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ABSTRACT OF THE DISSERTATION

Sing-Cell Lipidomic Analysis and Cytotoxicity Studies of Microorganisms Enabled by
Plasmonics-Enhanced MALDI-MS

by

Bochao Li

Doctor of Philosophy, Graduate Program in Environmental Toxicology
University of California, Riverside, December 2022

Dr. Quan Cheng, Chairperson

Lipidomics is the comprehensive study of cellular lipids on a large scale based on

analytical chemistry principles and technological tools. It provides in-depth understanding

of subtle alterations of lipids in cells in response to internal and/or external stimuli, such

as environmental stress, diseased condition, drug treatment, and genetic mutation. Mass

spectrometry (MS) has been recognized as a vital technique for lipidomics, and MALDI-MS

is particularly attractive due to the speed, sensitivity, resolution and throughput benefits.

Single-cell lipidomics addresses lipidome characterization at a single cell level, but its study

has been largely hindered by complex structural diversity of lipids and limited sample

amounts. This thesis describes the methodology development specifically for lipidomic

study at the single cell level with a novel, high performing MALDI-MS platform enhanced

by plasmonic substrates. The lipid profiling and analysis were applied to a series of cells,

including algae, bacteria, and virus from clinical samples.

Chapter Two describes a microchip-based MALDI-MS method to investigate the

cytotoxic effects of herbicides on algae through single-cell lipid profiling in combination

viii



with machine learning (ML). The exposure of algal species Selenastrum capricornutum to

different common herbicides and the resulting cytotoxic behaviors under stressed conditions

were characterized. A lipid library for S. capricornutum has been established. Machine

learning algorithms were applied to the classification of herbicide impact and identification

of lipid species affected by the chemical exposure, leading to accurate identification of

previously hidden cytotoxic differences.

Chapter Three describes the use of gold nanofilm/MALDI-MS for untargeted

lipidomic analysis of E. coli. Lipid profiling was performed with intact cells to under-

stand the cellular response to antibiotic treatment (colistin), and statistical models were

utilized for classification, variability, and reproducibility assessment. A number of lipids

were evaluated as potential biomarkers for indicating gram-negative bacterial response to

colistin.

Chapter Four describes a MALDI-MS study with photosensitizer-induced signal

enhancement for bacterial lipidomic profiling at both bulk and single cell level. Unique

metabolite profiles were constructed by MS measurements and assisted by various statis-

tical models including PLS-DA and LDA. The combination of photosensitizer and fluores-

cence localization allows discrimination of different bacterial species, providing a potential

approach for bacterial identification without a proliferation process.

Chapter Five describes the application of a novel plasmonic chip (Al-chip) with

MALDI-MS for virus analysis through lipid profiling. Al-chip delivered higher sensitivity

and thus better MS signals than traditional MALDI stainless steel plate. Clinical sam-

ples of COVID-19 nasal swabs were investigated by running lipid metabolite profiling to
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evaluate the feasibility of high throughput screening of viral infection. A comprehensive

data processing and statistical analysis was utilized to reveal key changes among different

lipid metabolites and evaluate their potential as diagnostic markers identifying positive and

negative samples for rapid COVID-19 screening.
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Chapter 1

Introduction

Metabolomics is a field of study that measures a large number of metabolites simul-

taneously. Metabolites are small biomolecules that include amino acids, carbohydrates, and

lipids. They serve as precursors, intermediates, and end products in biological activities.[1]

When found in a biological sample they give a ”fingerprint” of ongoing biological processes.

In addition, growing evidence indicates that metabolites directly activate cellular signaling

cascades and affect several biological processes, including epigenetic mechanisms and post-

translational changes.[2] Thus, metabolomics information may explain the link between

cellular activities, metabolic pathways and disease-related molecular processes. An impor-

tant branch of metabolomics is lipidomics, a study of cellular lipids on a large scale based

on analytical chemistry principles and technological tools, in particular mass spectrometry.

Figure 1.1 shows the relationship of the genome, transcriptome, proteome and metabolome

(lipidome).
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Figure 1.1: General schema showing the relationships of the genome, transcriptome, pro-
teome, and metabolome (lipidome).

It is understood that single cells exhibit metabolic differences from ostensibly

homogenous cell groups. Single-cell metabolomics aims to examine a range of cellular

metabolites from single cells to comprehend phenotypic heterogeneity. This is a difficult

task because of the low analyte abundances and limited sample quantities.

There are a number of reasons that make the analysis of metabolites in biological

samples challenging. First, the metabolome is highly dynamic: the presence and quantity

of metabolites quickly change due to cellular activity or reactions to the chemical and

physical microenvironments. Second, metabolite structures vary significantly in terms of

combination of isomers and isobars. These structures are difficult to examine because

of the stringent requirements of the selectivity of the analytical approach, and the data

consists of both known and undiscovered metabolites. It is still difficult to estimate the
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number and amount of undiscovered metabolites, although new compounds and metabolic

pathways are being discovered continuously.[3][4][5] Lastly, since specific metabolites are

only present in trace levels and amplification is not feasible, analytical instruments must

be very sensitive. Recent advancements in mass spectrometry (MS) technology, such as

high mass resolving power and enhanced sensitivity, and the establishment of metabolite

databases, make metabolomics research possible. MS can evaluate concurrently hundreds

of metabolites, allowing for label-free chemical identification. In addition to sensitivity, the

optimal approach for single-cell metabolomics should permit the high-throughput study

of many individual cells. This is necessary for determining the technical variability and

discovering biological differences associated with biochemical processes.

Despite the importance, single-cell metabolomics, in particular single-cell lipidomics,

is far less explored as compared to other “omics”. The research has been largely hindered

by complex structural diversity of lipids, limited sample amounts, and the availability of

proper techniques. This thesis describes the methodology development and its application

to lipidomic study at the single cell level based on a novel, high performing MALDI-MS

platform that is enhanced by plasmonic substrates. The lipid profiling and analysis are

extended and demonstrated with a series of cells, including algae, bacteria, and virus from

clinical samples.
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1.1 Single-Cell Analysis

Routine bulk scale omics measurements involving the study of a large number

of cells, often in millons, are population-averaging procedures that presume that cell pop-

ulations are homogeneous. Variability or heterogeneity between individual cells is a key

characteristic of biological systems.[6] Due to differential control of gene expression, geneti-

cally identical but phenotypically various cell types within the same multicellular organism

display different phenotypes. Depending on how they adapt to their microenvironment,

cells within the same tissue type also may exhibit different phenotypic profiles. For in-

stance, the proximity of cells to blood arteries, other cells, or oxygen gradients may alter,

triggering a response from a subset of the population.[7] The capacity to examine single

cells with a high throughput may illuminate biological processes concealed by ensemble

measurements. This may be particularly useful when attempting to comprehend diseases

such as cancer, in which heterogeneity can play a crucial role in disease development and

progression.[8] According to some studies, spreading tumor cells or circulating tumor cells

following adjuvant treatment predicts a poor prognosis and suggest metastatic development

in cancer patients.[9][10][11] Even though it is possible to detect these rare cell populations,

advances in single-cell proteomics and metabolomics could provide much-needed insight into

the molecular and phenotypic nature of these cells, which are believed to cause significant

inter-patient variation in their dormancy or expression.[12]
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Figure 1.2: An overview of single-cell technologies. Single-cell technologies involve two
steps: single-cell isolation followed by single-cell analysis. Single-cell isolation includes label
approaches (e.g., FACS, microfluidics, micromanipulation, LCM, CellSearch, DEPArray,
CellCelector, and MagSweeper) and label-free approaches (e.g., CellSieve and ClearCell
FX). Some single-cell technologies such as 10× genomics and drop-seq do not involve
single-cell isolation before single-cell analysis. Single-cell analysis techniques include ge-
nomics (whole genome/exome), transcriptomics (total RNA/miRNA), epigenomics, pro-
teomics and metabolomics. FACS, flow assisted cell sorting, LCM, laser capture microdis-
section. Reprinted with permission from reference [13].
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Analyzing single cells also can reveal uncultivable microorganisms that impact

community stability and resiliency in microbiomes of diverse ecosystems.[14] However, mi-

crobial cells pose a unique challenge due to their size, ranging from 1/1000th to 1/10000th

of eukaryotic cells. Improved techniques for analyzing such small samples will provide

critical insights, for instance, into the context of host-pathogen interactions, especially for

intracellular pathogens. Critical distinctions between uninfected cells and early-, mid-, and

late-infection within a population of cells are often averaged using traditional techniques,

resulting in the loss of essential cell-cell communication and infection processes. A key ob-

stacle to microbiome proteomics research is the sheer quantity of different species at varying

concentrations, which may impede detection efficiency and false-discovery control.[15] Mi-

crodissection of microbiome and biofilm samples proves better than the processing exceed-

ingly small samples because it considerably improves the investigation into the homogeneity

of species that exist simultaneously. Figure 1.2 shows the technologies involving single-cell

isolation and single-cell analysis.[13]

1.1.1 Single-Cell Analytical Techniques

Fluorescence Detection

Early investigations into single cells primarily relied on the observation under a

light microscope. The fluorescence method is a classic technique of analysis.[16][17][18] Ba-

sically, it uses a fluorescence derivatization reaction to change chemically a non-fluorescent

substance and convert it into a fluorescent substance by adding a reagent. Two main

types of fluorescence-derived reagents currently used in single-cell analysis are: fluorescent-
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generated and fluorescent-labeling reagents. The fluorescence-generating reagent is a non-

fluorescent reagent that reacts with the intracellular components to generate fluorescent

substances. For example, in the presence of the nucleophile reagent, cyanide ion (CN-),

2,3-naphthalenedicarboxaldehyde can react with intracellular amino acids to generate pol-

yaromatic compounds with strong fluorescent properties. The reagent can be used to detect

amino acids in cells. In the absence of CN-, it will react with glutathione (GSH) to form

isoindole adducts with strong fluorescence, and the content of intracellular glutathione then

can be detected by the fluorescence intensity. Fluorescent labeling reagents have strong

fluorescent groups, such as fluorescein isothiocyanate (FITC), with both fluorescent groups

and reactive groups reacting with NCS in their molecular structure. Through the coupling

reaction between the reactive group and the N-terminal amino group of the amino acid,

protein or polypeptide in the cell, the substrate is fluoresced for the analysis of these cel-

lular substance. However, this method has two disadvantages: (1) while most molecules

in cells are non-fluorescent and need to be labeled, unknown molecules in cells cannot be

labeled and detected; (2) fluorescent probes have a certain wavelength range and can only

be detected in a limited window, which allows the detection of only 3-4 molecules that do

not interfere with each other.

Electrochemical Detection

Electrochemical detectors are suitable for single-cell analysis because of their high

sensitivity. They even can be applied as intra- or extracellular probes for the label-free

detection of metabolites that are present inside the cell and those that are released into the

extracellular microenvironment. However, only electroactive species can be analyzed, which
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limits the applicability of electrochemical techniques to targeted studies of metabolites in

single cells. Various microscale electrochemical methods have been developed to track differ-

ent physiological processes.[19] For example, the release of metabolites like catecholamines

and oxygen can be easily monitored electrochemically.[20]

Electrochemical sensors also can be utilized as detectors following electrophoretic

separations. Capillary electrophoresis (CE) combined with less selective electrochemical

probes, can serve as a platform for investigating a greater variety of metabolites than

electrochemical sensors employed without separation. T.M. Olefirowicz, et al. employed

very thin capillaries to collect cytoplasm samples from single snail nerve cells.[21] This was

then followed by CE separation and amperometric detection using a two-electrode config-

uration. This approach revealed excellent selectivity for catecholamine, indolamine, and

related metabolites as neurotransmitters. Weng and Jin described a straightforward assay

for identifying amino acids in individual lymphocytes using CE coupled with electrochem-

ical detection. It could detect quantities of four amino acids ranging from femtomoles to

attomoles.[22] Ai et al. fabricated an amperometric sensor based on the electrochemical

deposition of platinum nanoparticles on the surface of carbon fiber microdisk electrodes

through nanopores containing a polymer matrix, and then employed it for real-time moni-

toring of oxidative bursts from single plant protoplasts.[23]

Mass-Spectrometric Detection

Mass spectrometry (MS) is used widely in single-cell analysis due to its benefits

of speed, high selectivity, and high sensitivity.[24][25] MS is a label-free analytical tech-

nique that identifies virtually any analyte and provides structural information. In addi-
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tion, methodological advancements have been made to adapt MS for single-cell analysis.

Single-cell MS has been demonstrated by a number of examples, using various types of

cells.[26][27][28][29] Currently, a variety of ionization methods have been developed that

can desorb/ionize various types of samples, including electrospray/nano-electrospray ion-

ization (ESI/Nano-ESI), laser ablation/laser desorption ionization (LA/LDI) and secondary

ionization mass spectrometry (SIMS). These ionization techniques can ionize many com-

pounds, including proteins, peptides, esters, and small molecule metabolites.[30][31]

Other Techniques

Spectroscopic techniques also can analyze metabolites in single cells. For instance,

the glycogen metabolism of yeast cells has been investigated using single-cell spectroscopy

and image analysis.[32] Shinohara and Wang studied the release of dopamine from a mam-

malian nerve cell following incubation with a drug using an enzyme-catalyzed luminescence

method.[33] The approach was very sensitive, quick to measure, and did not need any

preparation of the single-cell sample. Goff et al. reported a method for the measurement

of ethanol formation in single living cells of unicellular algae by synchrotron Fourier trans-

forms infrared spectromicroscopy.[34] Moreover, using Raman spectroscopy, some studies

reported the detection of nucleic bases and amino acids in single cells.[35][36][37][38] Moritz

et al. investigated the influence of a drug on the metabolic states of individual Escherichia

coli cells by analyzing their Raman fingerprints.[39] However, this technique is unable to

discriminate between free species and their corresponding macromolecules.
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1.1.2 Matrix-Assisted Laser Desorption/Ionization of Single Cell

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), is a

widely used technique for analyzing single cells. This technique employs a laser to ablate

a sample surface covered with a chemical matrix that absorbs light.[40][41] The matrix

selection for the study of metabolites is critical in MALDI. The matrix must allow for the

ionization of the species of interest through charge transfer while producing few but well-

characterized peaks that do not interfere with endogenous species collected from cells. In

addition, the matrix must generate crystals small enough to preserve single-cell resolution.

Profiling single cells based on their positional coordinates could improve through-

put since less surface area is evaluated. Krismer et al. used microscale sample preparation

for high throughput MALDI-MS screening of single algal cells.[42] They used a stainless

steel microarray slide, 300 m in diameter and 720 m from center to center, to load droplets

carrying single cells into 1430 wells using a spotting robot. The cell metabolism then was

inhibited by submerging the microarray in liquid nitrogen, which aids cell lysis via the

production of ice crystals. Monitoring the cell-loaded microarray concurrently with con-

focal fluorescent microscopy confirmed the effectivity of loading single cells before matrix

application and MALDI analysis of cellular positions. The mass spectrum was collected

from a single algal cell as well as a bulk cell spectrum, highlighting some of the discovered

molecular species.[42] The authors note that the single-cell and bulk-cell spectra have the

same peak composition. But the relative abundance of identified species differs owing to

the heterogeneity of the bulk cell mixture’s cells. This approach was subsequently used to

investigate phenotypic changes in C. reinhardtii algal cells that were isoclonal and genet-
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ically heterogeneous.[43] Twenty-six metabolites, such as chlorophyll and triacylglycerol,

were measured in thousands of single cells. By cultivating cells under varying nitrogen con-

ditions, the researchers discovered that genetically heterogeneous cultures exhibited more

phenotypic flexibility than isoclonal cultures, which indicates the significance of the phe-

notype to biological function.[43] Cell nuclei were tagged with a fluorescent tag for optical

imaging. The generated fluorescence image provided relative coordinates for each cell in

comparison to the etched marks on the glass slide. For MS profiling, the MALDI laser was

directed to the exact coordinates of each cell.

1.1.3 Technical Challenges

The size and volume of a single cell may vary by order of magnitude depending

on the organism and type of cell. Microorganisms such as Bacillus subtilis, Staphylococ-

cus aureus, and Escherichia coli often have individual cell volumes ranging from 0.4 to 3

µm3.[8][44] Human cell types can vary by multiple orders of magnitude, with erythrocytes,

HeLa cells, and oocytes having respective volumes of around 100,3000 and 4×106 µm3. Spe-

cialized tools and methods for sample preparation and analysis are required for measuring

the size of a single cell. It may be necessary to separate and isolate specific cells using spe-

cialized methods depending on the cells of interest. Ideally, these strategies will introduce

as few artifacts as possible during the process. Detecting and quantifying biomolecules of

interest in the small sample volume of a single cell requires highly sensitive measuring.

The development of whole-genome and whole transcriptome amplification (WGA/

WTA) has enabled the study of single-cell genomics and transcriptomics despite the trace

amount of genetic material contained in a cell.[45] The availability of commercial kits and the
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common use of unique molecular identifiers (UMIs) to barcode individual RNA molecules

have enabled the investigation of genome and transcriptome sequences in single cells.[46] In

contrast, mass spectrometry-based single-cell omics technologies focus on proteins, metabo-

lites, and lipids are less mature but are new and promising domains. Unlike DNA and RNA,

biomolecules such as proteins, metabolites, and lipids cannot be amplified. Therefore, one

must work with the quantity existing in the cell and focus on improving the intrinsic sen-

sitivity of the technique of analysis. So far, the majority of single cell MS-based omics

research has been on proteomics, partly because this discipline is more developed than

metabolomics and lipidomics.

