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ABSTRACT: Metal halide perovskites, such as methylammonium
lead bromide, have recently attracted considerable attention due to
their interesting and useful photoelectric properties. Here, two
types of methylammonium lead bromide magic-sized clusters
(MSCs), passivated with oleylamine and oleic acid, were
synthesized using ligand-assisted reprecipitation (LARP) and
heated LARP (HLARP) methods. The optical properties of these
MSCs were characterized using UV−vis electronic absorption and
photoluminescence (PL) spectroscopies. The HLARP synthesis
resulted in a two-fold increase in the PL quantum yield of the
MSCs to 76%. The stability of the MSCs was tested using time-
dependent PL spectroscopy. LARP MSCs in solution degraded
completely after 14 days under ambient conditions, while HLARP
MSCs lasted for 26 days. To stabilize them, the MSCs were added to a non-coordinating matrix, paraffin. Both MSCs showed
significantly improved resistance to water with the addition of paraffin. Solid LARP MSCs lost all luminescence with and without the
addition of paraffin by about 3 h. Solid HLARP MSCs without paraffin started to aggregate after 3 h, but paraffin stabilized HLARP
MSC films were stable for 8 days. This improved stability in solid state form allowed for accurate, nonaggregated analysis using
Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. Raman spectroscopy revealed that the HLARP MSCs
show an additional peak at 147 cm−1 compared to LARP MSCs, which is attributed to methylammonium. X-ray diffraction and
transmission electron microscopy confirm that MSCs have a quasi-crystalline orthorhombic structure.

■ INTRODUCTION
Perovskite quantum dots (PQDs) have been studied
extensively for their tunable optical properties and high
photoluminescence quantum yield (PLQY).1 Their emission
window can be broadly tuned by controlling the crystal size,2−5

capping ligand,6,7 and elemental composition.8,9 These
fascinating optoelectronic properties make them promising
materials for applications in photovoltaics for light-emitting
devices,10−12 photodetectors,13−15 and sensing.16−18 PQDs are
characterized by their tunability, which stems from their high
surface-to-volume ratio and quantum confinement.19,20 Perov-
skite magic-sized clusters (MSCs) share many of these
characteristics with PQDs but are smaller with higher
monodispersity and narrower, bluer optical absorption and
emission bands.6,21−25 They are often described as discrete,26

metastable intermediaries of PQDs.27 While MSCs can be
formed in a variety of ways using a variety of temperature
ranges and environments, LARP is typically used for its
simplicity.28 HLARP introduces temperature variability but
remains straightforward without the need for an air-free
environment. Moreover, it allows the size of the nanocrystals
to be tuned.29 MSCs can be used to understand the

relationship between PQDs and MSCs and provide insights
into the growth mechanism of PQDs and bulk perovskite.
They also present themselves as a potential material for blue-
light-emitting devices.

As MSCs have a high surface-to-volume ratio, they are
susceptible to instability due to surface dangling bonds or
defect sites.30−32 Thus, MSCs are typically formed using an
excess concentration of capping ligand using the LARP
method.6,7,24 However, a newer synthesis utilized 15% of the
capping ligand with the heated ligand-assisted reprecipitation
(HLARP) method, resulting in a slightly larger particle size
and more red-shifted emission.29 Little is known about the
differences between the properties of these MSCs other than
their size. The change to the synthetic procedure, however, has
potential stability benefits, as excess oleylamine has been
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shown to play a role in the moisture-driven structural
degradation mechanism of PQDs.33 Oleylamine reacts with
water, forming a reactive hydroxide salt that strips the 3D
perovskite structure by layers, eventually forming non-emissive
lead bromide.33

Perovskite can also degrade with light, oxygen, or water,
creating a huge barrier for solid characterization and thin-film
device applications.34−40 Light and oxygen react in tandem to
form free radicals that deprotonate the methylammonium
cation.37,41 Additionally, water has been shown to penetrate
the perovskite structure, forming hydrate perovskite structures,
and weakening the bond between the cation and lead bromide,
causing degradation of the perovskite structure.1,42 Thus,
preventing the interaction of perovskite nanocrystals with light,
oxygen, and water is paramount to increasing their stability.

