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Deep Neural Networks have reinvigorated real-world applications that rely on learning

patterns of data and are permeating into different industries and markets. With failure of Moore’s

law, recently industries shifted towards multicores which could not scale as expected leaving most

of the chip in off state also called as dark silicon. this end of Dennard scaling and diminishing

benefits from transistor scaling has propelled an era of Domain Specific Architectures.

Basic hardware accelerators were designed with primitive units for computations which

are arranged spatially to account for locality and hence better performance. Dataflow in this

spatial architecture determines the efficiency and power savings that can be obtained. An

xxii



optimized dataflow that reuses all activations, weights , and partial sums has been discussed.

Several optimization techniques including bit level flexibility, sparse accelerator which exploits

weight and activation sparsity, analog accelerators for low power, new ISA for efficient hardware

to software mapping, in memory computation to reduce the memory bandwidth requirements,

approximate circuits, efficient interconnects have been discussed. Later the acceleration for

training in various substrates are explored.

Finally, A novel method to handle multi tenancy is proposed. Cloud infrastructure and

accelerators that offer INFaaS have become the enabler of this rather quick and invasive shift

in the industry. Although multi-tenancy has propelled datacenter scalability, it has not been a

primary factor in designing DNN accelerators due to the arms race for higher speed and efficiency.

This paper sets out to explore this timely requirement of multi-tenancy through a new dimension:

dynamic architecture fission. To that end, we define Planaria1 that can dynamically fission

(break) into multiple smaller yet full-fledged DNN engines at runtime. This microarchitectural

capability enables spatially co-locating multiple DNN inference services on the same hardware,

offering simultaneous multi-tenant DNN acceleration. As such, it can simultaneously co-locate

DNNs to enhance utilization, throughput, QoS, and fairness. We compare the proposed design to

PREMA [4], a recent effort that offers multi-tenancy by time-multiplexing the DNN accelerator

across multiple tasks. We use the same frequency, the same amount of compute and memory

resources for both accelerators. The results show significant benefits with (soft, medium, hard)

QoS requirements, in throughput (7.4, 7.2, 12.2), SLA satisfaction rate (45%, 15%, 16%), and

fairness (2.1, 2.3, 1.9).
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Chapter 1

Introduction

1.1 Computation Requirements of Deep Learning Algo-
rithms

Artificial intelligence is wide ranging branch of computer science concerned with building

smart machines capable of performing tasks that typically require human intelligence. AI is

an interdisciplinary science with multiple approaches, but advancements in machine learning

and deep learning are creating a paradigm shift in virtually every sector of the tech industry.

The field of Machine Learning helps develop computation models that learn the environment

without explicit programming. The goal is to reach human intelligence which involves a lot of

computation both in terms of hardware and software.

To this end, researchers have developed many models such as SVM, decision trees, and

regression. One of the most promising models so far is artificial neural networks. Inspired by

biological neurons, McCulloch and Pitts developed the first model of ANNs in 1943. Later, at the

end of the 1950s, a perceptron had been proposed, raising optimism about imminent human level

intelligence. However, in 1969, Minsky and Papert showed the weaknesses of the perceptron

model, which discouraged further activity in ANNs. In the 70s and 80s, backpropagation had

been introduced and developed for training a neural network from raw data. Later in the 90s,

LeCun et al. proposed convolutional neural networks (CNNs) leading to promising results in

handwritten character recognition.Even with the advent of CNNs, researchers were still relying
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on other approaches such as SVM or ensemble of different models to achieve the best results.

The power of ANNs was revealed to researchers as the size of networks and training data sets

grew. Particularly, Alexnet was a milestone that won the ImageNet competition in 2012 by

reducing the error rate by almost a factor of two, compared to other approaches. This work

successfully trained a multimillion-parameter network with millions of raw input images using

back-propagations. Alexnet training took 6 days. Without a high-speed GPU for training,

Alexnet training would have taken much longer. In other words, the computation power of

today’s machines is a primary driver for major advancements in the field of machine learning.

Machine learning researchers have also developed

A number of techniques in the last decade to help deep networks learn, e.g., the use of shared

weights, dropout, expanded inputs, better activation functions, and regularization. The Alexnet

structure – a sequence of convolutional layers followed by fully-connected classifier layers that

is used for image classification – has also been used in many subsequent works and rejuvenated

the field of deep learning. In deep learning, multiple nonlinear layers automatically extract

and abstract features from raw data for different purposes such as classification and prediction.

The deeper layers in the networks combine more simple features from the earlier layers to

extract more complex features and recognize complicated objects in input images. Such deep

neural networks (DNNs) have recently achieved better results than human image classification.

However, these outstanding results are not for free; DNNs require billions of operations per

image for the simple task of classification.

Figure 1.1 shows the top-1 accuracy and the computational requirements for recent DNNs.

In this figure, the trend suggests that more computation leads to higher accuracy. In addition,

the computational requirement grows significantly with increase in the size of input, number

of training samples, and the number of classification categories. Therefore, providing faster

machines is essential. Deep networks have to be trained. The training currently takes many

weeks across several high-powered GPUs in a datacenter. Once the network is trained, it is

deployed on several devices (datacenter servers, self-driving cars, drones, mobile devices, etc.),
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Figure 1.1. The classification accuracy vs. computation requirements (GOps) for the inference
step in recent well-known image classifiers [25].

where it performs inference on billions of images every day. Faster machines are not only

essential for the training operations in deep networks, they are also essential for inference

operations. This dissertation focuses on both inference and training. One promising solution

to the computational requirements of DNNs is hardware specialization. It is well known that

custom ASICs can be up to three orders of magnitude faster than general purpose systems.

Since effective neural networks have always been computation-intensive, there have been many

prototypes and hardware architecture proposals. Most of this prior work focuses on digital

architectures, and we review some of them in the background chapter. In this dissertation, we

explore the use of analog units for DNN acceleration and make some of the first contributions

in the field of in-situ analog computing for DNNs. To make the potential impact of this work

clear, consider the following concrete use case. Some modern cars (and likely most cars in the

future) use a variety of cameras and sensors to gather road/traffic information. Processing this

information will require computers that consume several hundreds of watts and precious space.

The accelerators defined in this dissertation will help process many more images (safety) with a
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computing system that consumes tens of watts (energy efficiency) and fits under the seat of the

car.

1.2 Thesis Overview

The end of Dennard scaling and diminishing benefits from transistor scaling has propelled an

era of Domain Specific architectures. Although, most recently, accelerators have made their way

into edge devices(Edge TPU, NVIDIA Jetson, Apple Bionic Engine), their limited computational

capacity still necessitates offloading most of the inference tasks to the cloud. Inference as a

service has become the backbone of deployed applications and inference currently dominates the

market and is enabled by various forms of custom accelerators, such as Google TPU, NVIDIA

T4, Microsoft Brainwave, and Facebook’s DeepRecSys.As demand for INFaaS scales, one

solution is to increase number of accelerators in the cloud. However, this is not feasible as it is

not cost effective or scalable with increasing demand for DNN service. Multi tenancy, where

a single node is shared across multiple requests has been a primary enabler for the success of

cloud computing in current scale. Multi tenancy not been a primary factor in the design of DNN

accelerators due to recent adoption of accelerators in data centers, challenges associated with

multi tenancy in accelerator like efficiently sharing the underlying hardware while enforcing

strict data and performance isolation between tenants and not much research done in this area as

most of the research was involved in designing the fastest accelerator both in terms on compute

and memory.

The datacenter accelerator designs revealed–for instance in Google’s TPU or Microsoft Brain-

wave tend to show results focused on running a single neural network model as fast as possible.

Even the MLPerf benchmark suite keeps this single-model focus for both training and inference.

But experience in cloud accelerator systems shows that keeping multiple models simultaneously

resident on an accelerator has deployment benefits. Beyond just multiple customers sharing

an accelerator, there is demand for multi-tenancy inside of a single application. For example,
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speech recognition and voice synthesis systems tend to require multiple models in deployment

and can significantly benefit from multi-tenancy and co-location.

1.2.1 Thesis Statement

We explore a new dimension of multi-tenancy in the architecture design of DNN accelerators.

This work presents Planaria, where the key idea is dynamically fissioning the DNN accelerator

at runtime to spatially co-locate multiple DNN inferences on the same hardware. To that end, the

paper makes the following contributions. First, This paper introduces and explores the dimension

of dynamic fission in DNN accelerators. This innovation enables simultaneous execution of

multiple DNN acceleration threads to be spatially co-located on the same hardware substrate.

Second, we device a microarchitecture design for dynamic fission where we devise bi-directional

systolic arrays for DNN acceleration that permits flow of data in all four directions from each

elements in the array. This low-cost additional flexibility expands the fission possibilities leading

to significant energy reduction and performance gains. Third, To leverage architecture-level

fission, the paper defines a task scheduling algorithm that breaks up the accelerator with respect

to the current server load, DNN topology, and task priorities, all while considering the latency

bounds of the tasks.

1.2.2 Planaria

Deep Neural Networks (DNNs) have reinvigorated real-world applications that rely on

learning patterns of data and are permeating into different industries and markets. Cloud

infrastructure and accelerators that offer INFerence-as-a-Service (INFaaS) have become the

enabler of this rather quick and invasive shift in the industry. To that end, mostly acceleratorbased

INFaaS (Google’s TPU, NVIDIA T4, Microsoft Brainwave, etc.) has become the backbone of

many reallife applications. However, as the demand for such services grows, merely scaling-out

the number of accelerators is not economically cost-effective. Although multi-tenancy has

propelled datacenter scalability, it has not been a primary factor in designing DNN accelerators
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due to the arms race for higher speed and efficiency. This paper sets out to explore this timely

requirement of multi-tenancy through a new dimension: dynamic architecture fission. To that

end, we define Planaria1 that can dynamically fission (break) into multiple smaller yet full-

fledged DNN engines at runtime. This microarchitectural capability enables spatially co-locating

multiple DNN inference services on the same hardware, offering simultaneous multi-tenant DNN

acceleration. To realize this dynamic reconfigurability, we first devise a breakable bi-directional

systolic arrays for DNN acceleration that allows omnidirectional flow of data. Second, it uses

this capability and a unique organization of on-chip memory, interconnection, and compute

resources to enable fission in systolic array based DNN accelerators. Architecture fission and its

associated flexibility enables an extra degree of freedom for task scheduling, that even allows

breaking the accelerator with regard to the server load, DNN topology, and task priority. As such,

it can simultaneously co-locate DNNs to enhance utilization, throughput, QoS, and fairness. We

compare the proposed design to PREMA [4], a recent effort that offers multi-tenancy by time-

multiplexing the DNN accelerator across multiple tasks. We use the same frequency, the same

amount of compute and memory resources for both accelerators. The results show significant

benefits with (soft, medium, hard) QoS requirements, in throughput (7.4x, 7.2x, 12.2x), SLA

satisfaction rate (45%, 15%, 16%), and fairness (2.1, 2.3, 1.9).

1.3 Layout of this thesis

The rest of the thesis is organised as follows. Initially the basics of neural networks and

their importance in solving day to day complex issues has been discussed. Then we project why

mulicores cannot be scaled in terms of frequency and power to satisfy the increasing demand

leading to dark silicon and what has propelled the need for Domain Specific architectures.

With advent of domain specific architectures, principles of improving the compute and memory

performance is discussed. There are multiple chapters discussed in related work section that

focuses on the arms race for high performance computing.
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Then we discuss methods to improve datacenter performance and finally discuss about multi

tenancy in DNN accelerators which is the core idea of the paper. We then build upon the work

and present some extensive design space analysis performed on this design. Finally we discuss

about the flexibility in DNN accelerators and talk about our novel idea of Planaria and how it is

being implemented to efficiently share the underlying hardware while enforcing strict data and

performance isolation between tenants. After this we discuss the future improvements that can

be done to improve the performance of multi tenant DNN accelerators.
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Chapter 2

Background

2.1 Neural Networks

2.1.1 Introduction

In this chapter we explain the computational requirements of deep neural networks(DNNs).

DNNs are built by connecting different layers of neurons serially or in parallel, and they typically

represent a direct acyclic graph (DAG) of computations. Depending on the applications, one

might leverage different types of layers. In this section, we review some of the common layers, in

both inference (forward path) and training phase (backward error propagation). More specifically,

we review both forward and backward paths for fully-connected, convolution, pooling, sigmoid,

and ReLU layers.

2.1.2 Computation Flow

Since DNNs are DAGs, the flow of computation in the inference mode is straightforward.

The input data is the first layer’s input and the output of each layer will serve as the input for the

next layer in the graph of computation. In the case of classification, the last layer’s neurons can

be interpreted as the predicted chance of one classes. In the training mode, a pair of sample data

and a label will be considered as the input. Similar to the inference mode, DNN receives the

sample data and generates a vector of probability as its output. Then a loss function (also known

as cost function) evaluates the result by comparing it with the label. The goal of training is to
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reduce the loss function. One can consider the entire neural network as one complex function.

The goal is to reduce the sum of the loss function output for all the training samples. Assume

In this section, we reviewed common layers used in state-of-the-art DNNs. We showed that

computation intensive layers such as convolutions and FC have the same type of operations in

both forward and backward paths.S = {(xi, li) i ∈ {0, ..,N−1}} is the set of training samples

with N members. Also consider a neural network with M cascaded layers. We represent Layer i

with a function fi(x) and its paarameter as W (i). Therefore, the output of the entire network, for

the input xi is

outi = fM−1(...( f2( f1(xi)))...) (2.1)

The loss value for this input is Loss(outi, li). The goal is to minimize the following equation.

L =
N−1

∑
0

Loss(outi, li) (2.2)

There are multiple ways to solve this optimization problem. In the gradient descent approach,

in each step, L is calculated and W (i) are updated in a direction to get closer to the local minimum.

For the layer k, the i− th parameter is updated using the following rule:

W (k)
i =W (k)

i −η× ∂L

∂W (k)
i

(2.3)

In the above equation 2.3, η is the learning rate. Large η values lead to fast convergence

at the risk of missing some local minimum. On the other hand, small ηs do not jump over

optimum points at the cost of slower convergence. The problem with gradient descent is that

for every update step, we have to calculate all outis. Therefore, the time for each step grows

linearly with the training set size. As a result, this technique is not used for large-scale DNNs in

practice. Instead, stochastic gradient descent will be applied. In this approach, the training set is

shuffled and decomposed into many small minibatches and gradient descent is applied to each

minibatch. Therefore, the number of outputs involved in each parameter update step is a function
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of the number of elements in each minibatch. In practice, minibatches are much smaller than

the training set. The process of training all the minibatches is called an epoch. Since updating

parameters is based on a few samples in the minibatch, the training is carried for multiple epochs.

In each weight update step, we also need to calculate the gradient of each weight with

respect to the loss function. Applying the chain rule, we can find the gradient for the functional

representation of the neural networks 2.1.

L

∂W (k)
i

=
∂L

∂yN−1
× ∂yN−1

∂W (k)
i

∂yM−1

∂W (k)
i

=
∂yM−1

∂yM−2
× ∂yM−2

∂W (k)
i

....

∂yk+1

∂W (k)
i

=
∂yk+1

∂yk
× ∂yk

∂W (k)
i

(2.4)

In 2.4, yr is the output of r-th layer (outi = yN−1). This is called background error propagation

or backpropagation, where the loss error ∂L
∂yN−1

is propagated in the opposite direction of inference

networks. In the backward network, the intermediate results of layer t is et =
∂L

∂yM−1−t
and the

parameters in the backward network are ∂yt
∂yt−1

. We have,

∂L
∂yt

=
∂yt

∂yt−1
× ∂yL

∂yt−1

et =
∂yt

∂yt−1
+ et+1

(2.5)
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Therefore, one can rewrite gradient calculation in equation 2.4 as follows.

e0 =
∂L

∂yM−1

e1 =
∂yM−1

∂yM−2
× e0

....

ek =
∂yk−1

∂yk−2
× ek−1

∂L

∂W (K)
i

= ek×
∂yk−1

∂W (K)
i

(2.6)

∂yk−1

∂W (K)
i

depends on the input of Layers k (i.e.,yk−1). In other words, in the process of weight

update both yis and eis are needed.

In the following part of this chapter we discuss the functionality of some of the most popular

layers.

2.1.3 Neural Network Layers

In this section we review some of the most popular layers deployed in deep learning architec-

ture.

Fully-connection layer(FC)

This is the most used layer in the history of neural networks. In this layer, every output

neuron is the weighted sum of every input neuron 2.7. The layer is illustrated as a bipartite graph

with one side representing input neurons while the other sides are output neurons. In between

any pair of input neuron, Ni, and output neuron, M j, there is an edge labeled with the weight wi, j.

This layer can also be represented as a matrix by vector multiplication WN = M, where W, N,

and M are the weight matrix, the vector of input neuron values, and the vector of output neuron

values, respectively. we have

M j =
n−1

∑
i=0

Wi, j×Ni (2.7)
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where n is the number of element input neurons. Similarly, we define m as the number of

output neurons. With the above notation, we can now derive the backpropagation rules for FC

layer.

L
∂Ni

=
m−1

∑
j=0

∂L
∂M j

×
∂M j

∂N j

L
∂Ni

=
m−1

∑
j=0

∂L
∂M j

×Wi, j

(2.8)

if ein =
[

L
∂Ni

]
0≤i<n

and e−out =
[

L
∂Mi

]
0≤i<m

are the input and output error vectors, we can

write:

ein =W T × eout (2.9)

where T is the matrix transpose operation. In addition to the error propagation, we have to

calculate the gradient of each weight with respect to the output layer.

∂L
∂Wi, j

=
∂L

∂M j
×

∂M j

∂Wi, j

∂L
∂Wi, j

=
m−1

∑
t=0

∂L
∂Mt
× ∂Mt

∂Wi, j

∂L
∂Wi, j

=
∂L

∂M j
×Ni

(2.10)

As shown in equation 2.10, the gradient for the FC layer depends on the inputs and the

propagated error in the output. FC layeers requires m×n parameters, m×n multiplications and

m×n additions.

Convolution Layer

In the FC layer, all input neurons have influence on all the output neurons, which causes

two problems: 1. the FC layer cannot preserve features that depend on the spatial locality

and 2. the number of parameters and operations increase superlinearly. Convolution Layer

has been proposed to address these two weaknesses. In a convolution layer, input and output
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neurons are organized in an array of channels, each of which are 2D arrays of input neurons.

By this organization, the input and output are consideredas 3D arrays. For example, in image

classification, input image to the neural network is considered as 3 channels of images, one

for red color, one blue color, and one for green color. In general, we assume the input has Ni

input channels of Nin
x ×Nin

y and the outputs consists of No output channels of Nout
x ×Nout

y . In

our notation, we call input channel i and output channel j as chin
i and chout

j , respectively. The

parameters are organised as 4D arrays: an Ni×No arrays of kernels Ki, j, where kernel is a

Ky×Ky array of weights. Figure 2.1 depicts the general convolution layer organization. Using

the above notation, one can write the convolution layer function as follows.

Figure 2.1. The organization of a CNN layer

chout
j =

Nin−1

∑
r=0

chin
r ⊗Kr, j (2.11)

In 2.10, the summation on channels is element-wise summation. The operation ⊗ is 2D

convolution operation with two 2D arrays and generates one 2D array outputs. In general, 2D

convolution is performed using the following equation.

B = A⊗K

B[i][ j] =
Ky−1

∑
t=0

Kx−1

∑
r=0

A[i+ sx + r]+ r[ j+ sy + t]×K[r][s]

f orsx = sy = 1⇒ B[i][ j] =
Ky−1

∑
t=0

Kx−1

∑
r=0

A[i+ r][ j+ t]×K[r][s]

(2.12)

One can describe this operation as the kernel K rolling over 2D array A in multiple steps.
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In each step, one output entry is calculated by performing inner product of K with the part of

A covered by K.2.12, sx and sy are the strides in x and y dimensions. Notice that a convolution

layer is the general case of the FC layer, where input neurons are replaced with 2D channels,

weights are replaced with 2D kernels, and the product of an input and a weight are replaced with

2D convolution operation. If channel and kernels are 1×1, we end up with an FC layer.

One advantage of this interpretation is that we can leverage the FC equations for backprop-

agation. However, we still need to understand how 2D convolution operations impact error

propagation. To this end, we first looked into a case where we have one input An1×n2 and output

channels Bm1×m2 with kernel Kx×y.If we know the impact of error propagation in this case, we

can extend it to convolution layers with more input and/or output channels, with the help of

equations developed for the FC layer.

Assuming sx = sy = 1, we have:

∂L
∂A[m][n]

= ∑
r

∑
t

∂L
∂B[r][t]

× ∂B[r][t]
∂A[m][n]

∂L
[m][n]

=
x−1

∑
i=0

y−1

∑
j=0

∂L
∂B[m− i][n− j]

× ∂B[m− i][n− j]
∂A[m][n]

∂L
[m][n]

=
x−1

∑
i=0

y−1

∑
j=0

∂L
∂B[m− i][n− j]

×K[i][ j]

(2.13)

If eA = [ ∂L
∂A[i][ j] ] and eB = [ ∂L

∂B[i][ j] ] are the error maps for the input and output channel, then one

can write:
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∂L
∂A[m][n]

=
x−1

∑
i=0

y−1

∑
j=0

∂L
∂B[m− i][n− j]

×K[i][ j]

eA[m][n] =
x−1

∑
i=0

y−1

∑
j=0

eB[m− i][n− i]×K[i][ j]

define m′ = (m− x+1) and n′ = (n− y+1)

eA[m][n] =
x−1

∑
i=0

y−1

∑
j=0

eB[m′+(x−1− i)][n′+(y−1− j)]×K[i][ j]

define i′ = (x−1− i) and j′ = (y−1− j)

eA[m][n] =
x−1

∑
i=0

y−1

∑
j=0

eB[m′+ i′][n′+ j′]×K[x−1− i′][y−1− j′]

(2.14)

By changing the variables we can rewrite the equation as:

epad
B [m][n] = e[m− x+1][n− y+1] = e[m′]i f m≥ x−1,n≥ y−1

otherwise ⇒ epad
B [m][n] = 0

Also define K′[i][ j] = [x−1− j][y−1− j]

define i′ = (x−1− i) and j′ = (y−1− j)

eA[m][n] =
x−1

∑
i′=0

y−1

∑
j′=0

eB[m′+ i′][n′+ j′]×K[x−1− i′][y−1− j′]

eA[m][n] =
x−1

∑
i=0

y−1

∑
j=0

epad
B [m+ i][n+ i]×K′[i][ j]

eA = epad
B ⊗K′

(2.15)

In other words, error map in the input channel is the convolution of output channel error

maps that has been padded with zeros (i.e., epad
B ) with the rotated version of the original kernel

(i.e., K’).
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In general for Ni input channels and No output channels, we have:

echin
i
=

N0−1

∑
j=0

epad
chout

i
⊗K′i, j (2.16)

Similarly, the weight update array for kernel Ki, j is calculated as follows:

∂L
∂Ki, j

= epad
chout

i
⊗ chin

i (2.17)

In general, we can state that both forward and backward operations are convolutional opera-

tions. The number of parameters in this layer is No×Ni×Kx×Ky and the number of operations

for additions and multiplications No×Nout
x ×Nout

y × (Ni×Kx×Ky).

Pooling Layer

As we mentioned, the number of operations in the convolution layer depends on the size of

channels. A pooling layer is proposed to down-sample output channels of the convolution layers.

A pooling layer is applied per channel. Therefore, it preserves the number of channels in the

input. However, the output channels have smaller dimensions. There are two common types of

pooling layers, average pooling and max pooling. Average pooling is a 2D convolution operation

of Kernel KKx×Ky with all its weights equal to 1
Kx×Ky

. Max pooling, on the other hand, is a 2D

convolution with Kernel 1Kx×Ky that uses max operation instead of addition. It is also worth

noting that the strides in pooling layers are typically greater than one to reduce the dimensions

of the resulting output channels.

Since the average pooling is essentially 2D convolution, we can apply 2.15 to calculate its

error maps. For max pooling, error in the output is just propagated to the input with the maximum

values. When a pooling layer with kernel of size Kx×Ky kernel and strides of size sx and sy is

applied to Ni input channels of size Nx×Ny, Nx×Ny×Kx×Ky
sx×sy

operations are required.
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NonLinear Layers

The secret ingredient in DNNs is nonlinearity. Without nonlinear layers, DNNs are simply a

polynomial function of input values. There are three types of nonlinear layers; sigmoid, tanh,

and ReLU. These functions are represented by the following equations:

σ(x) =
1

1+ e−x

tanh(x) = 2σ(2x)−1

ReLU(x) = max(0,x)

(2.18)

Many recent DNNs have adopted ReLU due to its simplicity and high accuracy. However,

sigmoid and tanh are still used in LSTMs (Long Short Term Memory). Additionally, some work

suggests to approximate the exponential operator in sigmoid and tanh with piece-wise linear

functions. Although sigmoid and tanh have exponential operators, they are simply differentiable

based on the forward path values.

∂σ(x)
∂x

= σ(x)(1−σ(x))

∂ tanh(x)
∂x

= (1+ tanh(x))× (1− tanh(x))

∂ReLU(x)
∂x

=

 1 i f x≥ 0

0 i f x < 0


(2.19)

2.1.4 Summary

In this section, we reviewed common layers used in state-of-the-art DNNs. We showed that

computation intensive layers such as convolutions and FC have the same type of operations in

both forward and backward paths.
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2.2 Dark Silicon and rise of Domain Specific architecture

2.2.1 Introduction

For the past three decades Moore’s Law, coupled with Dennard scaling, has resulted in

commensurate exponential performance increases. Shift to multi cores proportionately increased

performance. However, with failure of Dennard’s scaling and thus slowed supply voltage scaling

results in hindrance of core count scaling. As future designs are power limited, higher core counts

must provide performance gains despite the worsening energy. Since the energy efficiency of

devices is not scaling along with integration capacity, and since few applications have parallelism

levels that can efficiently use a 100-core or 1000-core chip, it is critical to understand how

good multicore performance will be in the long term. Such a study must consider devices, core

microarchitectures, chip organizations, characteristics, benchmark, applying area and power

limits at each technology node. In this paper all the parameters mentioned are considered

to project upper-bound performance achievable through multicore scaling, and measuring the

effects of non-ideal device scaling, including the percentage of dark silicon on future multicore

chips.[9]

Three models are combined to project the performance and the fraction of dark silicon

on fixed size and fixed power chips. Device scaling model, Core scaling model, Multi core

scaling model, all are combined to project the amount of parallelism achievable. Device×core

scaling models combined predict Pareto frontiers at future technology nodes and predicts that any

performance improvements for future cores will come only at the cost of area or power as defined

by these curves. Device×core×multicore scaling models combined predict maximum multicore

speedups for future technology nodes while enforcing area, power, and benchmark constraints.

On evaluating the models its predicted that over 5 technology generations only 7.9X speedup

was possible using ITRS scaling as power limitation curtails the usable chip fraction. So, radical

microarchitectural innovations are necessary to alter the power/performance Pareto frontier to

deliver speed-ups commensurate with Moore’s Law. As discussed above the figure 2.2 illustrates
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Figure 2.2. Overview of the models and the methodology

how models and empirical measurements combine to project multicore performance and chip

utilizations. Multicore scaling model considers two classes: multi core CPUs and many thread

GPUs which are extremes in the thread per core spectrum. Many variations of the multicore

system are considered like symmetric, asymmetric, dynamic, and composed multicores.Using

these configurations, the paper describes analytic model that provides system level performance.

The model considers application behavior, memory access patterns, thread level parallelism and

micro architecture features like cache size and memory bandwidth. PARSEC which has a set of

highly parallel applications is being used as workload. In the next section all the three models

are described in detail.

2.2.2 Prediction Models

Device model

Device scaling model was built to provide area, power, and frequency scaling factor using

ITRS projections. Two different scaling schemes based on ITRS 2010 and conservative scaling

by Borkar are used to device this scaling model. The parameters used for calculating power and

performance scaling factors are mentioned in the table 2.1 below. For ITRS scaling, frequency is

scaled linearly with respect to FO4 inverter delay. The power scaling is computed using predicted

values for P = aCV 2 f .
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Table 2.1. Scaling factors for ITRS and Conservative projections.

Year
Tech
Node
(nm)

Frequency
Scaling
Factor

(/45nm)

Vdd
Scaling
Factor

(/45mm)

Capacitance
Scaling
Factor

(/45nm)

Power
Scaling
Factor

(/45nm)

IT
R

S

2010 45* 1.00 1.00 1.00 1.00
2012 32* 1.09 0.93 0.7 0.66
2015 22 † 2.38 0.84 0.33 0.54
2018 16 † 3.12 0.75 0.21 0.38
2021 11 † 4.17 0.68 0.13 0.25
2024 8 † 3.85 0.62 0.08 0.12

31% frequency increase and 35% power reduction per node
C

on
se

rv
at

iv
e 2008 45 1.00 1.00 1.00 1.00

2010 32 1.10 0.93 0.75 0.71
2012 22 1.19 0.88 0.56 0.52
2014 16 1.25 0.86 0.42 0.39
2016 11 1.30 0.84 0.32 0.29
2018 8 1.34 0.84 0.24 0.22

6% frequency increase and 23% power reduction per node

*: Extended Planar Bulk Transistors, †:Multi-Gate Transistors

Core model

Core model provides two functions for A(q) and P(q) , which is area/performance and

power/performance tradeoff pareto frontiers, where q is single thread performance of core. The

power and area are projected using these Pareto frontiers to future technology nodes using the

device scaling model. Pollack’s rule has been used to denote the tradeoff between transistor

count and performance which considers power to be only area dependent constraint. However,

power is dependent on area, supply voltage and frequency. But as Voltage and frequency are not

scaling at similar rates, Pollack’s rule is insufficient and power, area should be decoupled into

independent constraints.