1.2 Plasmonic Substrates for MALDI- TOF-MS

1.2.1 Principle and Mechanism of MALDI-TOF-MS

In MALDI-MS, the analyte of interest indirectly is desorbed and ionized by a laser

pulse aimed at the matrix (and ionizing agent in certain circumstances) when a laser beam

is directed at a specified area where the sample is attached. Consequently, this approach

can create ions with a high mass (soft ionization). A selected matrix must have a high

absorption coefficient at the precisely applied wavelength to accomplish effective ionization

of the sample.[47] The matrix first serves as a separator for the analyte as a result of

matrix isolation, a phenomenon that minimizes intermolecular tensions.[47] Therefore, it

inhibits the development of clusters inside the analyte. Upon laser irradiation, the matrix

begins to function properly in the gentle ionization of the analyte by absorbing most of the

photon energy. As a result, the matrix shields the analyte from direct laser irradiation. The
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absorbed energy causes the matrix to become excited. The matrix then undergoes a phase

transition from solid to gas due to this excitation, and a thick cloud of gas escapes the

vacuum chamber. A collision between neutral analyte molecules and matrix ions generates

the final ionized analyte product.[47]

Figure 1.3: Simplified schema of the positive ionization matrix-assisted laser desorption/
ionization-time-of-flight (MALDI-TOF) process occurring in the mass spectrometer. The
influence of the detection using either the linear or the reflector mode is emphasized in the
figure. Reprinted from reference [47].
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Laser irradiation results in the soft ionization of the analyte molecules. The accel-

erated and directed ions may be matrix ions, analyte ions, or ionized fragments of analyte

molecules towards the drift zone. This area is much bigger than the ionization or acceler-

ation zones. As Figure 1.3 shows, the ion detector is situated at the end of the flight path

and can record the flight duration and intensity of the individual ions that arrive at the

ion detector. As anticipated, larger analyte ions need more time to reach the detector, but

lighter ions cover the same distance in less time. Following the equation below, the ratio of

mass per charge (m/z) may be calculated using the instrument’s recorded data.

m/z = 2 eE(t/d)2

In this equation, m represents the mass of the ionized molecule, and z represents

the number of electrons removed from the molecule. In the equation, E is the accelerating

voltage, e is the elementary charge, t is the time of flight, and d is the length of the drift

zone.

Initially, MALDI devices were based on the linear ToF spectrometer. In the linear

mode, ions of varying masses approach the detector depending on how long it takes them

to traverse the drift zone. As predicted, heavier ions arrive at the detector later than

their lighter counterparts. Therefore, heavier ions possess greater m/z values than lighter

ions. Reflection mode, a more sophisticated method, was used to compensate for the linear

mode’s lack of resolution. This advanced technology is comprised of ion mirrors and electric

fields that repel the ions back into the drift zone and compel them to return to the detector,

which now is located on the other side of the flight path. Figure 1.3 represents the schematic

explanation of the principle of MALDI-TOF-MS [48]
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1.2.2 MALDI Matrix

An appropriate MALDI (UV) matrix possesses the following characteristics: 1).

The matrix must have substantial absorption at the laser’s emission wavelength, 337 or 355

nm. Because ionization efficiency (and consequently ion production) improves the matrix

absorption coefficient, all documented organic matrices feature an aromatic ring structure

with delocalized electrons. This is why 2,5-DHB is useful as a MALDI matrix.[49] Although

extinction coefficients are frequently obtained in a solution, MALDI matrix absorption char-

acteristics should be assessed in the solid state.[49] It is not an issue if the monochromatic

laser light does not match the matrix’s UV maximum since UV absorptions are wide. As a

result, optimized matrices for 337 nm lasers may be employed at 355 nm. 2). The matrix

should have a high sensitivity and an excellent signal-to-noise ratio (S/N) for the analytes

of interest. 3)An excellent MALDI matrix has a low background. Low background sig-

nals limit interference between the matrix and analyte ions. It is important to note that

oligomers of the matrix are often generated in the gas phase.[50][51] Most matrices generate

signals at m/z ratios greater than their initial molecular weight. These distinctive matrix

peaks may be exploited as calibrant peaks.[52] 4). An ideal matrix should isolate produced

ions and inhibit analyte cluster formation, such as dimer formation. These clusters would

complicate spectra and reduce sensitivity. 5). Crystallization between the matrix and the

analyte results in co-crystals that must be equally homogenous and feasible. Enhancing the

crystal’s homogeneity is crucial since it impacts the repeatability of the recorded MALDI

mass spectra from “shot to shot”.
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Carboxylic acids are commonly employed as matrix chemicals due to their acidity,

which promotes the formation of H+ adducts - many matrices are derived from cinnamic

or benzoic acids. As sodium is a pervasive element, Na+ adducts are also detected. K+

ions are relatively plentiful within cells, which frequently result in K+ adducts in biological

samples. In addition to the increased formation of H+ adducts, there is another reason to

utilize carboxylic acids: the presence of the π-electron system makes conventional matrices

very soluble in organic solvents. Since MALDI MS is used primarily to examine polar

molecules, such as peptides, which seldom are seldom soluble in organic solvents, water is

an essential component of the most popular solvent systems. The presence of polar groups,

such as carboxylic acids, improves the solubility of the matrix in water.

Figure 1.4: Fabrication procedure of the micropatterned resonance SPRi array. (1) BK7
glass slides were cleaned in a hot (ca. 90 °C) bath of piranha (3:1 H2SO4:H2O2) for about
30 min. The substrates were copiously rinsed with water, dried with a nitrogen stream,
and dehydrated in a 70 °C oven for 1 h. (2) Deposition of 2 nm chromium adhesion layer,
followed by a 51± 2 nm gold or silver layer via e-beam evaporation. (3) Deposition of 3-6
nm silicon dioxide by plasma enhanced chemical vapor deposition (PECVD) at 300 °C. (a)
Hydrophilic microarray, (b) hydrophobic microarray for thiol-based surface chemistry. For
simplification purposes, the adhesion layer (Cr or Ti) is not represented. Reprinted with
permission from reference [53]. Copyright @ 2011 American Chemical Society.

16



1.2.3 Design and Properties of Plasmonic Substrates

Previous studies in our lab have described microarray substrates with a thin gold

or aluminum film, showing high performance for SPR imaging.[53][54] The fabrication of

gold microchips is schematically represented in Figure 1.4, and the optical images of the

microarray chips are shown in Figure 1.5.[53] Briefly, it entails the deposition of two metal

layers on a glass substrate: the first layer is flat and facilitates the development of SPP, while

the second layer serves as an electromagnetic barrier, defining the geometry and providing a

hydrophobic, nonfouling surface. This layer has a high reflectivity to permit the saturation

of the background signal though attenuated total reflection, a high imaginary component

of the refractive index, and a suitable thickness to prevent SPR excitation. This gold layer

could be substituted with chromium, titanium, nickel, or aluminum. Microarrays with a

diameter of 800 m were created and described. Two 800 µm microarrays with various

surface characteristics were made. First, titanium surrounds hydrophobic gold wells. This

surface is for SAM or thiol-based chemistry. The second microarray has hydrophilic wells

enclosed by a hydrophobic gold layer for bioabsorption and membrane investigations. In

the latter situation, the chip needs plasma-enhanced chemical vapor deposition (PECVD)

to add a thin hydrophilic surface of silicon dioxide to the wells for improved wetting. Both

chips could be simply functionalized by immersion in the desired solution, eliminating the

need for costly arraying equipment. In contrast, chips with gold islands on glass substrates

were also produced using the same method.
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Figure 1.5: Optical images of the micropatterned resonance SPRi chips. The array has a
size of 2 cm2, containing 12 × 10 microwells of 800 µm diameter each. a: hydrophobic gold
chip, b: hydrophilic silica chip, c: hydrophilic chip after rapid immersion in PBS buffer.
The wells are instantaneously filled with the aqueous solution. Reprinted with permission
from reference [53]. Copyright @ 2011 American Chemical Society.

As for the lipid analysis, the 50 nm gold substrate was selected as an essential

feature of the substrate design based on three benefits/analytical merits: (i) enhanced flu-

orescence signal[55][56][57] due to surface plasmon coupling with fluorophore emission, (ii)

enhanced MS/MS signal due to rapid thermalization of excited electrons (i.e., hot electron

transfer)[58] and generation of laser-induced plasma at near gold ablation thresholds,[59]

and (iii) surface robustness to oxidation, sample processing, and sample archiving. Pho-

tolithography and e-beam evaporation were used to fabricate gold chips. Well size was

carefully considered, allowing for easier cell identification, high-throughput analysis, and

easy interaction with MALDI-MS software. Nanovolume sampling and cell isolation needed
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a well diameter ≤ 800 µm with a periodicity of 3 mm. Based on the benefits mentioned

above, the gold microarray chips were applied to the lipid study of microorganisms in Chap-

ter 2, 3, and 4.

A recent study from our group reported an SPR sensor with aluminum thin films

using the standard Kretschmann configuration that gold films dominated previously.[54] In

bulk and surface testing, Al films demonstrated exceptional sensitivity. Fabrication was

achieved by electron-beam physical vapor deposition (EBPVD), which allowed Al films to

oxidize in air to form a nanofilm of Al2O3. These films yielded robust stability for sensing

applications in buffered solutions. Figure 1.6 depicts a summary of the fabrication.[54]

Photolithographic patterning and multiple deposition stages are used to construct 15 nm-

thick wells with 800 nm diameter and 150 nm thick walls. The aluminum layer, which

is 150 nm thick, dampens effective plasmonic absorption, leaving microwells as the only

plasmonically active regions. The Al/Al2O3 layer significantly reduced nonspecific binding

from proteins in human serum compared to Au. Further characterization shows a broader

working range than Au films for SPR imaging analysis. When combined with its economic

and manufacturing advantages, Al thin-film has the potential to be a highly favorable

plasmonic substrate for a variety of biosensing demands in SPR configurations. Based on

the benefits of the plasmonic substrate with Al thin-film, it was further applied to MALDI-

MS performance investigation, which will be demonstrated in Chapter 5.
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Figure 1.6: Fabrication scheme of the microarray substrate. Reprinted with permission
from reference [54]. Copyright @ 2020 American Chemical Society.

1.3 Lipid Analysis based on Mass Spectrometry

Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules.

It entails comprehensive lipid pathway investigation and physiological relevance interpreta-

tion based on analytical chemistry and statistical analysis.[60] [61] In lipidomics research,

a large amount of information that quantitatively depicts spatial and temporal changes in

the content and composition of lipid molecular species is accumulated and correlated to

disturbances by diseases, drugs, and the environment.

1.3.1 Lipid Classes and Structural Diversity

Lipids are structural and functional molecules that serve crucial biological func-

tions in cellular barriers, membrane matrices, energy storage, and signaling. Their diverse

structures and physiochemical characteristics provide critical biological roles in various cel-
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lular activities. Lipids are classified as hydrophobic or amphiphilic molecules based on their

biosynthetic and chemical structures. Biogenic lipid molecules are composed entirely or

partially of two types of biochemical building blocks: ketoacyl and isoprene groups[62][63]

According to this classification, lipids are classified into eight classes: fatty acyls (FAs),

glycerolipids (GLs), glycerophospholipids (GPs), sphingolipids (SPs), sterol lipids (STs),

prenol lipids (PR), saccharolipids (SLs), and polyketides(PK)[62][63] Chemical structures

representative of these groups are illustrated in Figure 1.7.[64] Each category has hundreds

of thousands of lipid molecules detailed in the Lipid Metabolite and Pathways Strategy

(LIPID MAPS) database.

The structural variety of lipids endows lipid molecular entities with a wide range

of physiological functions. For example, triacylglycerols (TAGs) are cells’ primary energy

storage molecules. Long-chain fatty acids (LCFAs) perform crucial functions in controlling

energy metabolism.[65] Eicosanoids, lysophospholipids (LPLs), and phosphoinositides (PIs)

are lipid molecules that act as signaling messengers in cellular metabolic processes.[66] Fur-

thermore, lipid composition is strongly linked to the physical features of the cellular mem-

brane. For example, the relative size of the head group and the length of the FA chain have

an influence on cellular membrane curvature and fission,[67] which may affect the activity

and localization of membrane proteins.[68][69] Most natural lipids are composed of diverse

hydrophobic fatty acyl chains and polar head groups connected to distinct lipid backbone

structures (e.g., glycerol and sphingoid bases). The structural diversity of the lipidome

arises from variations in the type of head groups, the length of the fatty acyl chain, the

level of unsaturation, double bond location, cis-trans geometric isomerism, branched func-
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tional groups in the fatty acyl chains, and the type of covalent bond linked to the head

groups, namely ester (acyl-), ether (alkyl-), and vinyl-ether (alkenyl-). Figure. 1.8 depicts

the diversity and complexity of lipid structures using GPs and SPs.[70]

Figure 1.7: Eight categories of lipids with their representative chemical structures.
Reprinted with permission from reference [64]. Copyright ©2017 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim
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Figure 1.8: The illustration of the diversity and complexity of lipid structures by taking
GPs and SPs as examples. GPs structure diversity lies in the variety of head group, fatty
acyl chains at the sn-1 and sn-2 positions as well as the linkage between glycerol back-
bone and sn-1 fatty acids. The head group generally represents phosphate group, phos-
phatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and
phosphatidylserine, which respectively defines the classes of GPs as PA, PC, PE, PG, PI
and PS, etc. Another aspect of diversity stems from three different linkage: ester (acyl-),
ether (alkyl-) and vinyl-ether (alkenyl-). Besides, the fatty acyl chains also vary in chain
length, level of unsaturation, double bond location and cis-trans geometries. Similarly,
combinations of different structures of head group, sphingoid based type and N-acyl chain
constitute tens of thousands of SPs. Reprinted with permission from reference [70]. Copy-
right © 2020 Elsevier B.V.
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1.3.2 Data Processing and Analysis

The study of lipidomics, particularly non-targeted lipid analysis, has created mas-

sive volumes of data, which require bioinformatics methods to assist in data processing and

obtaining significant biological information. Several types of data-processing software are

available, such as Progenesis from Waters and Clinpro from Bruker. Some organizations,

such as the lipid metabolite and pathways strategy (LIPID MAPS), the Human Metabolome

Database (HMDB), provide free access to their databases. In addition, several online plat-

forms, such as MetaboAnalyst, were created to offer free data processing assistance. More

functional lipidome can be discovered using analytical tools, which will considerably im-

prove knowledge of disease processes and further the development of lipidomics.

Data Pre-Processing

Data pre-processing is a comprehensive procedure to extract useful metabolomic

information from raw data. First, noise and background signals need to be removed. Ran-

dom noise and background signals from the ambient environment may interfere with cells’

“true” metabolomic fingerprints. To eliminate such interference, all acquired signals must

be filtered with a set threshold to exclude the random noise generated by the instrument.

Background signal also must be removed. In addition, attention should be given to the se-

lection of noise threshold. For unnecessarily high criteria can exclude valuable metabolomic

data. Second, the intensity of ions needs to be normalized, and the normalized intensities

of ions can then be associated with their relative abundances in various cells. After data
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pre-processing, complex raw data is transformed into simpler data matrices consisting of

observed cellular metabolites and their normalized intensities.

Univariate Analysis

Univariate statistical analysis is required to disclose the alteration of cellular

metabolites corresponding to a particular biological process (e.g., drug treatment and en-

vironmental stress). This method identifies the difference between metabolite, namely,

upregulation or downregulation, and prospective metabolomic biomarkers in single-cell

metabolomics; theses biomarkers are features of groups of cells with certain biological prop-

erties. Similar to traditional LC-MS/MS metabolomic data analysis, the t-test is frequently

employed to identify compounds with substantially different relative abundances between

two groups. The compounds with positive test findings (p-value ≤ 0.05) are considered

metabolomic biomarkers. Analysis of variance (ANOVA) is the preferred statistical tool

for identifying biomarkers among several research groups when examining complicated sys-

tems with more than two groups of single cells. Similar to the t-test, data normality needs

to be extensively evaluated before performing either parametric (i.e., One-way) or non-

parametric (i.e., Welch’s) ANOVA. Univariate analysis is a strong and common way to find

metabolomic biomarkers. However, it can not handle all the metabolic patterns.

Multivariate Analysis

Multivariate analysis handles single-cell metabolomics data by analyzing all factors

(i.e., metabolites and their abundances). Multivariate analysis projects high-dimensional

raw data into lower-dimensional space (e.g., 2D or 3D space) uses fewer variables, and pre-
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serve most of the information. This decreases the raw data’s dimensionality yet retains

essential information about cell activities. Complex cellular metabolomic profiles may be

seen in 2D or 3D, allowing intuitive cell heterogeneity display. Unsupervised and supervised

techniques are the two forms of multivariate analysis. Unsupervised approaches, including

k-means clustering, Principal Component Analysis (PCA), and t-Distributed Stochastic

Neighbor Embedding (t-SNE), reduce the dimensionality of the original data by grouping

items with greater similarities in the high dimensional space in a linear or non-linear man-

ner. In contrast, supervised approaches, such as partial least squares discriminant analysis

(PLS-DA) as shown in Figure 1.9[71], orthogonal projections to latent structures discrim-

inant analysis (OPLS-DA), and random forest (RE), need prior knowledge of the group

characteristics of individual cells. The grouping information will be utilized to apply the

appropriate group labels to all subsequent single cells in the training data set.

Advanced Data Analysis

There are more advanced data analysis approaches that have been recently in-

troduced. Due to its high efficiency, artificial intelligence (AI) has been used to analyze

single-cell metabolomics data. AI depends on computational resources to “teach” models

using a variety of algorithms and gradually approaches the underlying complexity of the

investigated object, which is often difficult to study with each interaction of “training”.