In addition to externally driven degradation, there are
various obstacles that impede the ability of perovskite MSCs to
be characterized as a solid. For instance, drying effects and
aggregation can make powder X-ray diffraction (PXRD)
measurements difficult or inaccurate7 and transmission
electron microscopy (TEM) is often deemed inadequate due
to weak contrast, poor resolution, and high beam sensitivity.43

Therefore, little is known about their solid structure, and there
is an impetus to stabilize these MSCs to glean more accurate
measurements. The hydrophobic nature of paraffin has been
shown to increase shelf life by creating a non-reactive
hydrophobic barrier to prevent aggregation,44,45 while the
hermetic nature of paraffin seals the material from the effects of
oxygen.46

In this work, LARP and HLARP MSCs were characterized
using UV−vis electronic absorption and photoluminescent
spectroscopy. We employ a simple, green, and low-cost
method to encapsulate MSCs in paraffin, improving their
oxygen and water stability, and allowing them to maintain their
luminous intensity for longer. The stability of both HLARP
and LARP MSCs was compared in solution under ambient
conditions with and without paraffin and in the presence of
water with and without paraffin. The samples were also dried
to make films and compared with and without the presence of
paraffin. LARP MSCs degraded rapidly but remained stable
enough to obtain Raman data. However, UV−vis and PL
results show that the HLARP MSCs’ film did not aggregate or
degrade for up to 8 days, allowing for analysis using both XRD
and Raman spectroscopy. Moreover, HLARP MSCs proved
stable enough to image nonaggregated MSCs for the first time.

■ EXPERIMENTAL METHODS
Materials. Methylammonium bromide (MABr, 99.9%,

Greatcell Solar), lead bromide PbBr2 (99.999%, Alfa Aesar),
oleic acid (90%, Sigma-Aldrich), n-oleylamine (98.0%, Tokyo
Chemical Industry), N,N-dimethylformamide (DMF, 99.9%,
Fisher Scientific), paraffin wax cake (Fisher Scientific), and
toluene (99.9%, Fisher Scientific) were commercially available.
All chemicals were used as received without any further
purification.

Synthesis of MAPbBr3 MSCs. Two types of MSCs were
synthesized using LARP and HLARP syntheses. MABr (1
mmol, 9.0 mg), PbBr2 (1 mmol, 73.0 mg), and 400 μL of DMF
were added to a borosilicate vial, and the solution was
sonicated in a water bath at room temperature or between 20
°C (LARP) or 70 °C (HLARP) until all solid dissolved. Next,
0.15 mmol (HLARP) or 1 mmol (LARP) of oleic acid was
added to the solution and sonicated at the same temperature

for 30 s. Then, an equimolar amount of oleylamine was added
to the solution and sonicated for 30 s at the same temperature.
100 μL of the precursor solution was quickly injected into 5.0
mL of toluene under vigorous stirring. The formation of these
MSCs was analyzed over time (Figure S1). To stabilize the
MSCs, 12 mg of paraffin was dissolved in 100 μL of the as-
prepared solution. Solid samples were prepared by drop-
casting the as-prepared solution and paraffin mixture onto
borosilicate glass slides.

Quantum Yield. The UV−vis absorbance and fluorescence
spectra of the solvent background were recorded for LARP
MSCs, HLARP MSCs, and quinine sulfate. The integrated
fluorescence intensity was calculated. This was repeated for five
solutions with increasing concentrations (0.02, 0.04, 0.06, 0.08,
and 0.10 O.D.) of LARP MSCs and HLARP MSCs. The
quantum yield was then calculated using
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QY QY
Grad
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std std

where x is the unknown solution, std is the standard, QY is the
quantum yield, Grad is the gradient from the plot of integrated
fluorescence intensity versus absorbance, and η is the refractive
index of the solvent.

Stability Tests. Open Air. The as-prepared LARP and
HLARP samples were sealed and left under ambient conditions
and exposed to light and air. Aliquots of samples were removed
and tested using UV−vis and PL spectroscopes over the course
of 14 (LARP) to 26 days (HLARP) until the sample was no
longer luminous. For paraffin stabilized samples, 12 mg of
paraffin was added to 100 μL of the as-prepared solution and
tested every week.

Water Stability Tests. To test water stability, 10 μL of water
was added to 5 mL of as-prepared LARP and HLARP
solutions. These samples were then tested using UV−vis and
PL spectroscopes until they no longer emitted light. For
paraffin stabilized samples, the as-prepared solution was mixed
600 mg of paraffin and similarly tested.