The below figure 2.3 shows the power/performance single-core design space at various nodes.

The optimal points show the pareto frontier. The figure 2.3 shows the model design/ cubic pareto

frontier P(q) at 45nm node but for different processors. The area/performance quadratic relation

was derived in figure2.3. The focus of this work is to study the impact of power constraints on

logic scaling, so we derive the pareto frontier using chip power budget (TDP) allocated to each

core. Now to compute the power budget of multi core the total power is divided by the number

of cores and 30% of it is assigned to the leakage power. To derive pareto frontier at 45nm we fit
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cubic and quadratic polynomials P(q) and A(q) along the edges of respective design spaces. We

used the least square regression method for curve fitting such that the frontiers enclose all design

points. The points along the Pareto frontier are used as the search space for determining the best

core configuration by the multicore-scaling model.

(a) Power/performance across nodes (b) Power/performance frontier, 45 nm (c) Area/performance frontier, 45 nm

(d) Voltage and frequency scaling (e) ITRS frontier scaling
(f) Deriving the area/performance and
power/performance Pareto frontiers

Figure 2.3. Deriving the area/performance and power/performance Pareto frontiers

Below graphs were extrapolated assuming optimal voltage and frequency settings. At fixed

Voltage, scaling down frequency, results in a power/performance point inside of the optimal

Pareto curve, while scaling voltage up results in a different power-performance point along the

frontier. If an application dissipates less power, the voltage and frequency scaling will be utilized

to achieve maximum performance with the minimum power increase. This is possible as voltage

and frequency scaling changes in a Pareto optimal fashion.

Multicore model

The model first relies on Pollack’s rule and then extended to incorporate power as a primary

design constraint, independent of area. As per Amdahl’s Law, system speedup is 1/(1–f)+ f/S

where f is the parallel portion of code and S is the number of cores.

The table 2.2 illustrates the corollaries for each multicore, where TDP is the chip power

budget and die area is the area budget. The q denotes performance of single core. Speedup is
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Table 2.2. CmpMU equations: corollaries of Amdahl’s Law for power-constrained multicores.

Symmetric NSym (q) = min
(

DIEAREA
A(q) , T DP

P(q)

)
SpeedupSym ( f ,q) = 1

(1− f )
SU (q)+

f
NSym(q)SU (q)

Asymmetric NAsym (qL,qS) = min
(

DIEAREA−A(qL)
A(qS)

, T DP−P(qL)
P(qS)

)
SpeedupAsym ( f ,qL,qS) =

1
(1− f )

SU (qL)
+ f

NAsym(qL,qS)SU (qS)+SU (qL)

Dynamic NDyn (qL,qS) = min
(

DIEAREA−A(qL)
A(qS)

, T DP
P(qS)

)
SpeedupDyn ( f ,qL,qS) =

1
(1− f )

SU (qL)
+ f

NDyn(qL,qS)SU (qS)

Composed NComposed (qL,qS) = min
(

DIEAREA
(1+τ)A(qS)

, T DP−P(qL)
P(qS)

)
SpeedupComposed ( f ,qL,qS) =

1
(1− f )

SU (qL)
+ f

NComposed(qL,qS)SU (qS)

measured against a baseline core with performance q Baseline. For symmetric cores, the parallel

fraction is distributed across the symmetric cores each of which has speedup over baseline. For

asymmetric, the number of small cores is bounded by the power consumption or area of the large

core. In Dynamic multicore, if area is the dominant constraint, the number of small cores is

bounded by the area of the large core. The area overhead supporting the composed topology is T.

Thus, the area of small cores increases by a factor of (1 + T) with no power overhead.

The above provide a strict upper-bound on parallel performance, but do not have the level

of detail required to explore microarchitectural features and workload behavior. The CmpMR

model formulates the performance of a multicore in terms of chip organization, frequency, CPI,

cache hierarchy, and memory bandwidth, application behaviors such as the degree of thread-level

parallelism, the frequency of load and store instructions, and the cache miss rate. Multi thread

performance is calculated in terms of instructions per second by multiplying the number of cores

by the core utilization and scaling by the ratio of the processor frequency to CPIexe:

Per f = min
(

N
f req

CPIexe
η ,

BWmax

rm×mL1×b

)
(2.20)

The stalls due to cache access are covered separately in core utilization which the fraction of

time that a thread running on the core can keep it busy

η = min

(
1,

T
1+ t rm

CPIexe

)
(2.21)

The average time spent waiting for memory accesses is a function of the time to access the caches

22



both L1 and L2, time to visit memory, and the predicted cache miss rate for both L1 and L2:

t = (1−mL1) tL1 +mL1 (1−mL2) tL2 +mL1mL2tmem

mL1 =

(
CL1

T βL1

)1−αL1

and mL2 =

(
CL2

NT βL2

)1−αL2 (2.22)

To compute the overall speedup of different multicore topologies using the CmpMR model,

we calculate the baseline multithreaded performance for all benchmarks by providing the Per f

equation.To incorporate the Pareto-optimal curves into the CmpMR model, the SPECmark scores

are converted into an estimated CPIexe and core frequency. We assume the core frequency scales

linearly with performance. Each application’s CPIexe is dependent on its instruction mix and use

of hardware optimizations. CmpMR model is used to generate per benchmark CPIexe estimates

for each design point along the Pareto frontiers. With all other model inputs kept constant, we

iteratively search for the CPIexe at each processor design point.

Since the performance increase between any two points should be the same using either the

SPECmark score or CmpMR model, we continue in this fashion to estimate a per benchmark

CPIexe for each processor design point. We assume CPIexe does not change with technology

node, while frequency scales as discussed. This flexible approach allows us to use the SPECmark

scores to select processor design points from the Pareto optimal curves and generate reasonable

performance model inputs. To characterize an application, the required input parameter models

are cache behavior, fraction of instructions that are loads or stores, and fraction of parallel code.

To obtain f , the fraction of parallel code, for each benchmark, we fit an Amdahl’s Law-based

curve to the reported speedups across different numbers of cores from both studies. This fit

shows values of parallel code between 0.75 and 0.9999 for individual benchmarks.

We compute serial(Per fs) and parallel(Per fp) performance with respective cores and their

parameters.Assuming performance of single core(Per fb). The serial portion is sped up by

Sr,serial = Per fs/Per fb and parallel is sped up by Sr, parallel = Per fp/Per fb. Formulation
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below captures the impact of parallelism on all four topologies:

SpeedupR = 1/
(

1− f
SR,Serial

+
f

SR,Parallel

)
(2.23)

A key component of the detailed model is the set of input parameters that model the microar-

chitecture of the cores. Two styles of core models are used: single-thread and many-thread. For

single-thread cores, we assume each core has L1 cache, and chips with only ST cores have an L2

cache that is 30% of the chip area. Many-thread cores have small L1 caches, a thread register file,

and no L2 cache. The off-chip bandwidth (BWmax) is assumed to increase linearly as process

technology scales down while the memory access time is constant. The model’s accuracy is lim-

ited by our assumptions which are optimistic. Thus, the model only over-predicts performance,

making our speedup projections optimistic. This model allows us to estimate the first-order

impact of caching, parallelism, and threading under several key assumptions. It optimistically

assumes that the workload is homogeneous, work is infinitely parallel during parallel sections

of code, and no thread synchronization, operating system serialization, or swapping overheads

occur. We also assume memory accesses never stall due to a previous access. Each of these

assumptions could cause the model to overpredict performance, making the model and hence

projected speedups optimistic.

(a) Speedup (b) Performance

Figure 2.4. CmpMR validation

Figure 2.4, which includes both CPU and GPU data, shows that the model is optimistic.
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CmpMR underpredicts speedups for two benchmarks; these speedups are greater than 7. To

strongly advance our GPU claim, we also need to prove the model’s raw performance projection

is accurate or optimistic. As depicted in second graph, the model’s GPU performance projection

is validated by comparing its output to the results from a real system. Using our model, we find

4 geometric-mean and 12 maximum speed up for PARSEC benchmarks on GPU compared to a

quad-core CPU. Our model does not account for specialized compute units, which contribute to

the speedup.

DEVICE × CORE × CMP SCALING

The three models are now combined to produce projections for optimal performance, number

of cores, and amount of dark silicon. To determine the best core configuration at each tech-

nology node, we consider only the processor design points along the area/per f ormance and

power/per f ormance Pareto frontiers as they represent the most efficient design points. The

following outlines the process for choosing the optimal core configuration for the symmetric

topology at a given technology node: The area/per f ormance Pareto frontier is investigated, and

all processor design points along the frontier are considered. For each area/per f ormance design

point, the multicore is constructed starting with a single core. We add one core per iteration and

compute the new speedup and the power consumption using the power/per f ormance Pareto

frontier. Speedups are computed using the Amdahl’s Law corollaries to obtain an upper-bound

or our CmpMR model for more realistic performance results using the PARSEC benchmarks.

The speedup is computed over a CPU. After some number of iterations, the area limit is hit, or

power wall is hit, or we start seeing performance degradation. At this point the optimal speedup

and the optimal number of cores is found. The fraction of dark silicon can then be computed by

subtracting the area occupied by these cores from the total die area allocated to processor cores.

The above process is repeated for each technology node using the scaled Pareto frontiers. This

exhaustive search is performed separately for Amdahl’s Law CmpMU , CPU-like CmpMR , and

GPU-like CmpMR models. We optimistically add cores until either the power or area budget is
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reached.

2.2.3 Evaluations

We begin the study of future multicore designs with an optimistic upper-bound analysis using

the Amdahl’s Law multicore-scaling model, CmpMU . Then, to achieve an understanding of

speedups for real workloads, we consider the PARSEC benchmarks and examine both CPU-like

and GPU-like multicore organizations under the four topologies using our CmpMR model.

(a) Optimal number of cores (b) Speedup (c) Percentage dark silicon

(d) Optimal number of cores (e) Speedup (f) Percentage dark silicon

Figure 2.5. Amdahl’s law projections for the dynamic topology. Upperbound of all four
topologies (x-axis: technology node).

Above figure 2.5 show the multicore scaling results comprising the optimal number of cores,

achievable speedup, and dark silicon fraction under conservative scaling. Below figures show

the same results using ITRS scaling. The results are only presented for the dynamic topology,

which offers the best speedup levels amongst the four topologies.

The 59 speedup at 8 nm for highly parallel workloads using ITRS predictions, which exceeds

the expected 32, is due to the optimistic device scaling projections. We consider scaling of the

Intel Core2 Duo T9900 to clarify. At 45 nm, the T9900 has a SPECmark of 23.58, frequency

of 3.06 GHz, TDP of 35 W and per-core power of 15.63 W and are of 22.30 mm2 . With ITRS

scaling at 8nm, T9900 will have SPECmark of 90.78, frequency of 11.78 GHz, core power of

1.88 W, and core area of 0.71 mm2 .
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With the 125 W power budget at 8nm, 67 such cores can be integrated. There is consensus

that such power efficiency is unlikely. Further, our CmpMU model assumes that performance

scales linearly with frequency. These optimistic device and performance assumptions result in

speedups exceeding Moore’s Law. Considering PARSEC applications executing on CPU- and

GPU-like chips. The study considers all four multicore topologies using the CmpMR realistic

model. This model captures microarchitectural features as well as application behavior. To

conduct a fair comparison between different design points, all speedup results are normalized to

the performance of a quadcore Nehalem multicore at 45 nm.

(a) Speedup: geomean and best case (b) Number of cores: geomean (c) Percent dark silicon: geomean

Figure 2.6. Speedup and number of cores across technology nodes using symmetric topology
and ITRS scaling

Figure 2.6 shows the geometric mean of speedup, best-case speedup, geometric mean of the

optimal number of cores, and geometric mean of the percentage dark silicon using optimistic

ITRS scaling. The symmetric topology achieves the lower bound on speedups, with speedups that

are no more than 10% higher, the dynamic and composed topologies achieve the upper-bound.

The results are presented for both CPU like and GPU-like multicore organizations.

The optimal number of cores projected by our study seems small compared to chips such as

the NVIDIA Fermi, which has 512 cores at 45 nm. There are two reasons for this discrepancy.

First, in our study we are optimizing for a fixed power budget, whereas with real GPUs the power

has been slightly increasing. Second, our study optimizes core count and multicore configuration

for general purpose workloads like the PARSEC suite. We assume Fermi is optimized for

graphics rendering. When we applied our methodology to a graphics kernel in an asymmetric

topology, we obtained higher speedups and an optimal core count at 8 nm, with 8% dark silicon.
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(a) Parallelism (f actual at marker) (b) Power

Figure 2.7. Dark silicon bottleneck relaxation using CPU organization and dynamic topology at
8 nm with ITRS Scaling

(a) L2 size (CPU)
(b) Sensitivity studies of L2 size and memory bandwidth using

symmetric topology at 45 nm

Figure 2.8. Deriving the area/performance and power/performance Pareto frontiers

To understand whether parallelism or power is the primary source of dark silicon, we examine

our model results with power and parallelism levels alone varying in separate experiments as

shown in Figure 2.7 for the 8 nm node. First, we set power to be the only constraint, and vary the

level of parallelism in the PARSEC applications from 0.75 to 0.99, assuming programmer effort

can somehow realize this. As shown in figure 2.8, which normalizes speedup to a quad-core

Nehalem at 45 nm, we see performance improves only slowly as the parallelism level increases,

with most benchmarks reaching a speedup of about only 15 at 99% parallelism. The markers

show the level of parallelism in their current implementation. If power is the only constraint,

typical ITRS scaling speedups would still be limited to 15. With conservative scaling, this best-

case speedup is 6.3. We then see what happens if parallelism alone was the constraint by allowing
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the power budget to vary from 50 W to 500 W in Figure 2.8. Eight of twelve benchmarks show

no more than 10X speedup even with practically unlimited power, i.e. parallelism is the primary

contributor to dark silicon.

Only four benchmarks have sufficient parallelism to sustain Moore’s Law level speedup

even hypothetically, but dark silicon due to power limitations constrains what can be realized.

Our model allows us to do such studies and shows that only small benefits are possible from

such simple changes. We elaborate on two representative studies below. Figure 2.8 for L2

cache area shows the optimal speedup at 45 nm as the amount of a symmetric CPU’s chip area

devoted to L2 cache varies from 0% to 100%. In this study we ignore any increase in L2 cache

power or increase in L2 cache access latency. Across the PARSEC benchmarks, the optimal

percentage of chip devoted to cache varies from 20% to 50% depending on benchmark memory

access characteristics. Compared to a 30% cache area, using optimal cache area only improves

performance by at most 20% across all benchmarks. Figure 2.8 for Memory bandwidth illustrates

the sensitivity of PARSEC performance to the available memory bandwidth for symmetric

GPU multicores at 45 nm. As the memory bandwidth increases, the speedup improves as the

bandwidth can keep more threads fed with data; however, the increases are limited by power

and/or parallelism and in 10 out of 12 benchmarks speedups do not increase by more than 2

compared to the baseline, 200 GB/s.

Figure 2.9 below summarizes all the speedup projections in a single scatter plot. For every

benchmark at each technology node, eight possible configurations, (CPU, GPU) (symmetric,

asymmetric, dynamic, composed) are plotted. The solid curve indicates performance Moore’s

Law or doubling performance with every technology node. As depicted, due to the power and

parallelism limitations, a significant gap exists between what is achievable and what is expected

by Moore’s Law. Results for ITRS scaling are slightly better but not by much. With conservative

scaling a speedup gap of at least 22 exists at the 8 nm technology node compared to Moore’s

Law. Assuming ITRS scaling, the gap is at least 13 at 8 nm.
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(a) Conservative Scaling (b) ITRS Scaling

Figure 2.9. Speedup across process technology nodes over all organizations and topologies with
PARSEC benchmarks

2.2.4 Summary

For decades Dennard scaling projected faster and energy efficient transistors with each

technology node. However, with failure of Dennard scaling principle industry shifted towards

multicore path, which permitted performance scaling for parallel and multi tasked workloads.

But as the benefits of multicore scaling begin to end, a new driver of transistor utility must be

found. An essential question is how much more performance can be extracted from the multicore

path in the near future. This paper combined technology scaling models, performance models,

and empirical results from parallel workloads to answer that question and estimate the remaining

performance available from multicore scaling. Using PARSEC benchmarks and ITRS scaling

projections, this study predicts best-case average speedup of 7.9 times between now and 2024 at

8 nm. That result translates into a 16% annual performance gain, for highly parallel workloads

and if each benchmark has its ideal number and granularity of cores. However, we believe that

the ITRS projections are much too optimistic, especially in the challenging sub-22 nanometer

environment. The conservative model we use in this paper more closely tracks recent history.

Applying these conservative scaling projections, half of that ideal gain vanishes; the path to

8nm in 2018 results in a best-case average 3.7 speedup; approximately 14% per year for highly

parallel codes and optimal per-benchmark configurations. The returns will certainly be lower

in practice. Currently, the broader computing community is in consensus that we are in “the
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multicore era.” Given the low performance returns assuming conservative scaling, adding more

cores will not provide sufficient benefit to justify continued process scaling. If multicore scaling

ceases to be the primary driver of performance gains at 16nm (in 2014) the “multicore era”

will have lasted a mere nine years, a short-lived attempt to defeat the inexorable consequences

of Dennard scaling’s failure. Clearly, architectures that move well past the Pareto-optimal

frontier of energy/performance of today’s designs will be necessary. Given the timeframe of

this problem and its scale, radical or even incremental ideas simply cannot be developed along

typical academic research and industry product cycles. On the other hand, left to the multicore

path, we may hit a “transistor utility economics” wall in as few as three to five years, at which

point Moore’s Law may end, creating massive disruptions in our industry. Hitting a wall from

one of these two directions appears inevitable. There is a silver lining for architects, however:

At that point, the onus will be on computer architects–and computer architects only–to deliver

performance and efficiency gains that can work across a wide range of problems. It promises to

be an exciting time.
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Chapter 3

Related Work

3.1 Introduction

The need for higher speed and efficiency in DNN execution has led to explosion of DNN

accelerators. The range of innovative AI hardware-accelerator architectures continues to ex-

pand.Over the past several years, both startups and established chip vendors have introduced

an impressive new generation of new hardware architectures optimized for machine learning,

deep learning, natural language processing, and other AI workloads. Today’s AI market has

no hardware mono culture equivalent to Intel’s x86 CPU, which once dominated the desktop

computing space. That’s because these new AI-accelerator chip architectures are being adapted

for highly specific roles in the burgeoning cloud-to-edge ecosystem, such as computer vision.

The myriad AI chipset architectures on the market reflect the diverse range of machine

learning, deep learning, natural language processing, and other AI workloads that range from

storage-intensive training to compute-intensive inference and involve varying degrees of device

autonomy and person-in-the-loop interactivity. To address the range of workloads that AI chipsets

are being used to support, vendors are mixing a wide range of technologies in their product

portfolios. In following sections we discuss how AI chips started and we discuss in details

the steps taken to enhance the computation as well as memory fetch capabilities of hardware

accelerator chips.
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3.2 Basic Design

3.2.1 Introduction

Architectures are evolving towards heterogeneous multi cores and realizing the best tradeoff

between efficiency and flexibility is important. However, with DNNs and CNNs proving to

be best across wide range of applications there is an opportunity to design accelerators with

significant scope and high performance and efficiency. Most of the work has been focused on the

computation part and memory transfers have been ignored, which might hinder the performance

throughput considering Amdahl’s law.This paper focuses on basic accelerator design for NN by

minimizing memory transfer and improving efficiency. [4].

3.2.2 Architecture

The most natural way to map a neural network onto silicon is to fully layout the neurons

and synapses. As shown in figure 3.1 hardware neuron performs the following operations:

multiplication of inputs and synapses, addition of all such multiplications, followed by a sigmoid.

Figure 3.1. Full hardware implementation
of neural networks

Figure 3.2. Accelerator

The neurons, synapses are implemented as logic circuits and latches or RAMs. This can be

done for small networks and energy reduction has been reported. The area, energy and delay

grow quadratically with the number of neurons. This full hardware layout is not realistic for
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large networks as there would be many layers. So, the principle was to timeshare the physical

neurons and use the on-chip RAM to store synapses and intermediate neurons values of hidden

layers. Large scale neural networks are implemented in a different way to accommodate for

change in scale as shown in figure 3.2.

The main components are input, output buffers for input/output neurons, third buffer for

synaptic weights connected to a computational block called neural functional unit and a control

logic. The architecture can be explained by dividing entire block into computation, storage and

control code. NFU is used to reflect the decomposition of a layer into computational blocks of

inputs/synapses and output neurons. The computation of each layer can be decomposed into 2

or 3 stages. For classifier, convolution we have multiplication of synapses and inputs followed

by addition and finally sigmoid or other nonlinear functions. For pooling it is average or max.

We can pipeline all 2 or 3 operations, but the pipeline must be staggered. the first or first two

stages operate as normal pipeline stages, but the third stage is only active after all additions have

been performed. Sigmoid function can be implemented using piece wise linear interpolation

f = ax+b. In terms of hardware, it corresponds to two 16x1 16-bit multiplexers for segment

boundary selection, one 16-bit multiplier (16-bit output) and one 16-bit adder to perform the

interpolation. The 16-segment coefficients (ai,bi) are stored in a small RAM and changing these

value changes the function implemented. 16-bit fixed-point arithmetic operators instead of word

size floating point operator is used as small size have almost no impact on accuracy. Also, the

arithmetic operators are truncated using a standard n-bit truncated multiplier.

The different storage structures of the accelerator can be construed as modified buffers of

scratchpads. While caches are good, they have access overheads like tag checks, associativity,

line size and cache conflicts. However, scratchpad in a dedicated accelerator realizes efficient

storage, and easy exploitation of locality because only a few algorithms must be manually

adapted. Storage is split into three structures: input, output and synapse buffers. The first benefit

of splitting is to tailor the SRAM to appropriate read and write widths. Significant energy penalty

is incurred while reading Nbin and NBout (Tn×2 bytes) from Tn×Tn×2 wide bank while doing
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vice versa would incur time penalty. So, splitting them would improve both time and energy.

Second, to avoid conflicts we need a larger associativity to speculatively read values parallelly for

faster access. However, this increases the energy costs so split storage with precise knowledge of

locality behavior allows to entirely remove data conflicts.

Each buffer is implemented using DMA to exploit spatial locality. DMA requests are issued

in the form of instructions and are decoupled from current requests using FIFO. We can preload

request to avoid long latencies if there is buffer space. The inputs of all layers are split into

chunks which fit in NBin, and they are reused by implementing NBin as a circular buffer. To

make memory fetches more efficient we introduce a mapping function in NBin which has the

effect of locally transposing loops ky, kx and loop i so that data is loaded along loop i, but it is

stored in NBin and thus sent to NFU along loops ky, kx first.

Partial sums are stored in dedicated buffer to avoid exit and reloading of them for each entry

of Nbin buffer. NBout is used as a temporary storage buffer for the partial sums while reusing

input neurons as NBout is idle as along as all the input neurons have not been integrated.

A layer execution is broken down into set of instructions. The instructions are stored in

SRAM associated with control processor which drives the execution of DMAs of three buffers

and NFU.

Table 3.1. Control instruction format

Every instruction has five slots CP, three buffers and NFU as shown in table 3.1. There are

mainly three type of instructions as shown in table 3.2. The first instruction is load, to fetch

data from memory. the next instruction is a read, because these input neurons are rotated in the

buffer for the next chunk of Tn neurons. As discussed output of NFU-2. For the first (and next)

instruction is NBout , i.e., the partial output neurons sums are rotated to NBout . Finally, when the
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Table 3.2. Subset of classifier/perceptron code (Ni = 8192, No = 256, Tn = 16, 64-entry buffers).

last chunk of input neurons is sent, the DMA of NBout is set for STORE.

3.2.3 Evaluation

The accelerator when evaluated performs 62X more 16-bit operations than a SIMD processor

as shown in figure 3.3. This could be because of preloading and reuse in Nbin and SB buffers.

The accelerator is slow for POOL layer due to the small size of input and output feature maps.

Also control and scheduling helped in preventing lost cycles by optimizing pipeline stages. The

use of 16 neurons with 16 synapses each makes the accelerator operates at 452 GOP/s. The area

and power are dominated by the buffers (NBin/NBout/SB) at respectively 56% and 60%, with

the NFU being a close second at 28% and 27%. The percentage of the total cell power is 59.47%,

but the routing network accounts for a significant share of the total power at 38.77%. At 65nm,

due to the high toggle rate of the accelerator, the leakage power is almost negligible at 1.73%.

Figure 3.3. Energy reduction of accelerator over SIMD.

We see more energy reduction for layers where computation is around 85%. However, for
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small reduction the layers are mostly due to memory access. By Amdahl’s law memory access

dominates the reduction in speed up achieved.

3.2.4 Summary

The focus was to design accelerator for larger scope Machine learning algorithms like

CNNs and DNNs. By carefully exploiting the locality properties of intermediate layers, and by

introducing storage structures custom designed to take advantage of these properties, we show

that it is possible to design a machine-learning accelerator capable of high performance in a very

small area footprint. Memory access is the major overhead, however speedup of 117.87X and an

energy reduction of 21.08X over a 128-bit 2GHz SIMD core with a normal cache hierarchy is

achieved.

3.3 Dataflow Organisation

3.3.1 Introduction

Although basic architecture discussed in previous section can leverage highly parallel com-

pute paradigms, throughput may not scale due to bandwidth requirement, and the energy con-

sumption remains high as data movement can be more expensive than computation. To achieve

energy efficiency, we need to develop dataflows that support parallel processing with minimal

data movement. The differences in data movement energy cost based on where the data is stored

also needs to be accounted for.In this section we discuss the taxonomy that classifies existing

CNN dataflows. Finally A novel dataflow called the Row Stationary, that maximizes energy

efficiency for CNN acceleration is proposed which exploits all types of data reuse and considers

energy cost of data movement at different levels of the storage hierarchy.[13]

3.3.2 Architecture

Spatial architectures are a class of accelerators that can exploit high compute parallelism

using direct communication between an array of processing engines (PEs). They support different
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algorithms which are mapped onto PEs using specialized dataflow and can leverage efficient data

sharing across. They support dataflows that exhibit producer consumer relation. SAs come in two

flavors: coarse-grained SAs that consist of tiled arrays of ALU-style PEs connected via on-chip

networks, and fine-grained SAs that are in the form of an FPGA. Coarse-grained SAs are popular

as first, the operations in a CNN layer are uniform and exhibit high parallelism, which can be

computed quite naturally with parallel ALU style PEs and Second, direct inter-PE communication

can be used very effectively for passing partial sums to achieve spatially distributed accumulation,

or sharing the same input data for parallel computation without incurring higher energy data

transfers.

Figure 3.4. Block diagram of a CNN accel-
erator system consisting of a spatial archi-
tecture accelerator and an off-chip DRAM.

Figure 3.5. Processing of an 1D convolu-
tion primitive in the PE. In this example,
R=3 and H=5.

The challenge in design lies in the exact mapping of the CNN dataflow to the SA since it

has a strong implication on the resulting throughput and energy efficiency. Figure 3.4 shows the

high-level block diagram of the accelerator system that is used in this paper for CNN processing.

It consists of a SA accelerator and off-chip DRAM. The inputs can be off-loaded from the CPU

or GPU to DRAM and processed by the accelerator. The outputs are then written back to DRAM

and further interpreted by the main processor. The SA accelerator is primarily composed of

a global buffer and an array of PEs. The DRAM, global buffer and PE array communicate

with each other through FIFOs. The global buffer can be used to exploit input data reuse and

hide DRAM access latency, or for the storage of intermediate data. The PEs are connected

via a network on chip, and the NoC design depends on the dataflow used. The PE includes an

ALU data path, which can do multiply-and-accumulate and addition, a register file as a local
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scratchpad, and a PE FIFO used to control the traffic going in and out of the ALU. Overall, the

system provides four levels of storage hierarchy for data accesses, including DRAM, global

buffer, inter-PE, and RF with different costs for each level.

3.3.3 Existing Dataflows

Based on data handling characteristics, a taxonomy of existing CNN dataflow is presented.

In weight stationary dataflow, each filter weight remains stationary in the RF to maximize

convolutional reuse and filter reuse. Once a weight is fetched from DRAM to the RF of a PE,

the PE runs through all NE2 operations that use the same filter weight. R×R weights from the

same filter are mapped to PEs and remain stationary while the pixels in an ifmap are broadcasted

sequentially. The psums generated by each PE are further accumulated spatially across these

PEs. The RF is used to store the stationary filter weights. Due to the operation scheduling that

maximally reuses stationary weights, psums are not always immediately reducible, and will be

temporarily stored to the global buffer. If the buffer is not large enough, the number of psums

that are generated together must be limited.

For, output stationary dataflow, the accumulation of each ofmap pixel stays stationary in a

PE. The psums are stored in the same RF for accumulation to minimize the psum accumulation

cost. This type of dataflow uses the space of the PE array to process a region of the 4D ofmap

at a time and regions are selected in two ways possible: multiple ofmap channels vs. single

ofmap channels, and multiple ofmap-plane pixels vs. single ofmap-plane pixels. This creates

three practical OS dataflow subcategories: SOC-MOP, MOC-MOP, and MOC-SOP. SOC-MOP

is used mainly for CONV layers and focuses on processing a single plane of ofmap at a time. It

further maximizes convolutional reuse in addition to psum accumulation. MOC-MOP processes

multiple ofmap planes with multiple pixels in the same plane at a time. By doing so, it tries

to further exploit both convolutional reuse and ifmap reuse. MOC-SOP is used mainly for FC

layers, since it processes multiple ofmap channels but with only one pixel in a channel at a time.

It focuses on further exploiting ifmap reuse.
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(a) SOC-MOP (b) MOC-MOP (c) MOC-SOP

Figure 3.6. Comparison of the three different OS dataflow variants. The red blocks depict the
ofmap region that the OS dataflow variants process at once.