Among all AI approaches, machine learning (ML) has its advantages for single-cell based

studies. Complex mathematical models can be developed by combining traditional statis-

tical analysis with modern algorithms. These models can be classified into supervised and

unsupervised models. So far, only supervised machine learning algorithms have been em-
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ployed in single-cell metabolomics research. The obtained datasets are separated into two

sets in those models: the training set and the validation set. The training data is used to

build multiple ML models iteratively using a variety of algorithms such as random forest

(RF), support vector machine (SVM), logistic regression (LR), and artificial neural network

(ANN). The validation set is used to evaluate the model’s ability to predict the group at-

tribute of foreign objects. The ML models could yield excellent prediction accuracy of an

unknown single-cell phenotype based on its integral metabolomic profile if the training set

contained a significant number of single cells.

Figure 1.9: Schematic flow of computational steps in estimating the A PLS components
using PLS1-DA algorithm. N: number of samples, J: number of variables; X: input data; y:
output data; xtest: test sample. Reprinted with permission from reference [71].

1.4 Aplications of MALDI-MS in Diverse Fields

1.4.1 Microbial identification using MALDI-MS

In the past, bacterial culture and biochemical testing were frequently employed to

detect pathogens with distinct morphological features, such as bacteria, yeasts, and fungi.

Methods based on traditional morphology and staining were also employed to identify bac-

teria. However, due to their lengthy turnaround times and laborious process, these ap-
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proaches do not rapidly and accurately identify of pathogenic bacteria according to current

requirements of clinical microbiology laboratories. Since the 1960s, molecular diagnostic

techniques, such as 16S or 18S rRNA gene sequencing, real-time polymerase chain reaction

(PCR) tests, and multilocus sequencing typing (MLST),[72] have been employed to iden-

tify bacteria. Although molecular technology-based approaches have significantly decreased

detection time, there is still a need to lower detection costs through simplified procedures

with large-scale clinical applications. Motivated by this need and drawing on the technical

features of MALDI-TOF MS, bacterial cell molecular mass fingerprinting by MALDI-TOF

MS has been developed during the past several years to enable rapid and accurate iden-

tification of bacteria in clinical microbiology laboratories. Bacterial mass fingerprinting

technologies, such as VitekMS created by BioMérieux and MALDI Biotyper developed by

Bruker Daltonics Corp, were implemented into commercial instruments for routine clinical

applications. During MALDI-TOF MS-based bacterial identification, entire bacterial cells

or whole cell extracts are deposited on the MALDI plate, followed by a matrix and MS

analysis. Fingerprints of the cellular molecular mass are derived mainly from the most

abundant small proteins or polypeptides, particularly ribosomal proteins. Different species

with varied mass patterns were discovered. Pattern matching makes it feasible to identify

bacteria at the species level.

1.4.2 MALDI-MS Investigations Targeting SARS-CoV-2

Using MALDI-TOF technology, researchers have studied and analyzed several

viruses, including human herpesviruses, influenza viruses, and diseases associated with

severe enterovirus infections, such as echovirus, coxsackievirus A and B, and poliovirus.
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[73][74][75][76][77] Currently, MALDI-MS approaches have been tested to detect SARS-

Cov-2 based on “biotyping” and “genotyping” strategies. One research is based on “pro-

teotyping” with high-resolution MALDI-FTICR at the peptide level,[78] while several in-

vestigations employed “biomolecular host profiling” to identify biomarkers produced after

SARS-CoV-2 infection. [79][80][81][82][83].

Figure 1.10 below illustrates the general workflow [84] SARS-CoV-2 patients and

control volunteers were enrolled, and samples were collected using several sampling proto-

cols. Following that, biomolecules (RNA or proteins) were extracted based on the MALDI-

MS techniques utilized (proteotyping, biotyping, genotyping, and biomolecular host pro-

filing). The samples were subsequently subjected to MALDI-MS analysis. Finally, the

data was analyzed through online or in-house database searching or machine learning tech-

niques, identify SARS-CoV-2 infection. We have started the proof-of-concept investigations

using MALDI-MS and the biomolecular host profiling methods to evaluate host response

to forecast infection. It could potentially become an exciting alternative to the present

testing methods (PCR and immunoassay) for identifying SARS-CoV-2 infected patients.

However, viral load varies among infected people, particularly between symptomatic and

asymptomatic subjects, resulting in a broad variation of host responses. The development of

MS-based technologies and associated multi-omics methods needs additional testing before

they could become a reference approach for preparation of future outbreaks.
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Figure 1.10: Workflow of main MALDI MS-based investigations targeting SARS-CoV-2.
(A) Control subjects and (PCR-diagnosed) SARS-CoV-2 patient enrollment. (B) Clinical
sample (serum, saliva, gargle, oral, and/or nasopharyngeal swab) collection from control
subjects and SARS-CoV-2 patients. (C) Sample processing based on the extraction of
RNA or proteins. RNAs are retro-transcripted and amplified from saliva, oral, and/or na-
sopharyngeal swabs in genotyping methods; proteins are extracted from body fluid samples
or from cell-cultured SARS-CoV-2 samples in the proteotyping and biotyping methods; in
the case of biomolecular host profiling methods, proteins are extracted from bodily fluids.
(D) MS analysis based on the ionization in a MALDI source and the separation of the ions
into two different types of analyzers: TOF and FT-ICR. (E) Data analysis using online
or in-house database searching or machine learning algorithms for the detection of SARS-
CoV-2 infection. Reprinted from reference [84]

.
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Benedetti, Mart́ın Avaro, Mara Russo, et al. A combined approach of maldi-tof mass
spectrometry and multivariate analysis as a potential tool for the detection of sars-cov-2
virus in nasopharyngeal swabs. Journal of virological methods, 286:113991, 2020.

[83] Ling Yan, Jia Yi, Changwu Huang, Jian Zhang, Shuhui Fu, Zhijie Li, Qian Lyu, Yuan
Xu, Kun Wang, Huan Yang, et al. Rapid detection of covid-19 using maldi-tof-based
serum peptidome profiling. Analytical chemistry, 93(11):4782–4787, 2021.
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Chapter 2

Probing Herbicide Toxicity to

Algae by Lipid Profiling with

Machine Learning and

Microchip/MALDI-TOF Mass

Spectrometry

2.1 Introduction

The widespread use of herbicides in the agriculture and commercial sectors has

led to tens of millions of pounds of herbicides being poured into the aquatic systems in the

United States. These herbicides pollute the water environment and are toxic to nontarget
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organisms, particularly phytoplankton.[1] A number of herbicides are designed to target

lipid-based photosystems for invasive plant species; therefore, they can inadvertently affect

the photosystems in nontarget vegetation and photoactive microorganisms, causing alter-

ations in species’ metabolism pathways. Microalgae are the leading primary producer in

aquatic ecosystems, providing main nutrition and energy sources for water food networks.[2]

In addition, they play an essential role in the balance and stability of aquatic ecosystems.

Changes in algal biomass and community structure are deleterious to higher trophic levels,

such as herbivorous zooplankton and fish. Therefore, there is a severe consequence to the

function of an entire ecosystem from the adverse effects of herbicides on microalgae.[3]

Cytotoxic effects on algae have been studied by a variety of analytical methods

[4][5][6] but only recently have techniques evolved to allow lipid components to be ana-

lyzed toward a comprehensive understanding at a system level.[7][8] The compositions of

glycerolipids (GL) in microalgae are found to change due to growth and environmental

conditions such as light, salinity, temperature, pollutants, and nutrients, causing alterna-

tion in both lipid components and content diversity.[9][10][11][12][13] This, in connection

with the presence of a large number of different GL molecular species throughout algal

organisms, makes them valuable targets for the analysis of algae response to herbicide ex-

posure. Lipidomic studies offer an in-depth understanding of the changes by lipids, both

functional and structural, in a cell or organism and their interactions with other molecules

in the cell. Many approaches to lipidomic analysis have been established on the basis of

chromatography and mass spectrometry, including thin-layer chromatography (TLC), gas

chromatography-mass spectrometer (GC-MS), electrospray mass spectrometry (ESI-MS),
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and nuclear magnetic resonance (NMR). However, these methods typically require tedious

separation steps or derivatization procedures in sample preparation. Furthermore, the la-

borious sample processing steps lead to a loss of time-sensitive information and can be

a source of experimental errors. Matrix-assisted laser desorption ionization time-of-flight

(MALDI-TOF MS), a method with fast data collection and structural analysis capability,

has a considerable advantage in lipid analysis.[14] Several works have utilized MALDI-MS

to analyze lipid profiles and monitor lipid response to stress.[15][16][17][18][19] We have

recently demonstrated a lipidomic study of algae Chlamydomonas reinhardtii, an important

algal species for biopharmaceuticals and biofuel, with a gold-microchip enhanced MALDI-

MS.[8][20] The plasmonic gold chips provided improved ionization efficiency and autoflu-

orescence for cell localization in the array wells[8], leading to effective lipid profiling at

the single cell level. The elimination of conventional extraction, derivation, and separa-

tion steps[17][16][18][21][22][23][24] allows for the identification of lipids directly from intact

algae without any chemical sample pretreatment or purification.

In this work, we report the use of machine-learning algorithms in combination of

MicroChip/MALDI-MS to investigate the cytotoxic effect of herbicides on algae, Selenas-

trum capricornutum. Figure 2.1 shows the overall workflow. S. capricornutum was selected

for understanding the species-specific lipid response to herbicide treatment as it is a common

bioindicator species owing to ubiquitous distribution and has been widely used for bioas-

says in toxicological risk assessments.[25] Different from C. reinhardtii, the lipid profile of

this algae has never been fully studied or demonstrated, leaving a knowledge gap for the

research associated with its use in toxicity monitoring, biofuel development,[26][27] heavy
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metal removal and bioremediation[28][29][30][31]. . In addition, different algae species are

likely to have perceptible differences in cytotoxic effects from environmental pollutants, and

understanding this property will help identify how toxicants uniquely impact ecosystems.

Therefore, the study of the S. capricornutum system is carefully compared to that of C.

reinhardtii. We found that by using machine learning algorithms, our platform can effec-

tively identify small differences and subtle effects normally obscured. The method can find

broad applications for lipid analysis in many areas, such as drug efficacy, cancer diagnostics,

microbial identification, and lipid metabolism pathway studies.

Figure 2.1: Schematic Illustration of Lipidomic Analysis of Algae Exposed to Herbicides
Combined with Machine Learning.
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2.2 Experimental Section

2.2.1 Reagents

Bioperformance certified dimethyl sulfoxide (DMSO), super dihydroxybenzoic acid

(sDHB), acetonitrile (ACN), and trifluoroacetic acid (TFA) were purchased from Sigma

Aldrich. High-quality atrazine, clomazone, and norflurazon were purchased from AccuStan-

dard Inc (New Haven, CT, USA). High purity water (>18 MΩ cm−1) was from Barnstead

E-Pure water purification system. Premium plain BK-7 glass microscope slides came from

Fisher Scientific. Selenastrum capricornutum bacteria-free UTEX 1648 was purchased from

the UTEX culture collection of algae at the University of Texas at Austin. Sterile Algae-Gro

freshwater medium was purchased from Carolin Inc.

2.2.2 Algae Culture Condition

The freshwater wild-type algae strain, S. capricornutum, was cultured in the

freshwater medium at 23±2°C under a “cool white” fluorescent light employing 12/12 h

light/dark cycle. The algae growth was measured by counting the number of cells and

then monitored by optical density (OD). OD of bulk cultures was measured by the optical

density at 600 nm by spectrophotometer (Figure 2.2).

2.2.3 Herbicide Toxicity Test

All tests were conducted after 96 h of exposure to the targeted chemicals. For

the toxicity analysis, the cells growing close to the stationary phase were seeded and spiked

with different concentrations of the herbicides: atrazine, norflurazon, or clomazone (0.01,
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0.1, 1, 10, and 100 mg/L, respectively). After 96 h of exposure at 23±2℃, the growth of

cells was monitored by UV-vis spectrometry at 600 nm and plotted against the herbicide

dose (Figure 2.3).

Figure 2.2: Calibration curve that shows the number of cells correlates positively with the
absorbance at 600 nm.

2.2.4 Fabrication of Gold Microchip

The gold microchip arrays were fabricated using a previously reported method

developed in the lab.[32] Briefly, the photoresist was spun-coated onto glass slides, which

had been cleaned with Piranha solution (Caution!), and baked at 110 °C. The chip was

then patterned by a mask aligner and UV-light. After another baking step, they were cured

using UV light and treated with a developing solution. Next, e-beam deposition was used
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to deposit different thicknesses of Cr/Au onto the arrays. The photoresist was removed

with acetone to afford pristine 50 nm gold well arrays.

Figure 2.3: Herbicide dose-response curves and algae lipid profiles showing the response to
different herbicides.

2.2.5 Sample Preparation

On the basis of the herbicide toxicity tests mentioned above, two concentrations,

0.05 and 0.1 mg/L, were specifically chosen for this work. After 96 h of exposure, cells

were washed three times using ultrapure water to remove salt and medium, followed by

centrifugation for 8 min at 4000g. After centrifugation, the cells were resuspended with

ultrapure water and spotted onto the gold microchip using a nanoliter electrodeposition

system. To quench the cells, the microchips loaded with cells were immediately placed into

a vacuum desiccator, which stops metabolic changes of the algae. A matrix (sDHB dissolved
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in acetonitrile, 1% TFA in water (1:2)) was then deposited on the sample by using the same

nanoliter deposition system, which allows for the delivery of nanodroplet aliquots (100 nL)

with precision and accuracy. The microchips and samples were stored in the desiccator

before use.

2.2.6 Mass Spectra Acquisition

MALDI-MS analysis was assisted by fluorescence microscopy to localize the cells

in the microarray wells. Fluorescence images of the algae cell, resulting from chlorophyll’s

autofluorescence, provided direct visualization of the cells on the substrate, which were

used to direct laser beams for effective ionization in MALDI-MS experiments (Figure 2.4).

An epifluorescence microscope equipped with a TRITC filter cube and a QImaging Retiga

1300 camera was employed to collect fluorescence images. The MALDI-MS analysis was

carried out in positive ion mode with a laser fluence of 5000 au on a reflection AB-Sciex

5800 MALDI-TOF instrument. A sample representing m/z values versus intensity (au) is

the average of 200 shots from the cluster of a few cells. Precursor ion peaks with high

resolution and good s/n values were selected to generate the tandem MS CID-spectra.

2.2.7 MALD-TOF-MS Data Analysis

Data analysis of mass spectra was conducted using the Data Explorer software.

Peaks with a signal-to-noise ratio (s/n) of 3 or above were extracted after baseline correction.

To perform statistical analysis, the generated lists of m/z and intensity values were imported

into MetaboAnalyst 4.0.[33] Volcano plots were generated to search for significant differences

between classes of lipids. A lipid library was compiled, and the identification of lipids
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was assigned on the basis of m/z values, MS/MS data, database search, and literature

reference. All values were calculated from ≥20 spectra/samples to generate the charts and

for statistical analysis of the results. For machine learning training and testing, data was

input into R-studio and analyzied via the cart package.[34][35]

Figure 2.4: Fluorescence images of S.capricornutum in the microarray well of a gold-µchip

2.3 Results and Discussion

To facilitate lipid analysis in unicellular microalgae, we chose the early stationary

phase for analysis using a 96 h toxicity bioassay. Given that different lipid classes accumulate

under a specific growth stage[36] and there is often a high content of lipid in this stationary

phase,[37] this selection is important to the current work and is intentionally done for

compatibility with previous study for comparison purposes. Lipid expression profiles of
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Selenastrum capricornutum in different growth phases are provided in Figure 2.5. The algae

were dosed with different concentrations of three targeted herbicides: atrazine, clomazone,

and norflurazon. Figure 2.3 shows the result of a standard 96 h toxicity bioassay.

From Figure 2.3, EC50 values for the three herbicides on S. capricornuim were

determined to be 0.033 mg/L for atrazine, 0.023 mg/L for norflurazon, and >100 mg/L

for clomazone. The herbicide concentrations of 0.05 and 0.1 mg/L, moderately higher

than the EC50 and EC90 values respectively, were thus selected to trigger the toxicity

effects on the cells. These herbicides are known to target the photosystem of algae but in

different ways: atrazine affects photosystem II, while clomazone and norflurazon target the

synthesis of pigments (carotenoids and chlorophyll). Chlorophyll in a plastidic membrane

is localized and weakly fluorescent; the use of the gold-microchip in combination with its

plasmonic effect allows for clear localization of the algae cells even after applying the matrix

(Figure 2.4). By contrast, these cells are not traceable on conventional glass slides. The

enhancement by the gold-microchip[8] has gas greatly benefited single cell lipid analysis in

several ways, primarily from metal enhanced fluorescence[38][39][40][41] and an improved

MS signal due to the rapid thermalization of excited electrons.[42]

Figure 2.6 shows the lipid mass fingerprint of the algae from MALDI-TOF-MS

and the typical CID-MS spectra of several important lipids. The whole cell lipid profile

can be grouped into bands based on inherent similarities in headgroup and m/z ratios

(indicated by different colors in Figure 2.6a). ). Intraband differences in m/z are a function

of fatty acid chain length and degree of unsaturation, represented in shorthand notation

by lipid type (carbon number: unsaturation number). MS/MS analysis and literature
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Figure 2.5: Lipid profile of S. capricornuim in different growth phases

reference from other algal species[43][44][45][46][47][48] have been used to generate the lipid

fingerprint. Representative MALDI-TOF-MS/MS spectra and the assignment of the mass

peaks are shown in the Supporting Information (Figure 2.7 and Figure 2.8). Common lipids

in S. capricornutum include MGDG, TAG, and DGDG, and the composition is slightly

different from that in C. reinhardtii.[8] Representative structures of common lipid species

with fragment locations are shown in Figure 2.6b, where the R1 and R2 groups represent

acyl chain residues of varying lengths. With the assistance of gold microarrays, we were able

to identify 17 monogalactosyl-diacylglycerol (MGDG) lipids, 18 migalactosyl-diacylglycerol

(DGDG) lipids, and 33 triacylglycerols (TAG) lipids in S. capricornutum. Figure 2.9 is the
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pie chart that details the lipid species and their identification grouped by subspecies in their

respective lipid categories. Among all lipids detected, MGDG (34 : 7), DGDG(36 : 9), and

TAG (52 : 4) (chlorophyll a) make up the largest portion within their subspecies group,

accounting for about 26%, 18%, and 19% of the group, respectively.