Solid Samples. For solid samples, 50 μL of the as-prepared
sample was drop-cast onto borosilicate glass slides. This
process was repeated for paraffin stabilized samples, where the
as-prepared solution was mixed with 600 mg of paraffin. These
samples were similarly analyzed using absorption and PL
spectroscopies.

Spectroscopic Measurements. Ultraviolet−visible (UV−
vis) absorption spectra were measured with an Agilent
Technologies Cary 60 UV−vis spectrophotometer, and the
PL spectra were measured using a Cary Eclipse spectro-
fluorometer using a quartz 700 μL microcuvette at room
temperature and an excitation wavelength of 400 nm. Raman
measurements were conducted on a Thermo Fisher DRX3 785
nm laser at a power of 1 mW for 30 s and three accumulations
using a 100× objective.

X-ray Diffraction. Using the unwashed MSCs stabilized in
paraffin, 50 μL were drop-cast onto a borosilicate slide and
analyzed using a Rigaku American MiniFlex Plus powder
diffractometer at a voltage of 40 kV and a current of 30 mA,
with a scanning angle of 1.4−32 (2θ) at a rate of 0.05°/min
and a step size of 0.02° over the course of 10 h.

Transmission Electron Microscopy. High-resolution
transmission electron microscopy (HRTEM) and high-angle
annular dark field (HAADF) scanning TEM (STEM) were
performed at the National Center for Electron Microscopy
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(NCEM) facility in Molecular Foundry, Lawrence Berkeley
National Laboratory on an FEI UT Tecnai microscope,
operated at an acceleration voltage of 200 kV. The sample was
diluted 225-fold and dropped onto 10 nm thick lacey carbon
grids. 10 μL was dropped and blotted twice and allowed to dry
for 10 min before being analyzed.

■ RESULTS AND DISCUSSION
Optical Properties of MAPbBr3 MSCs. The normalized

overlayed absorption and PL spectra were measured for two
types of methylammonium lead bromide MSCs synthesized by
LARP and HLARP methods. In the 400−600 nm region, the
LARP MSCs show a single absorption band peaked at 423 nm
and a single PL band peaked at 436 nm when excited at 400
nm (Figure 1A). The HLARP MSCs exhibit red-shifted

absorption and PL bands peaked at 432 and 450 nm,
respectively. This red shift of both the absorption and PL
bands indicates the formation of larger MSCs and is in good
agreement with previous reports.7,29 The PL bands of both
samples have a narrow full width at half maximum of 20 nm,
indicative of a narrow size distribution.

The PLQY was obtained by comparing to quinine sulfate.
HLARP MSCs have a PLQY of 76%, over double that of the
LARP MSCs at 36%. This is expected as higher temperature
syntheses, such as those in PQD hot injection, often lead to
nanoparticles with higher PLQY (Figure 1B).47,48 Moreover,
HLARP MSCs’ absorption band is 10 times as intense as
LARP MSCs’ (Figure S1), showing an increase in concen-
tration and product yield. The increased temperature leads to
more collisions, increasing the number of nucleation sites and
the rate of the reaction.29 Thus, the HLARP synthesis
produces a more concentrated solution of MSCs with higher
PLQYs.

Stability Analysis. The long-term stability of MSCs in
solution was monitored until the sample fully degraded and
lost luminous intensity (Figure 2). The time-dependent PL
spectra of LARP MSCs under ambient conditions indicate that
they retain their 436 nm emission without shifting but
completely degrade after 14 days (Figure 2A). The time-
dependent PL spectra of HLARP MSCs under similar ambient
conditions show that the HLARP MSCs have ∼20 times the
initial PL emission intensity of LARP MSCs but show a
different degradation mechanism (Figure 2B). The initial
emission band starts at 450 nm and shifts to 456 nm after 24 h.
This indicates that the MSCs are growing slightly due to
Ostwald ripening and reaching a larger metastable state.49−51

The intensity of the solution increases for up to 5 days, more
than doubling in intensity before starting to diminish and

degrade. This is likely due to leftover starting reagents in the
unwashed solution forming new nucleation sites and thus new
MSCs and is similarly reflected in the absorption spectra
(Figure S2). The leftover capping ligand in the solution does
not appear to be a detriment at this concentration, as HLARP
MSCs take 26 days to fully diminish. Both degradation
processes plotted over time show the increased stability of
HLARP over LARP MSCs in ambient conditions (Figure 2G).

