effects 
were found when participants were presented with Variable 
outcomes, F(1,108) = 5.43, p = .022, ηp

2 = .048, as well as 
when they were presented with Fixed outcomes, F(1,108) = 
5.83, p = .017, ηp

2 = .051. 
 

 
Figure 3: Drug efficacy ratings at test (±SE) as a function of 
OD and outcome variability in Experiment 1 (left) and for 
Low vs High OD conditions in Experiment 2 (right). 
Efficacy ratings were measured on a scale ranging from 0 
(Completely Ineffective) to 10 (Completely Effective) in 
Experiment 1, and from -100 (Effectively worsens recovery) 
to 100 (Effectively improves recovery) in Experiment 2. 
Negative efficacy judgments in Experiment 2 indicates that 
the drug makes patients feel worse, whereas positive values 
suggest the drug improves patient recovery. 

Table 3: Average rating for Cloveritol and No Treatment at 
test (SD) as a function of Outcome Density (Low vs High) 
and Outcome Variability (Fixed vs Variable). 

 Low OD High OD 

 Cloveritol No 
treatment Cloveritol No 

treatment 
Exp 1 
Fixed 

34.1 
(13.7) 

32.6 
(14.0) 

68.0 
(13.8) 

59.3 
(17.4) 

Exp 1 
Variable 

34.8 
(14.7) 

32.8 
(16.1) 

71.5 
(15.2) 

67.5 
(15.4) 

Exp 2 44.1 
(12.4) 

36.3 
(15.0) 

69.6 
(12.4) 

53.3 
(16.7) 

 
Average outcome magnitude predictions for Cloveritol 

and No Treatment at test are reported in Table 3. We found 
a significant main effect of cue type on average predictions, 
F(1,108) = 6.37, p = .013, ηp 2 = .056, with greater average 
ratings for Cloveritol (M = 52.1, SD = 22.7) than No 
Treatment (M = 48.1, SD = 22.1). This finding suggests an 
illusory causation effect. Participants were predicting 
greater health recovery when the drug was present than 
when it was absent, despite there being no contingency 
between cue and outcome. However, this effect of cue type 
did not interact with outcome density, F(1,108) = 2.00, p = 
.160, ηp 2 = .018; this was true for both outcome variability 
conditions, F < 1. This null interaction is not uncommon in 
work on illusory causation, which tends to produce outcome 
density effects on causal ratings rather than on direct 
predictions of the outcome. 
 
Discussion 
Experiment 1 found a clear OD effect in efficacy 
judgements at test using a variable outcome distribution. 
The High OD condition produced greater efficacy ratings 
than the Low OD condition and this difference was 
consistent across Fixed and Variable outcome conditions. 
We consider this result to be highly consistent with other 
studies that have used discrete binary outcomes. Similar 
outcome density effects were not found when participants 
were asked to provide an average prediction for treatment 
cue and no treatment cue at test. This discrepancy in causal 
judgments as a function of question format has been 
extensively discussed elsewhere (see Vadillo & Matute, 
2007).  Importantly for our purposes, previous research has 
consistently found this discrepancy, which supports our 
claim that the adopted experimental design did not 
significantly differ from traditional binary-outcome 
contingency learning paradigms.  

In this experiment, the outcome magnitudes were 
sampled from two distinct and non-overlapping 
distributions, each with relatively low variance. Thus 
categorizing them as two discrete outcomes (high and low) 
may still be relatively straightforward for the participant. It 
is still important to demonstrate that OD biases generalize to 
situations in which the distribution is not so distinctly 
partitioned. Experiment 2 examined the same outcome 
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density effects by using a continuous outcome distribution, 
in which all participants experience a full range of outcome 
values. 

Experiment 2 
Experiment 2 was identical to Experiment 1 in all respects 
except the way in which outcomes were distributed. Instead 
of a bimodal distribution with values centered around 20 
and 80, participants experienced outcome values sourced 
from a single distribution, and ranging from 1 to 99. Similar 
to Experiment 1, participants in the Low OD condition 
experienced a majority of low-magnitude outcomes with 
some high-magnitude outcomes, and this was reversed for 
participants in the High OD condition. All outcomes 
presented were independent of the cue. 

A central difference between the distribution used in 
Experiment 2 and that of Experiment 1 is the addition of 
ambiguous outcome values around the mid-range of the 
scale that are less readily classifiable as low-magnitude or 
high-magnitude outcomes. We were interested in 
determining whether we could still obtain outcome density 
biases in a trial-by-trial contingency learning task with the 
use of continuous and variable outcomes sampled from a 
complete range of values, some of which are more 
decipherable to the participants (low vs. high) than others.  

Ratings of treatment efficacy presented at test were 
modified to capture greater variance in responses, with 
values ranging from -100 (Effectively worsens recovery) to 
100 (Effectively improves recovery) with a midpoint of 0 
(Completely ineffective). This modification in Experiment 2 
allowed meaningful comparisons to be made between the 
group means and zero, the midpoint of the scale, whereas 
zero represented an extreme end of the scale in Experiment 
1. It is also possible that some participants judge that the 
drug actually makes health improvement less likely since 
the base rate of recovery without the drug was quite high. 