Figure 2.10 shows differentiation in lipid profiles of S. capricornutum exposed to

herbicide at a concentration of 0.1 mg/L. The difference between clomazone treated and

the controls was minimal, while norflurazon and atrazine produced a large decrease in the

overall abundance of all DGDG lipids. Norflurazon is a bleaching herbicide that causes the

inhibition of the carotenoid pigment biogenesis, leading to irreparable changes to chloro-

plasts. It has a specific impact on the ∆15-desaturase in the plastids, where the enzyme

uses both prokaryotic and eukaryotic monogalactosyldiacylglycerol (MGDG) as substrates.

Galactolipids, which include MGDG and DGDG, are the major constituents of photosyn-

thetic membranes in chloroplasts and thylakoids.[47][49] Atrazine is reported to primar-

ily affect the photosynthetic process, cell division, and lipid synthesis in green algae.[50]

Specifically, reactive oxygen species (ROS) are overproduced, leading to oxidative damages

of cell components (e.g., lipid peroxidation in the membranes).[50] Chloroplast and plasma

membrane are the major sites of ROS generation in the microalgae under diverse stress

conditions.[51] MGDG and DGDG, which are the major components of photosynthetic

membranes in chloroplasts and thylakoids, were observed to decrease after exposure to dif-

ferent concentrations of atrazine (Figure 2.11), which agrees well with the ROS mechanism.

When placed under stress conditions, many algae species produce large amounts of neutral
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Figure 2.6: (a). MALDI-MS lipid mass fingerprint of S.capricornutum. (b). Representative
CID-MS spectra of lipids MGDG, DGDG, and TAG.
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Figure 2.7: Positive-ion MALDI-TOF-MS/MS of MGDG (34:7) DGDG (36:9) DGDG(36:8)
and TAG (50:2)

lipids, typically in the form of TAGs as storage products for carbon and energy.[52][53]

Some TAG lipids in S. capricornutum were observed to increase after exposure to atrazine

at the concentration of 1 mg/L (Figure 2.11).

Volcano scatter plots were constructed to further characterize lipid profile changes,

which chart significance versus fold-change of a sizable data set (Figure 2.12 and Figure

2.13.). The effect of norflurazon (log2(FC(norflurazon/control)) ) is characterized by a

significant increase of TAG lipids and a decrease in several DGDG lipids. A significant

change threshold of P=0.05 and FC >2 were used to compartmentalize these lipids into
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Figure 2.8: A list of m/z value and assignment of the peaks detected in the positive ion
MALDI-TOF-MS. Asterisks indicate confirmation of the lipid assignment by MS/MS.Peaks
are identified by literature and MS/MS
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Figure 2.9: Pie charts of lipid species and identified lipids in S. capricornutum detected by
MALDI-MS.

corners of the volcano plot to indicate a decrease or increase in lipid abundance. An increase

in TAG in response to norflurazon can be seen, which is likely a compensatory effect of

DGDG decrease and TAG accumulation during the stress conditions, a common phenotypic

response in many types of algae.[54] A similar change in TAG was also observed in C.

reinhardtii, where TAG lipids accumulated after atrazine introduction.[8] Interestingly, S.

capricornutum is significantly more sensitive to norflurazon while C. reinhardtii seems to

be more susceptible to atrazine. This indicates that even between similar algae species

substantial differences in reaction to herbicides can result. From Figure 2.12 (and Figure

2.13), TAG(52:3) and MGDG(38:10) have a significant increase at 0.1 mg/L norflurazon

and atrazine, while MGDG(30:1) and MGDG (38:10) have a marked surge at 0.05 mg/L

norflurazon and atrazine. MGDG (38:10) is the only lipid that was found to be sensitive to

both herbicides at both concentrations. As a result, it may be utilized as a chemical marker

to characterize algae’s response to the herbicides. DGDG (34:2), on the contrary, shows a

53



Figure 2.10: Algae lipid profiles showing response to herbicides norflurazon, atrazine, and
clomazone compared to the control lipid profile.

dramatic decrease at both concentrations of norflurazon, and could be used as a marker to

monitor the specific response to norflurazon.

Additional analysis was conducted for the norflurazon study. The bar graph in

Figure 2.14 shows lipid species’ distribution at concentrations of 0.05 and 0.1 mg/L of the

herbicide. All DGDG lipid species decreased but some of the MGDG lipids increased at

the higher concentration. The decrease in DGDG and an increase in MGDG suggest that

the stress induced by norflurazon has caused a breakdown of DGDG, converting to its lyso

forms like MGDG. This is supported by similar observation in others’ work.[55][56] The
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Figure 2.11: Lipidomic response to atrazine. Bars are mean values and SEM 95% is repre-
sented by the error bars.

Figure 2.12: Volcano plots of statistical significant lipid variation for herbicide treatment
versus control. Data reveals significant changes in the concentration of lipids after 96 h in
norflurazon (0.1 mg/L), atrazine (0.1 mg/L), and clomazone (0.1 mg/L)

result can be provisionally considered as the effect of the herbicide on the chloroplastic

desaturase pathway.[46][49] However, it is possible that this effect is not a result of direct

action of herbicide on the desaturase located in the envelope, but rather indirectly on the
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Figure 2.13: Volcano plot of lipid in S. capricornutum. Statistical analysis of variation in the
data reveals significant changes in concentration of lipids after 96 hours in (a) norflurazon
(0.05 mg/l), (b) atrazine (0.05 mg/l), (c) clomazone (0.05 mg/l).

carotenoid biosynthetic pathway. A similar trend for DGDG was observed in response to

atrazine’s inhibition of plastoquinone binding in PSII (Figure 2.11), causing the disruptions

of the lipid supported photosystem complex.

Both norflurazon and clomazone are inhibitors of pigment synthesis; however, their

effects on S. capricornutum were quite different. Clomazone was found to have little effect

on S. capricornutum, even at a high concentration (Figure 2.3 and 2.10). Apparently, it

inhibits the synthesis of carotenoids in certain types of plants but did not significantly

impact algae growth or lipid content. It has been speculated that clomazone needs to be

activated by a plant-bioactivation pathway to effectively inhibit photosynthetic organisms,

and this is not a valid pathway in algae.[57] Similar effect was observed in C. reinhardtii,

further suggesting the necessity of plant bioactivation for clomazone inhibition.

To better understand the individual effect of herbicide on S. capricornutum, we

run in-depth data analysis, in particular partial least squares discriminate analysis (PLS-

DA), to separate the herbicide groups into diacritical phenotypic clusters (Figure 2.15). No

differentiation between clomazone treatment and the control could be identified; as such,
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Figure 2.14: Lipidomic response to norflurazon. Bars are mean values, and SEM 95% is
represented by the error bars.

clomazone is consistent with control cases in the PLS-DA data. Minimal overlap between

atrazine and other treatment cases can be seen. Despite this, Figure 2.15 indicates that

lipid profiles resulting from atrazine and norflurazon herbicide treatment can be clearly dif-

ferentiated from clomazone/control. This further supports the conclusion that clomazone

requires plant bioactivation for photosystem inhibition effects. This also demonstrates that

lipid clusters can be used to facilitate herbicide classification and may be helpful for the pre-

diction or identification of herbicide contamination in polluted waterways and watersheds.
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Figure 2.15: PLS-DA separating atrazine, clomazone, and norflurazon treatment cases on
the basis of associated lipid profiles. PLS-DA maximizes the covariance between X (data)
and Y (group) and is often used in the analysis of large biological data sets. The variance
displayed in the plot above is the explained variance for X. A pronounced separation is
revealed between the three groups of data. Ellipses indicate 95% confidence fitting.

Further data analysis was performed with a supervised machine learning (ML).

ML models were trained and tested to classify the chemical treatment of algae on the basis

of resulting lipid profiles. To test the feasibility of ML models to our system, we selected

and utilized the caret package[34][35] within R, which contains 238 available models. We

then screened these models and assessed if they were compatible with our dataset, which

contains mass peaks and associated intensities. In the end, a total of 69 models were found

fit. We then split the data 80:20 into training-testing sets and trained each model five times

with a random selection of the data and 10-fold cross validation. The accuracies from the
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testing sets were averaged and utilized to identify 10 algorithms that showed the greatest

promise for accurate identification of herbicide treatment effects. These algorithms were

then trained and tested 100 times to identify the consistency of model predictions (Figure

2.16).

Figure 2.16: List of the 10 machine learning methods that were chosen based on their
accuracy, with average accuracy and standard deviation of repeated model testing results.

From this process, we found that three algorithms, flexible discriminant analysis

(FDA), support-vector machines (SVMs), and logistic regression models, yielded the high-

est accuracy. In particular, the model of svmLinear2[58] demonstrated an accuracy of 85
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6% across the 100 training and prediction sets. Figure 2.17 shows the ROC curves for

svmLinear2 and a representative confusion matrix. Multiclass ROC curves were calculated

and visualized with R package multiROC[59]. The area under the ROC curve represents

the diagnostic success of the model for the indicated treatment class. This can be seen

with clomazone as the curve has significantly less area than other treatment cases, illus-

trating the compromised ability to consistently differentiate clomazone treatment. This is

further demonstrated in the accompanying confusion matrix (Figure 2.17b) that shows that

clomazone and the control have ambiguity in identification while atrazine and norflurazon

treatments are identified correctly. Clearly these machine learning models classify herbicide

treatment cases using MS-based lipid profiles, and model testing produces consistent and

accurate results. What is even more exciting is that the machine learning models could dif-

ferentiate controls and clomazone treatment cases, which could not be achieved with other

statistical methods. It pulls out minute differences in lipid profile caused by clomazone

treatment that were not previously identified.

Additional investigation was carried out to identify lipid peak variables that are

most important to classification (Figure 2.18) and compare them against those from the

volcano plots. For norflurazon, TAG and DGDG lipids found to be significantly increased

or decreased in volcano plots were also among the top 20 most important variables for

classification, further confirming our findings about these lipid species. For clomazone,

DGDG 34:6 and 36:6 appeared to have a significantly large role in the classification of

clomazone treated cases, while TAG 54:2 (chlorophyll a) was observed to play a much

greater role in the classification of the control cases against clomazone. The result suggests
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Figure 2.17: Representative results of svmLinear2 model training and predictions where
most misclassifications are isolated to control and clomazone treatment cases as can be
seen from the ROC curve of clomazone and confusion matrix results. (a) Multiclass ROC
curves of svmLinear2 for each treatment class (calculated via R package multiROC). Macro
and micro curves are methods for converting the multi-class classification into a traditional
binary classification used in ROC curves. Macro is achieved by averaging all groups and
linear interpolation, while micro stacks all groups. (b) Confusion matrix of the model
classification results.

that these lipids may be heavily implicated in some ways by clomazone, which imposes very

low toxicity to S. capricornutum, compared to atrazine and norflurazon.
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2.4 Conclusion

In conclusion, we report the use of a direct, label-free analytical platform to identify

lipids and classify lipid profiling directly on intact algae cells with gold-microchip enhanced

MALDI-TOF mass spectrometry. We have demonstrated that the platform is capable of

characterizing differences in lipidomic response to various herbicides, and we have identified

some unique effects of herbicides on lipid profiling between algal species. In addition,

machine learning is combined with MALDI-MS lipid analysis to classify different treatment

groups using diverse models that exhibit high accuracy. A chemical marker of MGDG

(38:10) was discovered that could be potentially used for monitoring the response of the

cells to the exposure of atrazine and norflurazon. A lipid library for S. capricornutum

has been constructed for this less studied alga, which contains 63 identified lipids. The

study and monitoring of several lipid families, including MGDG, DGDG and TAG, indicate

that lipid conversion occurs under herbicide induced stress conditions, which leads to TAG

accumulation and DGDG depletion. Aside from algae study, we believe that this method can

find broad applications in characterizing other types of cells and their lipid mass fingerprint

for global monitoring of environmentally significant molecules.
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Figure 2.18: The 20 most important variables for treatment classification of algae samples
when using the svmLinear2 model.
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Chapter 3

Lipidomic Analysis of Intact

Bacterial Cells Exposed to

Antibiotic Using MALDI-MS and

Gold Micro-chip

3.1 Introduction

Lipids are essential metabolites that play important roles in cells and can be used

to check the metabolic status of cells directly. Their status can change in repose to cellular

environment alteration.

Over the past decade, there has been a growing interest in developing analyti-

cal methods for lipid analysis that look at bacterial taxonomy, membrane structure, growth
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changes, metabolic processes, and changes under normal or stressed growth conditions. [1][2]

There have been big steps forward in making high-throughput analytical techniques that

can identify lipid profiles from complex biological targets and study antibiotic resistance

using mass spectrometry. [3][4][5][6] 3-6However, classic lipid analysis techniques (e.g., GC

and LC) include long-term extraction, pre-fractionation followed by chromatographic sepa-

ration and mass spectrometry identification,[7] which require high sample amounts together

with time-consuming sample pre-treatments and lead to unavoidable loss of sample. There-

fore, among mass spectrometry techniques, matrix-assisted laser desorption/ionization mass

spectrometry (MALDI-MS) shows a considerable advantage in lipid analysis because of its

fast, convenient and straightforward performance.[8] In addition, it has demonstrated its

capability to provide helpful information for identifying and differentiating microorganisms

due to its speed and sensitivity which allow rapid analysis with minimal sample preparation.

[9][10][11]

Mass spectrometry-based lipidomics has been increasingly popular in the past

decade. While most lipidomics work is focused on mammalian and other eukaryotic sys-

tems, there is also a growing interest in the exploration of bacterial lipidomics. [12] Lipids

in bacteria can be very different from lipids in eukaryotic cells. Still, they are both impor-

tant for keeping the structure of bacteria intact and protecting them from the surrounding

environment. As an essential part of cells, lipids participate in the energy storage process

and maintain structural integrity.[13] Additionally, a lot of studies show that many dis-

eases are accompanied by changes in the lipid composition of cells and tissues.[14][15][16]

Changes in the lipid profiles can serve as markers for cell regulation processes.[17] There
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is evidence suggesting that stress condition (e.g. antibiotic treatment) triggers gene ex-

pression changes,[18] cell mutations,[19] which further cause morphological changes in the

membrane correlated with lipid composition. The composition of lipids in the membrane

controls the ability of the cell to withstand or adjust to external factors such as temperature

and pH, regulate permeability and active transport, and influence the spatial distribution

of proteins throughout the membrane.[20][21]

Bacterial resistance to antibiotics has been a serious issue over the last decades

since the number of strains resistant to multiple types of antibiotics has increased each

year and spread worldwide. Overcoming this challenge requires developing new modified

antimicrobial therapeutics and, more importantly, a better understanding of the cellular

response. Colistin is a polymyxin antibiotic with a narrow antibacterial spectrum against

Gram-negative bacteria such as Pseudomonas aeruginosa, Acinetobacter baumannii, Kleb-

siella spp., Escherichia coli, and other Enterobacteriaceae.citefalagas2010resistance Previous

studies show that for some multidrug-resistant Gram-negative bacteria, in particular, Pseu-

domonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, polymyxins are

seriously considered as last-resort antibiotics.[22][23][24][25] The initial target of colistin is

the lipopolysaccharide (LPS) component of the outer membrane of Gram-negative bacteria.

Through an electrostatic interaction between positively charged α, γ-dianimobutyric acid

(Dab) residues of colistin and negatively charged phosphate groups of lipid A, a key compo-

nent of the LPS, divalent cations calcium (Ca2+) and magnesium (Mg2+), which normally

stabilize the LPS, are displaced from the negatively charged phosphate groups of membrane

lipid. Therefore, LPS is destabilized, increasing the permeability of the bacterial membrane.
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This leads to leakage of intracellular contents and eventually causes cell death.[26] It should

be emphasized here that colistin’s mode of action based on membrane lysis death is the

most documented explanation, but its ultimate mechanism of action is still unclear.[27][28]

Therefore, a study monitoring the changes of lipids in microorganisms as a response to

colistin exposures at the molecular level would help rationalize the mechanism behind the

colistin-mediated antimicrobial effect.

In this study, we performed MALDI-TOF-MS based on untargeted lipidomics to

improve our understanding of the mechanism of action of colistin. We designed to gain

insight into alterations in lipids associated with colistin treatment in intact E.coli. A

high throughput lable free method of direct lipid analysis by matrix-assisted laser des-

orption/ionization (MALDI) mass spectrometry (MS) in intact membranes, without prior

extraction/separation steps, is described. Multiple metabolic analysis approaches were inte-

grated to analyze the lipid profiling response to antibiotic treatment. We adopted MALDI-

MS coupled with gold micro-chips, which enable rapid identification of lipids and profiling

phospholipid metabolism in intact cells. Our results showed differences in the spectral pat-

tern of lipids when bacteria were exposed to colistin, suggesting that E.coli responds to

colistin by changing the expression of specific classes of lipids.