MSCs can degrade due to water, light, oxygen, or excess
capping ligand.42 The only difference between the LARP and
HLARP MSCs is their size and the amount of capping ligand
leftover in the solution. In general, larger nanoparticles show
increased stability over smaller nanoparticles, at least partially
justifying HLARP’s improved stability.51 Additionally, LARP
MSCs are synthesized with 667% more capping ligands than
the HLARP synthesis. Since oleic acid and oleylamine were
used as stabilizing ligands and they readily react with each
other, this may result in the reaction of bound and unbound
ligands, causing the detachment of bound ligands, and resulting
in aggregation of the nanoparticles.52 Second, oleylamine can
react with water to form oleyl ammonium salt, which reacts
and causes a moisture-induced structural degradation.33

Therefore, increasing the amount of oleylamine in the solution
leaves MSCs more susceptible to water destabilization. By
synthesizing HLARP MSCs with less capping ligands, they do
not undergo these capping ligand degradations as readily and
are less susceptible to the oleylamine moisture-driven
degradation, making them more stable under ambient
conditions. HLARP MSCs stabilized in paraffin remain stable
for at least 3 months under ambient conditions (Figure S3).

To further test the stability and resilience against humidity,
10 μL of water was injected into the 5.0 mL as-prepared
sample. The LARP MSCs with this addition proved to be
highly unstable in water, as the time-dependent PL spectra
fully diminished in 4 min (Figure 2C). In comparison, the
time-dependent PL spectra of HLARP MSCs showed they
remained luminous for 30 min (Figure 2D). Typically, when
water molecules in the air interact with the perovskite crystal,
strong hydrogen bonds form with the organic cations,
weakening the bond between the cation and PbBr2, allowing
for faster deprotonation of the organic cation, leaving the
crystal more susceptible to external stressors.42,53 Moreover, as
stated above, the excess oleylamine can react with water to
speed up moisture-driven structural degradation.33

To reduce degradation, paraffin was introduced as a non-
coordinating solvent and stabilizing matrix.54 Long-chain
hydrophobic polymers have been shown to greatly increase
water stability by preventing the interaction between water and
the PQDs.55 Here, we see significant improvements to the
stability of MSCs with the addition of paraffin. The time-
dependent PL spectra of the LARP MSCs show that the MSCs
remained luminous for nearly seven times longer, retaining PL
for 27 min (Figure 2E). The time-dependent PL spectra of the
paraffin stabilized HLARP MSCs also show an improvement
and emitted for over 90 min (Figure 2F).

Paraffin has been shown to aid PQDs largely with water
degradation and partially with oxygen degradation, acting as a
hermetic barrier.46,53−55 With the addition of water, LARP
MSCs shifted from 436 to 423 nm before the PL intensity
diminished. This indicates that the MSCs are breaking into
smaller particles before losing luminescence. In the case of the
HLARP MSCs, the longevity of the MSCs is improved by a
factor of about three. HLARP MSCs degraded without

Figure 1. (A) Normalized UV−vis electronic absorption and PL
spectra for LARP and HLARP syntheses and (B) images of MSCs
made with LARP and HLARP under ambient light and UV light.
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exhibiting peak-shifting and retained their 450 nm emission.
The small addition of water significantly increases the
degradation of the MSCs. Both LARP and HLARP MSCs
retain their PL on the scale of weeks when exposed to light and
air, but the addition of water, even in the presence of a
stabilizing matrix, degrades them in a matter of minutes. Thus,
water degradation appears to be the main cause of structural
degradation. The addition of paraffin significantly improved
the stability and shelf life of these materials and facilitated their
characterization in solution. The comparison of the diminish-
ing PL intensities due to water degradation is shown in Figure
2H (corresponding absorption spectra, Figure S2).