The difference between the three OS dataflows is illustrated in Figure 3.6. All OS dataflows

use the RF for psum storage to achieve stationary accumulation. In addition, SOC-MOP and

MOC-MOP require additional RF storage for ifmap buffering to exploit convolutional reuse

within the PE array.

No Local Reuse (NLR) dataflow has two major characteristics: it does not exploit data reuse

at the RF level, and it uses inter-PE communication for ifmap reuse and psum accumulation. NLR

divides the PE array into groups of PEs. PEs within the same group read the same ifmap pixel

but with different filter weights from the same input channel. Different PE groups read ifmap

pixels and filter weights from different input channels. The generated psums are accumulated

across PE groups and do not need RF storage so there is lot of global memory to store psums.

3.3.4 Energy-Efficient Dataflow

It would be desirable if a dataflow could optimize for all types of data movement energy costs.

The Row stationary dataflow breaks the high-dimensional convolution down into 1D convolution

primitives that can run in parallel, each primitive operates on one row of filter weights and one

row of ifmap pixels and generates one row of psums. Psums from different primitives are further

accumulated together to generate the ofmap pixels. The inputs to the 1D convolution come

from the storage hierarchy. Each primitive is mapped to one PE for processing; therefore, the

computation of each row pair stays stationary in the PE, which creates convolutional reuse of
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filter weights and ifmap pixels at the RF level. An example of this sliding window processing is

shown below in figure 3.5.

However, due to large size, the exact mapping of all primitives to the PE array is not simple

and will affect energy efficiency. The primitive mapping is separated into two steps: logical

mapping and physical mapping. The logical mapping first deploys the primitives into a logical

PE array, which has the same size as the number of 1D convolution primitives and is usually

much larger than the physical PE array. The physical mapping then folds the logical PE array, so

it fits into the physical PE array. Folding implies serializing the computation and is determined

by the amount of on-chip storage. The two mapping steps happen statically prior to runtime, so

no on-line computation is required.

(a) rows of filter weight are reused across PEs
horizontally.

(b) rows of ifmap pixel are reused across PEs
diagonally.

(c) rows of psum are accumulated across PEs
vertically.

Figure 3.7. The dataflow in a logical PE set to process a 2D convolution. In this example, R= 3
and H= 5.

Each 1D primitive is first mapped to one logical PE in the logical PE array. Since there is

considerable spatial locality between the PEs that compute a 2D convolution in the logical PE

array, we group them together as a logical PE set. Figure 3.7 shows a logical PE set, where

each filter row and ifmap row are horizontally and diagonally reused, respectively, and each row

of psums is vertically accumulated. Since the number of 2D convolutions in a CONV layer is

equal to the product of number of ifmap/filter channels, number of filters and fmap batch size,

the logical PE array requires N×M×C logical PE sets to complete the processing of an entire

CONV layer. Folding means mapping and then running multiple 1D convolution primitives

from different logical PEs on the same physical PE. In the RS dataflow, folding is done at the
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granularity of logical PE sets for two reasons. First, it preserves intra-set convolutional reuse

and psum accumulation at the array level as shown. Second, there exists more data reuse and

psum accumulation opportunities across the N×M×C sets. Folding multiple logical PEs from

the same position of different sets onto a single physical PE exploits input data reuse and psum

accumulation at the RF level. Mapping multiple sets spatially across the physical PE array also

exploits those opportunities at the array level. The amount of logical PE mapping depends on

the size of RF and PE array and becomes an optimization problem to determine the best folding.

After the first phase of folding as discussed above, the physical PE array can process a few logical

PE sets, called a processing pass. However, a second phase of folding which is at the granularity

of the processing passes is needed which is again determined by the global buffer size. The

Figure 3.8. data movement of row stationary dataflow

figure 3.8 depicts the working of Row stationary dataflow. The initial abc from filter are placed

in the register file. The activations from input Fmap are sent in sequentially to the reg file. The

computations are performed, and the partial sums are accumulated one at a time. The entire row

of filter will be removed only after all the activations are parsed. The activations are also moved

one pixel saving energy cost due to data movement. To maximize energy efficiency, the RS

dataflow is built to optimize all types of data movement by maximizing the usage of the storage

hierarchy, starting from the low-cost RF to the higher-cost array and global buffer. The way each

level handles data is described as follows. By running multiple 1D convolution primitives in a PE

after the first phase folding, the RF is used to exploit all types of data movements. Specifically,

there are convolutional reuse within the computation of each primitive, filter reuse and ifmap

reuse due to input data sharing between folded primitives, and psum accumulation within each

primitive and across primitives. For inter-PE communication Convolutional reuse exists within
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each set and is completely exhausted up to this level. Filter reuse and ifmap reuse can be achieved

by having multiple sets mapped spatially across the physical PE array. Psum accumulation is

done within each set as well as across sets that are mapped spatially. Depending on its size, the

global buffer is used to exploit the rest of filter reuse, ifmap reuse and psum accumulation that

remain from the RF and array levels after the second phase folding. While the RS dataflow is

designed for the processing of high-dimensional convolutions in the CONV layers, it can also

support two other layer types naturally: The computation of FC layers is the same as CONV

layers, but without convolutional data reuse. By swapping the MAC computation with a MAX

comparison function in the ALU of each PE, the RS dataflow can also process POOL layers.

3.3.5 Evaluation

Different dataflows were compared using same number of PEs constraining the area. The

baseline storage for a given number of PEs is given by

PE×Area(512BRF)+Area(PE×512B) global buffer (3.1)

This baseline storage area is then used to calculate the size of the global buffer and RF in

bytes for each dataflow. Following figure 3.9shows the data movement in both directions for all

levels of hierarchy.

Figure 3.9. Energy cost for activation reuse Figure 3.10. Energy cost for psum reuse
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The energy cost for retrieving data from different levels is DRAM: 200, global buffer: 6,

inter array: 2 and rf : 1. The energy of dataflow is formulated in two parts, input data access

energy cost including filters, ifmaps and psum accumulation energy cost. If input value is used,

it is brought from DRAM to RF once and reused many times. However, due to limited storage

and operation scheduling the values are kicked out from the RF. So, we need to fetch from

higher levels. Following this pattern as shown in figure 3.9 data reuse can be split across 4 levels.

Suppose the total number of reuses for data is a×b× c×d, the energy cost is

a∗EC(DRAM)+ab∗EC(global buffer)+abc∗EC(array)+abcd ∗EC(r f ) (3.2)

Similarly as shown in figure 3.10, for psums, due to the overall operation scheduling, they must

be stored to a higher-cost level and read back again afterwards. The energy cost is given by

2a−1∗EC(DRAM)+2a∗b−1∗EC(global buffer)+ab∗ c−1∗EC(array)+2abc∗ (d−1)∗EC(r f ) (3.3)

Figure 3.11. Normalized energy and DRAM access

Energy consumption of convolutional layers is dominated by RF access, showing that RS

exploits different types of data movement in local RF minimizing access to storage levels of

higher costs. While DRAM accesses dominate the energy consumption of FC layers due to the

lack of convolutional data reuse. DRAM access has impact on overall energy usage. The writes

are same as accelerator writes ofmaps. While RS, OSA, OSB and NLR have lower DRAM

accesses than WS and OSC, as the former have more data reuse. RS has less on-chip storage
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compared to others showing that co design of architecture and dataflow is important. Overall,

RS is 1.4 to 2.5 more energy efficient than other dataflows. Although OSA, OSB and NLR have

similar or even lower DRAM accesses compared with RS, RS still consumes lower total energy

by fully exploiting the lowest-cost data movement at the RF for all data types. NLR does not

use the RF at all. Most of its data accesses come from the global buffer, which results in high

energy as shown in figure 3.11. RS is the only dataflow that optimizes energy for all data types

simultaneously.

Figure 3.12. Energy delay product

Energy-delay product is used to verify that a dataflow does not achieve high energy efficiency

by sacrificing processing parallelism. The delay is calculated as the reciprocal of number of

active PEs. A dataflow may not utilize all available PEs due to the shape quantization effects and

mapping constraints. RS has the lowest EDP since its mapping of 1D convolution primitives

efficiently utilizes available PEs. The RS dataflow as shown in figure 3.12 is at least 1.3 more

energy efficient than other dataflows at a batch size of 16 and can be up to 2.8 more energy

efficient at a batch size of 256. Although throughput increases by more than 10 by increasing

the number of PEs, the energy cost only increases by 13%. As a larger PE array also creates

more data reuse opportunities. However, the trade-off between throughput and energy is not

monotonic. The energy cost becomes higher when the PE array size is too small due to less reuse

in the PE array and further increasing the global buffer does not contribute much to data reuse.
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3.3.6 Summary

The energy costs of different CNN dataflow on spatial architectures are presented. Row

Stationary is presented that minimizes energy consumption by maximizing input data reuse and

minimizing partial sum accumulation cost simultaneously, and by accounting for the energy

cost of different storage levels. Compared with existing dataflows such as the output stationary,

weight stationary, and no local reuse dataflows, the RS dataflow is 1.4 to 2.5 more energy efficient

in convolutional layers, and at least 1.3 more energy efficient in fully-connected layers for batch

sizes of at least 16. Also, DRAM access alone wont dictate energy efficiency, dataflow to global

buffer also impacts energy. For all dataflows, increasing the size of the PE array helps to improve

the processing throughput at similar or better energy efficiency. Larger batch sizes also result in

better energy efficiency in all dataflows except for WS, which suffers from insufficient global

buffer size. Finally, for the RS dataflow, the area allocation between processing and storage has

a limited effect on energy-efficiency, since more PEs allow for better data reuse, which balances

out the effect of less on-chip storage.

3.4 Instruction Set Architecture

3.4.1 Introduction

In general accelerators adopt high level and informative instructions that directly specify

the high-level functional block instead of low-level computational operations. However, they

can be fully optimized for each instruction. Although its easy to implement for a small set of

similar NN techniques, design complexity and the overhead of the instruction decoder for such

accelerators will become large as the need of flexible support for a variety of NN results in a

significant expansion of instruction set. Consequently, such designs support only a small subset

of NN sharing very similar computational patterns and data locality but is incapable of handling

the significant diversities[25]. As a result, the ISA design is still a fundamental yet unresolved

challenge that greatly limits both flexibility and efficiency of existing NN accelerators.
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In this section we try to understand how ISA can be designed for optimum performance.

Initially it decomposes the instructions describing the high-level functional blocks into shorter

instructions of low-level computational operations to allow the accelerator to have a broader

application scope. And these low-level operations can be assembled to new high-level functional

blocks. Also, the simple and short instructions can reduce the design complexity, power and area

used by the instruction decoder.

Cambricon is a load-store architecture whose instructions are all 64-bit and contains 64 32-

bit General-Purpose Registers (GPRs) for scalars, mainly for control and addressing purposes. To

support intensive, contiguous, variable-length accesses to vector/matrix data with negligible over-

head, it keeps data in on-chip scratchpad memory, which is visible to compilers. Implementation

of multiple ports in the on-chip memory is not needed as simultaneous accesses to different banks

decomposed with addresses’ low-order bits are enough to supporting NN techniques. Unlike

SIMD whose performance is restricted by the limited width of register file, Cambricon efficiently

supports larger and variable data width because the banks of on-chip scratchpad memory can

easily be made wider than the register file. There is negligible latency, power, and area overhead

with a versatile coverage of 10 different NN benchmarks.

3.4.2 Overview of the proposed ISA

To design an efficient ISA, we need to analyze NN techniques in terms of computational

power, memory access patterns. When accommodating these operations, data-level parallelism

enabled by vector/matrix instructions can be more efficient than instruction-level parallelism of

scalar instructions. a small yet representative set of vector/matrix instructions for existing NN

techniques should be customized instead of simply re-implementing vector/matrix operations

from an existing linear algebra library. Data access patterns for neural networks requires variable

length and using fixed width is not efficient. So, the vector register files are replaced with on

chip scratch pad memory, providing flexible width for each data access.

The Cambricon is a load store architecture which allows main memory to be accessed with
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Table 3.3. An overview to Cambricon instructions

Instruction Type Examples Operands
Control jump, conditional branch register(scalar value), immediate

Data transfer
Matrix matrix load/store/move register(matrix address/size, scalar value), immediate
Vector vector load/store/move register (vector address/size, scalar value), immediate
Scalar scalar load/store/move register(scalar value), immediate

Computational
Matrix

matrix multiply vector, vector multiply matrix, matrix
multiply scalar, outer product, matrix add matrix, matrix

subtract matrix
register(matrix/vector address/size, scalar value)

Vector

vector elementary arithmetics (add, subtract, multiply,
divide), vector transcendental functions(exponential,
logarithmic), dot product, random vector generator,

maximum/minimum of a vector

register (vector address/size, scalar value)

Scalar
scalar elementary arithmetics, scalar transcendental

functions register(scalar value), immediate

Logical
Vector

vector compare (grater than, equal), vector logical
operations(and, or, inverter),vector greater than merge register(vector address/size, scalar ), immediate

Scalar scalar compare, scalar logical operarion register(scalar), immediate

load/store instructions. It has 64 32-bit general purpose registers for using in register indirect

addressing of the on-chip scratchpad memory. The Cambricon as shown in table 3.3 contains

four types of instructions: computational, logical, control and data transfer instructions. The

instruction length is fixed for memory alignment and design simplicity.

(a) Jump instruction (b) Condition Branch (CB) instruction.

Figure 3.13. Jump instruction & Condition Branch (CB) instruction

Cambricon has two control instructions, jump and conditional branch as shown in figure 3.13.

The jump instruction specified the offset via immediate or GPR value which is accumulated

to the program counter. The conditional branch instruction specifies the predictor in addition

to offset and branch target (PC + offset) is determined by a comparison between predictor and

zero. Data transfer instructions support variable data size in order to flexibly support matrix and

vector computational/logic instructions. These instructions support variable size data movement

to/from main memory to on-chip scratchpads or scalar GPRs.

Figure 3.14. Vector Load (VLOAD) in-
struction.

Figure 3.15. Matrix Mult Vector (MMV)
instruction
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Above instruction in figure 3.14 implements vector LOAD instruction, which loads a vector

of size of V size from main memory to scratchpad. And source address in main memory is sum

of base address and offset saved in GPR. Cambricon keeps data in on-chip scratchpad memory,

which is visible to compiler. The vector/matrix operations are variable sized and only restriction

is that operands in the same instruction cannot exceed the capacity of scratchpad. If exceeded the

compiler will divide them into shorter instructions. The memory capacity for vector instructions

is 64KB and for matrix instruction is 768KB.

NNs can be naturally decomposed into scalar, vector, and matrix operations, and the ISA

design must effectively take advantages of the potential data-level parallelism and data locality.

Based on the existing NN techniques 6 matrix instructions are developed.

Figure 3.16. Typical operations in NNs.

The output of a neuron can be written as f(Wx+b). Where x and b are vectors of input neuron.

W is the weight matrix and f are the element wise version of activation function f. The critical

step of compute Wx is performed by Matrix-Mult-Vector(MMV) as shown in figure 3.16 where

Reg0 base scratchpad memory address of the vector output. Reg1 specifies the size of the vector

output, Reg2, Reg3, and Reg4 specify the base address of the matrix input, the base address of

the vector input, and the size of the vector input. The Wx is computed using dedicated MMV

instruction as shown in figure 3.15 instead of decomposing it as multiple vector dot products, as

it needs overhead for synchronization, concurrent read/write requests to same address to reuse

input vector x for different rows of M. MMV works for forward propagation and for backward

propagation we can use same instruction along with additional instruction to implement the
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matrix transpose which is costly. A new instruction Vector-Mult-Matrix instruction is used

directly for this purpose and has same fields with different opcode. While training weights are

incrementally updated using W =W +η(δW ) where eta is the learning rate and delta W is the

outer product of two vectors. Cambricon provides an Outer Product (OP) instruction, a Matrix-

Mult-Scalar (MMS) instruction, and a Matrix-Add-Matrix (MAM) instruction to collaboratively

perform the weight updating. Also, a Matrix-Subtract-Matrix (MSM) instruction is used to

update weights in Restricted Boltzmann Machine.

While Vector-Add-Vector VAV instructions is used for vector addition, it requires multiple

instructions to support the element-wise activation. In case of sigmoid function f (a) = ea/(1+

ea), the element wise activation is divided into three steps. Computation of the exponent eai in

vector a is done by Vector Exponential instruction VEXP. Constant 1 is added to all the elements

using Vector-Add-Scalar VAS instruction. Dividing eai by 1+ eai is done by Vector-Dic-Vector

VDV instruction. However, in order to implement other activation functions a series of vector

arithmetic instructions, such as Vector-Mult-Vector (VMV), Vector-Sub-Vector (VSV), and

Vector-Logarithm (VLOG), Random-Vector (RV) are provided. During the design of a hardware

accelerator, instructions related to different transcendental functions can be implemented using

same functional blocks.

(a) (b)

Figure 3.17. Max-pooling operation.

Max pooling as shown in figure 3.17 is supported with a Vector-Greater-Than-Merge (VGTM)

instruction shown in figure 3.18. VGTM assigns each output vector by comparing corresponding

50



elements of the input vector-0 and vector-1. In addition to the vector computational instruction,

Figure 3.18. Vector Greater Than Merge (VGTM) instruction.

Cambricon also provides Vector-Greater-than (VGT), Vector-Equal instruction (VE), Vector

AND/OR/NOT instructions (VAND/VOR/VNOT), scalar comparison, and scalar logical instruc-

tions to tackle branch conditions. 0.008% of arithmetic operations of NN cannot be supported by

matrix and vector instructions and needs scalar operations as mentioned in the table. Following

shows a code example for the implementation of NN components like the MLP feedforward

layer, pooling layer, and Boltzmann machine layer using Cambricon instructions. The code

density is significantly higher than X86 and MIPS.

3.4.3 A Prototype accelerator

Figure 3.19. A prototype accelerator based
on Cambricon.

Figure 3.20. Structure of matrix scratchpad
memory.

The accelerator in figure 3.19 has seven major instruction pipeline stages: fetching, decoding,

issuing, register reading, execution, writing back, and committing. We use scratchpad and

DMA as they fit the requirements of ISA. After the fetching and decoding stages, an instruction

is injected into an in-order issue queue. After successfully fetching the operands from the

scalar register file, an instruction will be sent to different units depending on the instruction

type. Control instructions and scalar computational/logical instructions will be sent to the
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scalar functional unit for direct execution. After writing back to the scalar register file, such an

instruction can be committed from the reorder buffer1 if it has become the oldest uncommitted

yet executed instruction.

Data transfer instructions, vector/matrix computational instructions, and vector logical in-

structions, which may access the L1 cache or scratchpad memories, will be sent to the Address

Generation Unit (AGU). These instructions must wait in an in-order memory queue to resolve

potential memory dependencies with earlier instructions. After that, load/store requests of scalar

data transfer instructions will be sent to the L1 cache, instructions for vectors, matrix will be

sent to the vector, matrix functional units.

After execution, the instructions can be retired from memory queue and committed from

the reorder buffer. The accelerator implements both vector and matrix functional units. The

vector unit contains adders, multipliers, and scratchpad memory. The matrix unit contains

multipliers and adders which are separated to avoid congestion and long-distance data movement.

Cambricon does not use vector register files but keeps data in on-chip scratchpad memories and

access data efficiently by using 3 DMAs. In addition, it has an IO DMA.

Scratchpad memory shown in figure 3.20 provides a single port for each bank but may need

to address up to four concurrent read/write requests. So, the memory is decomposed into four

banks according to addresses’ low-order two bits, connect them with four read/write ports via a

crossbar guaranteeing that no bank will be simultaneously accessed.

3.4.4 Evaluation

The ISA of DaDianNao contains four 512-bit VLIW instructions corresponding to fully

connected, convolution, pooling, and local response normalization. And supported MLP, CNN,

and RBN but fails to implement RNN, LSTM, AutoEncoder, Sparse AutoEncoder, BM, SOM

and HNN as they are no the aggregates of the 4 supported layers. In contrast, Cambricon defines

a total of 43 64-bit scalar/control/vector/matrix instructions and is sufficiently flexible to express

all 10 networks. Code densities can be compared when the platform supports a wide range of
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applications.

Figure 3.21. The reduction of code length
against GPU, x86-CPU, and MIPS-CPU.

Figure 3.22. The speedup of Cambricon-ACC
against x86-CPU, GPU, and DaDianNao.

On average as shown in figure 3.21, the code length of Cambricon is about 6.41x, 9.86x, and

13.38x shorter than GPU, x86, and MIPS, respectively. This is because the scalar operations

are aggregated into vector instructions and vector operations into matrix instructions reducing

code length. MLP has improved code density compared to CNN as aggregating scalar operations

into vector operations has a small gain on code density. On average, 38.0% are data transfer,

4.8% are control, 12.6% are matrix, 33.8% are vector, and 10.9% are scalar instructions. So,

vector/matrix instructions are critical for NN, and efficient implementations of these instruction

improves performance of Cambricon based accelerators.

On average as shown in figure 3.22, Cambricon ACC is about 91.72x and 3.09x faster than of

x86-CPU and GPU as it integrates dedicated functional units and scratchpad memory optimized

for NN techniques. However, in comparison to DaDianNao, Cambricon is only 4.5% slower.

This is because high level functions when broken down to lower level computation instructions

brings in additional pipeline bubbles between instructions. But with high code density the

amount of bubbles is minimal and incurs small loss. GPU consumes more energy as it spends

excessive hardware resources to flexibly support various workloads. And Cambricon consumes

slightly more than DaDianNao to accommodate the instruction pipeline logic, memory queue, as

well as the vector transcendental functional unit. The overall area of Cambricon-ACC is 56.24

mm2, which is about 1.6% larger than of DaDianNao.
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3.4.5 Summary

Cambricon, a novel NN accelerator ISA to flexibly support a broad range of NN techniques

was developed. Code density of Cambricon is significantly higher than that of x86 and MIPS and

has area of 56.24 mm2 and power consumption of 1.695W. Cambricon, this prototype accelerator

can accommodate all ten benchmark NNs, while the state-of-the-art NN accelerator, DaDianNao,

can only support 3 of them with negligible performance degradation.

3.5 Interconnects

3.5.1 Introduction

To solve the issue of energy dependency accelerators are mainly designed to be spatial in

nature with interconnected processing elements to provide parallelism. The internal dataflow

between the PEs is optimized to reuse parameters that are shared by multiple neurons. This

reduces the number of memory accesses, [21] thereby providing energy efficiency. The PEs are

fed new parameters from an on-chip global buffer as shown in figure 3.23.

Figure 3.23. NoC is generated between the global buffer and the PEs using novel latency, area,
and energy-efficient microswitches.

The microarchitecture of PE and nature of dataflow between PEs and global buffer – PEs is

actively studied, however, implementation of the network-on-chip (NoC) interconnecting the PEs

to each other and to the global buffer becomes a bottleneck as the compute of PE is improved. In
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a spatial NN accelerator, the NoC plays a key role, in realizing high throughput. This is because

most spatial accelerators operate in a dataflow style: a PE operation is triggered by data arrival,

and the PE stalls if the next data to be processed is unavailable due to memory or NoC delay.

Almost all NN accelerators have used specialized buses, or mesh based NoCs, or crossbars,

without a clear trade-off study on why one was picked over the other. A new NoC design

paradigm for NN accelerators is designed using an array of reconfigurable micro-switches.

3.5.2 Overview

Most neural network accelerators employ processing elements which are primitive and

manage computation for one partial sum of NN. Each PE contains some scratch pad memory

and the compute logic. In addition to PEs there is also a larger on chip memory present in the

accelerator, which we will refer to as the global buffer (GB). There are mainly three kinds of

traffic flows in spatial accelerators: Scatter is data distribution from the GB to the PE array.

Scatters can either be unicast or multicast, depending on the dataflow and the mapping of

compute on PEs. Gather is the traffic flow which occurs when multiple PEs send data to the

GB at a given interval of time. Gather can either occur at the end of the computation, or in

the middle of the computation due to insufficient number of PEs. Local refers to the inter-PE

communication traffic. It could be in the form of unicasts, multicasts or reductions. Figure 3.24

Figure 3.24. Compute vs.Communication of each Alexnet layer [14] across different CNN
implementations: WS, RS, and OS.

shows the total number of computations and communication flows within the layers of AlexNet.

The raw compute to communication ratio across dataflows, demonstrates that communication

is critical in spatial CNN accelerators to get full throughput. A delay in communication would

essentially lead to a stall as PEs are tiny and are incapable of exploiting ILP/TLP mechanisms
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for hiding delays. For all designs, scatter bandwidth is extremely crucial. For WS architectures,

the bandwidth required by gathers is significant. As the number of PEs increases, so does the

bandwidth across all traffic flows. Compute is dependent on the communication in accelerators

and need interconnect to multiplex many neurons across finite PEs. The total traffic bandwidth

divided by the PE delay determines the network bandwidth requirement per cycle to sustain full

throughput, by Little’s Law and this needs to be supported by NoC.

Traditional NoCs such as buses, meshes, and crossbars are common across multicores today.

However, these NoCs add scalability challenges when used inside accelerators. Application spe-

cific NoCs generate NoCs in accordance with the application’s communication graph. However,

the traffic inside the accelerator is not static; it varies layer by layer and is dependent on the

mapping of the dataflow over PEs, and the input parameters as shown in figure 3.25.

Figure 3.25. Challenges with traditional NoCs for accelerators. (a) Latency of 64-PE WS CNN
accelerator with increasing PE delay (b) Area, and (c) Power

Performance of a mesh, and a multi-bus/multitree topology was compared against an “ideal”

NoC which is a single-cycle zero contention network. It is observed that for a 1-cycle PE, the

mesh and a single bus or tree is 10 slower than the ideal due to heavy contention at links near

the GB. As PE delay increases the overall delay increases in ideal. However, for mesh or single

bus/tree, the overall delay is almost constant showing that the NoC is the bottleneck. Traditional

scalable networks like mesh routers, consume significantly higher area than even the compute

PEs as routers in meshes are larger than a PE. Crossbars do not scale proportionately with number

of nodes. Buses and the custom tree are better in terms of area. Power follows similar trend. So,

meshes are not scalable solutions as NoCs inside accelerators as they get throughput limited

when handling scatters and gathers and routers consume much higher area and power than PEs.

Buses and trees are effective for an area and power, but they are non-configurable, limit the
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performance of accelerators across various domains.

3.5.3 Architecture

Accelerators achieve high throughput and energy efficiency in computation by distributing

through processing engines, exploiting parallelism. Similarly, high network throughput is

achieved by distributing communications to tiny microswitches. A microswitch consists of a

small combinational circuit and up to two FIFOs; in contrast to the building blocks of traditional

NoCs such as mesh routers that house buffers, a crossbar, arbiters, and control. The proposed NoC

generator aggregates multiple microswitches and connects them in our proposed topology to build

a light-weight interconnect, that can be plugged into NN accelerators. Multiple microswitches

can be traversed within a single-cycle, enabling single-cycle communication inside the NoC.

(a) Scatter (Unicast/Multicast) (b) Gather (c) Local (d) Entire Connectivity

Figure 3.26. The connectivity of microswitch network for scatter, gather and local traffic.Top,
middle, bottom switches shown by blue, gray and green colors

For a N PE design, we use a N log(N) microswitch array, as shown with log(N) levels, with

N micro switches each. The design handles 3 dataflows as shown in figure 3.26: For scatters, we

construct a tree structure in a microswitch array, with the root at one of the top switches, and the

leaves at the bottom switches simulating the functionality of a bus delivering data to multiple

destinations simultaneously within a cycle. It is implemented using two one-bit registers in

each branching switch and control signal propagation wires. For gather, each PE has dedicated

connections up to the top switches, via bypass links within the middle and bottom switches,

providing high bandwidth. For PE to PE local traffic flows, a bi-directional linear network is

designed using the bottom switches, as shown. This network allows single-cycle traversals

between any two PEs by controlling the microswitches. The bandwidth of the scatter and gather
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networks is limited by the number of IO ports at the GB. The required bandwidth depends not

just on the traffic, but also on the delay and context state in each PE, which comes as an input to

the microswitch NoC generator.

(a) Top Switch (b) Middle Switch (c) ) Bottom Switch

Figure 3.27. The microarchitecture of three microswitches.

The level of a microswitch is the number of layers between that microswitch and the global

buffer. Each level has different kind of microswitch as there are different traffic patterns as shown

in figure 3.27. Top switches manage the gather and scatter, from PE to global buffer and vice

versa and has scatter and gather units. The scatter unit passes incoming flits to the branching

nodes in the next level depending on the value of two one-bit control registers, determined by

destinations of traversing flits. The traversal is completely buffer less, with flits branching based

on unicast or multicast. The gather unit delivers incoming flits towards the global buffer I/O ports.

A round-robin arbiter is used inside this unit to select one of the three gather flits. There is a FIFO

after the arbiter to buffer the gather while it waits for arbitration at next micro switch. Middle

switches manage scatter and gather traffic. The scatter unit is the same as that in top switches

and the gather unit is just a wire that forwards incoming gather flits toward top switches. pipeline

latches are inserted to meet the operating clock frequency, managed by generator. NoC can

provide single-cycle traversals up to the top switches for most of NNs. Bottom switches, which

belong to the last level, manage scatter, gather, and local traffic. While scatter and gather units

are wires, the local unit consists of components like muxes, demuxes, FIFOs, and combinational
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logic that generates the control signals. Bottom switches increases linearly with the number of

PEs. Single-cycle multi-hop designs require extra control logic to manage conflicts dynamically.

Buffers are used at bottom switch if the destination PE is full, or the number of microswitches to

be traversed may be greater than MPCmax.