3.2 Experimental Section

3.2.1 Materials

Super 2,5 - dihydroxybenzoic acid (sDHB), acetonitrile (ACN), colistin sulfate

salt (CAS 264-72-8), LB Broth (Miller) medium were purchased from Sigma-Aldrich. BK7
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glass microscope slides came from Fisher Scientific. High-purity water (>18 MΩ cm–1)

was obtained from a Barnstead E-Pure water purification system. Matrix solutions (sDHB)

were prepared in acetonitrile and water (2:1,v/v) at a concentration of 10 mg/ml. The

culture medium was autoclaved at 121℃ for 30 minutes.

3.2.2 Fabrication of Gold µchip

The gold µchip array were fabricated using the method which we have reported

before in the Cleanroom Facility at UCR[29] Briefly, gold micro-chips were fabricated by a

photolithographic method. The photoresist was spun-coated onto glass slides which were

cleaned with Piranha solution, followed by baked at 110 °C for 1 min. The array was

patterned into the photoresist by a mask aligner and UV-light. After another baking step,

the micro-chips were cured using UV-flood light and developed with a developing solution

(AZ400 : H2O = 1 : 400 ). Next, e-beam deposition was used to deposit different thicknesses

of Cr/Au onto the arrays. The photoresist was removed by acetone. Finally, there is a

pristine 50 nm gold well array onto the surface.

3.2.3 Bacterial Strain and Culture Conditions

E.coli ATCC 25922 was purchased from American Type Culture Collection (ATCC,

United Stated). For experimental purposes, the microorganism was grown overnight in LB

Broth (Miller) growth medium in a 37℃ shaker at 220 rpms to early stationary phase,

harvested by centrifugation, and resuspended with medium (106 cells/mL). 200 µl/well of

resuspension was added to a 96-well plate as a control group. The colistin used in the stud-

ies was diluted from 256 µg/mL to 0.25 µg/mL in a double dilution. After 18h incubation,
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cultures in the control and antibiotic treatment groups were harvested by centrifugation at

8000 rpm for 10 minutes, washed three times with deionized water, and finally resuspended

in deionized water at ≈ 109 cells/ml. The cell density was evaluated by measuring the

turbidity of suspension in an Agilent spectrophotometer (Cary 60 UV-Vis). The standard

optical density (OD) value at 600nm of ≈1.7 (109 cells/ml) for E.coli was selected and used

for MALDI-MS acquisition.

3.2.4 Minimum Inhibitory Concentration (MIC) Microbiological Assay

MICs were performed according to the Clinical and Laboratory Standards Institute

(CLSI) guidelines. MICs were determined in three replicates on separate days using broth

microdilution method in LB medium in 96-well plates. Plates were inoculated with 100

µL of bacterial suspension prepared in LB medium (containing 106 cells/ mL) and 100

µL of LB containing increasing concentrations of colistin (0.25–256 µg/mL) in each well.

The MICs were defined as the lowest concentration at which visible growth was inhibited

following 18 h incubation at 37 °C. Cell viability was determined by sampling wells at

colistin concentrations higher than the MIC.

3.2.5 MALDI-TOF-MS Preparation and Acquisition

1µl of the sample was added to each well of the gold micro-chip, covered with 1µl

of sDHB matrix. Experiments were performed using a AB-Sciex 5800 time-of-flight mass

spectrometer equipped with a nitrogen UV laser (337nm wavelength). Lipid profiles of E.

coli were acquired in negative ion mode with a laser fluence of 5900 au on the reflectron

detector.
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3.2.6 Data Processing and Statistical Analysis

The raw data was acquired using TOF/TOF Series Explorer software version 4.1.0

(AB Sciex), and raw data were converted to the .mzXML files using conversion software

T2D converter. The mzXML data were then exported as a .csv file by the MALDIquant

package for further statistical analysis. MetaboAnalyst 5.0 was used for univariate and

multivariate statistical analysis. For univariate analysis, the statistical significance of feature

was determined between the control and colistin treatment groups using a t-test and fold

change. The p-value of 0.05 and fold change > 2 were used as criteria for significant feature

selection. For multivariate analysis, partial least squares discriminant analysis (PLS-DA)

was used as a supervised method to find significant variables with discriminative power.

Lipids were assigned from the LIPIDMAPS[30] database and literature. [31][32][33][34][35]

3.3 Results and Discussion

According to the antibiotic dose-response curve (Figure.3.1), MIC was determined

to be 2 µg/ml, consistent with the reported concentration required to kill susceptibility

bacteria.[36] 37 Then EC50 was determined to be 1µg/ml. After 18h incubation, all the

data were collected from E.coli treated with and without 1µg/ml colistin, followed used

for lipid analysis. Typical mass spectra of the lipid profile from intact E.coli are shown in

Figure 3.2. E.coli accumulated three major phospholipids in the membrane. Its predomi-

nant lipid is zwitterionic phosphatidylethanolamine (PE) (about 75% of membrane ),and

additionally, it forms the anionic lipids phosphatidylglycerol (PG, about 20%) and cardi-

olipin (CL).[13] A drawback of MALDI MS analysis in positive ion mode is represented
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by ionization suppression effects exerted by phosphatidylcholines, which makes a difficult

study of complex lipid mixtures. Such suppression has limitations when analyzing whole

cell bacteria since the dominant components in the membrane are phospholipids (PLs),

and the two major phospholipids, PE and PG, cannot easily be ionized in positive mode.

Therefore, we selected to collect the mass spectra in the negative ion mode to reduce such

suppression effects. As is shown in Figure. 3.2, lipid-related differentiation between the

control group and antibiotic treatment group can be observed from MALDI-TOF-MS. Our

area of interest in the spectra is mainly between 600-2000 m/z since there are interference

peaks from the matrix in the front of the area of the spectra (< m/z 600). After treatment,

the two groups can be easily distinguished by a visual inspection of the spectra. Inset in

Figure. 3.2 shows expanded regions of the spectra from m/z 600 to 1300, where more details

of difference can be found.

Figure 3.1: Colistin dose-response curve
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Figure 3.2: MALDI-TOF MS averaged spectra in negative ion mode for lipid profile of
intact E.coli with and without antibiotic treatment.

Lipid response resulting from the exposure to colistin was studied. All the data

were collected from the bacterial sample spotted on our gold microchips, demonstrating a

high throughput, label-free, and enhanced MALDI ionization microarray. The bar graph

shows the putatively identified lipid distribution in intact E.coli detected by MALDI-MS on

our gold micro-chip (Figure. 3.3).In negative mode, 68 lipids were annotated, belonging to

four lipid classes: 28 phosphatidylethanolamines (PEs), 26 phosphatidylglycerols (PGs), 11
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phosphatidic acids (PAs), and 3 phosphatidylserines (PSs). To compare the performance of

our lipid analysis platform for intact bacteria with the traditional method for lysis cells, we

also conducted experiments on lipid extracts on HPLC-MS (Figure. 3.1). A few more lipids,

95 lipid peaks, were found in negative mode, including PE, PG, PS, PA, and CL, since the

sample is lipid extracts with higher concentration. Inspection of Figure. 3.3 shows that

following an 18 h exposure to colistin, E.coli demonstrates a lipid response to the presence

of an antibiotic, resulting in an increase in the number of lipids that are down-regulated

compared to those from the control culture. PE has the most extensive alteration among

each lipid class, either upregulation or downregulation significantly. A significantly higher

quantity of PE(30:2), PE(31:1), PE(32:6), PE(32:5), and PE(32:1) with an antibiotic con-

centration decrease, while only PE (32:4) increases significantly. PE is a principal phospho-

lipid in bacterial membranes. It can be synthesized either via the Pss ( phosphatidylserine

synthase ) / Psd (phosphatidylserine decarboxylase) pathway[37] or via CL/PE synthase

(cardiolipin/ phosphatidylethanolamine synthase)[38]. In the first pathway, Pss condenses

serine with CDP-DAG ( cytidine diphosphate-diacylglycerol), forming of the anionic lipid

PS. Psd then decarboxylates PS to form the zwitterionic lipid PE. Ethanolamine is used as

a substrate catalyzed by CL/PE synthase in the second pathway to form PE. One of the

main roles of PE in bacterial membranes is to spread out the negative charge caused by

anionic membrane phospholipids. In E.coli, it plays a role in supporting active transport

by the lactose permease and is involved in other transport systems as well. Besides, it is

reported to serve as a ‘chaperone’ in the assembly of lactose permease and other membrane

proteins to guide the proteins’ folding path and aid in the transition from the cytoplasmic
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to the membrane environment. When PE is absent, the transport proteins may have an

incorrect tertiary structure and do not function correctly.[39]Moreover, PE enables bacterial

multidrug transport to work properly and allows the formation of intermediates required

for the transporters to open and close properly.[40] As it is shown in Figure. 3.3, PE sig-

nificantly decreased concomitantly with the decrease of most of PG, PA, and PS. Among

annotated PGs, PG(29:2), PG(29:1), and PG(30:2) have slight increases after exposure to

the antibiotic compared with other PGs. Aside from being an important membrane con-

stituent, PG is an essential intermediate in the biosynthesis of many other lipids, especially

cardiolipin. It is also important for the optimal functioning of the bacterial machinery and

plays a role in protein folding and binding.[41] In E.coli, PG is synthesized by a system of

enzymes. Phosphatidylglycerolphosphate synthase (PgsA) condenses glycerol-3-phosphate

(G3P) with CDG-DAG leading to the formation of PGP, which in turn is dephosphorylated

to PG by three PGP phosphatases (PgpA, PgpB, and PgpC).[42] PG is a direct precursor of

CL, whose synthesis is mediated by three CL synthase genes in E.coli. There is conflicting

evidence as to whether E.coli absolutely needs PG in its membrane. Studies on mutants

lacking PG have shown that its absence can lead to defects in DNA replication and a lack

of necessary modifications to the major cellular lipoproteins or proteolipids, which leads

to membrane welding and, eventually, cell death. However, some other studies on similar

experiments found that PG and CL are dispensable and can be replaced by PE and an-

ionic phospholipids such as phosphatidic acid.[41] PA is the precursor for the biosynthesis

of many other lipids. In addition to its role in lipid biosynthesis, PA has been reported to

act as a signaling molecule that modulates several aspects of cell biology, including mem-

79



brane transport, vesicular trafficking, enzyme activity, as well as membrane structure and

dynamics.[43]They are also activators of lipid lipid-gated ion channels.[44] In E.coli, forma-

tion of PA occurs via the Gro3P (glycerol 3-phosphate) pathway, the first step of acylation

catalyzed by Gro3P acyltransferase (Gro3P AT) leads to the formation of 1-acylGro3P

which is further acylated to PA by 1-acylGro3P acyltransferase(1-acyl-Gro3P AT).[45] In

Figure. 2, all annotated PSs decrease after being exposed to the antibiotic. PS is a key

intermediate in the synthesis of phospholipids in E.coli since it is converted to PE, the

dominant lipid in the membrane of E.coli. It is formed in E.coli through a displacement of

cytidine monophosphate, which is formed from CDP-diacylglycerol by PS synthase, through

a nucleophilic attack by the hydroxyl functional group of serine and eventually becomes PE

by the enzyme PS decarboxylase. [46]

Statistical analysis of variation in the data indicates significant changes in lipid

concentration after exposure to 0.1 µg/ml colistin (Figure 3.4). The volcano plot shows log

2 of the fold change on the x-axis and log10 of the p-value on the y-axis (Figure 3.4a). A

significant change threshold of P = 0.05 and FC > 2 was used to compartmentalize lipids into

the upper left and right corners of the volcano plot. Significantly down (green) and up (red)

regulated lipids were shown on the top. As shown in Figure 3.4a, compared to the untreated

control, E.coli treated with colistin (1µg/ml) significantly reduced PG(30:0), PA(30:1), PA

(30:0), PE (30:2), PE (31;1), and PE (32:1), while significantly increase PA (36:3) and PE

(32:4). Box-and-whisker plots show the lipid content level of the top four selected lipids

with significant differences between the non-treatment and the treatment groups. All of the
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Figure 3.3: Lipid distribution in Intact E.coli with and without antibiotic treatment detected
by MALDI-MS on Gold-µChip.Bars are mean values, and SEM 95% is represented by the
error bars.

top four selected lipids that change dramatically, PG (30:0), PE (30:2), PA (30:1), and PA

(30:0), show a decrease after treatment (Figure 3.4b). Figure 3.4c. shows the specific fold

change of each lipid, which has significant down or up regulation, e.g. PE(30:2) decreased

to 0.12 fold, and PA(36:3) increased to 2.48 folds. Phospholipids are critical components

of bacterial membranes, and are responsible for maintaining membrane integrity and the

selective permeability of the outer membrane. [47] In addition, they contribute to cationic
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peptide resistance, protect bacteria from osmotic stress, and regulate flagellum-mediated

motility.[48]

Figure 3.4: Content level change of lipid. a. volcano plot of significant change of lipid
content compared to control group. Important features selected by volcano plot with fold
change threshold (x) 2 and t-tests threshold (y) 0.05. The red circles represent features
above the threshold. Note both fold changes and p values are log transformed. The further
its position away from (0,0), the more significant the feature is. b. Box-whisker plots of
the top 4 putatively identified lipids that were distinguished between the untreated control
group and colistin treated group. c. Fold change for each lipid which has significant changes.

In addition, correlation analysis was conducted, which was used to visualize the

overall correlations between different features (Figure 3.5). We look for features showing

similarities in their intensity or concentration changes to a feature of interest and deter-

mine if certain features show particular patterns under different conditions. It is directly

performed against the target feature to identify those peaks that are either positively or
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negatively correlated. In this figure, the red boxes represent variables with a positive re-

lationship, and the blue boxes represent variables with a negative relationship. Therefore,

it shows the changes in which lipids due to the colistin effect are more related to which in

others. The hierarchical clustering was also included to show that the features located in

the same cluster as the target feature are most similar in intensity or concentration changes.

We also performed a supervised statistical analysis to assess the major changes

in lipid analysis between the treatment group and the non-treatment group. As shown in

Figure 3.6a, lipid profiles differed in E.coli treated with 0.1µg/ml colistin relative to those

without treatment. The PLS-DA shows that the different groups were well-clustered, with

a specific lipid profile for each. Group membership (treated with and without colistin) is

illustrated by the 95% confidence ellipses calculated from PLS-DA scores. Top15 significant

feature peaks show the features which are identified in the PLS-DA analysis (Figure 3.6b).

Among the annotated lipids, PG (29:2) and PA (30:0) contribute most to the discrimination

of two clusters, which can be considered potential biomarkers for the colistin effect on lipids

in E.coli. According to correlation analysis (Figure 3.5), they are most correlated to PE

(31:0) and PE (32:6), respectively.

3.4 Conclusion

We developed a direct, label-free analysis platform to identify lipids directly on

intact organisims without any chemical treatment or purification, using a gold microchip

in combination with MALDI-TOF mass spectrometry. Our gold microarray platform has
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Figure 3.5: Correlation Heatmaps. Heatmap of Pearson correlation between lipids

been reported for lipid analysis of microalgae at a single-cell level. In this study, we further

applied it to the lipidomic analysis of E.coli, which is used as a model organism for pro-

caryotic organisms study. Compared to the HPLC-MS, MALDI-TOF-MS is much faster

and easier to handle without any sample pre-preparation. Based on the lipid detection
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Figure 3.6: Partial least squares-discriminant analysis(PLS-DA). PLS-DA score plot for
comparison of E.coli without treatment of colistin and E.coli with treatment of 0.1µg/ml
colistin shows the separation achieved according to the lipid profile. Colored circles represent
95% confidence intervals. Colored dots represent individual samples: 32.8% and 10.4%
are the scores of component 1 and component 2, respectively, in the PLS-DA analysis.
b. Important features identified by PLS-DA. The colored boxes on the right indicate the
relative intensity of the corresponding lipid in each group under study. VIP ( variable
importance in projection ) score is a weighted sum of squares of PLS-DA loadings taking
into account the amount of explained y-variation in each dimension.

platform we have built, we can also detect the different types of lipids, including 28 PEs,

26 PCs, 11 PAs, 3 PSs based on the MALDI-TOF-MS in the intact E.coli. On the other

hand, it is known that the main target for colistin is lipid A of the LPS in Gram-negative

bacteria, leading to disruption of the bacterial membrane and resulting in cellular death.