For applications and structural characterizations, it is
important for the MSCs to be stabilized as a solid. However,
MSCs degrade in the solid form as particles aggregate or fall
apart upon drying due to local supersaturation.43,56,57 The
LARP MSCs were drop-cast onto borosilicate glass slides and
analyzed after 3 h. Their PL spectrum was indistinguishable
from the borosilicate background, retaining no luminescence
(Figure S4). To stabilize the LARP MSCs, paraffin was added
prior to drop-casting. Similarly, after 3 h, the LARP MSCs lost
all luminosity. Excess capping ligands could severely limit the
ability of these nanoparticles to stabilize as a solid. Thus, if the

smaller sized LARP MSCs are desirable for applications,
washing protocols may improve stability.

The PL spectra of HLARP MSCs in solution and their dried
counterparts were compared, as shown in Figure 3. The
solution PL spectrum has one band peaked at 450 nm, while
the dried HLARP MSCs without paraffin have the same band
with a peak at 450 nm, but with a new band appearing at 473
nm (Figure 3A), indicative of the formation of larger
particles.29 One can observe the lighter blue tint starting to

Figure 2. Time-dependent PL stability analysis of LARP and HLARP: (A) LARP MSCs under ambient conditions, exposed to light and air; (B)
HLARP MSCs under ambient conditions, exposed to light and air; (C) LARP MSCs after the addition of 10 μL of water; (D) HLARP MSCs after
the addition of 10 μL of water; (E) LARP MSCs after the stabilization in paraffin and the addition of 10 μL of water; (F) HLARP MSCs after the
stabilization in paraffin and the addition of 10 μL of water; (G) PL intensity over time comparing LARP and HLARP MSCs under ambient
conditions; and (H) PL intensity over time comparing LARP and HLARP MSCs with the addition of water.

Figure 3. Stability of HLARP MSCs as a solid, determined by PL
intensity of (A) normalized spectra of the solution compared to as-
prepared dried HLARP MSCs and dried HLARP MSCs stabilized in
paraffin after 3 h and (B) paraffin stabilized HLARP MSCs over 8
days.
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form on the film (Figure S4). However, with the addition of
paraffin, the MSCs keep the one emission band but shift
slightly from 450 to 456 nm (Figure 3A). This is the same shift
that was seen in the solution after 1 day, attributed to slightly
more stable and larger MSCs after possible Ostwald ripening.58

The paraffin-stabilized HLARP MSC film was left under
ambient conditions and remained stable for 8 days (Figure
3B). This is important for their potential device applications
and characterization in solid state form (corresponding
absorption data, Figure S5).

Structural Analysis. The Raman spectra in high-frequency
and low-frequency regions were measured for the solid LARP
and HLARP MSCs, immediately upon drying and before
aggregation, as shown in Figure 4. In the high-frequency region

above 700 cm−1, both LARP and HLARP confirm the presence
of the primary capping ligand, oleylamine (Figure 4A).59 All
modes in the low-frequency region are in good agreement with
methylammonium lead bromide bulk perovskite (Figure 4B).
The peaks at 107 and 118 cm−1 are indicative of lurching
methylammonium, and the broad peak at 240 cm−1 due to
torsional vibration of methylammonium is present in both
LARP and HLARP. However, the 147 cm−1 nodding donkey
around C is prominent and only shown in the HLARP
MSCs.60 This mode corresponds to a rotational vibration of
the cation around the methylammonium carbon and is
presumably affected by octahedra tilting. The distortions of
the crystal lattice are due to the hydrogen bonding with the
halogen and thus provide some measure of the coupling
between the molecule and the inorganic framework. The
presence of this mode in the HLARP MSCs, and not the LARP

MSCs, suggests that the larger MSC is more ordered and that
upon the growth of the nanocrystal, the methylammonium
becomes more firmly bound in the nanocrystal due to a
distortion of the framework.61 This distortion could play a role
in the improved stability of HLARP MSCs over LARP MSCs.