The network interface between a PE and a bottom switch inserts a one-hot encoded bit vector

that represents the number of remaining traversals. For scatters, the predetermined routing by

the micro switch control logic enables single cycle communication. For gathers, the route of all

flows is fixed. For local traffic, the NIC of source PEs inserts a one-hot bit vector representing

the number of microswitches to traverse until the destination. Different traffic uses different

flow-control strategies. For scatters, we employ a customized cycle-by-cycle circuit switching

technique done by the network controller. The global buffer performs a scatter only if all

destination PEs have at least one free buffer. For gather traffic, since the traffic passes through

unidirectional wires, no flow control is required here. Top switches need a flow control for

gathers, since an arbitration grant plus an empty FIFO slot in the next top switch is required before

a flit can be dequeued. For local traffic, it supports Static, where the bottom switches are preset

to enable multiple parallel circuit-switched connections between different PEs. In Dynamic, part

of or the entire set of local links can be arbitrated for and used like a bus. Microswitch network

has cycle-by-cycle reconfigurability which is controlled by one-bit control registers for muxes at

each microswitch, to enable single-cycle traversals.

(a) Scatter control signal generation (b) Scatter control signal mapping (c) Two modes of local traffic control logic

Figure 3.28. A scatter tree reconfiguration. (a) Control signal generation. (b) Control signal
mapping for a multicast scatter. (c) Local traffic control.

Gather network uses conventional flow-control and delivers flits in a pipelined manner. The
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reconfiguration for scatters is controlled by two one-bit control registers in each middle and top

switch that are branching nodes in the tree. The network controller converts destination bits of a

flit into control register values and sends them one cycle before the data flit traverses the scatter

tree as shown in figure 3.28 which are pipelined to insert flit every cycle.

The controller receives a destination bit vector from the global buffer, that is a valid destina-

tion, and generates a control signal containing the value of control registers in branch switches

of the scatter/ broadcast tree. The control signal logic is generated so that each branching switch

can send a flit toward a lower branch which has at least one valid destination. The control signal

is determined by examining two, four, and 2k consecutive bits in a destination bit vector for

the level log(N) – k. The logic checks if the destination bit vector is nonzero which results

the control signals for the last level. In the next step, the consecutive two-bits are checked for

nonzero values producing control signals for the next level. The logic repeats until the test bit

size covers the half of the destination bit vector. If the number of PEs is not a power of two,

zero padding is done for the invalid destinations. The local network partitions the set of local

links into single-cycle circuit-switched paths between any two PEs. Since the network controller

manages delivery of scatters, it also knows PE-PE communication, and accordingly tries to

provide neighbor-to-neighbor communication, in parallel. Bottom microswitch has 2-bits to

determine whether incoming flits need to be forwarded to the next microswitch. If stopped, the

values are read by the appropriate PE if the destination matches making it configurable.

The number of bits in the control plane used to configure each microswitch has a trade-off

with reconfiguration time, and multiple implementations can exist. In Dedicated, it uses 2.NlogN

wires, to enable cycle by cycle reconfiguration. As an energy optimization, controller only sends

bits to switches that need to update their configuration. In Ring an alternate design is used

for configuration of ring to carry a switch id and the 2-bit configuration. The controller sends

configurations for each switch in advance, assuming the delay of traversing the ring which is

possible since the dataflow is fixed after the mapping is complete.
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3.5.4 Evaluation

Mesh adds too much overhead in terms of area, and power, compared to the PE array. The

crossbar area and power are reasonable at 32-64 PEs, but it shoots up at large PE counts. The

mesh and crossbar consume 7.4X more power and 7.2X more area compared to the PE array

at 256 PEs. The bus, tree and micro switch array are the most scalable for area and power. On

average, the micro-switch array consumes 47.8% lower area and 39.2% lower power than all

baselines.

(a) Total latency of each accelerator (b) Throughput evaluation of different switches.

Figure 3.29. (a) Total latency of each accelerator and NoC combination for entire Alexnet. (b)
Throughput evaluation of various microswitches.

Figure 3.29 shows the total cost of running AlexNet for WS and RS configurations. Multi

scatter is dominant in WS traffic and bus, tree performs well with WS accelerators. However,

as RS accelerators involve local traffic, the micro-switch network performs the best because it

exploits the local traffic network between the bottom switches. Mesh performs the worst in every

case because it needs to serialize all the scatter traffic. The performance of the microswitch scatter

network scales linearly without saturating as it guarantees single-cycle traversal to multiple

destinations. The microswitch gather network saturates early due to heavy congestion at the

link going into the GB, however, wider links at the top switches to enhance throughput. The

micro-switch fabric provides the lowest runtime, a 49% savings on average across all NoCs, as it

eliminates the scatter or gather bandwidth bottlenecks present in other NoCs. Since a bus always

broadcasts flits to the PE array, it requires more energy for each flit. Worst case would be for

unicast where it has only one destination, but bus consumes energy for broadcast. As shown in
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figure 3.30, a greater number of PEs aggravate the energy inefficiency of bus. The second figure

shows that micro-switch NoC being the most efficient in terms of overall energy as it activates

only the required minimal links for each flit traversal, for both scatters and gathers. Depending

on the operating clock frequency, the number of bottom micro-switches a local traffic flit can

traverse within a cycle varies as shown in the figure. The MPCmax value affects the throughput

of local traffic network based on the source destination pattern. If an accelerator design requires

end-to-end local traffic, then the delay of such local traffic flits is the number of PEs divide by

MPCmax.

Figure 3.30. (a) Energy consumption for single flit traversal. (b) Total network energy using an
RS accelerator (c) MPCmaxoverclock f requencyvalues

3.5.5 Summary

A novel NoC design for neural network accelerators that consists of configurable light-weight

micro-switches is designed. The microswitch network is a scalable solution for all the four

aspects - latency, throughput, area, and energy - while traditional NoCs (bus/mesh/crossbar) only

achieve scalability for some of them. We also provide a reconfiguration methodology to enable

single-cycle paths over multiple micro-switches to support dynamism across neural network

layers, mapping methodologies and input sizes. While our evaluations focused on neural network

accelerators, we believe that the micro-switch fabric can be tuned for any accelerator built using

a spatial array of hundreds of PEs.

62



3.6 Bit Level Optimization

3.6.1 Introduction

Data movement is a critical part of accelerator design and should be kept low as possible.One

feature of DNNs is that the bitwidths can be reduced without the loss of accuracy. And the

bit widths for each layer varies and using a fixed bit width would produce limited benefit or

degradation. Bit Fusion architecture leverages this feature and introduces run time bit level fusion,

decomposition to achieve better performance. This bit level flexibility helps us to minimize the

computation at finest granularity possible with no loss of accuracy.

The number of bit level operations required for multiply and add is proportional to the

product of the operands bit width and scales linearly with addition operator. So, matching the

bit width of multiply and add units to reduce the bit width of DNN layer reduces the bit level

computations almost quadratically. The energy consumption for DNN acceleration is dominated

by on-chip and off-chip data access[32]. Bit fusion comes with encoding and memory access

logic that stores and retrieves values in the lowest required bandwidth. Finally, DNNs can work

with reduced bit width without the loss in accuracy.

3.6.2 Architecture

To minimize the computation, Bit fusion dynamically matches the architecture of the acceler-

ator to the bitwidth required for DNN which may vary layer to layer without loss of accuracy. It

is a collection of bit-level computational elements, called BitBricks, that dynamically compose

to logically construct Fused Processing Engines (Fused-PE) that execute DNN operations with

the required bitwidth.

Bit fusion arranges the bit bricks into physical groups called fusion units as shown in figure

3.31. Each bit brick can perform binary or ternary multiply or add operation. Bit bricks logically

fuse together at runtime to form fused processing engines. The bit bricks in a fusion unit multiply

a variable bitwidth input with weight to generate product and adds product to incoming partial
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(a) Fusion Unit with 16 BitBricks (b) 16x Parallelism (c) 4x Parallelism (d) No Parallelism,8-bits

Figure 3.31. Dynamic composition of BitBricks (BBs) in a Fusion Unit to construct Fused
Processing Engines (Fused-PE), shown as F-PE.

sum to produce an outgoing partial sum. In figure b each bit brick is logically divided into one

fusion PE offering highest parallelism possible. In figure c we have four units combines to form

one FPE and supports 8-bit input and 2-bit weights. The input bits can be varied by changing

the spatial arrangement. Finally, when all bit bricks are fused together there is no parallelism.

Dynamic composability of the fusion unit at bit level exposes max possible parallelism to match

the DNN operands.

DNNs offer parallelism and benefit from increasing number of fusion units. So, we must

minimize the overhead of control in the accelerator by maximizing the number of Fusion Units

and minimizing the overhead of dynamically constructing Fused-PEs. Energy consumption is

dominated by data access and it needs to be reduced.

Figure 3.32. Bit Fusion systolic architecture
comprising a collection of BitBricks (BBs)

that can fuse to form Fused-PEs.

Figure 3.33. Bit-Flexible matrix-vector multi-
plication.

The systolic organization reduces the overhead of control by sharing the control logic across

the entire systolic array as shown in figure 3.32. Systolic architecture fits the greatest number
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of bit bricks in the given area budget. Systolic organization improves sharing of input across

columns and accumulates partial results across rows to minimize access to on chip memory.

IBUF feed into rows parallelly and OBUF collects output , which is accumulated by each column

accumulator, eliminating need for local buffers. Each fusion unit is accompanied by one weight

buffer reducing on chip data access.

Depending on the number of Fused-PEs and their organization, the buffers must supply

different number of operands with various bitwidth. Data is augmented in registers which are

then infused using a series of multiplexers. The benefits of this design are reduced access to

data array. As seen in the figure 3.33 an input vector of 4 × N 8-bit elements are multiplied by

4 × N ×M 2-bit elements. To accommodate this the 16-bit bricks in fusion unit are logically

composed to form four 8 × 2 fused PEs. Both input and weight buffer provide 32 bits per access.

In this case input values are shared, and weights are specific to fused PEs. By reducing the bit

widths of weight buffer, the parallelism is improved. Finally, the output is added to the incoming

partial sum to produce the output partial sum.

Microarchitecture

The key insight that enables bit level composability is a multiply operation between operands

with power of 2 bits can be decomposed into 2-bit multiplications which could be put through

shift and add to produce the actual result. So, based on the operand size the we have the number

of multipliers decomposed. This is how the smallest bitwidth of 2-bits is obtained. A single

Figure 3.34. A single BitBrick. (HA: Half Adder, FA:
Full Adder.)

Figure 3.35. Spatial fusion.
Operands ah are 2-bit
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bit brick takes two 2-bit operands and two corresponding signs bits as shown in figure 3.34.

According to sign bits the bit bricks extend the 2-bits to 3-bit signed multiplier to generate 6-bit

product. Thus, bit brick support both signed and unsigned numbers as input. The bit width for

the operand dictate how the results from the decomposed multiplication are left shifted before

adding. In the below figure 3.36 we have two 4-bit multiplications which are decomposed into

four 2-bit multiplication. After multiplication, these values are shifted based on operand bitwidth

to find the result.

(a) A 4-bit multiplication(610× 1110 = 6610)
(b) Decomposing the 4-bit multiplication to
four 2-bit multiplications.

(c) Mapping decomposed multiplication to
BitBricks(BBs).

Figure 3.36. Using BitBricks to execute 4-bit multiplications

Bit fusion can support up to 16-bit operands by first recursively breaking down the 16-bit

multiplication to 8-bit, 4-bit, and 2-bit multiplication which execute using bit bricks. For multi-

plication between 2n-bit operands we have figure , if it is for operands of different sizes, then we

have the second one.

A2n = 2n× (A2n)hi +20× (A2n)lo

B2n = 2n× (B2n)hi +20× (B2n)lo

A2n×B2n = 22n× (A2n)hi× (B2n)hi +2n× (A2n)hi× (B2n)lo +2n×

(A2n)lo× (B2n)hi4+20× (A2n)lo× (B2n)lo

A2n×Bn = 2n× (A2n)hi×Bn +20× (A2n)lo×Bn

(3.4)

Each level of recursion, from 16-bits to 8-bits, 8-bits to 4-bits, and 4-bits to 2-bits, requires
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additional shift-add logic. The overhead from the shift-add logic represents the hardware cost of

bit-level flexibility. In fusion microarchitecture, the decomposed products generated by multiple

bricks over a cycle are combined spatially. In temporal design, multiplication follows three steps

2-bit multiplication, shifting and accumulation. Even though this takes less hardware with the

shifter and accumulator size depends on the higher bit width supported and limits the benefit.

Spatial fusion in figure 3.35 follows the same steps; however, it improves upon the temporal

design by using a shift-add tree and a single shared accumulator to reduce the number of gates

required. Spatial multiplier uses more area than temporal but delivers more performance and

the performance per area is more. Using spatial would improves bit bricks per area but the data

access to SRAM buffers increases the area. So, a tradeoff is made to use both.

To leverage bit level flexibility a new hardware software interface is needed. To avoid the

overhead of fine-grained control over operations at such a scale, the abstraction needs to amortize

the cost of bit level fusion across blocks of instruction that implement the layer. Table 3.4 shows

the different instructions available. The address is calculated in the following way

address = base+∑
id
(loop iterator[id]× stride[id]) (3.5)

The ISA is made flexible to enable layer specific optimizations.

Table 3.4. Bit Fusion Instruction Set
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3.6.3 Evaluation

On average, Bit Fusion delivers 3.9 speedup since the Bit Fusion architecture can perform

more DNN operations with lower bitwidth in each area compared to Eyeriss. The CNN bench-

marks see higher performance gains compared to recurrent networks as convolution operations

are more amenable for data reuse in systolic architecture of bit fusion. Architectures which can

be computed using smallest bit width and operations that provide a large degree of parallelism

exploit the increased number of fused PEs.

Figure 3.37. Energy breakdown of Bit Fusion and Eyeriss

Both architectures consume more than 80% of energy for on chip and off chip memory

access. The bit level flexibility allows buffers to hold more data on chip reducing the number of

off chip access. Since it enforces explicit data sharing for inputs and partial results and saves

on register file access but requires more SRAM access. Both bit level flexibility and systolic

organization of bit bricks in the bit fusion architecture reduced energy by 5.1X.

Depending on DNN topology as shown in figure 3.37, the impact of off chip bandwidth

on performance varies. When bandwidth is 4X bit fusion provides 1.6X speedup and 60%

degradation for 0.25X bandwidth. Batching amortizes the cost of weight reads by sharing

weights across a batch of inputs. While GPUs can benefit from using as low as 8-bits, Bit Fusion

can extract performance benefits for as low as 2-bit operations. It uses 16X speed up over TX2.

On average bit fusion provides 2.6X speedup over stripes as stripes uses bit-serial computations

to support variable bit widths just for DNN weights. Owing to this bit reduction energy is also

reduced by 3.9X.
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3.6.4 Summary

Deep neural networks use abundant computation but can withstand very low bitwidth opera-

tions without any loss in accuracy. Leveraging this property of DNNs, we develop Bit Fusion, a

bit-level dynamically composable architecture, for their efficient acceleration. ISA was intro-

duced to enable the software to utilize this bit level fusion capability to maximize the parallelism

in computations and minimize the data transfer in the finest granularity possible. Bit Fusion

achieves significant speedup and energy benefits compared to state-of-the-art accelerators.

3.7 Compressed Sparse Networks

3.7.1 Introduction

In general, common networks have significant redundancy and can be pruned dramatically

during training without substantively affecting accuracy. There could be many weights that can

be eliminated which varies from 20% to 80%. Eliminating weights results in a network with a

substantial number of zero values, which can potentially reduce the computational requirements

of inference[29]. There are further optimization opportunities. The nonlinear function converts

negative numbers to zero and this output comes by multiplying activations with weights. This

contribute to around 50-70% of activations and reducing this computation would improve

performance. Additional benefits can be achieved by a compressed encoding for zero weights

and activations, thus allowing more to fit in on-chip RAM and eliminating energy-costly DRAM

accesses.

In this section we see how to exploit both weight and activation sparsity to improve the

performance and power of DNNs. They only transfer data that can be multiplied and to reduce

data access input stationary fashion reuse if done. To improve performance PE are run in

parallel. The compression and tiling of the CNN data enables two energy-saving optimizations.

Weight, activations are maintained in compressed form reducing energy-hungry data staging and

transmission cost.
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3.7.2 Dataflow

While the inner core of the dataflow in SCNN is based on spatial cartesian product, the

complete data flow needs deep nested loop structure, mapped both spatially and temporally

across multiple PE called planar tiled Input stationary cartesian product sparse. A CNNs dataflow

defines how loops are ordered, partitioned and parallelized. PT-IS-CP sparse dataflow is selected

because it enables reuse patterns that exploit the characteristics of sparse weights and activations.

There are different components to the dataflow, the IS term in PT-IS-CP describes the

temporal part of the dataflow. The single multiplier temporal dataflow employs an input stationary

computation order. This maximizes reuse of input while paying cost to stream the weights to

the computation units. PT-IS-CP dataflow requires input buffers for weights and activations

and accumulator buffer to store partial sums. In this dataflow we must perform read-add-write

operation for every access, so we need an accumulator buffer along with attached adder called as

an accumulation unit. The stationarity of input activations comes at the cost of more streaming

accesses to the weights and to the partial sums in the accumulator buffer. Blocking the weights

in the output channel improves efficiency, therefore we divide the output channels into groups

inside the weight and accumulation buffers. Each iteration of this outer loop will require the

weight buffer to be refilled and the accumulator buffer to be drained and cleared, while the

contents of the input buffer will be fully reused because the same input activations are used

across all output channels.

The CP term describes how parallelism of many multipliers within a PE can be exploited

while maximizing spatial reuse. The intra PE parallelism fetches a vector of F filter and I inputs

from the buffers and delivered to multipliers to compute cartesian product of partial sums. This

allows for proper reuse of inputs. Each multiplier output is accumulated with a partial sum at the

matching output coordinates in the output activation space. The final adder should have similar

width as multiplier to match throughput.

Finally, the PT term in PT-IS-CP-dense describes how to scale beyond the practical limits of
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multiplier count and buffer sizes within a PE. Spatial tiling strategy is used to spread the work

across all the PE. Unfortunately, strict partitioning both inputs and outputs does not work because

of the sliding window nature of convolution operation introduces cross tile dependency at tile

edge. These data halos are resolved in the following ways. In input halos the input buffers are

sized slightly larger to accommodate halos. These halo input values are replicated across adjacent

PEs, but outputs are strictly private to PE. The accumulation buffers at each PE are sized to be

slightly larger and the halos now contain incomplete partial sums that must be communicated to

neighbor PEs for accumulation.

The PT-IS-CP dataflow discussed till now is dense dataflow, the sparse version of this

exploit’s sparsity in weights and activations. The key feature is that decoding a sparse format

ultimately yields a non-zero data value and an index indicating the coordinates of the value in

the weight or input activation matrices. At each access the buffer delivers a vector of input and

weights along with each of their coordinates within the region. The multiplier array computes

in similar fashion, however, unlike dense architecture output coordinates are not derived from

loop indices in a state machine but from the coordinates of non-zero values embedded in the

compressed format. Also, the monolithic accumulation buffer is converted into a distributed array

of smaller accumulation buffers and can be implemented using crossbar. The scatter network

routes array of partial sums to an array of accumulator banks based on output index. Finally,

when computation is done the accumulator buffer is drained and compressed into output buffer.

3.7.3 Architecture

As the convolution layers typically dominate both arithmetic and computation time, the

SCNN architecture is optimized for efficiency on these layers.

A full architecture consists of multiple PEs connected via simple interconnect as shown in

figure 3.38. The PE are connected to neighbors to exchange halo values during processing. The

PE array is driven by a layer sequencer that controls the movement of inputs and is connected to

DRAM controller to broadcasts weights through a arbitrated bus.
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Figure 3.38. Complete SCNN architecture Figure 3.39. SCNN PE employing the PT-IS-
CP-sparse dataflow.

To process the first CNN layer, the layer sequencer streams a portion of the input image into

the IARAM of each PE and broadcast the compressed sparse weights into weight buffers. Once

all layers are completed sparse-compressed output activation is distributed across the OARAMs

of the PEs. The OARAM and IARAM are logically swapped between layers. Each PE state

machine operate on weights and activations in order defined by the dataflow as shown in figure

3.39. First vector F of compressed weights and I of activations are fetched from the buffer and

distributed across the multiplier array to compute the output partial sums. At the same time

indices are processed to compute the output coordinates in the dense output activation space.

The FXI products are delivered to an array of accumulator banks indexed by output array.

To reduce contention among products the bank size is larger than FXI. Each accumulator bank

includes adders and buffers are double buffered to simultaneously update input and output buffers.

When output channel group is complete post processing unit does the following. First, exchange

partial sums with neighbor PEs for halo regions at boundary of PE output. Apply the nonlinear

activations, pooling, and dropout functions and finally compress the output activations into the

compressed-sparse form and write them into the OARAM. image

The encoding includes a data vector consisting of non-zero values and an index vector that

includes the number of non-zero values followed by number of zeros before each value as

shown in figure 3.40. Unlike convolutional layers, fully connected layers are not reused across

multiple input activations. The CP approach does not align nonzero weights and activations that
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Figure 3.40. Weight compression.

must be multiplied, so the NXN SCNN multiplier operates at N multiplies per cycle (25% peak

throughput). Similar for weights, so some additional multiplexing hardware is required to move

nonzero weights into position. For large models’ activations to be saved to and restored from

DRAM. SCNN can temporally tile the activation space so that the collection of PEs operates on

a sub-volume of the activations at a time. This temporal tiling can be applied in addition to the

spatial tiling that SCNN already employs to partition the activation volume across the PEs.

3.7.4 Evaluation

Weight and activation are swept from 0 to 100% to observe the sensitivity to CNN sparsity.

At full density, SCNN only achieve about 79% of the performance of DCNN because SCNN

dataflow is susceptible to multiplier under utilization effects than DCNNs dot product flow. As

density starts to reduce SCNN outperforms DCNN achieving 24X perf at 10%. At full density

SCNN consumes 33% more energy due to the overheads of storing and maintaining the sparse

data structure as shown in figure 3.41. However, as we reduce, we start to see the SCNNs

outperforming.

(a) Performance (b) Energy

Figure 3.41. GoogLeNet performance and energy versus density.
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There is a performance gap between the actual and upper bound of SCNN. They suffer

from intra-PE fragmentation when layers do not have enough useful work to fully populate the

vectorized arithmetic units. Second, The PEs effectively perform an inter-PE synchronization

barrier at the boundaries of output-channel groups which can cause early-finishing PEs to idle

while waiting for laggards. The multipliers are under utilized especially in the last two layers as

input activation volume reduces with time.

Figure 3.42. Average multiplier array utiliza-
tion and fraction of time PEs are stalled on a
global barrier.

Figure 3.43. SCNN energy-efficiency com-
parison.

SCNN improves efficiency on an average by 2.3%, however it varies with the densities of

layers as shown in figure 3.42 and 3.43. But for few networks where there is 100% activation

density it poses a challenge where the overheads like crossbar and distributed accumulation

RAMs overshadow any benefit from fewer arithmetic operations. As discussed, both cross PE

global barriers and intra PE multiplier array fragmentation can degrade performance with former

being more critical. SCNN-Sparse A is slightly more energy-efficient because of the removal of

overheads (weight FIFO) to manage sparse weights. The input-stationary temporal loop around

the Cartesian product makes these architectures extremely effective at filtering IARAM accesses,

resulting in the IARAM consuming less than 1% of the total energy.

3.7.5 Summary

SCNN is used for inference in CNNs. It exploits sparsity in both weights and activations

using the sparse planar-tiled input-stationary Cartesian product (PT-IS-CP-sparse) dataflow

which helps to reuse weights and activations. Also, it allows for compressed representation for

74



both weights and activations which allows for reduced data movement and increased on die

storage capacity. For similar area SCNN beats energy optimized dense architecture when weights

and activation density is less than 85%. For SOTA networks SCNN achieves performance

improvement by factor of 2.7X and energy efficiency of 2.3X.

3.8 In Memory Computation

3.8.1 Introduction

Conventional computer systems adapt separate processing unit and data storage component.

As volume of data to process has increased, the data transfer to and for memory has become

critical performance bottle neck. Recent nonvolatile memory like ReRAM, STT-RAM, PCM

have ability to perform logic beyond data storage and this processing in memory offers a

promising solution for the memory wall issue. Among them ReRAM performs matrix-vector

multiplication in a crossbar structure, and this [6] can represent synapses in neural computation.

Many adopted large on chip memory to store synaptic weights. Although this reduces the

data transfer of synaptic weights, the movement of inputs and outputs is still a hindrance. So, a

new architecture PRIME “Processing in ReRAM based main memory” which uses the efficiency

of ReRAM and PIM techniques is proposed to perform computations in memory. A portion of

the memory array is reconfigured to serve as neural accelerator besides normal memory.

3.8.2 Overview

Resistive random-access memory stores values by changing cell resistances.

(a) Conceptual view of a ReRAM cell; (b) I-V curve of bipolar switching; (c) schematic view of a crossbar architecture.

Figure 3.44
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As shown in figure 3.44 by applying an external voltage on it the ReRAM cell can be switched

between High and low Resistance states which represent logic 1 and 0. From the IV graph, by

applying voltage we SET the value from 0 to 1 and RESET value from 1 to 0. ReRAM in cross

bar structure have high density and have read and write latency like DRAMs. Image 3.45 shows

a 2x2 NN implemented using crossbar. The input data ai is represented by analog input voltages

on the word lines. The synaptic weights wij is programmed into the cell conductance in the

crossbar array. Then the current flowing to the end of each bit line is viewed as the result of the

matrix-vector multiplication

b j = σ(∑
∀i

ai.wi, j) (3.6)

After sensing the current on each bit line, the neural networks adopt a nonlinear function

unit to complete the execution. ADC and DAC are needed for analog computing. PRIME is a

morphable ReRAM where a portion of the cross bars are enabled with NN computation function

called full function subarray. While applications are running the crossbar is used for computation

and when not in use the subarrays can be freed to provide extra memory capacity. Data transfer,

DRAM access in general consume 95% of the total energy in state of art architectures. By

implementing processing in memory, we take advantage of large internal bandwidth of main

memory and make the data movement minimal. Instead of adding logic to memory, PRIME

utilizes the memory arrays for computation making the area over head minimal.

3.8.3 Architecture

While most NN acceleration approaches require additional processing units, PRIME directly

uses ReRAM cells to perform computation without using PUs. To achieve this, PRIME partitions

a ReRAM bank into three regions memory sub array, full function sub array and buffer sub

arrays as shown in figure 3.46.

The mem sub arrays only have data storage capability. The FF subarrays have both computa-

tion and data storage capabilities, and they can operate in two modes. The FF subarrays have
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Figure 3.45. using a ReRAM crossbar array for
neural computation.

Figure 3.46. PRIME design.

both computation and data storage capabilities, and they can operate in two modes. In memory

mode, it works as conventional memory and in computation mode they execute NN computations.

The reconfiguration of FF subarrays is controlled by a PRIME controller. The buffer sub arrays

serve as data buffer for the FF subarrays. They are connected to the FF subarrays through private

data ports, so that buffer accesses do not consume the bandwidth of the Mem subarrays. For NN

computation the FF subarrays enjoy the high bandwidth of in-memory data movement, and can

work in parallel with CPU, with the help of the Buffer subarrays.

The design goal of FF subarray is to support both storage and computation with minimum

area overhead. First, we start by adding several components in decoders and drivers. we attach

multi-level voltage sources to the word lines to provide accurate input voltages determined by

control signals. Latch is used to control simultaneous feeding of input data. Second, to drive the

analog signals transferring on the word lines, we employ a separate current amplifier on each

word line. We need 2P in levels of input voltage. A mux is used to switch between memory

and compute mode. Also, we employ two crossbar arrays store positive and negative weights,

respectively, and allow them to share the same input port.

We need to modify the column multiplexers as shown in the figure 3.47. An analog subtraction

unit and a nonlinear threshold (sigmoid) unit are incorporated. In few cases like when a large

NN is mapped to multiple crossbar arrays, we bypass the sigmoid unit. In order to allow FF

subarrays to switch bit lines between memory and computation modes, we attach a multiplexer

to each bit line to control the switch. We only need to modify half of the column multiplexers
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(a) Wordline driver with multi-level voltage
sources

(b) column multiplexer with analog subtrac-
tion and sigmoid circuitry;

(c) connection between the FF and Buffer sub-
arrays;

(d) reconfigurable SA with counters for multi-level outputs, and added ReLU and 4-1 max
pooling function units; (e) PRIME controller

Figure 3.47. The PRIME architecture: functional blocks modified/added in PRIME

and after analog processing, the output current is sensed by local SA’s. In above figure 3.47,

NN computation requires Po bit (Po ≤ 8) precision reconfigurable SAs to offer much higher

precision than memory does. Next, we configure it with value between 1 and po bits, controlled

by counter and result is stored in output register. we then allow low precision ReRAM cells to

perform NN computation with a high-precision weight, using a precision control circuit that with

a register and an adder. Hardware unit for ReLU is supported, the circuit checks the sign bit and

outputs zero if negative and result itself otherwise.

We enable an FF subarray to access any physical location in a Buffer subarray to accommo-

date the random memory access pattern in NN computation. Extra decoders and multiplexers

are employed in buffer connection unit. In cases when output of one mat is input of other, we

bypass the buffer and use registers for intermediate data storage. We reuse SAs and write drivers

to serve ADC and DAC functions by slightly modifying the circuit design.

We must morph between two modes. In below figure 3.48 we have both computation mode(a)

and memory mode (b). The bold line depicts data flow in both the cases. In computation mode,

the FF subarray fetches the input data of the NN from the Buffer subarray into the latch of the

word line decoder and driver. After the computation in the crossbar arrays that store positive and

negative weights, their output signals are fed into the subtraction unit, and then the difference
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signal goes into the sigmoid unit. The analog output is converted to digital signal by the SA is

written back to the Buffer subarray.