However, its ultimate mechanism of action is still unclear. Our results indicate that the

lipid expression of E.coli was significantly perturbed by colistin and can be distinguished

from those without exposure based on the lipid profiling. The lipidomic analysis would help
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rationalize the mechanism behind the colistin-mediated antimicrobial effect. PG (29:2) and

PA (30:0), the two most critical features of PLS-DA, may serve as potential biomarkers for

gram-negative bacterial response to colistin. Since the lipid components and content are

various in different bacteria strains, our Gold-µChip lipid analysis platform can be expected

to extend to classify and identify different species of bacteria.
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Chapter 4

Discrimination of Bacteria by

MALDI-MS at Single-Cell Level

based on Photosensitizer

Facilitated Metabolites Profiling

on Gold Microchip

4.1 Introduction

Biotyping by means of mass spectrometry (MS) has shown to be very advanta-

geous in several areas, including the food industry and clinical laboratories, overtaking

conventional microbiological techniques such as microscopy-based analysis and biochemical
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tests.[1] Previously, microbial identification and characterization were widely achieved by

physiological and biochemical tests, such as morphology assessment and analytical profile

index,[2] immune-assay such as enzyme-linked immunosorbent assay,[3] and genetic analysis

(DNA sequencing) using polymerase chain reaction[4] and pulsed-field gel electrophoresis.[5]

However, most of these laboratory techniques tend to be time-consuming, labor, and cost-

intensive, and reduce microbial identification and characterization accuracy. [6]

Advances in technology and the development of specialized facilities have driven

innovation, promoting a shift in techniques for identifying and characterizing microorgan-

isms in food. Metabolomics has proven to be a powerful tool in analyzing the chemical

diversity of biological systems, and its direct correlation with phenotypes allows for a more

sensitive response to subtle differences between species. It provides a holistic method for

identifying and comprehensively profiling metabolites that may be present in a system at a

specific time.[7][8][9] Different metabolic classes, including sugars, nucleotides, amino acids,

and lipids, are associated with the presence and population of pathogenic bacteria. This

technique has been established as a viable method for detecting pathogenic bacteria metabo-

lites, including particular biomarkers that might be used to construct quick identification

techniques.[10]

Mass spectrometry is often used for metabolomic analysis due to its good sensitiv-

ity and capacity to detect and quantify a large diversity of molecules in complex biological

samples.[11][12] It is often combined with other high-resolution separation techniques such

as LC-MS and GC-MS, but these approaches usually require substantial analytical run

times due to complex sample preparation, extraction and typical combination with chro-
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matographic separations.[13] Compared with the traditional method, MALDI-MS offers a

rapid turnaround time and relatively simple sample preparation and is a soft ionization

technique for accurate measurement of molecules with little or no fragmentation[14][15]

This is particularly beneficial for detecting large biomolecules that may be easily destroyed

during heating and fragmentation, such as lipids, peptides, and sugars, which are promi-

nent metabolites of bacteria. A critical application of MS-based metabolomics is biotying,

which is currently used to identify microbial from cultured microorganisms in clinics. This

is achieved by MS1 profiling of ribosomal proteins of bacterial colonies (2,000-15,000 m/z)

using MALDI-MS, then the results are searched in a library of MS patterns.[16][17] This

biotyping strategy has been applied to environmental microorganisms by data collection

in the lower m/z region (m/z 200-2000), where the metabolites are detected. This mass

range shows many specialized metabolites or peptides that enable the typing of individual

strains.[18][19] Then, multivariate data analysis techniques, such as principal component

analysis (PCA)[20][21] and partial least square-discriminant analysis (PLS-DA)[22][23] are

utilized for statistical analysis of processed data in order to identify their trends, similarities,

and differences in to arrive at a reliable data interpretation.

The MALDI-MS spectrum of a bacterial species gives a unique fingerprint, which

makes it possible to reliably identify bacteria at the genus and species levels.[24][25] Some

researchers have advocated 6 × 103 CFU/spot as the limit of detection,[26] but in practice,

1 × 105 CFU/spot is typically regarded as the limit.[27][28] However, the bacterial load that

potentially occurs in a sample is routinely amplified by culture, which is a time-consuming

process that takes up multiple hours and in some cases even several days. Considering the
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complexity of metabolites and the fact that they sometimes occur in trace concentrations.

There are significant challenges in the form of small cell sizes and volumes, and ultrarace

metabolite amounts per cell for the detection and quantification. Due to the ultrasmall sam-

ple volume, the low abundance of specific metabolites, and the poor ionization efficiencies,

metabolite detection, identification, and accurate quantification continue to be formidable

obstacles.

Figure 4.1: Workflow of bacterial metabolite profiling analysis based on MALDI-MS at
single cell level

In this study, we show that identification and discrimination of intact different

pathogenic bacteria can be achieved at a single cell level combined with our high throughput

metal fluorescence enhanced gold-microchip and machine learning algorithms(Figure 4.1).

Furthermore, cells can be localized in the wells through their fluorescence, which improves
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data acquisition effectiveness and simplifies data processing by avoiding unnecessary data

collection (Figure 4.2). It is not possible for traditional stainless steel MALDI plates and

is particularly useful for studying samples at the single cell level. Moreover, as far as we

know, this is the first time that photosensitizer (PS) and MS-based metabolites profiling

were combined for intact bacterial discrimination at a single-cell level. Methyl blue (MB)

is a cationic phenothiazinium dye and an effective photosensitizer with strong fluorence, an

emission peak at 686 nm, and the capacity to absorb light to produce singlet oxygen.[29][30]

A series of photo-oxidation/peroxidation reactions induced by singlet oxygen can cause

damage to lipid membranes through the breaking of lipid chains and then result in changes

in the structural characteristics of the lipids.[31][32][33] We use methyl blue as a fluorescence

marker and photosensitizer for facilitated data acquisition and discrimination. We have

recently demonstrated a lipidomic study of E.coli under the impact of antibiotics based on

our gold-microchip platform. In this work, we further apply this platform to analyze more

different bacterial species. Our study demonstrates that a restricted number of bacterial

species may be distinguished using single-cell MALDI-MS and machine learning methods

based on our bacterial analysis platform.

4.2 Experimental Section

4.2.1 Materials

Super 2,5 - dihydroxybenzoic acid (sDHB), acetonitrile (ACN), LB Broth (Miller)

medium, and Methylene blue (CAS 122965-43-9) were purchased from Sigma-Aldrich. BK7
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Figure 4.2: Scheme of gold microchip platform for bacterial analysis at single cell level

glass microscope slides came from Fisher Scientific. High-purity water (>18 MΩ cm–1)

was obtained from a Barnstead E-Pure water purification system. Matrix solutions (sDHB)

were prepared in acetonitrile and water (2:1,v/v) at a concentration of 10 mg/ml. LI-250

radiometer (Li-Cor Inc., Lincoln, NE, USA), lightbox

4.2.2 Fabrication of Gold µchip

The gold microchips array was fabricated in the Cleanroom Facility at UCR.[34]

Briefly, gold microchips were fabricated by a photo-lithographic method. The photoresist

was spun-coated onto glass slides and baked at 110 °C. A mask aligner and UV light pat-

terned the array into the photoresist. After another baking step, the µchips were cured

using UV-light and developed with a developing solution. Next, e-beam deposition was

used to deposit 2/200 nm of Cr/Au onto the arrays. Acetone was then used to remove

the photoresist, followed by deposition of 2/50 nm of Cr/Au onto the surface to produce a

pristine 50 nm gold well array.
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Figure 4.3: MALDI-TOF mass spectra of the metabolites profiling from different bacterial
species in negative mode.
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4.2.3 Bacterial Strains and Culture Condition

Escherichia coli ( E.coli ) ATCC 25922 and Escherichia coli ( E.coli ) BL 21,

Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028, and Vibrio

cholerae ATCC 39315 were purchased from American Type Culture Collection (ATCC,

United Stated). All culture media were prepared according to manufacturer instructions,

including autoclaving at 121 °C for 30 min to ensure sterility. First-generation bacterial

strains were received in the vial as freeze-dried strains and revived according to recom-

mended growth conditions from ATCC. For experimental purposes, all bacterial strains

were grown overnight in LB Broth (Miller) growth medium in a 37°C shaker at 220 rpms

to the early stationary phase. The turbidity of bacterial suspension was used to determine

the cell density in an Agilent spectrophotometer (Cary 60 UV-Vis). The optical density

(OD) value was obtained at 600 nm. The bacteria were harvested by centrifugation at

8000 rpm for 10 min and washed with deionized water three times. Finally, the harvested

bacteria were resuspended to the particular concentrations in deionized water and used for

MALDI-MS acquisition. The same concentration of E.coli and L.monocytogenes was mixed

to make the mixture sample.

4.2.4 Photosensitizer Treatment

Bacteria harvest was suspended(1×108) by methylene blue solution with a con-

centration of 20 µM. The sample was incubated in the dark for 1h under shaking in order

to promote the photosensitizer binding to the cells. 1 ml sample solution was added to each

well of the 6-well plates, underwent a 90 min period of irradiation (106 Mw/cm2) and stirred
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every 15 minutes. After illumination by white light, the sample was washed with deionized

water 3 times. 1 µL of sample solution was deposited on the MALDI plate covered with 1

µL of sDHB matrix. After drying, the bacteria sample was detected with the MALDI-TOF

MS.

4.2.5 Imaging Bacteria on Gold Microchip

The collected bacterial cells were resuspended to particular concentrations and

spotted on the wells of the gold microchip quickly and precisely with nanovolume (100 nL)

through an electrodeposition instrument (Nanoliter Cool Wave Liquid Systems). Bright-

field images and red fluorescence images of cells were obtained using an all-in-one inverted

Keyence BZ-X700 series microscope equipped with a camera unit and a Cy5 filter cube.

Individual images were assembled into their respective locations on the array by FIJI soft-

ware.

4.2.6 MALDI-TOF-MS Acquisition

MS experiments were conducted using an AB-Sciex 5800 time-of-flight mass spec-

trometer equipped with a nitrogen UV laser (337nm wavelength). Diverse bacterial strains,

including gram-positive and gram-negative strains, were analyzed using MALDI-TOF-MS.

1µl of the sample per well was added to the gold micro-chip, covered with 1µl of sDHB

matrix using a nanoelectronic deposition for data acquisition at single cell level. For bulk

measurement as a comparison, the bacteria sample was deposited by hand pipetting. Lipid

profiles of bacteria were acquired with a laser fluence of 5900 a.u. on the reflectron detector

in negative mode.
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4.2.7 Data Analysis

TOF/TOF Series Explorer software version 4.1.0 (AB Sciex) was used to acquire

MALDI-MS. MetaboAnalyst 5.0 was used for statistical analysis. For multivariate analysis,

partial least squares discriminant analysis (PLS-DA), as a supervised method, was used to

find important variables with discriminative power. Linear Discriminant Function Analysis

(LDA) was performed as a multivariate test for the determination of categorical variables

(different m/z values) to separate different bacteria samples.

4.3 Results and Discussion

Five bacterial species were analyzed using MALDI-TOF-MS, including E.coli 25922,

E.coli BL21, L.monocytogenes ATCC 19115, S.Typhimurium ATCC 14028, and V. cholerae

ATCC 39315. Each bacteria strain was analyzed from bulk measurement (≈ 1x109) to sin-

gle cell level (1000 CFU/spot). Typical mass spectra from the analyte (≈ 1x109) are shown

in Figure 4.3). Visual examination of these spectra reveals that each species has a dis-

tinct metabolites profiling in the m/z region 400–2000. The cell-wall molecules ionized in

this range will be a mixture of small peptides, teichoic acids, oligosaccharides, and lipids.

However, the exact identity of individual m/z values is not known. Despite this, we focus

more on the changes in the profile pattern, and the fingerprint patterns generated are re-

producible. Moreover, several peaks observed in this area are shared by multiple bacterial

species, albeit in varying relative abundances. In order to further test the sensitivity of our

bacteria analysis platform, we collected the spectra from a mixture sample of E.coli and

L.monocytogenes. As shown in Figure 4.4a. the spectra on the upper layer are merged
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from E.coli (green) and L.monocytogenes (orange), respectively, while the spectra on the

lower layer are collected from the mixture sample of E.coli and L.monocytogenes (red). The

results show that the spectra from the mixture sample contain the feature peaks from both

E.coli and L.monocytogenes as labeled in Figure 4.4a with different m/z ranges (600-1100

m/z and 1200-2500 m/z). This result demonstrates that our bacteria analysis platform is

sensitive enough to detect more complex samples.

Figure 4.4: Comparison of summed mass spectral data for a. single bacteria species and
mixture samples of E.coli and L. monocytogenes in different m/z ranges. Labled peaks
with different colors are the unique peaks that only present in the single bacctera species
respectively. E.coli in green and L. monocytogenes in orange b. E.coli and L. monocytogenes
treated with (green) and without (blue) light excited photosensitizer
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Conventionally, the analysis of MALDI-TOF mass spectra depends on a small

number of empirically associated characteristics, such as peak height and area under the

peak, to identify microbial species. While this is a viable method that works well at the

species level, there is plenty of unexplored information in these spectra. To fully lever-

age the information contained in MALDI-TOF mass spectra, researchers have implemented

machine learning methods to enhance species identification.[35][36][37] Machine learning al-

gorisms are able to recognize statistical relationships in data, taking into account nonlinear

and interaction effects between characteristics. Consequently, machine learning approaches

can unearth unique or undiscovered information hidden within MALDI-TOF mass spec-

tra. This data has been valuable for identifying and distinguishing species, particularly

those that are phylogenetically close and sublineages of species.[38][39][40] In this study,

Linear Discrimination Function Analysis (LDA) was performed as a multivariate test for

the determination of categorical variables (different m/z values) to separate pure E.coli,

pure L.monocytogenes, and the mixture of E.coli and L.monocytogenes (Figure 4.5). The

result shows that the cluster of the mixture sample was well separated from the cluster of

E.coli as well as the cluster of L.monocytogenes Furthermore, the cluster of mixture sample

is closer to the cluster of E.coli than the cluster of L.monocytogenes, because it contains

more feature peaks from E.coli than L.monocytogenes, which can be observed in Figure

4.4a. In addition, to further evaluate the possibility of metabolite profiling for bacterial

discrimination, we choose two bacteria strains as blind samples for testing. As shown in

Figure 4.5, the cluster of Blind sample (S) from S.Typhimurium was not grouped with any

of the other clusters, while the cluster of the blind sample (S) from L.monocytogenes was
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grouped with the other cluster of L.monocytogenes. It indicated that MS-based metabolite

profiling might be useful in predicting or identifying bacterial strains according to a reliable

database containing MS-based metabolite profiling without identifying biomarkers in each

species.

Figure 4.5: Linear discrimination analysis (LDA) for classification of metabolites profiling
of different bacteria strains. The x-axis represents the liner discrimination component 2,
and the y-axis represents the liner discrimination component 1 differences within the group.
Each dot represents a spectrum collected from 3 times experimental replication, and each
bacteria group is differently colored (red – Blind sample (L), yellow – Blind sample (S),
green – E.coli , blue – L.monocytogenes, and purple – mixture)
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Figure 4.6: PLS-DA plots of a. E. coli 25922 and E. coli BL21 treated without light excited
photosensitizer b. L. monocytogenes, S. typhimurium and V. cholerae treated without
light excited photosensitizer c. E. coli 25922 and E. coli BL21 treated with light excited
photosensitizer d. L. monocytogenes, S. typhimurium and V. cholerae treated with light
excited photosensitizer.
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This study aims to assess the capabilities of our platform for bacterial classifica-

tion at the single-cell level. Taking into account the challenges involved in extracting the

data from the sample because of the restricted number of bacterial cells present in each

well. We employed methylene blue as fluorescence dye[29] with an emission peak at 686 nm

(λex 665 nm) to facilitate the unambiguous location of bacterial cells within wells accord-

ing to the fluorescence images as shown in Figure 4.2. Our microarray plate with thin gold

film has been reported to show a considerably enhanced fluorescence signal due to nonra-

diative energy transfer and surface plasmon-coupled emission in our previous work.[41] It

makes the spatial identification of single cells in wells easier and works as a solution to the

widespread issue of signal loss in MALDI that is caused by off-target ionization. This step

also eliminated unwanted data acquisitions from wells that did not contain cells for analysis.

On the other hand, methylene blue is a cationic photosensitizer[42]. The PS is promoted

from the ground state to the excited state upon irradiation at a certain wavelength and

then interacts with the substrate by two distinct routes, types I and II.[43] Type I reaction

includes electron transfer from triplet state PS to an organic substrate, producing free rad-

icals. These free radicals interact with oxygen at the molecular level, producing reactive

oxygen species (ROS) such as superoxide, hydroxyl radicals, and hydrogen peroxide. In

Type II reactions, an energy transfer occurs between the excited PS and the ground-state

molecular oxygen, resulting in the production of singlet oxygen that may interact with a

vast number of molecules in the cell to form oxidized products. It has been reported that

MB can bind to bacteria both by type I and type II mechanisms, and consequently, both MB

radicals and singlet oxygen are formed.[44] In Figure 4.4b. , it shows the comparison of the
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averaged spectra that were collected from the samples, E.coli (gram-positive bacteria )and

L. monocytogenes (gram-negative bacteria ) as representatives, treated with and without

light-excited photosensitizer. The changes in their MS profile can be observed especially in

the range of 400-1000 m/z. This might be because in membrane bacteria systems, MB stim-

ulates the generation of singlet oxygen and radical species, which are anticipated to react

with double bonds and lipids of the bacteria walls, and due to its hydrophilic and lipophilic

properties, MB is thought to bind strongly to the walls of the bacterium. Research has

shown that bacteria exposed to ROS are thought to reorganize critical metabolic pathways,

and these regulations mainly concern carbohydrate, glutathione, energy, lipid, peptides,

and amino acid metabolisms. [45][46] In addition, we found that gram-positive bacteria are

more sensitive to MB since more feature peaks and alterations in their MS profiles were

observed after exposure to a light excited photosensitizer (Figure 4.4b), which is probably

due to the higher resistance that the wall of gram-negative bacteria displays to reactive

oxygen species (ROS) versus the gram-positive wall. [47]The teichoic acid residues of the

gram-positive bacterial cell wall contribute to the negative charge and consequent binding

sites for cationic molecules. Negatively charged LPS molecules in gram-negative bacterial

outer cell membranes also have a strong affinity for cations; however, gram-negative bac-

teria are less susceptible to MB due to the membrane barrier that prevents the uptake

of PS. Therefore, MB usually binds stronger to the walls of gram-positive bacteria than

Gram-negative bacteria. [44] Based on the MS profiles of each bacterial species (≈1 × 109

cells/ml) treated with and without a light excited photosensitizer. To better understand

the effect of photosensitizer on different bacterial metabolites profiling, we combined ma-
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chine learning algorism with MALDI-ms for bacterial discrimination. As is shown in the

partial least squares-discriminant analysis (PLS-DA) plots (Figure 4.6.), there is a small

overlap between the two E.coli subspecies (Figure 4.6a.) as well as in the different pathogen

bacteria species (Figure 4.6b.) before the light excited photosensitizer treatment due to

insufficient feature peaks presenting in their MS profiles. While as in indicated in Figure

4.6d., data points for each species form separate clusters, allowing species discrimination

after the light-excited photosensitizer treatment. This treatment leads to the formation of

reactive oxygen species (ROS), which are cytotoxic and capable of oxidizing many biological

molecules such as enzymes, proteins, lipids and nucleic acids,[48]which induce more feature

peaks in their MS profile and further facilitate the bacterial discrimination based on their

metabolites profiling even for the subspecies bacteria strains (Figure 4.6c.)