Paraffin stabilization of the HLARP MSCs allowed for
PXRD analysis. The stability of the HLARP MSC film was
confirmed using PL spectroscopy and the XRD patterns of
HLARP MSCs are shown in Figure 5. Sharp peaks at ∼ 2, 4,
6.5, 21.5, and 23.9° (2θ) due to paraffin are observed. Broad
features at 12.4, 13.8, and 14.9° (2θ) are attributed to HLARP
MSCs. The distinct peak at 14.9° correlates well with the
expected (020) plane of the orthorhombic MAPbBr3 perov-
skite. This peak is further confirmed by the higher order
amorphous hump (∼26−31.5° 2θ) (Figure S5). Paraffin with
oleylamine and oleic acid capping ligands dried in a similar
manner produce no features in the 12−15° area of interest.
The diffraction data of the HLARP MSCs share common
perovskite d-spacings and likely have a distorted perovskite
structure. The 14.9° peak is slightly shifted toward a smaller
2θ. This indicated the shift to larger d-spacings from the
theoretical 14.95° (5.92 Å) peak of the orthorhombic
MAPbBr3. Moreover, the peak is significantly broader,
indicating its smaller size.62 Organic ligand passivation can
cause lattice strain near the surface, which typically relaxes
within a few monolayers.63 However, due to the small size of
MSCs, there are likely five (020) lattice planes. Since their size
is so small, ligand passivation at the surface strains most of the
MSCs’ perovskite structure, which would similarly agree with
the broad diffraction peaks. Given that LARP MSCs show less
order in their low-frequency Raman spectra, it is likely that
LARP MSCs would show even less crystalline character. This
is further supported by their estimated smaller size since larger
nanocrystals have more layers to satisfy Bragg’s law and
produce sharper reflections with increased intensity.64

HRTEM images of HLARP MSCs (Figure 6) indicate that
the average size was 2.46 ± 0.15 nm by 3.20 ± 0.19, for an
average of 2.8 nm, smaller than anticipated with the Brus
method.29 Moreover, the MSCs shown here are around 2 nm
smaller than previous reports of TEM images where
aggregation was not prevented.7 These measurements indicate
that the MSCs have low crystallinity. The fast Fourier
transform of the HRTEM reveals a lattice spacing of ∼0.30
nm, which is consistent with the (040) Miller index (Figure

Figure 4. Comparison of oleylamine, LARP MSCs, and HLARP
MSCs using: (A) high- and low-frequency Raman spectra and (B)
zoomed in low-frequency Raman spectra.

Figure 5. XRD patterns for HLARP MSCs, paraffin and capping ligand, and theoretical spectrum of methylammonium lead bromide (left) from 0
to 30° (right) from 10 to 20°.
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6C). Every two lattice spacings are consistent with the (020)
Miller index, a d-spacing of ∼0.6 nm, and the 14.9° diffraction
peak in the PXRD (Figure 6C). The (040) with a 2θ of ∼30°
is represented as a very broad and weakly diffracting reflection
(Figure S5). Both (020) and (040) miller indices are indicative
of the orthorhombic crystal structure.62,65 The TEM image
shows lattice planes perpendicular to the b-axis lattice constant
(Figure 6C). The b axis is approximately 1.5 times longer than
a or c axes, which correlates with the shape of the MSCs. The
lattice spacing is not present in all the images, likely due to
beam sensitivity and particle movement. This makes it hard to
characterize the other spacings exactly and also explains the
broadness shown in the PXRD pattern. Lattice spacings of
around 0.36 nm are also present, which could account for the
12.4° powder peak, but there are very few layers to concretely
determine this.

If the concentration is too high, some MSCs aggregate into
PQDs (Figure S7). These nanoparticles are ∼5 nm in size and
show much higher crystallinity by contrast. They show lattice
spacings of 0.30 and 0.25 nm, which are in good agreement
with the theoretical methylammonium lead bromide powder

pattern. Thus, it is possible to structurally distinguish between
MSCs and PQDs. MSCs have perovskite characteristics but are
quasi-crystalline. PQDs show higher crystallinity and therefore
are more similar to the perovskite crystal structure.

A potential mechanism of paraffin stabilization and a model
of a quasi-crystalline MAPbBr3 LARP and HLARP MSCs can
be hypothesized (Figure 7). The HLARP and LARP MSCs
differ in many characteristics. While the HLARP MSCs are
slightly harder to make, they possess double the PLQY of the
LARP MSCs. The LARP MSCs’ decrease in PLQY could be
due to an increased number of defects or trap states which give
alternative pathways to radiative recombination and can
significantly decrease the quantum yield.8,66−69 This would
be contrary to previous hypotheses surrounding the LARP and
HLARP MSCs.29 Additionally, the LARP MSCs were
estimated to be around 3.04 nm in size using the Brus
model.29 However, using TEM, it was determined that the
larger HLARP MSCs are an average of 2.8 nm in size.
Therefore, by modifying the Brus approximation methods,
LARP MSCs are likely 2.5 nm in size (Figure 7).24 This
smaller size could lead to their relative instability.51 In contrast,

Figure 6. Images of HLARP MSCs at various resolutions using: (A−C) HRTEM and (D−F) HAADF STEM.