Method 
Participants. 56 participants (35 female, Mage = 22.9, SD 

= 4.44) completed the study for either class participation or 
monetary reimbursement and were randomly allocated to 
one of two experimental conditions (n = 28 in each). 

Design.  The study used a between-subjects design, with 
outcome density (Low vs. High OD) as the only 
manipulation.  For the Low OD condition, the sample of 
observed outcomes O was positively skewed, created using 
a truncated ex-gaussian distribution with a higher proportion 
of low-magnitude outcomes (Distribution parameters: µ= 
10, σ = 5, τ = 25, Range = 1-99, yielding sample Mean = 32, 
SD = 20). For the High OD condition, we took the 
complement of this same distribution (i.e. 100 – O) to 
produce a negatively skewed distribution with a higher 
proportion of high-magnitude outcomes (sample Mean = 68, 
SD = 20). Outcome values were further constrained by the 
proportion of trials with an outcome-value below 50: 
participants in the Low OD condition experienced .75 of 
trials with outcomes below 50, whereas participants in the 

High OD condition only experienced .25 of trials with 
outcomes below a value of 50. All participants received 
identical causal instructions and the procedure of the study 
was identical to that of Experiment 1.  

Results 
Efficacy ratings at test are shown in Figure 3. As predicted, 
we found a main effect of OD, F(1,54) = 4.54, p = .038, ηp

2 
= .078, such that participants in the High OD condition (M = 
33.6, SD = 31.7) reported significantly greater efficacy 
ratings than participants in the Low OD condition (M = 
16.5, SD = 28.3). A comparison of the group means against 
zero found a significant difference for both Low OD, t(27) = 
3.09, p = .005, d’ = .584, and High OD, t(27) = 5.62, p < 
.001, d’ = 1.06. These findings indicate illusory causation 
effect in both Low and High OD condition, with greater 
difference found in the High OD group. As in Experiment 1, 
we did not find an interaction between cue type and 
outcome density in average outcome magnitude ratings, 
F(1,54) = 3.06, p = .086, ηp

2 = .054.   

Discussion 
In Experiment 2, we found support for the use of continuous 
and variable outcomes in generating an outcome density 
effect, with significantly greater judgments of treatment 
efficacy in the High OD relative to the Low OD condition.  

Together, the results from Experiments 1 and 2 indicate 
that reliable OD effects emerge even when the outcomes are 
presented in a continuous and variable manner, mirroring 
some important properties of real-world outcomes. 
Importantly, the OD effect obtained using a continuous and 
variable outcome was not significantly different to that from 
a fixed-value outcome (analogous to binary events), 
suggesting that the current experimental paradigm is a 
reliable measure of the effect in generating illusory 
causation. 

To our knowledge, this is the first study showing OD 
effects with outcomes that are potentially ambiguous. That 
is, the magnitude of these outcomes provides information 
that is not always readily classifiable as confirming or 
disconfirming the learner’s current causal hypothesis.  There 
are two opposing explanations for this finding. Firstly, 
individuals may parse ambiguous outcome information into 
discrete categories and use this information to form 
judgments about causal relationships. This ability is 
potentially important for accurate contingency learning, but 
may also be instrumental in producing the errors of 
judgment leading to OD effects. Increasing the frequency of 
outcome-present trials, in this case high-magnitude 
outcomes, creates an over-representation of cue-outcome 
coincidences, resulting in stronger causal judgments. This 
interpretation of our findings parallels previous studies with 
ambiguous cue information, which has shown learners to 
spontaneously categorize ambiguous intermediate 
observations in a discrete fashion and use them in 
subsequent contingency judgments (Marsh & Ahn, 2009).  
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A second interpretation of these findings is that the OD 
effect emerges even when the learner is not able to 
categorize events into discrete classes. If so, these results 
lend themselves to Bayesian models of causal judgment 
(Griffiths & Tenenbaum, 2005) in which continuous 
representation of the expected outcome magnitude can be 
implemented relatively easily. Associative learning models 
like the Rescorla-Wagner model can also accommodate 
continuous outcomes by assuming that the "teaching signal" 
that represents the experienced outcome can take on values 
proportional to the outcome magnitude. These theoretical 
approaches may be able to account for OD effects and 
illusory causation without assuming discrete categorization 
of events by the learner. Testing the capabilities of these 
models is thus an important future endeavor. 

The results from our experiments provide empirical 
support for the use of continuous and variable outcomes that 
mimic real-world events in obtaining an outcome density 
bias. This is particularly relevant for researchers interested 
in investigating false causal beliefs in medicine and public 
health, where the consequences of choosing the wrong 
treatment could have detrimental effects.  

Conclusion 
Across both experiments, we found a reliable outcome 

density effect, where participants who frequently observed 
high levels of health improvement judged a fictitious drug 
to be more efficacious than participants who observed levels 
of health improvement that were frequently low, even when 
there was no real contingency between drug and health 
outcome. This finding is compelling given the novel 
experimental paradigm using continuous and variable 
outcomes that occur on every trial but vary in degree. This 
approach also produced effects that were not significantly 
different from fixed-value outcomes analogous to binary 
events adopted in previous contingency learning 
experiments. The experimental approach we present here, 
that is, representing treatment outcomes in a continuous and 
variable fashion that mimic real-world medical 
consequences, may be an important stepping-stone to 
bridging the gap between experimental research and real-
world experience. 
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