Considering the results from bulk measurement, we further evaluate different con-

centrations to confirm the lowest one at which we are still able to detect enough numbers

of feature peaks from each species for bacterial discrimination. Figure 4.7a shows the av-

erage spectra of E.coli samples with concentrations ranging from 100 to 100000 cells /well.

The insets are the fluorescence images of the numbers of bacterial cells in the wells corre-

sponding to each concentration. The spectra show that the signal from the matrix became

more dominant, and the signal from bacterial samples decreased as the concentrations of

the bacterial samples decreased, as labeled in a red box. Reducing the number of cells

analyzed by MALDI-MS in successive dilutions reduces the number of peaks generated.

There are some possible reasons why a lower cell density reduces the number of peaks.

For densely packed cells, radicals from the initial laser ionization may be involved in in-
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teractions that lead to the secondary ionization of nearby molecules, which might have a

role in boosting peaks. The concentration of molecules that such a secondary process may

ionize is effectively reduced when cells are diluted. Consequently, ionization by this method

is decreased in direct proportion to the cell packing density. Alternatively, lowering the

number of cells may merely reduce the sampling frequency of the original population. In

other words, increasing the number of cells evaluated in a single laser beam enhances the

likelihood of discovering cells with more distinct ionizable moieties. A third option is that

specific components, present in high concentrations and vast numbers of cells, dissipated or

used a significant amount of laser energy. On dilution, the quantity of these components

decreases, and a higher proportion of the laser energy is accessible to promote the ioniza-

tion of entities, which subsequently fragment, resulting in a spectrum with reduced peak

intensities.[49]

Even though it was still detectable in the bacterial sample with a concentration

of 100 cells/well, the data was poorly reproducible from this concentration. Therefore, we

selected a concentration of 1000 cells / well for the study. As cell numbers drop, it is

reasonable that only a tiny fraction remains in the path of the laser. Therefore, despite the

data collected from the sample of 1000 cells/well, it was considered to be at the single-cell

level. Figure 4.7b shows the MS profiles from different bacterial species ( 1000 cells/well )

treated with the light-excited photosensitizer. Due to the limited sample load, there were

a limited number of potential peaks of metabolites that could be detected compared with

the data from bulk measurements. However, the differences in their MS profiles are still

visible. In spite of the discrimination of pathogen, bacteria were not as well as it from bulk
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Figure 4.7: MALDI mass spectra of a. different concentrations of bacteria and correspond-
ing images of different numbers of cells /well on a gold chip. b. different bacterial species
treated with light-excited photosensitizer at single cell level.

measurements (Figure 4.8, Figure 4.6c and 4.6d) because the limited sample amount gives

a reduced number of peaks, data points from different bacteria species as well as subspecies

still can be grouped into different clusters ( Figure 4.8).
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Figure 4.8: Plot of PLS-DA data points for the two principle components using MS profile
data from different bacterial species at single cell level

4.4 Conclusion

For the first time, the use of MALDI-MS-based metabolites and cell localization

to study how intact bacteria from food-borne pathogens can be told apart at the single-cell

level is described. Using methylene blue as a photosensitizer and fluorescence marker for

cell discrimination and positioning, we applied the high-throughput MALDI-MS technique

to analyze metabolite profiling from whole bacteria, which are major food-borne pathogens

with significant implications for food safety and human health. Each species produces a

unique metabolite profile in the m/z range of 400–2000, allowing species discrimination with-

out any peak identification from bulk measurements to single-cell analysis. The MS profile

of the bacterial species from distinct clusters in PLS-DA is determined by the differences

between the MS profiles in each bacterial species. When combined with machine learning
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algorithms, unique metabolites profiling based on MALDI-TOF-MS obtained from intact

cells on our gold microchips without prior extraction or separation steps can be sufficient

to distinguish bacterial pathogens and other bacteria at the single cell level. In conclusion,

we believe that the potent combination of the whole organism fingerprinting method with

sophisticated informatics will provide easy and effective diagnostic and monitoring tools in

various fields, including medicine, environment, food, and biotechnology.
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Chapter 5

Plasmonic Al-chip Substrate for

Analysis of Lipid Metabolite

Profiling of COVID-19 Clinical

Nasopharyngeal Swabs

5.1 Introduction

The new coronavirus disease 2019 (COVID-19), caused by the severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) belonging to the β-genus of the coronavirus

family, has posed global public health and societal challenge without precedent.[1][2] This

reflects the difficulties of removing all disease reservoirs and the possibility for the virus to

generate new strains of concern, which might lead to vaccination escape. The SARS-CoV-2
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spike (S) protein, which is comprised of S1 and S2 subunits, is important for promoting the

virus’ entrance into host cells through the surface receptor angiotensin-converting enzyme

2 (ACE2). SARS-CoV-2 entrance into the target cell is facilitated by host protease trans-

membrane serine protease 2 (TMPRSS2).[3][4][5][6] Since lipids are the structural basis of

cellular and viral membranes, they play a crucial role in biology and the pathophysiology

of viral illness.[7] To produce lipids for their envelopes, viruses target lipid production and

signal modification in host cells.[8] The participation of lipids in membrane fusion, envel-

opment, and transformation is essential for viral replication. The viruses multiply within

the host cell; hence, they must traverse the host cell membrane for entry and exit.[7] Lipids

serve as direct and indirect viral receptors, fusion cofactors, and entrance cofactors, among

other functions, during a viral invasion.[8] In addition, lipids are a crucial component of

the innate and adaptive immune systems during infections.[9] A proteomics study based on

mass spectrometry (MS) demonstrated that disruption of lipid metabolism might increase

the course of COVID-19.[10][11] Lipids are a major component of the viral envelope and are

engaged in crucial replication cycle activities, including the creation of new virions, making

them an intriguing molecular target for diagnosing SARS-CoV-2 infection.[12][13]The ge-

netic material of viruses does not code for lipids, but during budding, these molecules are

taken away from the cell membranes of their hosts. It is known that the lipid content of

the viral envelope derived from the host is unique to the budding site[14] and quantitatively

distinct from that of the host membrane and other viruses. [15][16][17][18] Coronaviruses,

for instance, proliferate and get their envelope lipids from the membrane of the host en-

doplasmic reticulum -Golgi intermediate complex,[15]whereas the influenza virus acquires
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its lipids from the host apical plasma membrane. [19] Altering the total lipid content of

infected host cells, viral infections also influence host lipid metabolism to facilitate repro-

duction during infection. Yan et al. reported that HCoV-229E-infected human cells had

much higher levels of fatty acids and glycerophospholipids than healthy cells. [20] There-

fore, the dysregulation of very abundant glycerophospholipids in infected host cells and the

pathogen’s unique lipid composition constitute a prospective diagnostic target.

Currently, reverse transcription polymerase chain reaction (RT-PCR) and sero-

logical methods, such as enzyme-linked immunosorbent assay, are mostly utilized for the

identification of SARS-CoV-2 and its variations. RT-PCR, which offers great specificity

and sensitivity, is now the most well-known and commonly used technique for detecting

SARS-CoV-2.[21] However, this method may also have some disadvantages. For instance,

the quality of isolated viral RNA might considerably impact the detection sensitivity and

accuracy, necessitating the use of competent professionals for extraction. In addition, the

high viscosity and high concentration of proteins and other interfering components in the

two most often obtained samples, oral swabs, and sputum, provide additional challenges

to RNA extraction. [22]More significantly, this method’s false negative and false positive

outcomes are of concern. [23][24] In addition, the entire analysis usually takes several hours

and is done in laboratories with a higher biosafety level (BSL), which limits the use of this

method. The objective of serological methods is to identify viral antigens or antibodies.

The most obvious advantage of this technology is that goods of portable size are commer-

cially accessible elsewhere, allowing for speedy and on-site identification of anyone carrying

them. This method might serve as a supplement to RT-PCR, as the generated antibod-
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ies would persist in patients for an extended period, allowing for identifying of moderate

and asymptomatic infected individuals. However, this method’s sensitivity and specificity

are restricted. [25] In addition, it may take a few days after the beginning of symptoms

for antibodies to be produced, making this approach less useful for early-stage infection

identification.[26]

Figure 5.1: MALDI-MS of 4 mg/ml POPC obtained from plasmonic Al substrate (a.) and
traditional stainless steel MALDI plate (b.)

Along with the widely used and constantly improving RT-PCR and serological ap-

proaches, mass spectrometry (MS) could be an effective method for detecting SARS-CoV-2

because of its speed, sensitivity, specificity, and ability to give qualitative and quantitative

information regarding different analytes (such as nucleic acids, proteins, peptides, organic

molecules, and elements), which cannot be accomplished using RT-PCR and serological
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methods. Specifically, proteomics has been utilized extensively to explore several biological

pathways and significant illness biomarkers.[27] On the other hand, increasing attention has

been paid to the metabolites, volatile organic compounds, and lipid profiles of SARS-CoV-

2-infected patients since these may be suggestive of SARS-CoV-2 infection.[28][29] Addi-

tionally, the development of viral detection based on increasingly sophisticated instruments

has been made possible by the rapid advancement of mass spectrometer speed, sensitivity,

and resolution in recent years.

Figure 5.2: Sensitivity comparison between Al microarray and conventional stainless-steel
plate

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is

promising for detecting viruses.[30] The aluminum foil layer and nanostructures as sub-

strates have previously been demonstrated to be beneficial for MALDI-MS with high sensi-

tivity for the identification of proteins and peptides.[31][32][33][34] A study showed that

the alumina on Al particles and foils has the ability to extract multi-phosphopeptides
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selectively,[35] so Al may be used as a method for their enrichment before the quantita-

tive assessment. In addition, a desirable plasmonic feature of Al compared to Au and Ag

is its capacity to absorb a greater spectrum of incident photon wavelengths plasmonically.

While the plasmonic absorption of Au diminishes significantly at wavelengths below 500

nm, Al can absorb light deep into the UV region.[36] Due to the near-UV lasers com-

monly employed to ionize sample matrices for desorption, this is particularly significant for

MALDI-MS analysis. Our previous studies have revealed the influence of plasmonic Au on

MALDI- ionization,[37][38]; therefore, plasmonic Al substrates might be utilized to achieve

a comparable result. In this chapter, we report Al thin film as a new substrate for MALDI-

MS for the analysis of swab samples, demonstrate its use for rapid and direct lipid analysis,

and discuss its potential for COVID-19 screening. The development of this Al thin film for

SPR biosensing has previously been reported. [39] In this study, COVID-19 samples are

used to test the sensitivity of aluminum microarray chips for studying complicated clinical

samples. We investigated the lipid metabolite profiles of COVID-19 samples and compared

positive and negative samples. The results indicate that the aluminum chip is a promising

substrate for MALDI-MS.

5.2 Experimental Section

5.2.1 Materials and Reagents

Super 2,5 - dihydroxybenzoic acid (sDHB), trifluoroacetic acid (TFA), were pur-

chased from Sigma-Aldrich (St. Louis, MO). 1-Palmitoyl-2-oleoyl-glycero-3-phosphocholine

(POPC) was obtained as a powder from Avanti Polar Lipids (Alabaster, AL). Acetonitrile,
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methanal were obtained from Fisher Scientific (Pittsburgh, PA). Aluminum targets for elec-

tron beam physical vapor deposition (EBPVD) were obtained from Kurt J. Lesker (Jeffer-

son Hills, PA). BK-7 glass substrates for E-Beam deposition were purchased from Corning

(Painted Post, NY). High-purity water (>18 MΩ cm–1) was obtained from a Barnstead

E-Pure water purification system. Matrix solutions (sDHB) were prepared in acetonitrile

and water (2:1, v/v) at a concentration of 10 mg/ml. COVID-19 nasopharyngeal swabs (5

positive and 2 negative ) were purchased from iSpecimen Inc (Lexington, MA)

5.2.2 COVID-19 Nasopharyngeal Swabs

Preparation and processing of specimens were conducted in a biosafety level 2

(BSL-2) environment, and appropriate personal protective equipment (PPE) was worn by

the personnel during all tasks to be conducted, from sample handling to MALDI-MS test-

ing. The mixed swab specimens were suspended in ≈1mL of the iSpecimen company’s

proprietary collecting medium. Each sample was mixed with the ratio of 1:1 chloroform

and methanol for 20min to inactivate virus samples and then vortexed at the speed of 4000

rpm/min for 5min. The chloroform layer was collected and stored in a -80 freezer.

5.2.3 Fabrication of Aluminum Microarray Chip

BK-7 glass microscope slides were cleaned using boiling piranha solution (3:1

H2SO4 : 30%H2O2) for one hour. After cleaning, the slides were washed with ultrapure

water and ethanol, and dried with compressed air. All Al films were deposited using an elec-

tron beam physical vapor deposition (EBPVD) machine (Temescal, Berkeley, CA) in a Class

1000 cleanroom facility (UCR Center for Nanoscale Science and Engineering). The fabrica-

123



tion of the microarray substrates for MALDI-MS followed previously reported methods[40].

Briefly, hexamethyldisilazane (HMDS) and AZ5214E were spin-coated at 4000 RPM for 45

seconds on piranha-cleaned glass slides, followed by a one-minute bake at 110 °C. With a

photomask and the Karl-Suss MA-6 system, UV exposure was used to generate photopat-

terning, which was then followed by AZ400K development using standard protocols. 150

nm of Al was deposited using EBPVD, and then the wells were cleaned with acetone. To

create the plasmonically active layer in the wells, an additional deposition of 18 nm Al was

applied. The final array consisted of a 10 x 12 set of circular wells with a 600 µm diameter.

5.2.4 MALDI-MS Acquisition and Data Analysis

Experiments with MS were performed using an AB-Sciex 5800 time-of-flight mass

spectrometer fitted with a nitrogen UV laser (337nm wavelength). MALDI-TOF-MS was

used to detect COVID-19 positive and negative samples, which were confirmed via PCR

test. 1ul of sample per well was put into the aluminum microchip before being coated with

1µl of sDHB matrix for data capture. Lipid metabolite profiles were collected using a laser

fluence of 5900 a.u. on a reflectron detector in positive mode. A sample is defined as the

average of m/z values versus intensity (a.u.) obtained in a continuous linear or v-shaped

laser pattern during co-crystallization of the COVID-19 sample and matrix. 33 mass spectra

from 2 negative samples and 74 mass spectra from 5 positive samples were averaged and

normalized via mmass. Data were analyzed using Rstudio ( version 3.6.3) via MALDIquant

and ggplot package.
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Figure 5.3: Workflow of COVID-19 sample preparation for MALDI-MS analysis. Created
with BioRender.com

LC-MS lipidomics analysis was performed at the UC Riverside Metabolomics Core

Facility. The analysis was carried out using a Waters G2-XS quadrupole time-of-flight

mass spectrometer coupled to a Waters Acquity I-class UPLC system. Separations were

conducted using a Waters CSH C18 column (2.1 ×100 mm, 1.7 M). The mobile phase

was (A) acetonitrile: water (60:40) containing 10 mM ammonium formate and 0.1% formic

acid; (B) isopropanol:acetonitrile (90:10), containing 10mM ammonium formate and 0.1%

formic acid. The flow rate was 400 µl/min, and the column was held at 65°C. The injection

volume was 2 µl. The gradient was as follows: 0 min, 10% B; 1 min, 10% B; 3 min, 20% B;

5 min, 40% B; 16 min, 80% B; 18 min, 99% B; 20 min 99% B; 20.5 min, 10% B. The MS
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Figure 5.4: Comparison of sum mass spectral data for COVID -19 positive ( in red )
and negative samples( in blue ) with different mass ranges and corresponding potential
annotation. (a.) Mass range m/z 100-350 (b.) Mass range m/z 350-600 (c.) Mass range
m/z 600-850.

was operated in the positive ion mode (50–1600 m/z) with a 100 ms scan time. MS/MS

was acquired in the data dependent fashion. Source and desolvation temperatures were
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150 °C and 600 °C, respectively. Desolvation gas was set to 1100 l/h and cone gas to 150

l/h. All gases were nitrogen except the collision gas, which was argon. A quality control

sample, generated by pooling equal aliquots of each sample, was analyzed periodically to

monitor system stability and performance. Leucine enkephalin was infused and used for

mass correction. MS/MS data was analyzed via MSDIAL software.