In memory mode, the input comes from the read/write voltage selection, and the output

bypasses the subtraction and sigmoid units. Several steps are involved in morphing between

memory and compute phases. PRIME migrates the data stored in the FF subarrays to certain

allocated space in Mem subarrays, and then writes the synaptic weights to be used by computation

into the FF subarrays. Then peripheral circuits are reconfigured by the PRIME controller, and

the FF subarrays are switched to computation mode and can start to execute the mapped NNs.

After computation tasks, the FF subarrays are switched back to memory mode through a wrap-up

step that reconfigures the peripheral circuits.

(a) Computation mode; (b) memory mode

Figure 3.48. An example of the configurations of FF subarrays.

The Buffer sub arrays are used to cache the input and output data from FF subarrays. The FF

subarray can communicate with the buffer sub arrays directly without the involvement of CPU,

improving parallelism. These are configured close to memory sub array to reduce delay. To fetch

data for the FF subarrays, the data are first loaded from a Mem subarray to the global row buffer,

and then they are written from the row buffer to the Buffer subarray. These must be done to

avoid resource conflict i.e. global data line. when PRIME is accelerating NN computation, CPU

can still access the memory and work in parallel as communication between the Buffer subarray

and the FF subarrays is independent with the communication between the Mem subarray and the

globe row buffer.
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Prime controller decodes instructions and provides control signals to all the peripheral circuits

in the FF sub array and configures FF subarray in memory and computation modes. Precision of

input, output and synaptic weights effect our NN computation. 3-bit input and synaptic weight

precision are adequate to provide 99% accuracy indicating NN algorithms are robust to precision

bits. We use two 3-bit input signals to compose one 6-bit input signal and two 4-bit cells to

represent one 8-bit synaptic weight.

PRIME programming involves three stages programming, compiling and code execution. It

uses few APIs in programming stage like mapping the topology of NN to FF subarrays, program

synaptic weights into mats, configure the data path of FF subarrays, running computation and

post processing the results. The following figure 3.49 shows the high level workflow of in

memory computation using PRIME.

Figure 3.49. The software perspective of PRIME: from source code to execution

3.8.4 Evaluation

We compare PRIME with other counter parts. The benchmarks used have large NN and

require high memory bandwidth. So, we can see enough improvements with PIM. PIM has 9.1X

performance improvement compared to normal CPU as shown in figure 3.50. We see benefits

because it doesn’t have to map chips where data communication between banks is costly. Also,

the weights are already preprogrammed in the cells. Prime also reduced memory access time to

zero which means its access time is hidden by buffer arrays.

PIM architecture reduces memory access and saves energy. Further PRIME uses ReRAM

cells which reduces the energy even more. The total energy consumptions are divided into three

parts, computation energy, buffer energy, and memory energy. PRIME reduces energy for all
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Figure 3.50. The performance speedups (vs. CPU).

the parts. Large storage size of ReRAM cells saves cache and memory access. Also, larger

executions reduce buffer and memory access to temporary data. Given two FF subarrays and

one Buffer subarray per bank (64 subarrays in total), PRIME only incurs 5.76% area overhead.

The choice of the number of FF subarrays is a tradeoff between peak GOPS and area overhead.

There is 60% area increase to support computation: the added driver takes 23%, the subtraction

and sigmoid circuits take 29%, and the control, the multiplexer, and rest cost 8%.

3.8.5 Summary

PRIME substantially improves the performance and energy efficiency for neural network

(NN) applications, benefiting from both the PIM architecture and the efficiency of ReRAM-based

NN computation. They can either perform computation to accelerate NN applications or serve

as memory to provide a larger working memory space. With circuit reuse, PRIME incurs an

insignificant area overhead to the original ReRAM chips. The experimental results show that

PRIME can achieves a high speed up and significant energy saving for various NN applications.

3.9 Analog Computation

3.9.1 Introduction

Compared to digital circuits the energy efficiency of analog readout improves slowly with

smaller transistors. Even though most circuitry moves to digital, we need analog to bridge the

gap between physical world and digital realm. The main idea is to push the early processing to
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analog domain to reduce load on the analog readout. This is achieved by Red-Eye, an analog

convolutional image sensor for continuous mobile vision. Red-Eye discards raw data, exporting

features generated by processing a Conv-Net in the analog domain and hence saves energy.

Analog circuit face challenges with circuit design and porting to different technology node.

Also, its processing accumulates noise. Red eye provides mechanism to tune noise parameters

for efficiency. Red - Eye positions a convergence of analog circuit design, systems architecture,

and machine learning, which allows it to perform early operations in the image sensor’s analog

domain, moving toward continuous mobile vision at ultra-low power. Figure 3.51 shows the

transition that is done in this section to improve performance [24].

(a) Conventional sensor processing flow (b) RedEye sensor processing flow

Figure 3.51. Conventional sensor processing incurs significant workload on the analog readout,
early processing alleviates the quantization in the analog readout.

3.9.2 Overview

For image sensing, CMOS image sensors are used which consume hundreds of milliwatts.

Modern image sensors consist of pixel array, analog readout and digital logic. The pixel array

converts light into voltage signal, which are then modified by analog readout into digital values.

Digital logic maintains sensor operation, managing timing generation, frame scanner and drivers,

and data interface. Sensors have a column-based architecture where pixels in each column share

a dedicated circuitry. The column amplifiers sample and amplify signals to avoid noise, but

this consumes static and dynamic power. Digital optimizations like low power hardware for

data reduction, early discard or computational offloading do not affect analog readout, which

is the main reason for moving processing before analog readout. Analog computing is more
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efficient than digital computing. It uses single charge to represent a value reducing hardware

count. Proper tradeoffs between energy efficiency and signal fidelity are made in analog domain.

Maintaining state through capacitance C is susceptible to thermal noise. While raising C

V̄ 2
n = kT/C

E ∝ C ∝ 1/V̄ 2
n

(3.7)

Deters noise, the energy required to fill the memory cell rises proportionally. Analog pipeline

must be constructed in stages to facilitate configurability and maintainability which needs inter

stage buffers. Arithmetic in charge-based circuits requires an operational amplifier which has

thermal noise ∝ 1/c and energy ∝ C (3.8)

To readout we need significant energy. Successive approximation registers which trades

accuracy for energy is used. SAR uses capacitors to approximate analog signal into digital signal

which are the source of noise. Random errors in SAR are dominated by quantization noise.

With ADC resolution n increased by each bit, quantization noise amplitude diminishes in half.

However, increasing energy. Routing interconnects in analog is done via predefined routes to

avoid congestion and overlap. Design complexity limits the portability between nodes. Red

eye is designed to compute continuous mobile vision using CNN. Convolutional layer neurons

multiply a three-dimensional receptive field of inputs with a kernel of weights to generate an

output. A backpropagation process trains weights to alter the convolution operation. Other layers

include nonlinearity and max pooling.

3.9.3 Architecture

Red eye is an analog computational image sensor architecture that captures an image and

passes it to CNN while in analog domain while in analog domain as shown in figure 3.52. This

reduces workload of analog to digital quantization and post sensor digital host system.
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Figure 3.52. RedEye. The controller pro-
grams kernel weights,noise mechanisms, and
flow control into RedEye modules.Output is
stored in SRAM.

Figure 3.53. Convolutional column of the
RedEye modules. A column of pixels is pro-
cessed in a cyclic pipeline of convolutional
and max pooling operations.

Leveraging that vision applications does not need high fidelity we move processing to analog

domain. One challenge is that the noise gets accumulated which limits the number of stages,

however red eye exploits the parallelism in CNNs. The architecture avoids redundant data by

sending data through layers of processing modules as shown in figure 3.53, cyclically reusing

modules before analog readout. As modules process on the patches of pixels, the complexity

of interconnect is reduced by structuring the operation layers into a column-based topology.

This arranges the modules in each processing layer in a column pipeline giving each processing

module a physical proximity to input data. Red eye provides a conv net programming interface

to directly load the programs into the SRAM. Also, a programmable noise admission mechanism

is provided to tune for tradeoff between noise and energy saving.

The design exploits stackable structure of convnet to reuse red eye modules cyclically. Of

the 4 modules the convolution and max pooling modules perform the operation of neuron in

convnet layer. The storage module interfaces the captured or processed signal data with the

processing flow and the quantization module exports the digital representation of the Red Eye

Conv-Net result. The signal flow is controlled using synchronous digital clock. A set of control

flow mechanisms are used to route signals for conv net processing. For additional processing, the

cyclic flow control routes the output to storage module for intermediate storage. If not needed
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the bypass flow control of each module provides an alternative route to circumvent the module.

To promote data locality for kernel window operations, modules are organized in column

parallel design which mitigates the complexity of unbounded interconnect structures. Using a

clocked timestep we advance one row at a time allowing modules to work in parallel. In vertical

direction data is buffered as generated, and for horizontal access, red eye bridge interconnects

across horizontally proximate columns. This design pattern allows Red Eye to hierarchically

reuse hardware design, thus enabling scalability. The Conv net program consisting of layer

ordering layer dimensions, and convolutional kernel weights are loaded into SRAM. Then,

digitally clocked controller is used to load program from SRAM into cyclic signal flow, issuing

the specified kernel weights and noise parameters. Thus, a programmer should decide how

much is processed on the analog and digital side. Noise admission mechanism is used to trade

signal fidelity for energy efficiency. It uses the mechanisms to vary the capacitance of a damping

circuit in operation modules which is configured during run time. Quantization noise is scaled

by adjusting the ADC resolution of the analog readout.

A simulation framework is provided by taking in a developer’s partitioned Conv Net and

specified noise parameters. The structure of the framework maps to the sequential execution

of modules. Simulation modifies a convnet framework to analyze the effects of noise. Two

types of noise are injected into the processing flow. Gaussian noise layer models the noise

inflicted by data transaction and computational operations. Red Eye uses the SNR to parametrize

each Gaussian noise layer, allowing the developer to tune the noise in the simulation. The

Quantization Noise Layer represents error introduced at the circuit output by truncating to finite

ADC resolution. Red eye uses ADC resolution to tune the quantization noise layer introduced

as shown in figure 3.54 and 3.55. Convolution is performed in two steps. Kernel weights are

applied to signal values using tunable capacitors which are crucial for accuracy as shown in

figure. Variable ADC resolution trades bit depth for energy efficiency. Significance of bit bi is
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Figure 3.54. 8-input mixed-signal MAC. Tun-
able capacitors apply digital weights w[:] on
analog inputs ch[:]. φrst clears C f after each
kernel window is processed.

Figure 3.55. Tunable capacitor design. Digi-
tal weights w[:] control the input-side switches
φ [:] while sampling. C1 to C8 are identically
sized to C0.

defined by the weight of capacitor Ci w.r.t to total active capacitances of the n bit array.

wbi =
Ci

CΣ

=
2i−1C0

[∑n
k=1Ck]+C0

=
1

2n−i+1 (3.9)

3.9.4 Evaluation

Top-level elements of convolution, max pooling and quantization layers are composed of

sub-layer circuit modules, such as analog memory, MAC and ADC which are further dissected

into internal units such as tunable capacitors, op amps and comparators. The energy consumption

and noise contribution of each module is determined by set of noise, power and timing parameters.

Noise parameters represents the noise performance of the circuit which is simulated using sample

and hold circuit. For opamps we measure the output noise and refer it to input for consistency.

For ADC the noise is identical to quantization noise of ideal m bit ADC. Power consumptions

accounts for both static, bias current of opamps, leakage in digital circuits and dynamic power

for comparators, tunable capacitors, digital elements when they flip. From figure 3.56 we find

that Red Eye reduces analog sensor energy consumption by 84.5%. By pipelining Red Eye

with computations on the digital system, the Depth5 Red Eye can operate at up to 30 frames

per second (fps) consuming 170uj per frame. This noise reduction is achieved by through

noise admission. Redeye computation can be offloaded to server; however, energy consumption

is dominated by network transmission. But redeye reduces the output data transmission size

reducing energy by 74%.
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(a) Energy (b) Timing (c) Output size

Figure 3.56. Performance metrics of image sensor (IS) and 4-bit, 40 dB RedEye at different
depths. Energy on a log scale.

In the below graph 3.57 and 3.58 gaussian noise is introduced to reduce SNR. The accuracy

is 89% at low SNR limit of 40dB which could chosen for optimum efficiency.

Figure 3.57. Accuracy and Energy of ConvNet
processing vs. Gaussian SNR of GoogLeNet
running on RedEye at 4-bit quantization.

Figure 3.58. Accuracy and Energy of Quan-
tization vs. quantization SNR of GoogLeNet
running on RedEye at Gaussian SNR = 40 dB.

On other hand while scanning ADC resolution at a fixed gaussian noise of 40dB, we find

sizable accuracy trade off in the region of quantization scaling. With reduction in bits the

accuracy reduces, however, for 4-6 bits all produces similar accuracy. However, with change

in technology red eye faces challenges with technology scaling due to signal swing constraints,

short channel effects and so on. Stacked Red Eyes could be programmed with different tasks

to coexist on the same module and operate in parallel. Finally, conventional image processing

architecture could occupy a layer, allowing a device to acquire a full image through Red Eye’s

optical focal plane when needed.
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3.9.5 Summary

In this paper, we present the system and circuit designs of RedEye, moving ConvNet

processing into an image sensor’s analog domain to reduce analog readout and computational

burden. With a perframe sensor energy reduction of 84.5%, cloudlet system energy reduction

of 73%, and RedEye advances towards overcoming the energy-efficiency barrier to continuous

mobile vision. Red eye noise enables operation till 30 dB and below with increased energy

consumption. Processing such a ConvNet in the analog domain and discarding the raw image

would provide a strong privacy guarantee to the user. Designing for convnet in digital domain

has improved, however, we are trying to design for changes in analog domain which proves to

have a good scope.

3.10 Multi Chip Scalability

3.10.1 Introduction

Trend towards deeper networks, including compute and storage requirements motivate large-

scale compute capability in DNN hardware, which is currently addressed by a combination

of large monolithic chips and homogeneous multi-chip board designs. Multi-chip modules

packaging approach can be used which reduces cost by employing smaller chiplet connected

post-fabrication, as yield losses cause fabrication cost to grow super-linearly with die size. Recent

advances in package-level signaling offer the necessary high-speed, high-bandwidth signaling

needed for chiplet-based system. However, there are scalability issues due to the non-uniformity

between on-chip and on-package bandwidth and latency.

In this section we discuss Simba, a scalable deep-learning inference accelerator employing

multi-chip-module-based integration. Each of the Simba chiplets can be used as a standalone,

edge-scale inference accelerator, while multiple Simba chiplets can be packaged together to de-

liver data-center-scale compute throughput. This focuses on non-uniform latency and bandwidth

for on-chip and on-package communication that lead to significant latency variability across
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chiplets. In order to address this, a three tail-latency-aware, non-uniform tiling optimizations

targeted at improving locality and minimizing inter-chiplet communication is used. Simba is the

first work that highlights the challenge of mapping DNN layers to non-uniform, MCM-based

DNN accelerators and proposes communication-aware tiling strategies to address the challenge.

3.10.2 Architecture

Tile-based architectures have frequently been proposed for deep learning accelerator designs.

Design target is an accelerator scalable to data center inference. This is achieved by increasing

the number of tiles in a monolithic single chip. However, building a flat network with hundreds

of tiles would lead to high tile-to-tile communication latency. This is resolved by using a

hierarchical interconnect to efficiently connect different processing elements using a network on

chip and different chiplets on package using network-on-package.

Figure 3.59. Simba architecture from package to processing element (PE).

Figure 3.59 shows a Simba package consisting of a 6 × 6 array of Simba chiplets connected

via a mesh interconnect. Each Simba chiplet contains an array of PEs, a global PE, a NoP

router, and a controller, all connected by a chiplet-level interconnect. To enable the design of a

large-scale system, all communications are designed to be latency-insensitive and sent across the

interconnection network through the NoC/NoP routers. The microarchitecture of the Simba PE

includes a distributed weight buffer, an input buffer, parallel vector MAC units, an accumulation

buffer, and a post-processing unit.

The heart of the Simba PE is an array of parallel vector multiply-and-add (MAC) units that
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are optimized for efficiency and flexibility. It uses a weight-stationary dataflow where weights

remain in the vector MAC registers and are reused, while new inputs are read every cycle. To

provide flexible tiling options, the Simba PE also supports cross-PE reduction with configurable

producers and consumers. If current PE is the last PE on reduction chain, it sends partial sums

to its local post-processing unit that performs ReLU, truncation and scaling, pooling, and bias

addition. The final output activation is sent to the target Global PE for computation of the

next layer. The Global PE serves as second-level storage for data to be processed by the PEs.

The Global PE has a multicast manager that unicast data to one PE or multicast to multiple

PEs for flexible partitioning. DNNs feature some computation that has low data reuse, such as

elementwise multiply/add which can perform computations locally to reduce communication

overhead for these types of operations and is called as near memory computation.

Each Simba chiplet contains a RISC-V processor core for configuring and managing the

chiplet’s PEs and Global PE states via memory-mapped registers using an AXI-based communi-

cation protocol. Synchronization of chiplet control processors across the package is implemented

via memory-mapped interrupts. To efficiently execute different neural networks with diverse

layer dimensions, Simba supports flexible communication patterns across the NoC and NoP.

Both use a mesh topology with a hybrid wormhole flow control. Specifically, unicast packets

use wormhole flow control for large packet size, while multicast packets are cut through to

avoid wormhole deadlocks. Each Simba PE can unicast to any local or remote PE for cross-PE

partial-sum reduction, to any local or remote Global PE to transmit output activation values, and

to any local or remote chiplet controller to signal execution completion. A PE does not need to

send multicast packets as its computation requires only point-to-point communication. Also, a

Global PE can also send multicast packets to local and remote PEs for flexible data tiling.

Each Simba package as shown in figure 3.60 contains an array of 6×6 chiplets connected

using ground-referenced signaling (GRS) technology for intra-package communication. The top

and bottom rows of each chiplet include eight chipletto-chiplet GRS transceiver macros. Four

macros are configured as receivers and four as transmitters. Each transceiver macro has four data
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(a) Simba chiplet (b) Simba package

Figure 3.60. Simba silicon prototype

lanes and a clock lane with configurable speed. We chose GRS as our communication mechanism

because it delivers 3.5 higher bandwidth per unit area and lower energy per bit compared to other

MCM interconnects. The prototype chiplets were implemented using a globally asynchronous,

locally synchronous clocking methodology, allowing independent clock rates.

To map DNN layers onto the hierarchical tile-based architecture, we first use a state-of-the-art

DNN tiling strategy that uniformly partitions weights spatially, leveraging model parallelism.

As shown below each dimension of a DNN layer can be tiled temporally, spatially, or both at

each level of the system hierarchy: package, chiplet, PE, and vector MAC. The compilation

process starts with a mapper that is provided with data regarding available system resources

and the parameters of a given layer from the Caffe specification. The mapper determines which

PE will run each portion of the loop nest and in which buffers the activations and weights are

stored. A random search algorithm is used to sample the mapping space and use the energy and

performance models to select good mappings and placements. Finally, the flow generates the con-

figuration binaries for each chiplet that implement the execution created by the mapper and placer.

3.10.3 Evaluation

Simba provides many mapping options, highlighting the importance of strategies for effi-

ciently mapping DNNs to hardware. It demonstrates the highly variable behavior of different

layers. The degree of data reuse highly influences the efficiency; layers with high reuse factors,
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Hierarchical tile based structure
//Package level
for p3 = [0 : P3) :

for q3 = [0 : Q3) :
parallel for k3 = [0 : K3) :

parallel for c3 = [0 : C3) :
// Chiplet level
for p2 = [0 : P2) :

for q2 = [0 : Q2) :
parallel for k2 = [0 : K2) :

parallel for c2 = [0 : C2) :
// PE level
for r = [0 : R) :

for s = [0 : S) :
for k1 = [0 : K1) :

for c1 = [0 : C1) :
for p1 = [0 : P1) :

for q1 = [0 : Q1) :
// Vector-MAC level
parallel for k0 = [0 : K0) :

parallel for c0 = [0 : C0) :
p = (p3 * P2 + p2) * P1 + p1;
q = (q3 * Q2 + q2) * Q1 + q1;
k = ((k3 * K2 + k2) * K1 + k1) * K0 + k0;
c = ((c3 * C2 + c2) * C1 + c1) * C0 + c0;
OA[p,q,k] += IA[p-1+r,q-1+s,c] * W[r,s,c,k];

tend to perform computation more efficiently than layers that require more data movement.

Finally, although increasing the number of chiplets used in the system improves performance, it

also leads to increased energy cost for chiplet-to chiplet communication and synchronization.

Figure below shows a performance comparison of mapping ResNet-50’s layer onto multiple

PEs, either on-chiplet or spanning multiple chiplets. When mapped to a single chiplet, execution

latency decreases linearly from one to eight PEs because of the improved compute throughput

with more PEs as shown in figure 3.61.

At the same time, its performance flattens out beyond eight PEs due to the memory bandwidth

contention at the Global PE’s SRAM. However, when mapping across chiplets, execution time

does not scale down beyond four PEs. The additional latency to communicate across multiple

chiplets, including inter-chiplet communication latency and synchronization latency, ultimately

leads to a 2 greater execution time relative to employing a single chiplet. Figure 3.62 shows the

performance scalability of running three different layers in ResNet-50 across different numbers

of chiplets. While performance improves for all the layers till 8 after that is hindered by the
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Figure 3.61. Performance comparison of on-
chip and onpackage communication and syn-
chronization in Simba.

Figure 3.62. Simba scalability across different
layers from ResNet-50.

communication overhead and the amount of weights used to be fully utilized by Simba. This

shows the amount of compute parallelism that an MCM can leverage varies from layer to layer,

and that the cost of communication can hinder the ability to exploit that parallelism, even on a

single chiplet.

To examine the bandwidth sensitivity of different layers, we adjust the bandwidth of the

NoP relative to the intra-chiplet compute performance of the system. This adjustment is made

by reducing the frequencies of the PE, Global PE, and RISC-V partitions below nominal while

maintaining a constant NoP frequency. The figure 3.63 shows that execution time is affected by

NoP bandwidth for two layers. For different layers increasing bandwidth reduces the execution

time accordingly. Because an MCM-based system intrinsically has a NUNA architecture between

intra-chiplet and inter-chiplet PEs, mapping policies must consider the different latency and

bandwidth parameters to deliver good performance and efficiency.

Figure 3.63. Simba scalability with different
chiplet-to-chiplet communication bandwidths.

Figure 3.64. Throughput improvement from
pipelined execution on 3 blocks of ResNet-50.
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In addition to lower bandwidth, the NoP has higher latency than the NoC due to inter-chiplet

signaling overheads. To isolate the effect of NoP latency, we ran experiments mapping layers

to four chiplets, but adjusted the locations of the selected chiplets in the package to modulate

latency. With active chiplets further apart as shown in figure 3.64, the overall execution time

increases by up to 2.5 compared to execution on adjacent chiplets. Communication latency is

typically less pronounced for small-scale systems but plays a significant role in achieving good

performance and energy efficiency for a large-scale, MCM-based system like Simba.

(a) Latency Profile (b) Initial Placement (c) Input Placement (d) Output Placement

Figure 3.65. Data placement on the Simba system.

DNN workload tiling techniques that target the non-uniform latency and bandwidth is

presented which focusses on importance of communication-latency-aware tiling when mapping

DNN workloads to large-scale, hierarchical systems. Large scale systems with PEs spatially

distributed have varied latencies. This is handled by non-uniformly partition the work across

the PEs as shown in figure 3.65. PEs closer to the data producers will perform more work to

maximize physical data locality, while PEs that are further away will do less work to decrease

the tail latency effects. Below figure 3.66 shows that different PEs have different data arrival

times. Greedy algorithm to determine where input and output activation data should be placed

in the Simba system. Pipelined execution on Simba improves overall throughput by up to 2.3

compared to the sequential execution baseline.
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Figure 3.66. Simba scalability with different chiplet-to-chiplet communication latencies.

3.10.4 Summary

This work presents Simba, a scalable MCM-based deep-learning inference accelerator

architecture. Simba is a heterogeneous tile-based architecture with a hierarchical interconnect.

A silicon prototype system consisting of 36 chiplets that achieves up to 128 TOPS at high

energy efficiency. The prototype to characterize the overheads of the non-uniform network of an

MCM-based architecture is used, observing that load imbalance and communication latencies

contribute to noticeable tail-latency effects. The non-uniform nature of system can help improve

performance through techniques such as nonuniform work partitioning, communication-aware

data placement, and cross-layer pipelining. Applying these optimizations results in performance

increases of up to 16% compared to naive mappings.[18][12][10][11]

3.11 Tensor Processing Unit

3.11.1 Introduction

Deep neural networks have led to break through in many aspects for wide range of targets like

speech, vision, language translation, search and many more. These have brain like functionality

based on a simple artificial neuron which is a nonlinear function of a weighted sum of inputs.

These neurons are arranged in layers with output of one layer going to input of another layer.

Layers are made deeper by increasing them to improve accuracy in some cases. The two phases

of neural network are training, and inference referred to as development versus production. The

developer decides the number of layers and type of network while training determine weights.
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Training is done in floating point which made GPU popular as training is compute intensive.

However, using quantization transforms floating point into fixed point like 8 bit which is good

for inference. Neural networks like multi-layer perceptron, convolutional and recurrent neural

networks are popular. Training weights consumes energy and can be amortized by reusing across

batch of independent examples [28].

3.11.2 Architecture

Few applications need excess capacity on data centers, which can be improved using special-

ized hardware. Goal was to improve the performance by 10X compared to GPU. To reduce the

dependency with CPU, TPU was designed as a co-processor on the PCIe I/O bus.

Figure 3.67. TPU Block Diagram Figure 3.68. Floor Plan of TPU die

The goal is to run inference models in TPUs to reduce interaction with hosts and flexible

enough for different networks. The TPU instructions are sent from the host over PCIe into

instruction buffer and the internal blocks. As shown in figure 3.67 Matrix multiply is heart of

TPU, contains 256256 MAC and results are accumulated on an accumulator. The weights for the

matrix come from an on-chip weight FIFO that reads values from off-chip DRAM called weight

memory which is four tiles deep. A programmable DMA controller transfers host memory to

and from CPU and unified buffer. Figure 3.68 shows the floor plan of a TPU. Instructions are

sent on relatively slow PCIe bus and TPU instructions follow CISC instruction. Input flows from

right to left and partial sums flow from top bottom resembling a waterfall structure as shown in
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figure 3.69. This operation takes B*256 input multiplies it 256*256 constant weight input to

produce B*256 output, taking B pipeline cycles to complete.

The TPU architecture keep the matrix unit busy by using a 4-stage pipeline for this CISC

instruction. The other instructions are overshadowed by overlapping their execution with matrix

multiply instruction. The pipeline does not overlap properly as the CISC instructions can occupy

a station for thousands of clock cycles in contrast to RISC pipeline with one clock cycle per

stage. In cases when activations for one network should complete before matrix multiplication

for the next layer can begin, a delay slot is seen and needs to wait for explicit synchronization.

Figure 3.69. Systolic data flow of the Matrix
Multiply Unit.

Figure 3.70. TPU (die) roofline.

Reading from SRAM consumes more energy than arithmetic, the matrix unit uses systolic

execution to save energy by reducing reads and writes of the Unified Buffer. The data comes from

different directions arriving at cells in an array at regular intervals where they are combined. A

given 256 element MAC operation moves through matrix as a diagonal wave front with weights

loaded from top and activations flowing in from left to right. The weights are preloaded and

start taking effect with the first block of data. Control and data are pipelined to give the illusion

that the 256 inputs are read at once, and that they instantly update one location of each of 256

accumulators. The TPU software stack should be compatible with those developed for CPU,

GPU for portability. Like GPUs, TPU stack is split up user space driver and kernel driver. Kernel

driver is designed for long term stability while the user space driver sets up and controls TPU

execution, reformats data into TPU order, translates API calls into TPU instructions. The user
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space compiles a model first time it is evaluated, caching the program image, and consecutive

runs are done at full speed. Computation is often done one layer at a time, with overlapped

execution allowing the matrix multiply unit to hide most non-critical-path operations.

3.11.3 Evaluation

Roofline performance model as shown in figure 3.70 is used which assumes that applications

do not fit in on chip caches and so they are computation limited or memory bandwidth limited.

For high performance computing we measure the floating-point operations per second with

operational intensity Without enough operational intensity program is memory bandwidth-bound

and lives under the slanted part of the roofline.

Table 3.5. Factors limiting TPU performance of the NN workload based on hardware perfor-
mance counters.

Application MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean Row
Array active cycles 12.7% 10.6% 8.2% 10.5% 78.2% 46.2% 28% 1

Useful MACs in 64K matrix(%peaks) 12.5% 9.4% 8.2% 6.3% 78.2% 22.5% 23% 2
Unused MACs 0.3% 1.2% 0.0% 4.2% .0% 23.7% 5% 3

Weight shal cycles 53.9% 44.2% 58.1% 62.1% 0.0% 28.1% 43% 4
Weight shift cycles 15.9% 13.4% 15.8% 17.1% 0.0% 7.0% 12% 5
Non-matrix cycles 17.5% 31.9% 17.9% 10.3% 21.8% 18.7% 20% 6

RAW stalls 3.3% 8.4% 14.6% 10.6% 3.5% 22.8% 11% 7
Input data stalls 6.1% 8.8% 5.1% 2.4% 3.4% 0.6% 4% 8

TeraOps/sec(92 Peak) 12.3% 9.7% 3.7% 2.8% 86.0% 14.1% 21.4% 9

Table 3.6. Time for host CPU to interact with the TPU expressed as percent of TPU execution
time.

MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1
21% 76% 11% 20% 51% 14%

The gap between the actual operations per second and the ceiling shows potential benefit of

further performance tuning. For using the roofline for TPU the NN applications are quantized by

replacing floating point operations with integer operations. We redefine operational intensity

as integer operations per byte of weights read because weights do not normally fit in on chip

memory. The slanted line in the above figure depicts the applications are memory bandwidth

limited than compute. So, MLPs and LSTMs are memory bound where as CNNs are compute
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bound. CNN1 despite higher operational intensity runs at 14 TOPs compared to CNN0 which is

86 TOPs. TPU spends less than half of its cycles performing matrix operations for CNN1 and

of those active cycles, only about half of the 65,536 MACs hold useful weights because some

layers in CNN1 have shallow feature depths. About 35% of cycles are spent waiting for weights

to load from memory into matrix unit, which occurs during the 4 fully connected layers that run

at an operational intensity of just 32. Having said that we cannot account for the exact cycles

because of the overlap of executions on the TPU.

The following table 3.5 and 3.6 shows TPU performance. Queuing theory shows that long

queues raise the throughput but stretches the response time as instructions are waiting in the

queue. So ideally the queues are made sure to be empty. Comparisons suggests that GPU die is

1.1X than CPU and TPU is 14.5X and thus TPU is 13.2 compared to GPU. We use geometric

mean when we do not know the composition, however using weighted mean we have TPU to

be 15.3 compared to GPU performance. The best cost metric in a datacenter is total cost of

ownership (TCO). This can not be published as this information helps to deduce. However,

performance/watt results are publishable. In the below figure 3.71 we see the performance

relative to CPU. The first two include the host CPU server for GPU and TPU and later two

subtracts the host CPU power. The TPU server has 14 to 16 times the performance/Watt of the

GPU server. Thermal design power affects cost as we must provide enough cooling and power

when at full power. Also, servers are 100% busy less than 10% of the time and advocated energy

proportionality i.e. servers should consume power proportional to the amount of work performed.

Though TPUs consume less power there, there energy proportionality is poor. At 10% load, the

TPU uses 88% of the power it uses at 100% as the short design schedule prevents inclusion of

many energy saving features.

There are parameters with which the TPU performance is sensitive to. Increasing memory

bandwidth by 4X improves performance by 3X. Clock rate has little benefit on average with or

without more accumulators as only CNNs are compute bound. 3X improvement in clock rate

increases the performance by 2X. The performance degrades as the matrix unit expands. Even
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Figure 3.71. Relative performance/Watt (TDP) of GPU server and TPU server to CPU server,
and TPU server to GPU server.

tough we can reduce steps by tiling larger units each step takes 4X ore time.

3.11.4 Summary

In summary TPU succeed because of the large matrix multiply units, software controlled

on-chip memory, ability to run whole inference and reducing the dependency on CPU. This

single threaded deterministic model has enough flexibility to work on different models. Omission

of general-purpose features consumes less energy and area despite the larger data path and

memory. Quantization of applications to use 8-bit integers and that applications were written

using TensorFlow, which made it easy to port them to the TPU at high-performance rather than

them having to be rewritten to run well on the very different TPU hardware. Order-of-magnitude

differences between commercial products are rare in computer architecture, which may lead to

the TPU becoming an archetype for domain-specific architectures.

3.12 Real Time AI

3.12.1 Introduction

Hardware acceleration of DNNs is becoming commonplace and the high level of parallelism

available makes them amenable to acceleration. Training and inference are different phases

needed for acceleration. While training is throughput bound, Inference is more latency sensitive.

Highly parallel architectures with deep pipelines, achieve high throughput on DNN models by
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batching evaluations, exploiting parallelism both within and across requests. This approach

works well for offline training, where the training data set can be partitioned into minibatches,

increasing throughput while not impacting convergence. In an online inference, requests often

arrive one at a time. Requests must be processed individually, leading to reduced throughput

while still sustaining batch-equivalent latency, or incur increased latency by waiting for multiple

request arrivals to form a batch[31].

Rather than increasing throughput by exploiting inter request parallelism, the system reduces

latency by extracting as much parallelism as possible from individual requests. Real-time AI

is used to describe DNN inference with no batching and is performed by Brainwave. Despite

the lower clock rate and higher area overheads that FPGAs incur, the BW NPU performs better

for real-time AI, sustaining 35 Teraflops on large RNN benchmarks with no batching. BW

NPU achieves low latency on individual DNN requests using reconfigurable logic, and a hard

NPU with a higher clock rate but reduced flexibility. Since the BW NPU provides a high-level

single-threaded abstraction, the underlying microarchitecture can vary widely allowing flexibility

in implementation. The BW NPU accepts four synthesis-time parameters that can optimize the

microarchitecture resources. These are data type, native vector size, number of data lanes, and

size of the matrix-vector tile engine. Finally, BW achieves high throughput without sacrificing

low latencies.

3.12.2 Background

Figure 3.72. BW system at cloud scale.

The BW system as shown in figure 3.72 integrates with an existing hyperscale cloud in-
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frastructure that runs production services with real-time AI requirements. Figure illustrates

components of a hyperscale datacenter. Every standard dual-socket server hosts PCIe-attached

accelerator cards that contain FPGAs or ASICs. The accelerator cards have direct access to the

datacenter network and are placed in-line between the server NIC and the top-of-rack switches.

The accelerators communicate directly using an on-chip RDMA-like lossless protocol. The

datacenter architecture can be logically disaggregated and pooled into instances of hardware

microservices. Once initialized and registered with a distributed resource manager, a given hard-

ware microservice is published to subscribing CPUs in the system and accessed directly through

an IP address. The CPU and FPGA resources devoted to acceleration are scaled independently.

Large, partitionable problems can be spatially distributed across multiple accelerators

The DNN accelerator consists of three components: a tool flow that transforms pre-trained

DNN model checkpoints into software and accelerator executables, a federated runtime that

orchestrates model execution between CPUs and distributed hardware microservices, and the

programmable BW NPU instantiated on FPGAs. In the initial phases of the tool flow, a pre-trained

DNN model is exported from a DNN framework into BW’s graph intermediate representation.

The GIR undergoes a series of optimizations and transformations based on target constraints of

the backend system. In real-time scenarios, the tool flow can partition large graphs that exceed

the capacity into sub-graphs whose parameters can be pinned individually into accelerators on

chip memory removing the hindrance of performance. Operations not supported on BW are

executed on CPU.

Operations per second and energy efficiency do not capture the effects of batching, which can

artificially drive up utilization while increasing latency. So, latency-centric metrics are introduced

based on critical path analysis. These metrics enable robust NPU evaluation by characterizing

the latency gap from idealized implementations. UDM reflects the lower bound latency capturing

all available parallelism of a single DNN request; whereas SDM reflects the lowest possible

latency under realistic resource constraints and assesses how well an implementation exploits

available parallelism of a single DNN request with high microarchitectural efficiency. Figure
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Figure 3.73. LSTM critical-path analysis. Operation count and latency are shown as functions
of LSTM dimension (N) and number of functional units (FU)

3.73 illustrates a critical-path analysis applied to the dataflow of a long short-term memory

block. The LSTM requires 64M operations per time step and can be executed in 19 cycles on

an idealized UDM. The more realistic SDM constrained to 96,000 multiply-accumulators and

serves the model in 352 cycles. The 18X gap between these metrics suggests that performance

improvements are obtained with more resources. LSTMs exhibit lower parallelism and higher

data requirements making it challenging to accelerate. Microarchitectural inefficiencies such as

data and structural hazards, pipeline stalls, and limited memory bandwidth conspire to prevent

NPU implementations from approaching ideal latencies.

3.12.3 Architecture

BW NPU architecture provides a simple programming abstraction that can be targeted easily

by programmers and compilers, encoding sufficient information of large DNN operations that an

underlying microarchitecture can efficiently exploit parallelism, and supports flexibility. BW

NPU adopts a single-threaded SIMD ISA made up of compound operations that operate on 1−D

and 2−D fixed-size vectors and matrices. Sub graphs are encoded through atomic instruction

chain which captures communications between graph edges. It exposes specialized instructions,

datatypes, and memory abstractions that are optimized for low-latency DNN serving. The BW

NPU matrix/vector data path is implemented as a coprocessor, using a conventional scalar core

to issue BW NPU instructions to the data path via an instruction queue. This provides the BW
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NPU’s control flow, including dynamic input-dependent control flow, a critical requirement for

certain models such as single-batch RNNs with variable length timesteps.

Basic linear algebra routines can be performed at three canonical levels: vector-only, Level,

matrix vector, matrix-matrix operations. The BW NPU architecture focuses on matrix-vector

multiplication as its key operation.

The BW NPU instruction set accommodates DNN models spanning LSTMs, GRUs, 1D, 2D

CNNs, dense MLPs. In BW NPU, all instructions operate on N-length 1D vectors or NN 2D

matrices. The read and write operations (vrd,vwr,mrd,mwr) use their first operand to select a

memory target, which could be a specific register file, DRAM, or a network I/O queue and second

operand provides a memory index, except in the case of network I/O. While other instructions,

access memory structure identified by opcode where it needs an index operand. Matrices can be

read only from the network or from DRAM and can be written only to the matrix register file

or to DRAM. The MRF is read only as an implicit operand of a matrix-vector multiply(mvmul).

BW NPU ISA has explicit instruction chaining, which allows the microarchitecture to exploit

pipeline parallelism without complex hardware dependency checking or multi-ported register

files. The BW NPU enables operation on multiples of the native dimension using by setting

scalar control registers using swr. This capability has been used with great extent to parameterize

models, with the added benefit of reducing instruction bottlenecks. BW NPU microarchitecture

goal is to exploit the vector-level parallelism of a single DNN request at high hardware efficiency.

In practice, pipeline stalls caused by hazards, decoding inefficiencies, and inherent serial data

dependences in models limit the exploitable VLP within a single request.

Figure 3.74 shows a high-level view of the BW NPU microarchitecture. The primary goal is

to map and execute instruction chains to a continuous, uninterrupted stream of vector elements

flowing through the function units. The function units form a linear pipeline, mirroring the

instruction chain structure, with the matrix-vector multiplier at the head. The vector arbitration

network manages data movement among the memory components: pipeline register files, DRAM,

and network I/O queues. A top-level scheduler configures the control signals for the function
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Figure 3.74. Microarchitec-
ture overview

Figure 3.75. Matrix-vector
multiplier overview.

Figure 3.76. Matrix-vector
tile engine microarchitecture

units and vector arbitration network based on the BW ISA instruction chains it receives from the

scalar control processor.

The matrix-vector multiplier in figure 3.75 is the primary workhorse of the BW NPU and

is scaled across a network of dot product unit and is memory-bandwidth limited. To alleviate

this bottleneck, each input to every single dot product unit requires a dedicated memory port

to feed the units at maximum throughput. A hierarchical view of the MVM is depicted. At the

highest level, it instantiates a series of matrix-vector tile engines, each of which implements a

native-sized MVM. In turn, each tile engine in figure 3.76 is made up of a series of dot product

engines, as shown in next Figure. Each dot product engine is responsible for the dot product

computation that corresponds to multiplying the input vector by one native row in the matrix

tile. The dot product engines are composed of lanes of parallel multipliers that feed into an

accumulation tree. These lanes provide parallelism within the columns of a row of a matrix

tile. Combined, the MVM exploits four dimensions of parallelism: inter-MVM, MVM tiling,

across the rows of a tile, and within the columns of the row. The total throughput of an MVM

in FLOPs per cycle can be expressed as 2×#tile engines×#DPEs×#lanes. Each multiplier

receives one vector element and one matrix element per cycle. The matrix elements are delivered

by a dedicated port of the matrix register file positioned adjacent to that multiplier. The MRF is

banked by native tiles across the tile engines. Each bank is further sub-banked by rows, such

that the first sub-bank in a tile engine contains the first row of every matrix tile in the MRF
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bank. The elements of each row are interleaved in SRAM such that each SRAM read port can

be directly connected to a multiplier. This organization scales the number MRF read ports with

local compute tiles. MRF entries can be written only from DRAM or the network input queue,

so write bandwidth requirements are much lower. Because MVM performance depends on

MRF bandwidth, needed matrix operands must fit in the available on-chip SRAM to achieve

high utilization. The output from the MVM is routed through a series of vector multifunction

units. The MFUs support vector-vector operations such as multiplication and addition as well

as unary vector activation functions like ReLU, sigmoid, and tanh. Dedicated vector register

files associated with the add/subtract and multiply function units provide the secondary operands

needed for those operations. Each MFU functions units and IO ports are connected by non-

blocking crossbars. The crossbar is configured according to the current instruction chain to

route data. Once configured, a sequence of vectors can be pipelined through the MFU. The BW

NPU uses a conventional scalar control processor to dynamically issue BW NPU instructions

asynchronously to the top-level scheduler. The top-level scheduler must decode each instruction

chain into thousands of primitive operations to control the operation of many spatially distributed

compute resources. The hierarchical decode and dispatch logic expands compound operations

into distributed control signals that manage compute units, register files and switches.

The top-level scheduler dispatches to 6 decoders and 4 second-level schedulers, which in

turn dispatch to an additional 41 decoders. This scheme, combined with buffering at each stage,

keeps the entire

Figure 3.77. Hierarchical decode and dispatch (HDD) into the matrix-vector multiplier
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compute pipeline running with an average of one compound instruction dispatched from the

Nios every four clock cycles. Figure 3.77 illustrates how the largest functional unit is controlled

from a single instruction. An expansion of decoding information occurs from top-to-bottom as

the Nios processor streams T iterations of N static instructions into the top-level scheduler. Next,

the top-level scheduler dispatches the MVM-specific portion of instructions to a second-level

scheduler, which expands operations along the target matrix’s R rows and C columns . These

MVM schedules are mapped to E matrix-vector tile engines, with operations dispatched to a set

of E decoders each for the tile engines and their associated vector register files and accumulation

units, along with a monolithic add-reduction unit. Finally, these decoders generate control signals

that fan out into the data plane, with each tile engine dispatcher fanning out to hundreds of dot

product engines. The BW microarchitecture can be viewed as a fully parameterizable processor

family that can be customized to specific models for efficiency.

The BW architecture exposes several major parameters that can be used for specializing a

micro architecture instance to specific models: aligning the native vector dimension to parameters

of the model tends to minimize padding and waste during model evaluation, increasing lane

widths can be used to drive up intra row-level parallelism, increasing matrix multiply tiles can

exploit sub-matrix parallelism for large models.

3.12.4 Evaluation

Batch size of 1 provides lowest cloud latency as requests are processed immediately and it

simplifies everything as batching queues are not needed. The BW NPU can run all Deep Bench

layers at under 4ms at batch 1, reaching up to 35.9 effective TFLOPS for a large GRU over

hundreds of timesteps providing two orders of magnitude advantage over GPU. This happens

because of high hardware utilization.

The figure 3.78 and 3.79 shows the utilization, which is the percentage of the peak TFLOPS

reached for each layer. At batch size of 1, the BW NPU reaches 23% to 75% of peak FLOPS for

medium to large LSTM/GRUs. There is 4-23X improvement as BW NPU can fully expose on-
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Figure 3.78. Hardware utilization across
DeepBench RNN inference experiments.

Figure 3.79. Utilization scaling with increas-
ing batch sizes(LSTM-2048).

chip RAM bandwidth, pipeline dependent RNN vectors and exploit all degrees of matrix-vector

parallelism to keep its compute units busy. As hidden dimension reduces the compute utilization

reduces due to the large native tile dimension, which can result in wasteful work and the deep

pipelines that delays dependent data from being written back quickly. However, the BW can be

reconfigured to different degrees of parallelism to recover metrics.

When SDM latencies are compared to BW, BW is within a factor of 2.17X for the large GRUs

and LSTMs. However, this factor falls off for the remaining models because the high dimension

MVMs and deep pipeline of the BW lead to essentially the same latency per time step in steady

state for all evaluated models regardless of their size, between 252 and 296 microseconds. For

cloud services which can tolerate more latencies small amount of batching is employed. The

second graph shows the utilization scaling with increasing batch size. Since BW executes a single

input at a time, with increased batch size, the utilization remains constant. In contrast, GPU

utilization increases proportionally as batch size increases since there is now more independent

parallel work to fill the GPU SMs. However, at batch size of 4, the GPU remains at under 13%

utilization even for large RNNs. Even though 32 improves the utilization, such large batch sizes

do not exist in real life. The power was measured when all the Ips are being used which turned

out to be 125W which provides efficiency of BW at 287 GFLOPS/W when running large models

at high device utilization.
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3.12.5 Summary

Brain Wave achieves high throughput and low latency for real-time AI, with no mini batching.

The system pins models in on-chip memories and extracts mega-SIMD parallelism from a single

thread of control, with some of the compound instructions generating millions of independent

operations. Hierarchical decode and dispatch breaks these operations into fleets of fixed-length

vector operations that are then scheduled on a distributed substrate, operating in parallel and

exploiting direct producer-consumer dataflow routing to reduce pipeline bubbles. Taken together,

these techniques allow higher utilization and lower latency on a collection of RNNs. For the

larger models, the latencies are 10-90X lower than the GPU, and effective utilization is higher

than the GPU for all benchmarks until a batch size of 32 is applied. As the resources grow, so

must the native vector length, so control overheads do not start to dominate. As the frequency is

pushed, performance will grow but efficiencies will drop with increased pipeline bubbles. Like

CPUs exploiting ILP, the NPU space must find the best balance of frequency and efficiency for

exploiting vector-level processing, which is currently unknown.

3.13 Conclusion

Accelerator design has come a long way. The need for higher speed and efficiency in DNN

execution has led to explosion of DNN accelerators. In section 3.2 basic design of an accelerator

is discussed. Section 3.3 covers different dataflow taxonomy. Optimized dataflow helps reduce

the amount of data transfer from on chip to main memory, reducing power. With specialized

hardware using more granular instruction set architecture helps to make the workflow efficient. A

novel ISA is ducussed which provides better performance than the high level instructions. Data

movement as mentioned before is crucial for energy savings and having an optimized network

on chip is needed for better performance. Lot research has been in place to improve the compute

part of hardware accelerator and data flow taxonomy. A new perspective would be to reduce the

scope for computation itself. In 3.7 and 3.8 we discuss about variable bitwidth optimization and
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compressed sparse neural networks which are used to reduce the amount of computation with out

loss of accuracy. A more recent approach of computing inside main memory has revolutionised

the performance of compute and data movement in hardware accelerator domain. Analog

computation can also be used to reduce the power as these circuitry require less energy than

the digital counterparts.Real time AI issues has been resolved using Brainwave. Finally all this

modifications have been proposed for a single chip. However, multi chip modules can be used

to increase the throughput without increasing exponential power consumption and unbalanced

bandwidths. However multi tenancy has been largely omitted in proposed or deployed designs

due to arms race in the market for higher speed and efficiency. Even the MLPerf benchmark suit

keeps this single-model focus for both training and inference. In contrast, we discuss in the next

section Planaria, which offers spatial multi-tenant acceleration through architecture fission that

is propelled by unique microarchitectural mechanisms and organizations that enables flexible

task scheduling. As such, this paper lies at the intersection of DNN acceleration and multi-tenant

execution.
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Chapter 4

Planaria: Dynamic Architecture Fission
for Spatial Multi-Tenant Acceleration of
Deep Neural Networks

4.1 Introduction

Computer industry took advantage of Moore’s law and Dennard scaling for several decades

and significantly improved the performance of single core processors. Following Moore’s law,

the number of transistors on chip has grown exponentially for decades. This growing transistor

count, coupled with recent architecture and compiler advances, has resulted in an unprecedented

exponential performance increase of computers. However, with the end of Dennard scaling which

argued that one could continue to decrease the transistor feature size and voltage while keeping

the power density constant, has raised a big challenge for large transistor count IC designs.

Power and energy became the major constraints of digital systems. To offer higher performance

without significant increase in power, computer industry moved toward multicore processors.

At the core of this issue, considering the power density if the leakage of the transistors is not

kept in check there could be threat of thermal run away causing the execution of all the cores

at maximum or acceptable speed unfeasible. Having said this the computer industry is now in

the dark silicon age where not all the cores of a processor can be functional with the highest

power at the same time. So, this end of Dennard scaling and diminishing benefits from transistor
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scaling has propelled an era of Domain Specific Architectures.

With inefficiencies of general-purpose processors there are two clear opportunities. First,

existing techniques for building software make extensive use of high-level languages with

dynamic typing and storage management. As high-level languages are typically executed and

interpreted inefficiently. Rewriting the code from python in C using parallel loops, caching, SIMD

parallelism increases the performance by 47 - fold. However, A more hardware centric approach

is to design architectures tailored to a specific problem domain and offer significant performance

(and efficiency) gains for that domain and hence the name Domain specific architectures. This

class of processors tailored for a specific domain—programmable and often Turing-complete

but tailored to a specific class of applications are different from ASICs that are often used for a

single function. Also called hardware accelerators, this achieve better performance and efficiency

by exploiting parallelism for specific domain, effective use of memory hierarchy in contrast to

less efficient caches, using dynamic precisions as and when needed and finally they benefit from

targeting programs written in domain specific languages.

As such, accelerators are put in the spotlight to enable performance improvements necessary

for emerging workloads. Although, most recently, accelerators have made their way into con-

sumer electronics, edge devices, and cellphones (e.g., Edge TPU, NVIDIA Jetson, and Apple

Bionic Engine), their limited computational capacity still necessitates offloading most of the

inference tasks to the cloud. In fact, INFerence-as-a-Service (INFaaS)[18], has become the

backbone of the deployed applications in Voice Assistants, Smart Speakers, and enterprise appli-

cations, etc. Cloud-backed inference currently dominates the market and is enabled by various

forms of custom accelerators, such as Google TPU, NVIDIA T4, Microsoft Brainwave, and

Facebook’s DeepRecSys. As the demand for INFaaS scales one solution could be continuously

increasing the number of accelerators in the cloud. Although intuitive, this approach is neither

cost-effective nor scalable with the ever-increasing demand for DNN servic[18].

On the other hand, multi-tenancy, where a single node is shared across multiple requests, has

been a primary enabler for the success of cloud-computing in current scale. In multi tenancy
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multiple instances of an application operate in a shared environment. The architecture works

because each tenant is integrated physically, but logically separated. Without multi-tenancy, it

is hard to even fathom the progress and future of datacenters and cloud-based computing. In

fact, the broader research community invested more than a decade of efforts to develop solutions

across the computing stack to bring forth seamless and scalable multi-tenant cloud execution

models[11].

Nonetheless, multi-tenancy has not been a primary factor in the design of DNN accelerators

because of the arms race to design the fastest accelerator, the utmost recency of accelerator

adoption in datacenters, and challenges associated with multi-tenancy in accelerators. The

datacenter accelerator designs revealed–for instance in Google’s TPU or Microsoft Brainwave

tend to show results focused on running a single neural network model as fast as possible[41].

Even the MLPerf benchmark suite keeps this single-model focus for both training and inference.

But experience in cloud accelerator systems shows that keeping multiple models simultaneously

resident on an accelerator has deployment benefits. Beyond just multiple customers sharing

an accelerator, there is demand for multi-tenancy inside of a single application. For example,

speech recognition and voice synthesis systems tend to require multiple models in deployment

and can significantly benefit from multi-tenancy and co-location[11].

Google translate works using the principle of multi tenancy. It has been growing fast

supporting few languages to 103, translating over 140 billion words a day. To make this possible,

we needed to build and maintain many different systems in order to translate between any

two languages. Google translate is now hosted on new system called google neural machine

translation engine as shown in figure 4.1 which allows for Zero shot translation, where translation

is done between language pairs which were never seen by the system explicitl[41].

Suppose we train a multilingual system with Japanese to English and Korean to English.

The multilingual system, with the same size as a single GNMT system, shares its parameters to

translate between these four different language pairs. This sharing enables the system to transfer

the “translation knowledge” from one language pair to the others. This transfer learning and the
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Figure 4.1. Google neural
machine translation uses

multitenancy

Figure 4.2. PREMA- time
multiplexing DNN inferences

Figure 4.3. Systolic data flow
of the Matrix Multiply Unit.

need to translate between multiple languages forces the system to better use its modeling power.

In this case the GNMT works as a multi-tenant system sharing multiple models simultaneously

on same node for improved performance. Yet, only this year has PREMA explored a scheduling

algorithm that time-multiplexes a DNN accelerator across different DNNs through preemption

as shown in figure 4.2. To amortize cost, cloud vendors providing DNN acceleration as a

service to end-users employ consolidation and virtualization to share the underlying resources

among multiple DNN service requests[42]. This paper makes a case for a “preemptible” neural

processing unit (NPU) and a “predictive” multitask scheduler to meet the latency demands of

high-priority inference while maintaining high throughput[38].

Preemptible NPU preempt the execution of a low priority task and allow high priority latency

critical tasks. As shown in figure a preemptible NPU enables the higher priority I3 to finish

earlier by proactively terminating low priority I1 task. Such preemption mechanism would

enable intelligent scheduling policies that flexibly coordinate the allocation of shared resources

among multiple inference tasks and meet target scheduling objectives.

Building on this, we have a predictive multitask scheduling algorithm(PREMA), that ef-

fectively balances latency, fairness, throughput and service level agreement. One main issue

of preemptive NPU is in case we have a low priority task I2, can be starved from scheduling

and experiences relatively more slowdown. If we were to predict the job length of I2, a better

scheduling decision would be made for I2 to preempt I1, quickly finish its execution and allow

I1 to resume its execution. This allows the average latency all tasks experience to be minimized
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while allowing the high-priority I3 to receive high-quality service. The predictable nature of

computation, memory access details of DNN and NPU architecture allows us to develop a

prediction model that estimates the job size of each inference task which is used to meet latency

demands while not sacrificing throughput or SLA.

Planaria, on the other hand, sets to explore this timely, yet unexplored dimension of multi

tenancy in the architecture design of DNN accelerators. This work presents a key idea of

dynamically fissioning the DNN accelerator at runtime to spatially co locate multiple DNN

interferences on the same hardware. Following are the main contributions. Dynamic architecture

fission for spatial multi-tenant execution. Here we explore the dimension of dynamic fission

in DNN accelerator[15]. This innovation enables simultaneous execution of multiple DNN

acceleration threads to be spatially co-located on the same hardware substrate. This exclusive

runtime reconfigurability in DNN acceleration offers a new degree of freedom in task scheduling

to promote utilization and fairness while meeting the Quality of Service (QoS) constraints.

Microarchitecture design for dynamic fission. The paper devises a concrete microarchitecture as

an instance of dynamic fissionable architectures by delving into the design challenges associated

with offering this technology on TPU like systolic design[38].

In this TPU systolic array design 4.3, as reading a large SRAM uses much more power than

arithmetic, the matrix unit uses systolic execution to save energy by reducing reads and writes of

the Unified Buffer. It relies on data from different directions arriving at cells in an array at regular

intervals where they are combined. The above figure shows that data flows in from the left, and

the weights are loaded from the top. A given 256-element multiply-accumulate operation moves

through the matrix as a diagonal wave front. The weights are preloaded and take effect with the

advancing wave alongside the first data of a new block[3]. Control and data are pipelined to give

the illusion that the 256 inputs are read at once, and that they instantly update one location of

each of 256 accumulators. From a correctness perspective, software is unaware of the systolic

nature of the matrix unit, but for performance, it does worry about the latency of the unit.

Adding on the micro architecture design for dynamic design, we devise bi-directional systolic
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arrays for DNN acceleration that permits flow of data in all four directions from each element

in the array. This low-cost additional flexibility expands the fission possibilities leading to

significant energy reduction and performance gains. To coordinate fission with appropriate

on-chip and off-chip data transfer, we arrange these bi-directional systolic arrays in on-chip pods

that also comprise specialized interconnection and shared storage for each pod[10].

Task scheduling for spatial multi-tenant execution. To leverage architecture-level fission,

the paper defines a task scheduling algorithm that breaks up the accelerator with respect to the

current server load, DNN topology, and task priorities, all while considering the latency bounds

of the tasks. As the following results indicate, this scheduling algorithm can harness fission

capability to simultaneously co-locate DNNs to significantly improve utilization, throughput,

QoS, and fairness[20].

We evaluate Planaria using three INFaaS workload scenarios made up of inference requests

to nine diverse DNN benchmarks. Each scenario is evaluated under three different Quality of

Service (QoS) requirements. We compare the proposed design to PREMA, a recent effort that

offers multi-tenancy by time-multiplexing the DNN accelerator across multiple tasks. We use

the same frequency, the same amount of compute and memory resource for both accelerators.

Our results show that Planaria outperforms PREMA in terms of throughput by 7.4, 7.2, and 12.2

for soft, medium, and hard QoS constraints, respectively. For these set of constraints, Planaria

also offers 45%, 15%, and 16% increase in Service-Level Agreement (SLA) satisfaction rate,

respectively. At the same time, Planaria improves fairness by 2.1, 2.3, and 1.9. Our results

suggest that exploring simultaneous spatial co-location through architecture fission and balanced

task scheduling provides significant benefits. To this end, dynamic architecture fission paves

the way for spatial multi-tenancy that can offer a unique direction in the era of cloud-scale

acceleration of DNNs[8].
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4.2 Dynamic Accelerator Fission

4.2.1 Concepts and overview

The objective is to enable multi-tenant execution of DNNs by spatially co-locating multiple

DNN tasks on a single accelerator. To do so, the underlying accelerator needs to dynamically

fission at runtime into smaller pieces of logical full-fledged accelerators that can execute their

pertinent DNN. As shown in the figure there are three possible examples for the proposed accel-

erator fission and how the accelerator can spatially execute multiple DNN tasks simultaneously.