Figure 7. Scheme illustration of the differences between LARP and HLARP MSCs and the major effects on their stabilization.
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the HLARP MSCs are formed using a minimal amount of
capping ligand at an elevated temperature. This extra step not
only increases the particle size to 2.8 nm but also doubles the
PLQY to 76%. The increase could be due to the higher
temperature, providing sufficient energy to allow the MSCs to
reach a more stable state. The HLARP MSCs’ improved
stability allowed them to be characterized with PXRD and
TEM. They show lattice spacings of 0.30 nm, which suggest
that they are orthorhombic (Figure 7). Contrastingly, the
instability of the LARP MSCs hindered their ability to be
characterized as a solid.

LARP and HLARP MSCs also differ in the capping ligand
concentration during synthesis and the order within their
structures. LARP MSCs are synthesized with 667% more
capping ligands. Excess capping ligands have been shown to
play a key role in the degradation of MSCs. There are two
potential mechanisms. Since there are both free acid and amine
ligands present in the solution, they have the ability to react
with ligands bound on the surface of the MSC, leading to
aggregation.52 Furthermore, oleylamine has been shown to
react strongly with water and provide a mechanism for
moisture-driven structural degradation (Figure 7).33 This likely
contributes to the increased instability of LARP MSCs over
HLARP MSCs. Thus, to improve the stability of the LARP
synthesis, washing protocols must be optimized.

HLARP MSCs are also more crystalline than LARP MSCs,
suggested by the additional Raman mode at 147 cm−1. This
indicates an additional bond between the methylammonium
and the inorganic framework. Water molecules destabilize
perovskite crystal structures by binding to their organic cation
and weakening its bond to the crystal structure.37 The HLARP
MSCs are more resilient to water and excess capping ligand
degradation, likely due to their increased structural order.
Using paraffin as a stabilizing matrix, the HLARP MSCs were
stable for 8 days as a solid and over 3 months in solution
exposed to light, oxygen, and water. This is likely due to the
hermetic nature of paraffin providing a barrier to these
destabilizing agents. Moreover, with the introduction of a
matrix, paraffin could potentially inhibit the interaction of
unbound capping ligands with the material. These data suggest
that MSCs can be stabilized for future applications in
photonics in similar ways to quantum dots.

■ CONCLUSIONS
Two types of methylammonium lead bromide MSCs,
passivated with oleylamine and oleic acid, were synthesized
using LARP and HLARP methods. These MSCs were
characterized using UV−vis electronic absorption and PL
spectroscopy. The HLARP synthesis resulted in an increase in
the PLQY of the MSCs by two-fold to 76% and showed
increased product yield. The stability of the MSCs was tested
using time-dependent PL spectroscopy. LARP MSCs in
solution degraded completely after 14 days under ambient
conditions, while HLARP MSCs lasted for 26 days. To
stabilize them, the MSCs were added to paraffin to create a
hydrophobic and hermetic barrier and protect them from the
degrading effects of water and oxygen. Both paraffin-stabilized
MSCs showed increased resilience to the addition of water.
Solid LARP MSCs lost all luminescence with and without the
addition of paraffin by about 3 h. Solid HLARP MSCs without
paraffin started to aggregate after 3 h, but paraffin-stabilized
HLARP MSC films were stable for 8 days. This improved
stability in solid state form allowed for analysis using Raman

spectroscopy, PXRD, and TEM. Raman spectroscopy revealed
that the HLARP MSCs show an additional peak at 147 cm−1

compared to LARP MSCs, which is attributed to methyl-
ammonium, indicate a more highly ordered structure, and may
have implications in HLARP’s increased stability. PXRD and
TEM confirm that MSCs have a quasi-crystalline orthorhom-
bic structure. The significantly extended stability of the solid
HLARP MSCs with paraffin shows promise for future use in
photonics.
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