5.3 Results and Discussion

Plasmonic nanomaterials have been widely investigated in biological and chemical

sensing applications due to their distinct surface plasmon properties[41][42] The aluminum

foil layer has previously been demonstrated to be an ideal disposable substrate for MALDI-

MS with high sensitivity for protein and peptide detection.[31] In our study, this Al thin

film microarray substrate has previously been reported to have higher sensitivity for SPR

imaging,[39] we further applied it to MALDI-MS for sensitivity evaluation and more com-

plex clinical sample analysis. As is shown in Figure 5.1, it demonstrated that plasmonic

absorption of aluminum by the UV laser (337 nm) utilized in MALDI-MS detection en-

hances the MS signals. Figure 5.2 shows the POPC calibration curve from a Al-chip and

a traditional stainless steel MALDI plate. When comparing the sensitivity of the Al-chip

to that of the traditional MALDI stainless steel plate, POPC is used as a standard. The

concentrations that are increasing are as follows: 0.05, 0.1, 0.5, 1, 2, and 4 mg/ml. In all of

the concentrations that were tested, the intensity of the signal coming from the Al-chip was

found to be greater than that coming from the traditional MALDI plate. Furthermore, the

signal could still be observed at 0.1 mg/ml, whereas it was hardly seen from the traditional
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plate at that concentration. It suggests that the Al-chip has a greater level of sensitivity

in addition to a lower threshold for detection compared to the conventional MALDI plate.

The mechanisms that the plasmonic nanomaterials are advantageous for plasmon-enhanced

laser desorption/ionization mass spectrometry were reported to be magnified absorption

cross section and hot carrier generation at the resonance wavelength[43][44] Particularly, a

larger absorption cross section produces a stronger photothermal effect, resulting in a more

effective energy transfer to the analytes., the additional energy induces a phase transition of

the analytes from the condensed phase to the gas phase, resulting in the production of ana-

lyte ions in the gas phase within the mass detector. The production of hot carriers can also

stimulate the photo-decomposition of metal ions and small metabolites complexes.[45][46]
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After investigating the sensitivity, we further applied this plasmonic Al thin film

chip to study more complex clinical samples by MALDI-MS (Figure 5.3). iSpecimen Com-

pany provided both positive and negative Covid-19 nasal swab samples in their proprietary

collection medium for this assay. After that, the samples were deactivated in a mixture

of methanol and chloroform at a ratio of 1:1 for twenty minutes, after which they were

vortexed and centrifuged at a speed of 4000 revolutions per minute for five minutes. For

the purposes of this investigation, the chloroform layer that was recovered following cen-

trifugation. After that, 1 ul of the sample was spotted onto each well of our Al-chip so

that MALDI-MS data could be collected. Positive ion mode was used for the collection

of MALDI-MS data.The mass spectra data that were obtained as a result are presented

in Figure 5.4. Peak values were determined based on the LIPID MAPS[47] online search

tools for lipid research, MS/MS, and literature[48][49][50]. Peak assignment and corre-

sponding adducts are summarized in Figure 5.5a., MS/MS was compared with the referral

database for further identification of metabolites (Figure 5.5b). In Figure 5.4, the graphic

includes labeling for a total of 51 potential annotations of metabolites. According to the

findings of our investigation, it is shown that there were distinctions between the positive

and negative test samples. As shown in Figure 5.4, a comparison of summed mass data

for test samples of each category depicts downregulated and upregulated metabolites in

COVID-19 infected samples. A lipidic profile can mirror a patient’s biological status where

internal and/or external perturbations activate molecular pathways involved in the immune

response and metabolism. Lipids are essential for viruses to cross the host cell membrane.

In addition, it is well know that infections caused by viruses modify lipid metabolism in a
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manner that is beneficial to the reproduction of the virus.[12] Studies on lipidomic profiles

have shown that the composition of lipids in infected cells is considerably altered by the

coronavirus.[20] Viruses use and alter lipid signaling and metabolism in order to facilitate

viral reproduction, since lipids are not only the primary component of membranes but also

play essential functions as intercellular signaling agents and energy sources. [51] Replica-

tion of enveloped viruses such as SARS-CoV-2, which enter cells by endocytosis and utilize

intracellular organelles to manufacture their many components, needs lipid resources.[52]

Therefore, investigating how SARS-COV-2 infection affects lipid metabolism and profile

might give information on the link between lipid profile and inflammatory processes during

COVID-19.

In our study, we focused on several classes of phospholipid species. Previous re-

search has revealed that these phospholipids have key roles in the formation and replication

of coronavirus virion,[20][53][54] in addition to their activities as components of the mem-

branes of host cellular organelles. The tentatively identified lipids included glycerophospho-

lipids, such as ceramides, lysolipids, and PE. The details about the changes in metabolite

expression due to the virus infection can be observed in the radar charts and bar graphs

(Figure 5.6 and 5.7). Radar charts illustrate the abundance of the metabolites. Some

metabolites, such as PC (37:10), CerP (42:5), and Cer(33:1), have been shown to be up-

regulated in COVID-19 positive samples, whereas others, such as PE (39:10), PA (21:2),

and PA (20:1), have been shown to be down-regulated in COVID-19 negative samples. The

distribution of the metabolites as well as the ratio of each metabolite between the COVID-

19 positive and negative samples are shown using bar graphs. As it is shown in Figure 5.7a,
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Figure 5.5: Peak characterization a. a list of m/z peak value, assignment and adducts de-
tected in the positive ion MALDI-MS. b. LC-MS/MS of experimental spectra (in blue)
and referral spectra (in red). Phosphatidyl Choline (PC), Phosphatidyl Ethanolamine
(PE), Phosphatidylserine (PS), Phosphatidic acid (PA), Lysophosphatidylinositol (LPI),
Lysophosphatidylethanolamine (LPE)

PA (22:2), PA (24:2), and Cer (36:1) have the most abundant with little difference between

positive and negative samples, whereas CerP (44:0) has the greatest differences between

positive samples and negative samples. Figure 5.7b indicates that Glycerol-3 phosphate,

PE (39:10), and SM (43:9) were only observed in COVID-19 positive samples, while CerP

(42:5) and PE (37:8) were only observed in COVID-19 negative samples. Other metabolomic

studies on COVID-19 disease states show general decreases in phospholipid and free fatty

acid abundance in COVID-19 positive patients’ blood plasma. [10] In addition, it was re-
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ported that glycerophospholipids were the most discriminant between healthy individuals

and COVID-19 patients, especially several LPCs, LPC-Os and PC-O which had a progres-

sive decrease in relation to the severity status and were considered a marker of severity for

their potential use. [55] As shown in Figures 5.6 and 5.7, our study also observed similar

results in PCs’ decrease in COVID-19 positive samples. A similar pattern was reported in

the case of Ebola virus disease, where liver dysfunction and decay of choline metabolism af-

fect LPCs and PCs synthesis and are associated with the severity of the disease. O’Donnell,

V. B et al. reported that activated externalization of PE and PS phospholipids in platelet

microvesicles (MV) might account for their elevated exposure in COVID-19-positive nasal

fluid swabs. [56] The increased abundance of these phospholipids in COVID-19-positive

samples may be attributed to the development of MV for viral replication within the cells.

Protectin D1 (PD1), a lipid mediator derived from omega-3 polyunsaturated fatty acids

(PUFA), is a strong viral replication inhibitor in Influenza A infections and decreases in

severe cases. [57] The decrease in PD 1 is in agreement with our result. Morita, M. et al.

also reported that PD1 treatment attenuated the replication of highly pathogenic H5N1

influenza viruses, as assessed by markedly reduced viral M protein mRNA expression, and

decreased virus titers in A549 and MDCK cells.[57]

Because our data analysis is based on more than one hundred spectra, we carried

out statistical analysis to determine the density and distribution of the data. For the

purpose of visualizing the abundance of the metabolites, violin plots, as shown in Figure

5.8, are used. These plots display the data density at every place. In this diagram, the

white line indicates the median Q2, while the rectangle depicts the range from the lower
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Figure 5.6: Radar plot of normalized metabolites in COVID-19 nasal swab samples. The
plot permits the visualization of the similarities and discrepancies between the data from
positive (in blue) and negative (in orange) samples. The data are the mean of the normalized
values for each metabolite.

quartile all the way up to the upper quartile. Longer quartile intervals indicate that the

data are more dispersed, while shorter quartile intervals indicate that the data are more

concentrated. The IQR shows the degree of dispersion and symmetry of the normal data.

The outer shape of the rectangle is kernel density estimation.The length of the vertical axis

of the figure represents the degree of data dispersion, and the length of the horizontal axis

represents the data distribution in a certain vertical coordinate position. As it is shown
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Figure 5.7: Figure 6. Bar graph of a) potential metabolite distribution in covid-19 positive
and negative samples. b) The ratio of relative intensity of each metabolite between covid-19
positive and negative samples.

in Figure 5.8, Cer (36:1), PA (22:2), and PA (24:2) present the highest abundance from

both positive and negative samples, which can be observed in the bar graph (Figure 5.7) as

well. The intensity of CerP (44:0), PC (35:8), PC (37:10), PC (37:9), and PC (40:11) from

COVID-19 negative samples has a broad distribution in the vertical direction of the axis,

which may be due to the heterogeneity in the individuals. In contrast, more centralized

data distribution for these PCs can be observed in COVID-19 positive samples due to the

decreases in the abundance of PCs, which was reported previously[55] as well as our results,

which are shown in Figure 5.6 and 5.7.

The scatter bubble plot (Figure 5.9) shows the metabolite abundance in each

sample. The size of the bubble represents the expression abundance of metabolites. As it

is shown in Figure 5.9., PA (22:2), PA (24:2), and Cer (36:1) have much more abundance
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Figure 5.8: Grouped violin plot of data from covid-19 positive (in green) and negative (in
red) samples.
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than other metabolites in each sample, which is consistent with the radar chart (Figure

5.6) and the bar graph (Figure 5.7). The similarities and differences among each individual

sample can be observed from different types of samples in the scatter bubble plot. As

shown in Figure 5.9, PA (20:1) and PA(21:2) have more differences among samples which

may be associated with the severity of COVID-19, as it reported that PA levels have a role

in determining the severity of COVID-19 patients independently from comorbidity, age,

and gender.[58] Glycerol-3 phosphate was only observed in COVID-19 positive samples,

while CerP (42:5) was only observed in the COVID-19 negative samples. However, in a

subsequent study, a greater number of clinical samples will need to be investigated in order

to construct a more validation cohort for the purpose of achieving more precise results. This

is necessary due to the fact that individuals may express a high degree of heterogeneity in

their metabolomic responses under various symptomatic conditions. In addition, viral load

information was also unavailable for the patients, preventing the evaluation of a potential

relationship between viral burden, molecular information, and diagnostic performance.

Figure 5.9: Scatter bubble plot of abundance of metabolites in each individual sample. The
scale bar on the right side indicates the relative intensity.
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5.4 Conclusion

We explored the sensitivity of plasmonic aluminum films microarray chips and their

applicability as a viable substrate for MALDI-MS that has improved performance. POPC

calibration curve indicated that this Al-chip has a higher sensitivity and lower limit detection

than traditional MALDI-MS stainless steel plate. After that, further applications were

researched using clinical samples that were more complicated. According to the findings, Al-

chips could produce spectra of complex samples that are of a high quality for the purpose of

data processing. In addition, infections caused by viruses have a considerable impact on the

lipid content of infected cells and may change lipid metabolism in a way that is beneficial to

the proliferation of viruses, as lipids are not only the primary component of membranes but

also play crucial functions as intercellular signaling agents and energy sources. Therefore,

conducting research into how SARS-COV-2 infection alters lipid metabolism and profile

might potentially provide information on the link between lipid profile and inflammatory

processes that occur during COVID-19. This work presents a rapid MS-based method with

a novel potential substrate for analyzing COVID-19 disease directly from nasopharyngeal

swabs.
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Chapter 6

Conclusion and Future Outlook

6.1 Summary of Dissertation Work

The work summarized in the dissertation has primarily focused on applying plas-

monic substrate with enhanced MALDI-MS signal for the lipidomic study of microorgan-

isms at the single-cell level. The plasmonic substrate-assisted methodology has been used

to identify, quantify, and monitor the lipid changes in diverse samples impacted under dif-

ferent conditions, including algae affected by herbicides, bacteria treated with antibiotics,

and clinical samples infected with SARS-CoV-2 virus. This work has demonstrated the

potential applications of this advanced technological platform in multiple research fields,

including environmental study (Chapter 2) and clinical study (Chapter 3,4 and 5).

The lipidomic analysis based on the plasmonic substrate was demonstrated in

Chaper2, 3, and 4. In Chapter 2, we showed a direct, label-free analytical approach to detect

lipids and categorize lipid profiles directly on intact algae cells using gold microchip MALDI-

TOF mass spectrometry. We have shown that the platform can characterize changes in
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lipidomic response to several herbicides and revealed some unique herbicide effects on lipid

profiles between algae species. Also, machine learning was integrated with MALDI-MS

lipid analysis to categorize treatment groups with models. This technology can be used to

characterize various cell types and their lipid mass fingerprint for monitoring of environ-

mentally relevant chemicals. In Chapter 3, we applied this platform to the lipidomic study

of E.coli, a bacterial model system with more complex membrane structures than algae.

Compared to HPLC-MS, MALDI-TOF-MS is faster and simpler to implement without the

need for sample preparation. A library of 68 lipids was built and a few biomarkers were

identified. Our data show that colistin strongly affects E.coli lipid expression, which can

be differentiated by lipid profiling, and the lipidomic study can help interpret colistin’s

antibacterial action. This work lays the foundation for the future study of more diverse

bacterial species and their identification and classification.In Chapter 4, photosensitizer was

selected to facilitate metabolite profile collection for food-borne pathogens using the plas-

monic substrate/MALDI-MS platform. Each species was found to form a distinct metabolite

profile in the m/z range of 400-2000, enabling species differentiation from bulk samples to

single-cell analyses. Combined with machine learning, unique metabolite profiling based on

MALDI-TOF-MS can differentiate bacterial pathogens at the single-cell level. Our research

has indicated that integrating microorganism fingerprinting with advanced informatics will

provide simple and effective diagnostic and monitoring tools in medicine, environment, and

food safety studies. In Chapter 5, we investigated a more sensitive and high-performance

plasmonic substrate with aluminum thin films, which is low-cost and abundant. COVID-19

clinical samples were studied based on the Al-chips. Results reveal Al-chips can create
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high-quality spectra of complicated samples for data processing. In addition, viral infec-

tions impact the lipid content of infected cells and change lipid metabolism to promote virus

multiplication. Examining how SARS-CoV-2 alters lipid metabolism and profile may reveal

the relationship between lipid profile and inflammatory processes in COVID-19. This work

presents a novel and fast MS-based technique for COVID-19 disease analysis using nasal

swabs.

6.2 Future Outlook

Single-cell metabolomics and lipidomics is still a budding field when compared

to proteomics. Current limitations of single-cell metabolomics include low throughput for

methods to distinguish technical variability from biological variability, a need for higher

sensitivity for low abundant metabolites or metabolites with low ionization efficiencies, and

a need for improvements in software/databases to identify metabolites of interest and pro-

vide biological relevance to the results.[1] However, MS-based lipidomics has already been

the most significant method in understanding basic lipid metabolism processes and their

changes in pathological states, allowing the discovery of biomarkers for disease diagnosis and

drug targets. Almost all lipid species in biological samples can be profiled and quantified by

optimizing analytical methods. However, the separation of lipid isomers, the identification

of lipid C=C bond locations, and the position of acyl chain branching and stereo-structure

are still difficult and would need to be addressed in future development.[2] Furthermore, the

integration of multi-omics analytical techniques is critical for better understanding the rela-

tionships between individual lipids and lipid classes within a metabolic network, as well as
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uncovering the role of specific lipid molecules in cellular functions, because the metabolism

process in the human body is intertwined with interactions between genes, proteins, metabo-

lites, lipids, and enzymes.[3] Multi-omics analytical methodologies can maximize the power

of lipidomics in areas of discovering new lipid biomarkers, understanding disease pathology,

and monitoring drug therapy efficacy. [2]

It should be noted that with the fast advancement of metabolomics, there has been

an increasing demand for high-throughput, sensitive analysis of small-molecule. LDI MS

technology allows for high sensitivity, accuracy, resolution, and throughput in molecular

analysis, which has significant potential for metabolomics research. Although significant

efforts have been made to generate functional nanomaterials for enhancing the MS readout

of biomolecules, the research in this area is still far from mature, and more focus must be

placed on the innovation of nanomaterials and the exploitation of in-depth applications. In

order to address the rising analytical needs for large-scale identification of many targets in

complicated biosamples, more customized nanomaterials with multiple functionalities and

improved affinity and specificity need to be developed. [4] Although some nanomaterials

have been made that can separate and detect targets simultaneously, the enrichment ca-

pacity and desorption/ionization efficiency still need to be improved. For the mechanism

investigation, the continuous focus should be placed on elucidating the underlying rela-

tionship between the structure of nanomaterials and the desorption/ionization efficiency of

analytes, which could lead to the development of nanomaterials with high energy absorp-

tion and transfer capacity, and low background interference in MS analysis.[5] From the

perspective of the application, the use of nanomaterials in MS characterization should be
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aimed to address the particular issues inaccessible to conventional approaches. One exam-

ple is the development of nanoprobes able to monitor the release of endogenous biomarker

metabolites or exogenous therapeutic agents in tissues by MS imaging of their molecular

weight signals or alternative mass tag signals.[5] In addition, MS can be integrated with

other detection methods that offer distinct technological benefits. For instance, developing

multimodal procedures that combine MS with Raman spectroscopy, fluorescence, or other

analytical techniques might optimize the effective information collected from complicated

biomedical materials to fulfill the critical demands and obstacles of clinical diagnosis.[5]
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