Generally, a DNN accelerator is a collection of[37]

(a) Whole accelerator executing
DNN-A

(b) Two Fission Engines executing
DNN-A and DNN-B

(c) Three Fission Engines executing
DNN-A, DNN-B, DNN-C

Figure 4.4. Illustration of possible fission schemes of Planaria with their corresponding spatially
mapped DNNs

On chip memory banks and compute resource sources which is mainly a multiply and

accumulate unit. The first figure 4.4a illustrates that if a DNN task with high priority or tight

slack to meet the QoS constraints is dispatched to the accelerator, an entire accelerator is

dedicated to the task to expedite its completion. In contrast 4.4b, 4.4c shows images that multiple

DNN tasks being dispatched simultaneously. B has two fission engines and c has three fission

engines, and there could be many other configurations in which fission into 2,3 components

is possible. To process them all, the accelerator can fission into multiple logical accelerators,

each of which executes a given task as shown. Importantly, fission needs to take place at

both compute and memory level, since each logical engine is a standalone independent DNN

accelerator. Moreover, the amount of compute and memory resources assigned to each logical

accelerator ought to be balanced with the computational demand of the dispatched DNNs to
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maximize the throughput of the accelerator while meeting the QoS constraints. To that end,

bringing forth spatial multi-tenant execution requires devising two major components the fission

microarchitecture and task scheduler[34].

4.2.2 Fission microarchitecture

The first component of this work is a microarchitecture that can fission dynamically into

smaller full-fledged accelerators to execute multiple DNNs simultaneously. A baseline monolithic

DNN accelerator based on systolic array architecture and a set of challenges as well as the design

requirements that should be considered to fission a monolithic design both at compute and

on-chip memory level are discussed. Then we delve into the microarchitectural innards of

Planaria, an incarnation of dynamic architecture fission. First, the design of Planaria adds

bi-directional data movement in systolic arrays to offer variegated logical fission possibilities.

Second, it uses this capability and a unique organization called Fission Pods to enable fission

in systolic array based DNN accelerators[36]. Fission Pods are designed to offer a significant

degree of fission flexibility, through specialized connectivity, on-chip memory organization, and

bi-directional flow of data in its systolic units. This degree of flexibility is necessary to cope

with the varying needs of dispatched DNNs that can be best matched by forming heterogeneous

logical accelerators.

4.2.3 Task scheduler

As the second component of this work, we devise a task scheduling algorithm that adaptively

schedules and assigns the resources to different tasks[7]. First, the scheduler identifies minimal

amount of resources required to execute the DNN while meeting the QoS constraints imposed.

Then, it uses a scoring mechanism that congregates task priority and remaining time to distribute

the remaining resources on the accelerator to spatially co-locate tasks. This scoring mechanism

leads to higher fairness as it considers multiple criteria and flexibility in the accelerator to

co-locate multiple DNNs. Importantly, while the spatial co-location improves fairness, the
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scheduler effectively utilizes the dynamic fission mechanism and considers improving the QoS

as its primary design principle. In fact, spatial co-location leads to better utilization of the

accelerator resources as more than one task can run at the same time, which is in stark contrast

with temporal approaches that rely on preemption.

4.2.4 Architecture Design for Fission: challenges and opportunities

The main design module is like a monolithic systolic accelerator like Google’s TPU. Then

we discuss a series a design decisions and requirements to enable spatial multi-tenant execution

for DNNs.

Figure 4.5. A monolithic systolic-array
accelerator.

Figure 4.6. Illustration of possible fission
scenarios.

This figure 4.5 illustrates a model of monolithic systolic DNN accelerator. The accelerator

consists of a 2D array of Processing Elements (PE) to perform matrix multiplications and

convolutions, a unified multi-bank Activation Buffer, a 1D array of Output Buffers, and a SIMD

Vector Unit to execute the remaining layers such as pooling, activation, batch normalization, and

etc. Input activations are stored on-chip in the unified Activation Buffer–generally implemented

as a multi-bank scratchpad, where each bank is shared across PEs within a row. Consequently, at

each cycle, an input activation is read from an Activation Buffer’s Bank and is reused for all the

PEs within the row, where each PE is merely a Multiply and Accumulate (MAC) unit At each

cycle, each PE forwards the input activation to the PE to its right (horizontal) and the output
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partial sum to the PE to its bottom (vertical). In short, this is a waterfall-like uni-directional flow

of data as illustrated in the figure. Finally, the outputs are fed to the SIMD Vector Unit to perform

further operations that are required by DNNs such as pooling, activation, batch normalization,

etc. The remainder of the section elaborates on how to fission all the components comprising

this monolithic accelerator. The objective is to fission the accelerator in such a way that strikes a

balance between the performance of individual tenants while maximizing opportunities for other

simultaneous tenants[34].

4.2.5 Fission for compute

There is a need for flexible fission in systolic to accommodate different algorithms execution

on same substrate. Computational characteristics of DNNs such as data reuse and coarse-grained

parallelism vary across different networks or even across different layers of a network. The

systolic array architectures inherently exploit spatial data reuse for input activations along its

rows and partial sums along its columns. However, a monolithic array design provides only a

fixed dimension of this spatial data reuse. Moreover, as shown for TPU, mapping a convolution

or matrix multiplication operation to a big monolithic systolic array can lead to underutilization

of compute resources. As such, some layers naturally perform better if they are tiled to smaller

chunks and parallelized across multiple smaller arrays, as that would exploit coarse-grain

parallelism and yield better resource utilization. To that end, we first discuss how different fission

configurations adapts to the characteristics of different layers through examples[39].

Figure 4.6 illustrates possible configurations for decomposition of a 44 systolic array, where a

22 subarray is used as the granularity for fission. Figure 4.6(a) shows a fission where the systolic

array is broken down horizontally to two subarrays, while Figure 4.6(b) shows an instance of

its vertical fission to two subarrays. Figure 4.6(c) illustrates another fission in both vertical and

horizontal directions, yielding four systolic subarrays. For a layer that requires high coarse grain

parallelism, fission in Figure 4.6(c) would be a good match, while Figure 4.6(b) would yield

the best performance for layers that enjoy more partial sum reuse as well as the coarse-grain
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parallelism. In another scenario, if a layer requires high input activation reuse, moderate partial

sum reuse, and coarse-grain parallelism, fissioning to Figure 4.6(a) will be the best choice[35].

Another important design decision is fission granularity where to break the systolic array

. As illustrated in Figure 4.5, PEs are connected via two uni-directional links: horizontal and

vertical. One extreme option is to replace these links to those that can be dynamically switched

on and off to fission the systolic array at the granularity of a single PE. However, such a fine

granularity of fission will impose significant overheads. Therefore, we instead replace a subset

of the links to determine the granularity such that they can disconnect a subarray of the PEs

instead of isolating a single PE. We need to perform a design space exploration and determines

this fission granularity for the concrete microarchitecture[33].

(a) Down and up for partial sums (b) Right and left for input activations

Figure 4.7. Bi-directional systolic execution.

Bidirectional systolic execution can be done for richer fission possibilities. As illustrated

above 4.6 d and e shows two more fission scenarios[27]. If a network layer provides significantly

higher opportunity in partial sum reuse than input activation reuse, while not requiring high

parallelism, a scheme such as Figure 4.6(d) is desirable, while fissioning to Figure 4.6(e) will be

a better design for significantly high input activation reuse. Realizing the last two configurations,

however, requires additional design considerations. To forward the partial sums along four

subarray fragments in Figure 4.6(d) and input activations in Figure 4.6(e), the data needs to flow

in both directions: down and up for partial sums and right and left for input activations. Figure
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4.7a and Figure 4.7b illustrates how the partial sums and input activations need to flow at both

directions to realize the desired scenario. To that end, we propose using bi-directional systolic

arrays that can forward the input activations and partial sums in both directions as opposed to

conventional systolic arrays that always forward the data in just one direction.[23] . In addition

to the bi-directional intra-subarray data movement, we need inter-subarray communication to

facilitate reconfigurability. As such, we exploit a bi-directional ring bus to connect the fission

systolic subarrays. The links will be configurable in that they can be either off to fission two

subarrays or on to forward input activations and partial sums.

Since the objective is to create stand-alone accelerators through dynamic fission, the SIMD

Vector Unit also needs to be broken into smaller segments and coupled with each systolic

subarray. Due to the parallel nature of this unit, we divide the original SIMD Vector Unit to

smaller segments proportional to the number of systolic subarrays and designate a segment to

each. When systolic subarrays need are vertically stacked (e.g., Figure 4.6(b,d)), a subset of

these SIMD segments are bypassed[23].

4.2.6 Fission for on chip memory

In addition to the systolic array itself, the accelerator also requires fissioning the on-chip

memory blocks to allocate commensurate storage to the compute units. Memory disaggregation

across the chip is crucial for maximizing on-chip resource utilization [22]. While decomposing

Weight Buffers is straightforward due to its coupling within the PEs, fission for the Activation

Buffer and Output Buffer is more challenging. We need to divide the weight buffers as well.

In systolic arrays, each PE harbors a private Weight Buffer that holds a subset of the network

parameters. As such, the total Weight Buffer gets broken down naturally during fission as our

strategy does not break the PE.

Figure 4.8 illustrates on-chip memory fission for three of the scenarios shown in Figure

4.6(b,c,e). Each of the scenarios requires different fission scheme for the Activation Buffer and

Output Buffer as well as various patterns of connection between the buffers with the systolic
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(a) Vertical fission (b) Both vertical and horizontal fission (c) Horizontal fission

Figure 4.8. On-chip memory fission and connection to subarrays.

subarray, which are not possible in a monolithic design[16]. In the monolithic case, the Activation

Buffer is just connected to the leftmost PEs and Output Buffer to the bottom-most PEs. However,

as Figure 4.8 depicts, more patterns of connectivity between these buffers and the PEs/subarrays

are necessary. To support these variegated patterns, we devise a microarchitectural block, dubbed

Fission Pod, where the Activation Buffer and Output Buffer are co-located in a memory substrate

that is shared amongst a group of connected bi-directional systolic subarrays[5].

4.3 Microarchitecture for Fussion

This section delves into the microarchitectural design that enables the dynamic architecture

fission for spatial multi-tenant execution. We first discuss the design for the proposed bi-

directional systolic array and Fission Pod, then highlight the overall architecture of the proposed

accelerator, Planaria, that constitutes multiple Fission Pods.

4.3.1 Bidirectional systolic array design

Bi-directional data movement for both input activations and partial sums in the systolic

array provides additional decomposition and rearrangement possibilities that can lead to better

utilization. To enable this additional movement, each PE in the systolic array should be able to

also send input activations to the PE to its left and partial sums to the PE located above. Figure

4.9 illustrates how a set of of additional multiplexers and de-multiplexers around a PE can enable

bi-directional movement[14]. As highlighted in black, a multiplexer at the left of the PE selects
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the inputs from either the activation coming from the right or the left. A de-multiplexer at the

right selects which of the left or the right PE should receive the activation. The multiplexer and

the de-multiplexer are coupled and are controlled by the same single bit, that sets the direction of

the input activations in the systolic array. Similarly, another pair of multiplexer/de-multiplexer on

the north and south of the PE in the Figure 4.9 control the flow of partial sums. To enable fission

and bi-directional inter-subarray data movements[2], PEs at the boundaries of systolic subarrays

are also connected through these multiplexer/de-multiplexer pairs to the corresponding PEs in

the adjacent subarrays. Synthesis results show that these extra logics are not on the critical path

that determines the clock cycle and are local addition that do not timing issues. The critical path

is from the Weight Buffer to the Output Register, where access to the on-chip buffer dominates

the execution time in a single cycle.

Figure 4.9. Switching network for
bi-directional systolic array Figure 4.10. Overall architecture of Planaria

4.3.2 Fission Pod design:

To address the challenges discussed in Section 3.2 for fission of memory along with the

systolic array, we propose a microarchitectural unit, called Fission Pod, which interweaves

the on-chip memory with the systolic subarrays and provides balanced cooperation of these

components. Figure 4.10 illustrates the design. As shown, at the center of this unit, an on-chip

memory substrate, called Pod Memory, is placed, and connected to a group of systolic subarrays.
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Following discusses the cooperation and communication of the subarrays and the Pod Memory.

A conventional systolic array harbors a unified multi-bank Activation Buffer and a unified multi-

bank Output Buffer on their left and bottom, respectively (see Figure 4.5). When a systolic array

is broken to four subarrays as depicted in Figure 4.10, the buffers are moved to Pod Memory

and are broken down to four corresponding independent multi-bank buffers[40]. These four

buffers are connected to the four systolic subarrays via two 44 crossbars to maximize flexibility

and fission possibilities that require various patterns of connectivity between on-chip buffer and

systolic subarrays. One crossbar is for reading from Activation Buffers and the other for writing

to Output Buffers of the Pod Memory. The choice of crossbar here is to facilitate the diverse

communication patterns, some which were illustrated in Figure 4.8. As an example, for fission

configuration in Figure 4.8(b), when the subarrays operate independently, the crossbar connects

each of them exclusively to one of the four Activation Buffers to read the input activations and

to one of the four Output Buffers to write the outputs. Alternatively, for the fission scheme in

Figure 4.8(c), when we reconstruct a wide systolic array, the four Activation Buffers need to

act as a unified memory and are used in a round robin fashion, effectively utilizing the entire

Activation Buffers in the Pod Memory[19].

Besides the memory-compute communication within the Fission Pod, the systolic subarrays

are also connected to one another via two sets of bi-directional ring buses. One bus is to pass

activations between bi-directional subarrays(2) and the other is to forward the subarray partial

sums(3). These buses enable realizing different fission possibilities while leveraging the bi-

directional nature of our subarrays. For instance, to realize the fission scheme in Figure 4.6(e),

where the subarrays reconstruct a wide array, the activation ring bus will chain the subarrays.

The SystolicSubarray-0 in Figure 4.10 sends the activations to SystolicSubarray-1, and so on and

so forth. Since for fission scheme in Figure 4.6(e), there is no need for partial sum forwarding,

the partial sum ring bus will be switched off. The two ring buses are pipelined to alleviate any

potential critical paths due to the connectivity between the subarrays[21].
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4.4 Planaria Overall Architecture

Figure 4.11 illustrates the overall architecture of our proposed accelerator, Planaria. As

shown, the original monolithic systolic array has been broken down to 16 bi-directional systolic

subarrays, where a group of four subarrays form one Fission Pod that contains a Pod Memory.

All these 16 subarrays are connected globally along the accelerator chip via the afore mentioned

bi-directional ring busses for input activations and partial sums data movement. Hence, in one

extreme, all these ring busses can be switched on to construct the biggest logical accelerator,

running only one DNN on the entire accelerator. Alternatively, in another extreme, all the ring

buses can be switched off to provide 16 standalone logical accelerators, spatially co-locating 16

different DNNs simultaneously for multi-tenant execution. Overall, this architecture supports 65

fission scenarios that can simultaneously co-locate various number of DNNs from 1 to 16. Each

of the four Fission Pods is connected to one off-chip memory channel. The bus that brings the

data from off-chip memory channel goes around the subarrays and can fill their weight buffers.

This bus is also connected to the Pod Memory to load/store intermediate activations/output

to/from the off-chip memory channel. This bus is pipelined and is no different than the bus that

feeds the off-chip data to a systolic array. To avoid clutter, Figure 8 does not illustrate the off-chip

memory buses[1]. The Fission Pods are connected to their neighbors through a direct link that

can foster data reuse to reduce costly off-chip accesses. If data is present in one of the pods, it

can be sent to another at most with two hops. Planaria can fission up to 16 logical accelerators

and therefore, it can simultaneously co-locate 16 different DNNs. However, depending on the

combination of the co-located DNNs, 65 total fission scenarios are possible. A logical accelerator,

which represents one of these 65 possibilities, can encompass multiple physical Fission Pods.

A logical accelerator can either work as a logical monolithic systolic array or further fission

if a DNN layer benefits from coarse-grain parallelism. Planaria’s interconnections and bus

are designed such that, a logical accelerator can take a portion of a Fission Pod and another

logical accelerator takes the rest. In Figure 8, one logical accelerator that accelerates DNNA
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can comprise the subarrays in Fission Pod-0 with two subarrays from Fission Pod-3 (Fission

Pod-3.SystolicSubarray-0 and Fission Pod-3.SystolicSubarray-1). The remaining two subarrays

from Fission Pod-3 can form another logical accelerator to accelerate DNNB.

Figure 4.11. Overall architecture of Planaria.

Dynamic reconfiguration for fission and multi-tenant execution: Conventional systolic arrays

operates in tile granularity. That is, they fetch a tile of weights and activations and produce

a tile of intermediate activations or outputs. Planaria does not deviate from this convention.

Consider a scenario where three DNNs are simultaneously co-located with some fission scheme

on Planaria, and fourth DNN is now dispatched to be accelerated. In this case, Planaria allows the

old three co-located DNNs finish computing the tile that they are processing. In the meantime,

the scheduler decides the new allocation of the subarrays considering the newly dispatched

DNN. At the same time, Planaria loads this new fission configuration as a set of bits that decides

the direction of the subarrays and the off/on connectivity state of the buses. Each Planaria

subarray requires two 6-bit registers, one retaining the current configuration state and the other

pre-holding the next state. Six bits is sufficient for reconfiguration of each subarray and its

directions/buses. One bit determines the direction of input activation, another sets the direction

of partial sums. Each subarray can potentially connect to four other subarrays, which can be

in the neighboring Fission Pods. Four bits determines which ones are going to be connected.

The direction of connectivity can be deduced from the direction of the subarray. Another eight

bits determine the connectivity of the Pod Memory buffers to the subarrays in the same Fission
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Pod. Like conventional systolic design, each subarray is equipped with an instruction buffer

and a Program Counter (PC) that indicates the current macro instruction. While the subarray is

draining the instructions for the old DNNs, Planaria fetches the next instructions associated with

the new configuration. Starting the execution with the new fission configuration becomes simply

adjusting the PC to the first instruction associated with the new configuration. The mechanism is

no different than prefetching the instructions for a new tile in conventional systolic arrays. The

difference is that, each subarray has a designated PC and a designated 4 KB instruction buffer.

For INFaaS, since each DNN will serve unbounded set of inference requests, it is intuitive to

precompile the DNN and run the precompiled binary again and again. For each layer in a DNN,

Planaria can allocate between 1 through 16 subarrays. Although allocation of a few subarrays

provides more fission possibilities, only one is optimal for the layer given a certain number of

subarrays. Therefore, to facilitate scheduling, the DNNs can be precompiled to these 16 different

logical accelerators resulting from fission.

4.5 Spatial task scheduling

The primary goal of the Planaria’s task scheduler is to fully leverage the dynamic fission

capability to maximize performance in terms of utilization, throughput, while meeting the QoS

constraints. This section delineates the overall flow of the proposed spatial task scheduling

algorithm, in Algorithm 1. Overall flow. To leverage the dynamic fission provided by the

architecture, the scheduler is invoked whenever (1) a new inference task is dispatched to the

task queue of the datacenter node or (2) a running inference task finishes. As mentioned in

the previous section, the scheduling events happen at tile granularity. Each scheduling events

consists of the following two major stages. Given the DNNs in the task queue, the first stage

determines the minimum amount of resource (number of subarrays) necessary to meet the QoS

requirement for tasks. Given this information, the second stage determines the allocation of the

subarrays based on their availability and priority of the inference requests. This high-level flow
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of the scheduling is shown in function SCHEDULETASKSPATIALLY of Algorithm 1.

We need to estimate minimal resource to meet the QoS requirement. This algorithm exploits

the dynamic architecture fission by adaptively assigning resources about the intrinsic slack times

provided by each DNN inference task. The algorithm begins by first identifying the minimal

resources required to meet the QoS requirement. As we know the list of possible configurations

and the slack time of each task a priori, we feed these information to a prediction model similar

to [4, 37, 56] to predict the execution time for different logical accelerator configurations and use

the outputs to deduce the minimal resource to meet the QoS requirement. Performance estimation

is viable since the topology of the DNN does not change, there is no hardware managed cache,

or dynamic control flow in the execution. The EstimateResources function in Algorithm 1

summarizes this stage. Also, resources need to be allocated to improve QoS. After identifying

minimal resource for each task, we determine whether all the tasks in the queue can be co-located

simultaneously. Depending on whether all the tasks can be spatially co-located on Planaria,

this stage invokes two different functions, ALLOCATEFITTASKS and ALLOCATEUNFITTASKS

, as shown in line 6–10 in Algorithm 1. First, when all the tasks can be spatially co-located,

the function ALLOCATEFITTASKS will first assign the minimum number of subarrays required

to meet the QoS requirements. Then, if there are remaining resources, the scheduler aims to

optimally distribute these spare resources using a score function that balances priority and the

remaining time of each task, as shown in line 27 in Algorithm 1. Consequently, this score

function not only fosters throughput but also the fairness among the tasks. Finally, the scheduler

allocates the spare resources proportional to the score of each task. On the other hand, when

only subset of the tasks fit on Planaria, the scheduler uses the ALLOCATEUNFITTASKS function

to resolve the competition among the tasks. Like the approach used to assign the spare resources,

the function leverages a score that uses priority, slack, and the minimum required resource of

each task, as shown in line 40 in Algorithm 1. This scoring mechanism gives advantages to the

tasks with higher priority to improve fairness, and to the ones with less slack time or less resource

requirement to maximize QoS satisfaction and throughput. Finally, the scheduler, allocates the
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Algorithm 1. Spatial Scheduling for Planaria
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.1: function SCHEDULETASKSSPATIALLY(Ω)
2: estimate←{}
3: for task in Ω do
4: estimate[task]← ESTIMATERESOURCES(task)
5: end for
6: if Planaria. f its(estimates) then
7: s← ALLOCATEFITTASKS(Ω,estimates)
8: else
9: s← ALLOCATEUNFITTASKS(Ω,estimates)
10: end if
11: return s
12: end function

13: function ESTIMATERESOURCES(task)
14: candidate← []
15: slack = task.QoS constraint− task.executed time
16: for num subarray in range(Planaria.size) do
17: if PREDICTTIME(task)≤ slack then
18: candidate.append(num subarray)
19: end if
20: end for
21: return min(candidate)
22: end function

23: function ALLOCATEFITTASKS(Ω,estimates)
24: allocation←{},scores←{}
25: for task in Ω do
26: allocation[task]← estimates[task]
27: score[task]← task.priority

task.remaining array

28: end for
29: remaining array← Planaria.size−∑estimates
30: for task in Ω do
31: f raction← score[task]

∑score
32: allocation[task]+ = f raction× remaining array
33: end for
34: return allocation
35: end function

36: function ALLOCATEUNFITTASKS(Ω,estimates)
37: allocation←{},scores←{}
38: for task in Ω do
39: slack← task.QoS constraint− task.executed time
40: score[task]← task.priority

slack×estimates[task]

41: end for
42: scores.sort(reversed = True)
43: remaining array← Planaria.size
44: while remaining array > 0 do
45: allocation[task]← estimate[task]
46: remaining array−= estimates[task]
47: end while
48: return allocation
49: end function
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resources to different tasks in the order of their scores until Planaria becomes fully occupied.

4.6 Evaluation

4.6.1 Methodology

Benchmark DNNs. Following the methodology presented in MLPerf, a recent effort in

benchmarking deep learning systems and applications, we choose our representative DNN

models, from three domains of image classification, object detection, and machine translation.

We use nine diverse DNN models from the aforementioned domains to construct a set of

DNN tasks with various layer dimensions and types of operations (regular and separable depth-

wise/pointwise convolution, LSTM, batch normalization, fully connected, pooling, residual, etc.),

including recent and state of-the-art deep neural models such as Efficient Net and YOLOv3.

Multi-tenant workloads. Commensurate with MLPerf, as Table 4.6 shows, we create three INFaaS

workload scenarios made up of inference requests to the benchmark DNNs: (a) Workload-A

(from requests to ResNet-50, GoogLeNet, YOLOv3, SSD-R, and GNMT); (b) Workload-B

(from requests to EfficientNet-B0, MobileNet, SSDM, and Tiny YOLO; and (c) mixed weight

Workload-C (from request to all the nine DNNs). To generate multi-tenant instances from these

workload scenarios, we assign a random arrival time for each inference request by drawing

samples from a Poisson distribution, commensurate with the methodology of MLPerf and other

works to mimic task dispatching in datacenter servers. We assign priority levels to the dispatched

tasks by drawing samples from a uniform distribution. The priority levels are within the range

of 1 to 11. We use Quality of Service (QoS) constraints presented by MLPerf for the server

scenarios. To well exercises our proposed system, we use three levels of QoS for each workload

scenario, (a) QoS-S as a soft QoS constraint (defined as 1 QoS given in MLPerf), (b) QoS-M as

a medium constraint ( 1 4× QoS), and (c) QoS-H as a hard constraint (1/16×QoS) to evaluate

sensitivity with regard to QoS latency constraints.

Hardware modeling. We implement the proposed bidirectional systolic subarray and the
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Table 4.1. Workload scenarios and benchmark DNNs from three domains: image classification,
object detection, and machine translation.

Workload Load Weight Domain DNN Model(Release year)

Workload
Scenario-A

Heavier
Image Classification

ResNet-50(2015),GoogLeNet
(2014), ,

Object Detection YOLOv3(2018), SSD-R(2016), ,
Machine Translation GNMT(2016)

Workload
Scenario-B

Lighter
Image Classification

EfficientNet-B0(2019),
MobileNet-v1(2017), ,

Object Detection
SSD-M(2017), Tiny YOLO

(2017)

Workload
Scenario-C

Mixed
Image Classification

ResNet-50, GoogLeNet,
EfficientNet-B0, MobileNet-v1, ,

Object Detection
YOLOv3, SSD-ResNet34,

SSD-MobileNet, Tiny YOLO, ,
Machine Translation GNMT

bussing systems including crossbars for the Fission Pods in Verilog and synthesized them

with Synopsys Design Compiler using FreePDK-45nm standard cell library to extract their

power/area. We model the on-chip SRAM using CACTI-P that provides energy and area. The on-

chip busing system is modeled using McPAT 1.3 and the energy cost estimated to be 0.64 pJ/bit

per hop. Simulation infrastructure for Planaria. We compile each DNN benchmark to Planaria

and develop a cycle-accurate simulator that provides the cycle counts and statistics for energy

measurements for each DNN using the modeling described above. We include all the overheads

of reconfiguration, fission, instruction fetch, off-chip memory accesses, etc. We verify the cycle

counts with our Verilog implementations. Comparison with PREMA. We compare our proposed

Planaria accelerator that supports spatial multi-tenant execution of DNNs to PREMA that exploits

preemption mechanisms to support multi-tenancy via temporal execution. Baseline PREMA

utilizes a monolithic TPU-like systolic array DNN accelerator as its hardware. For the sake of

fairness in comparison, we use the same number of PEs (128128=16,384), on-chip activation

/weight/output buffers (12 MB), frequency (700 MHz), and off-chip memory bandwidth as

reported in PREMA’s work for our design. The detailed analysis of the synthesis results shows

that our design can meet 1GHz frequency and the added bi-directional links or the buses, due to

pipelining, are not on the critical path. However, for fair comparison with PREMA, we still use

their reported 700 MHz frequency, which is based on TPU. PREMA’s monolithic systolic array

is not explicitly optimized to execute the most recent DNNs that use depth wise convolutions
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such as Efficient Net and Mobile Net. A recent study on designing systolic array generators form

UC Berkeley also makes this observation and suggests executing these specific layers on CPUs

instead of systolic arrays. Unfortunately, our experiments show CPU execution to be slightly

slower (4%) than the monolithic systolic array we evaluated. In our evaluation, Workload-A

does not include any DNNs with separable depth-wise convolutions. Evaluation Metrics. To

evaluate the effectiveness of the proposed solutions, we use the following metrics: Throughput is

defined as the maximum queries-per second (1λ ) achieved by the system according to Poisson

distribution (λ ) while meeting the SLA for different QoS constraints (QoS-S, QoS-M, and

QoS-H). According to MLPerf, meeting SLA is defined as executing an image classification or

object detection task 99% of the time and a translation task (e.g. GNMT) 97% of time within its

QoS latency bound in a multi-tenant workload. This is the main metric for evaluation of server

scenarios for inference tasks in MLPerf. SLA Satisfaction Rate is the fraction of multi-tenant

workloads that adhere to the SLA described above. Fairness measures the equal progress of the

tasks in a multi-tenant setting while considering task priorities. We use the same definition for

fairness given in PREMA baseline, as

f airness = mini, j
PPi

PPj
,while PPi =

T isolated
i

T multi−tenant
i

/
Priorityi

∑Priorityk
(4.1)

Energy reduction compares total energy consumption to run multi-tenant workloads on both

Planaria and PREMA.

4.7 Design Space Exploration

Various analysis was done for systolic arrays to understand the power and area overhead.

Dimension tested for unidirectional array to understand the design space. Sizes tested were

4,8,16,32. And bit widths tested are 8, 16. Analysis was done to find the relation between

dimension area and power for interpolating between various sizes of fissioned architectures.

From figure 4.12 we can see doubling the dimension quadruples the SA area. Bit-width also
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relies on forms a linear relation, by doubling bitwidth the area doubles. So, we can see there is a

scope for optimizing the area and power by dynamically modifying the bit-widths. This could

be part of future work. Power follows similar trends and does not account for any significant

overheads or disparity. A size 128X 128 number of PEs were considered. The size of subarrays

was swept from 16x16, 32x32, 64x64. And to find the optimal size the energy delay product was

considered. The relative EDP values for three design points was considered and 32x32 offers

least EDP. So, we use this size for fission granularity. From 32 as we increase the size, we will

not be able to exploit sufficient parallelism. However, as we reduce the size, the benefits of

parallelism are outweighed by the additional switching circuitry.

(a) Unidirectional area trend (b) Unidirectional power trend

Figure 4.12. Unidirectional parameter trends

Bi-directional data movement for both input activations and partial sums in the systolic

array provides additional decomposition and rearrangement possibilities that can lead to better

utilization. To enable this additional movement, each PE in the systolic array should be able to

also send input activations to the PE to its left and partial sums to the PE located above. Figure

4.13 illustrates how a set of of additional multiplexers and de-multiplexers around a PE can enable

bi-directional movement. As highlighted in black, a multiplexer at the left of the PE selects the

inputs from either the activation coming from the right or the left. A de-multiplexer at the right

selects which of the left or the right PE should receive the activation. The multiplexer and the

de-multiplexer are coupled and are controlled by the same single bit, that sets the direction of the

input activations in the systolic array. Similarly, another pair of multiplexer/de-multiplexer on

the north and south of the PE in the Figure control the flow of partial sums. However, we have
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one additional set of multiplexer for partial sum, as we have to decide if we want to pass on the

partial sums or accumulate them.

Figure 4.13. Bidirectional systolic array Figure 4.14. Quantity of each component

Design space exploration was done on bidirectional systolic arrays to understand the power

and area overhead because of the switching circuitry as shown in figure 4.15. This overhead

mainly comprises of the additional multiplexers and demultiplexers. Bidirectional SA are swept

for value 4, 8,16,32- and for-bit widths 8, 16. We see around 7% area over head on an average

owing for the control logic. This is a good tradeoff for the additional flexibility that we obtain

for the fission architecture. However, in case of power we see around 18% increase. The power

increase was slightly more than expected. However, we know power is proportional to area and

needs to increase with similar trends. So, to understand this we had to split energy consumption

to see if this was expected as shown in table 4.2. We analyzed three different parts of the power

mainly switching, internal power. So, leakage power is same as static power which occurs

whenever there is direct shot to ground. internal power is the dynamic power dissipated within

the cell boundaries. Like charging and discharging of nodes. Switching power is hidden power

which is the input switching power when outputs are not switching. Like when there is a clocking

switching activity on the cell inputs and the output is not changing. We see that the internal
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power overhead is constant as expected with around 12% power overhead which is expected.

But however, the switching power and leakage power overheads are not constant, and they are

increasing monotonically. This could be the reason for such high-power overheads.

(a) Area trends (b) Power trend

Figure 4.15. Bidirectional

Table 4.2. Table represents power split for all categories.

dimension Bi directional SA uni directional SA overhead
switch internal leakage switch internal leakage switch internal leakage

4 8.16 21.7 0.79 8.02 18.7 0.76 1.746 13.825 3.7975
8 34.2 77 3.18 31.1 67.2 2.91 9.265 12.727 8.4906

16 142.3 314.4 4.7 123 271 4.1 15.69 13.804 12.766
32 670 1240 5.3 529 1080 4.42 26.65 12.903 16.604

We tried exploring one more aspect for our fission architecture. To check the overheads for

connecting two SAs vs a monolithic SA as shown in table 4.3 and 4.4. Three configurations were

tested. 32x64, this uses activation reuse. 64x32 this has partial sum reuse. 64x 64 which can have

both reuse and no re use at all. 32x64 and 64x32 are similar architectures however, 64x32 the one

with partial sum reuse has slightly more area overhead than its counterpart, this is because we have

an additional multiplexer which checks to see if the output needs to be forwarded or accumulated

in the SA. Now comparing the difference between monolithic, fissioned and connected SAs.

The overheads have been calculated for three different configurations again. Here monolithic is

the standalone 32X64 or 64x32 architecture. Fissioned are normal 32x32 architecture. There

values have been computed by just taking their individual area and multiplying by the factors

they have been replicated. And connected architecture areas are obtained by designing a circuitry
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where 2 32x32 systolic array are connected via pins and synthesizing the design. We see not

much area over head between connected and monolithic showing that which performing fission

we just need to account for the switching circuitry. But fission trends are not similar as we are

just multiplying, and this does not account for the buffer sizing and optimization that are done

when area increases. Performing the same analysis on power shows that there is a similar trend

between both.

Table 4.3. Area overhead between Monolithic SA, connected SA (multiple instances connected
in top module), fissioned SA (times single unit) measured to show the benefit of fission.

Area trend dim Monolitic SA connected SA fissioned SA 1-3 overhead 2-3overhead
action reuse 32-64 1682527.11 1682836.97 1689866 0.43618257 0.47689302

partial sum reuse 64-32 1688648.04 1688928.15 1689866 0.01658783 0.055529301
no reuse 64-64 3369216.87 3369829.32 3379732 0.01817781 0.293862954

Table 4.4. Power overhead between Monolithic SA, connected SA (multiple instances connected
in top module), fissioned SA (times single unit) measured to show the benefit of fission.

power trend dim Monolitic SA connected SA fissioned SA 1-3 overhead 2-3overhead
action reuse 32-64 1620 1645 1664 2.71604938 1.155015198

partial sum reuse 64-32 1750 1781 1664 1.77142857 -6.56934307
no reuse 64-64 3400 3446 3328 1.35294118 -3.42426001

Further analysis was done to understand the power and area trends obtained as shown in

figure 4.16. Most of the area inside the SA architecture is because of the PE, this can be seen

from the quantity graph and this part is expected as it is the main compute units and cannot

be avoided. The area and power graphs for PEs are in proportion. There are 32 accumulators

one for each column. And they comprise around 1% of total area and power, similarly, buffers

account for 1% of total area and we see similar results for power. Now dwelling deeper into

PE architecture, we see that its mainly comprised of multiply and accumulate units and used

for computation. It comprises 70% of the systolic array. And rest of the area is mainly due to

the buffers. One observation that we see here is that power distribution of buffers is slightly

more than the area distribution. This could be because of the hidden power where power if

consumed for changes in input without change in output. These latches are driven by the clock
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(a) Systolic array area split (b) Systolic array power split

(c) Individual PE area split (d) Individual PE power split

Figure 4.16. Systolic array, individual PE parameter trends

which keeps continuously changing even though the output might not change causes extra power

consumption. Clock gating in this scenario would help achieve lot of power saving. Finally,

higher level division was performed to see the overall distribution between compute, memory,

and control logic as shown in figure 4.17. We do not see much change in uni directional and

bidirectional between multipliers adders and buffers which is expected. However, control logic

area increases by 60% and power by 70%. However, this additional circuity is the trade off we

make for flexibility in the fission architecture.

The communication between pod memory and subarrays is crucial and needs to be very fast.

We are using cross bar switches for this purpose as they support diverse communication with

minimum time delay. Three designs as shown in figure 4.18 were considered to understand the

area and power overheads as shown in figure 4.19. We measure this for a 4x4 which was selected

as our fission granularity is 2 and we have 4 fission pods. Coming to the first design we have 4

inputs to multiplexer and connected to a demultiplexer with 4 outputs. However, there is only

one channel between them. So, whenever there is just one input this is the best architecture as it

consumes less area. However, if there are 4 inputs simultaneously then we have to time multiplex

138



(a) High level power comparison (b) High Level Area Comparison

Figure 4.17. High level unit distribution

between all the inputs and worst case it would take 4-time units for the input to transfer to output.

In design 2 we have 4 inputs multiplexer connected to 2 separate 1:2 demultiplexers[17]. In this

case we have 2 separate channels and the output in worst case is time multiplexed between 2 set

of inputs. So worst case time delay is 2 units. The final design we have only 4 multiplexers and

this consumes the largest area as there are 4 separate multiplexers. But however, in this case as

soon as we get the input it is transferred to output, we do not have to wait for the inputs. And the

scratchpad connected to the sub arrays they need to be as fast as possible we consider using this

design. Cross bar area and power trends were measured for 2, 4, 8 just to check the variation

with respect to size as shown in table 4.5. We see that they are linearly proportional.

(a) Design1 (b) Design2 (c) design3

Figure 4.18. Crossbar designs.

Control logic is the crucial part in our fission architecture. We have multiple switches like
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(a) crossbar area trend (b) crossbar power trend

Figure 4.19. crossbar parameter trends

Table 4.5. crossbar sizing for inputs:2,4,8

config area power
crossbar t 480.92 178.423

crossbar 2t 393.68 154.911
crossbar 4t 246.84 111.928

Table 4.6. Critical paths for memory configu-
rations

memory Delay(CP)
scratchpad 4.087ns

Dual port SRAM 4.093ns

the crossbars for communicating between the pod memory and subarrays, there is also intra

sub array, inter subarray activation and partial sum data movement. Read/write to on chip pod

memory. All these needs to dynamically turned on and off dynamically fission the architecture

as and when needed. and for bidirectional data flow we need extra control logic. So extensive

design space exploration was done to find the switch configurations. 2:1,3:1,4:1, 8:1 multiplexer

and demultiplexers where synthesized to find the best area power configuration in our design.

Also, it is swept across various bitwidths like 32, 64, 128, 256, 1024, 2048. Following are

few switch configurations and bitwidths as shown in table 4.7 are selected for the design. As

discussed, design was swept for 2-1,3-14-18-1 multiplexer and demultiplexers for all the bit

widths as shown in figure 4.20.

Table 4.7. Final switch configurations used

bits area(µM2) power(mW)
multiplexer 4X1 768 2760.282 1090

demultiplexer 1X4 768 2963.239 1560
crossbar 4X4 1024 14714.056 5940

crossbar 4X4 out 4096 58856.224 2376
multiplexer 3X1 768 2119.22 919.228

demultiplexer 1X3 768 2445.326 689.8271

Double buffering was used to make the weight buffers. It is mainly used in streaming
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(a) demultiplexer bitwidht-power trend (b) demultiplexer bitwidht-area trend

(c) Multiplexer bitwidht-power trend (d) Multiplexer bitwidht-area trend

Figure 4.20. parametric sweep for different inputs and bit-widths

algorithms and for high performance computing. The idea is that instead of reading and then

writing using a single port ram, we can use them in double buffering configurations to do

simultaneous reads and writes. There by saving clock cycles. So here we have 2 single ports

rams, at a point in time compiler will be writing to one SRAM and reading from the other SRAM.

Once the reading is done completely exhausting the buffer and writing is done completely filling

up the buffer, we switch them, now the SRAM which is full is used for reading and the SRAM

which is empty is used for writing as shown in figure 4.21. In this way we can use two single

port SRAM to design dual port SRAM which helps in achieving simultaneous reads and writes.

We could not use dual port SRAM as it was consuming more than double the area and power for

single port SRAMs. Coming to the working part as shown in figure 4.22. since the arrays were

working in SIMD fashion, we had to keep a check on the address. And all the address would be

read sequentially. Once we reach the maximum address all the bits would be high, and this turns

our flag. We use two separate flag one for read and other for write. To account for asynchronous

reads and write. Once both the flags are high, we swap our buffers.
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Figure 4.21. Double buffering high
level diagram

Figure 4.22. circuit level dataflow

Figure 4.23 shows the FPGA block diagram of scratchpads used in weight buffers. Imple-

mentation was done in FPGA for power, area analysis. From figure 4.24 and table 4.8 and 4.9 on

comparing the delay area and power of dual port SRAM with that of double buffering, we have

used a FPGA to compute the area and power. We see that double buffering uses 12% of the area

in comparison to dual port which uses 34% area. All using double buffering we obtain power

saving of 74%. 3.66W to 0.92W in case of double buffering. Critical path shown in table 4.6

remains the same. However, using single port SRAMs in double buffering configuration saves

power.

Table 4.8. Scratchpad area utilization

Resource Utilization Available Utilization %
LUT 5 53200 0.01

LUTRAM 3 17400 0.02
FF 3 106400 0.00
IO 11 125 8.80

Table 4.9. Dual port SRam area utilization

Resource Utilization Available Utilization %
LUT 143 53200 0.27

LUTRAM 96 17400 0.55
FF 16 106400 0.02
IO 39 125 31.20
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Figure 4.23. FPGA block diagram of double buffering scratchpad

4.8 Verification

The design has been verified properly to make sure it is reaching the expected design

requirement. Most of the verification was automated to get rid of manual testing. For this

purpose, we have used Cocotb. It is easier to write verification in software as we can more

exactly try to imitate the real environment and is simpler in terms of coding. Cocotb is a simulator

plugin for your RTL digital design simulator and has a python library that allows you to write

code that is compatible with this plugin as shown in figure 4.25. We start with our RTL code

which can be run on standard simulator. We have our test bench written in python. The link

between the RTL simulator and python testbench is provided by using Cocotb. The link works by

using VPI FLI, VHPI, which are the standard interfaces to talk with your simulator. High level

testcases were created to make the design check end to end. The memory read/write betwwen

weight buffers and PEs was tested. All arithmetic units were checked to make sure that PE which

is mainly multiply and accumulate is working fine. Also the design was imported from TPU

paper. Proper test cases were written to check the activation/partial sums flow and to see if it is

matching TPU requirements. Bidirectional systolic arrays are needed for the design to flexibly
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(a) Scratchpad (b) Dualport SRAM

Figure 4.24. Power, Area comparison between double buffering config and dual port SRAM

fission into multiple DNN accelerators. So, the design needed to be properly checked for the

bidirectional flow. And the connectivity was checked to see if any unpredictable errors would

popup because of the fission connections. Finally all these changes were checked for single input

and multiple inputs which involves piplining the inputs for maximum utilization.

Figure 4.25. Cocotb high level block diagram Figure 4.26. Planaria throughput
improvement over PREMA. for different QoS

latency constraints and workloads.

4.9 Experimental results

Initially we compare we PREMA. Throughput comparison. Figure 4.26 compares the

throughput of Planaria with PREMA across various workload scenarios and QoS requirements.

As described, we use a Poisson distribution (λ ) to generate the arrival times for queries with
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a given throughput of (1λ ). For both Planaria and PREMA, we report the maximum possible

throughput (1λ ) that meets the SLA, following the MLPerf methodology. For Workload-C as

the most comprehensive workload scenario that encompasses all the benchmark DNNs, Planaria

improves the throughput by 7.4×, 7.2×, 12.2×, for QoS-S, QoS-M, and QoS-H, respectively.

For Workload-B the improvements increase to 13.2 ×, 43.1 × for QoS-S and QoS-M, while for

the case of QoS-H, the baseline PREMA does not meet the 99% QoS constraints. This trend

emanates from the fact that the DNNs in Workload-B include separable depth-wise/point-wise

convolutions (except for Tiny YOLO). Since Planaria has fission capability, it can better utilize

its resources for depth-wise convolution while a monolithic design in PREMA cannot conform

to the requirements of this layer. This is an additional advantage of fission that enables running

these recent DNNs more efficiently. About Workload-A, Planaria improves the throughput

by 1.1, 1.5, 2.3, for QoS-S, QoS-M, QoS-H, respectively. These DNNs do not include depth-

wise convolution, yet our hardware and scheduling yields significant benefits. Across all three

workload scenarios, improvements are more significant for the case of hard QoS. Our task

scheduling algorithm considers QoS along with other metrics that leads to better throughput for

stricter QoS requirements.

Figure 4.27. SLA satisfaction rate of Planaria
and PREMA.

Figure 4.28. System fairness improvement
normalized to PREMA.

SLA satisfaction rate comparison. Figure 4.27 illustrates the SLA satisfaction rate of Planaria

and PREMA for the same throughput (1λ ). As the results show, Planaria improves the SLA

satisfaction rate across all the workloads and QoS requirements. The Planaria’s fission-capable

microarchitecture combined with its QoS-aware task scheduling algorithm enables significantly

larger number of workloads to be executed while adhering to SLA, compared to PREMA.
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Based on the adopted QoS constraints from [49], Workload-A allows relatively larger slack time

compared to other workloads. As such, both Planaria and PREMA performs relatively better

in SLA satisfaction for Workload-A. Except for the case of QoS-S, where both Planaria and

PREMA satisfy the SLAs 99% of the time, Planaria provides a 14% and 28% increase in SLA

satisfaction rate compared to PREMA. For the case Workload-B that requires tighter QoS as

compared to Workload-A, improvements increase to 22%, 31%, and 51%, for QoS-H, QoS-M,

and QoS-S, respectively. Finally, the improvements range from 16% to 45% for QoS-S to

QoS-H, with respect to the mixed Workload-C. Fairness comparison. Figure 4.28 shows fairness

with Planaria normalized to fairness with PREMA across all the three workload scenarios.

Planaria significantly improves fairness for Workload-A by 2.8×, 5.1×, 2.7× across the three

QoS requirements. Overall, Planaria improves fairness significantly with minimum of 1.9×

for (Workload-C, QoS-H) and maximum of 9.1× for (Workload-B, QoS-M). That is because

Planaria can spatially co-locate multiple tasks and process them simultaneously, as opposed to

PREMA’s monolithic accelerator and its preemptive approach that can only process one task at a

time. In addition to that, Planaria’s task scheduling algorithm (functions ALLOCATEFITTASKS

and ALLOCATEUNFITTASKS in Algorithm 1) ensures that each dispatched task receives adequate

number of subarrays with respect to its priority and overall execution time.

Figure 4.29. Planaria energy reduction com-
pared to PREMA.

Figure 4.30. Design space exploration for fis-
sion granularity

Energy comparison. Figure 4.29 compares the total energy consumption for the execution

of workloads on Planaria and PREMA systems. For Workload-A, Planaria consumes slightly

more energy than PREMA ranging 11% (QoS-M) to 25% (QoS-S). Multi-tenancy leverages

the slack in QoS requirements and as such runs the application slightly slower than an isolated
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mode to improve throughput and fairness. This slower execution manifest itself as increased

total energy compared to running each DNN in isolation with fastest possible speed without

considering QoS. As a result, we see a degree of total energy increase for these traditional

workloads. In the case of Workload-B and Workload-C, however, when modern DNNs are

mixed, the energy benefits from fission outweighs this effect. Workload-B enjoys the maximum

energy improvements using Planaria, with minimum of 5.8× and maximum of 12.4× gain

over PREMA. Planaria’s fission-capable design enables it to adapt to the various computational

demands that exist in this workload (e.g. EfficientNet-B0, MobileNet-v1) and significantly

reduces their energy consumption. Overall, with respect to Workload-C which is a mixture

of both DNN classes, Planaria reduces the total energy consumption of the workloads by 3.4,

4.4, and 5.3× for QoS-S, QoS-M and QoS-H, respectively. Scaling out resources. Figure 4.32

illustrates the minimum number of Planaria nodes necessary to achieve 99% SLA satisfaction.

We use a constant throughput across all workloads and QoS requirement. In this scaled-out

setting, the DNN task traffic is distributed across multiple Planaria-equipped node, where each

node has one accelerator. Each single DNN task is not distributed across multiple nodes and is

only mapped to one chip, while it can be co-located with multiple tasks on the same accelerator

chip. As illustrated in the figure, the number of nodes necessary to achieve SLA satisfaction

increases as we go from soft (QoS-S) to hard constraints (QoS-H) on QoS. Among the various

workload scenarios, Workload-B that has stricter QoS constraints, requires larger number of

nodes compared to other workloads, with the minimum of 2 nodes for QoS-S and maximum of 7

nodes for QoS-H. As also shown in Figure 4.27, Workload-A with QoS-S does not need increase

in number of nodes and one Planaria accelerator is sufficient, while it requires 3 nodes with

QoS-H. Finally, with regard to Workload-C, 2, 3, and 5 nodes are required for QoS-S, QoS-M,

andQoS-H, respectively.
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4.9.1 Sensitivity studies

Planaria performance/energy on a single DNN inference. Figure 4.31 shows the speedup

and energy reduction of Planaria as compared to a conventional systolic-based accelerator (like

PREMA’s) with the same amount of compute and memory resources, while each DNN inference

is executed in isolation. Across the nine DNN benchmarks, Planaria offers 3.5× and 6.4×

speedup and energy reduction, respectively. The fission-capable design of Planaria enables it

to adapt to the various computational characteristics that exist in DNN layers and exploits the

opportunities for parallelism and data reuse to improve the performance and energy consumption.

Among them, EfficientNet-B0, MobileNet-v1, and SSD-M that exploit depth-wise convolutions,

enjoy the maximum benefits. In the case of depth-wise convolution layers, Planaria’s dynamic

fission capability enables it to decompose to a larger number of smaller systolic subarrays

that operate in parallel. These subarrays process multiple filter channels in parallel, leading to

higher utilization of PEs and consequently significant increase in performance. About DNNs

without depth-wise convolution, Tiny YOLO enjoys the maximum benefits, 2.8× speedup

and 5.7× energy reduction. GNMT enjoys the least improvements, since it mostly requires

matrix-multiplication operations, which is also suitable for a monolithic design. Unlike the

multi-tenant case for Workload A, there is no increase in energy for its isolated DNNs. As

discussed, multi-tenancy trades off individual energy and speed for higher throughput. In the

isolated case, that tradeoff is not employed, and all the resources are allocated to one DNN

maximizing its efficiency and speed through fission.

Figure 4.31. Speedup and energy reduction
for single DNN inference in Planaria com-
pared to a conventional accelerator.

Figure 4.32. Required number of nodes to
achieve 99% SLA satisfaction.
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Design space exploration for fission granularity. To find the optimal fission granularity, we

perform a design space exploration that yields the most efficient granularity, as shown in Figure

4.30. We consider 128 × 128 total number of PEs (as was in PREMA and TPU) and sweep

the size of subarrays for 16 × 16, 32 × 32, and 64 × 64. To find the optimal size, we consider

Energy-Delay-Product (EDP) and measure its average value across the benchmarked DNNs,

while they run in isolation. Figure 4.30 illustrates the relative EDP values for the three design

points. As also shown in Figure 4.30, 32 × 32 offers least EDP and as such we use this size as

fission granularity for Planaria. Sensitivity analysis for fission possibilities. Table 4.10 illustrates

the sensitivity of DNN layers to various fission possibilities. For this analysis, we considered

the nine benchmark DNNs in an isolated setting, where the whole accelerator is dedicated to

a single DNN inference. The gray cells of the table show the 15 fission possibilities that are

determined most fitting for the benchmark DNNs when run in isolation. The table also reports

their architectural characteristics (parallelism (P), input activation reuse (IAR), partial sum reuse

(PSR), and usage of bi-directional systolic movement in that configuration) with respect to the

3232 fission granularity. A cell also lists the DNNs with the percentage of their layers that have

utilized the pertinent fission configuration. Six of these 15 configuration are enabled through

Bi-directional systolic design, providing architecture fission points that are beneficial for DNNs.

The black cell in Table 4.10 captures the most prevalent and fruitful fission configuration across

the benchmarks that, in fact, exploits the bi-directional feature. All nine DNNs utilizes this

configuration in their execution, while GNMT,

YOLOv3, and MobileNet-v1 are the three DNNs that utilizes this configuration more than

other DNNs. Another important configuration is where fission takes place at the finest granu-

larity and 16 number of 3232 subarrays work independently in parallel. This configuration is

specifically important and useful for DNNs with depth-wise convolution, namely EfficientNet-

B0, MobielNet-v1, and SSD-M, where each subarray processes a channel, leading to higher

utilization compared to monolithic systolic array. Area and power overheads for fission.

Figure 4.33 illustrates the breakdown of area and power with respect to different hardware
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Table 4.10. Layer sensitivity to various fission configurations. Each cell shows a configuration
with its architectural attributes and the percentage of the layers that uses the configuration

components in Planaria. when synthesized at 45 nm. This break down does not include the

buffers that amounts 12 MB and is the same as the one used in PREMA. The breakdown includes

the components added to support dynamic fission, which includes, logic for bi-directional

flow of data, Fission Pod crossbar, SIMD vector unit additions, instruction buffer additions,

re-configurations registers overheads. Overall, dynamic fission adds 12.3%, 20.3% extra area

and power, respectively.

4.10 Related Work

The need for higher speed and efficiency in DNN execution has led to an explosion of DNN

accelerators that has even made their way to operational datacenters (Google’s TPU , NVIDIA

T4, Microsoft Brainwave, etc.). However, multi-tenancy has been largely omitted in the proposed

or deployed designs due to the arms race in the market for higher speed and efficiency. Even the

MLPerf benchmark suite keeps this single model focus for both training and inference. In contrast,

this paper offers spatial multi-tenant acceleration through architecture fission that is propelled by

unique microarchitectural mechanisms and organizations that enables flexible task scheduling.

As such, this paper lies at the intersection of DNN acceleration and multi-tenant execution. We

discuss relevant related work categories below. Multi-tenancy for DNN accelerators. PREMA
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Figure 4.33. Planaria power/area breakdown and its overheads when synthesized with 45 nm
technology.

develops a scheduling algorithm for preemptive execution of DNNs on a monolithic accelerator

and uses time-sharing for multitenancy. In contrast to this temporal multi-tenancy scheduling

framework, this paper explores architecture design for spatial co-location of DNNs for multi-

tenant acceleration and its unique scheduling challenges. A concurrent work in the ISCA 2020

website aims to support simultaneous multi-neural network execution. However, the paper is

neither published nor is available for qualitative or quantitative comparison. Flexibility in DNN

accelerators. Flexibility in DNN acceleration has been recently gained attention. However,

these inspiring works do not explore simultaneous spatial co-location of multiple DNNs on

the same chip. Eyeriss v2 proposes a hierarchical architecture equipped with a flexible mesh

based NoC that provides flexibility to adapt to various level of data reuse. MAERI and SIGMA

propose a reconfigurable interconnect among the PEs to deal with sparsity in neural networks and

matrix multiplication. Simba proposes a scalable multi-chip module-based accelerator to reduce

fabrication cost and provide scalability with respect to inter-chip and intra-chip communication.

Bitfusion explores bit-level dynamic composability in its multipliers to support heterogeneity in

deeply quantized neural networks. Tangram explores dataflow optimizations by buffer-sharing

dataflow and inter-layer pipelining on a hierarchical design to reduce energy. These works do not
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explore multi-tenancy nor simultaneous co-location of multiple DNNs. Multi-tenancy for CPUs

and GPUs. There is a large swath of related work on multi-tenancy for CPUs and GPUs due to its

vitality for cloud-scale computing. NVIDIA Triton Inference Server provides a cloud software

inference solution optimized for GPUs and offers benefits by supporting multi-tenant execution

of DNNs on them. Grand SLAM proposes scheduling policies to minimize SLA violation rates

for microservices at the cloud for CPUs and GPUs. The studied workloads include DNNs. In

contrast, this paper uniquely enables spatial multi-tenancy on DNN accelerators, by leveraging a

dynamic fission in the architecture and leveraging that through the scheduler. Kubernetes and

Mesos are cloud-scale resource management framework and, due to the unavailability of spatial

multi-tenancy in DNN accelerators, have not explored that aspect of scheduling. Our scheduling

algorithm is complementary to their operation. DNN acceleration. There is a large body of

work for isolated acceleration of DNNs that, although inspired our work, are not focused on

multi-tenancy, and rather offered various innovations to improve the speed and efficiency of

DNN execution.

4.11 Conclusion

As inference-as-a-Service is growing in demand, it is timely to explore multi-tenancy for

DNN accelerators. This paper explored this topic through a novel approach of dynamic archi-

tecture fission, and provided a concrete architecture, Planaria, and its respective scheduling

algorithms. Evaluation with a diverse set of DNN benchmarks and workload scenarios shows

significant gains in throughput, SLA satisfaction, and fairness.
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Chapter 5

Accelerating Training Phase

5.1 Introduction

Training DNNs with large datasets takes a significant amount of time and is a major bottleneck

in the field of deep learning. To accelerate the training phase, many GPUs are deployed to mitigate

the runtime from many months to many weeks. In addition, the long runtime of deep learning

algorithms avoids a comprehensive design space exploration. Therefore, the training phase is a

good candidate for hardware acceleration.

In this section, we review the architectural requirements of such accelerators. We discuss

these challenges and review the impact of addressing them on the design of a training accelerator

based on in-situ computing. It is worth noting that our analysis in this section is limited to

MLPs and CNN-based networks. For other deep networks such as RBMs (Restricted Boltzmann

Machines) that have different structure and low-resolution weights, in-situ computing might

lead to different results. Many factors come into picture while off loading data like the network

topology, amount of data being off loaded and the type of training algorithm used. In the

following section we discuss few acceleration techniques for training as well as for off loading

resources to remote data centre and see how they can be improved. Distributed training has been

a major driver for advances in DNN by reducing the training time. Although distributing training

improves the compute power, it comes with cost of inter node communication proportional to

the DNN size[31]. In general, as shown in figure 5.1 a distributed training system are structed as
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a hierarchy of worker aggregator nodes.

Figure 5.1. (a) SOTA hierarchical distributed training. (b) INCEPTIONN’s distributed training.
(c) Hierarchical use of INCEPTIONN.

In each iteration the aggregator nodes gather the gradient updates from their sub nodes,

communicate the cumulative gradients upwards and send back the updated weights downwards.

This movement of information imposes load on the network and this cost can be reduced by

embedding data compression accelerators in the Network Interface Cards. Using compression

techniques and in-network accelerators for the compression provides limited gain due to com-

plexity and latency overhead. So, INCEPTIONN is used, that offers a novel gradient compression

technique, its in-network accelerator architecture, and a gradient-centric distributed training

algorithm to maximize the benefits of the in-network acceleration. Gradients in contrast to

weights are more amenable to precision can be compressed with less loss. The existing training

algorithms communicate gradients in only one leg of the communication, which reduces the

opportunities for compression and its in-network acceleration. Using compression can make

the aggregators the bottleneck. Building on the above three observations INCEPTIONN comes

up with a lossy-compression algorithm for floating-point gradient values. This compression

exploits a unique value characteristic of gradients which has values between -1.0 and 1.0 and the

distribution peaks around zero with low variance.

To favor gradients and reduce burden of multiple stream it uses gradient-centric, aggregator-

free training algorithm which leverages both legs as shown in figure 5.1. This algorithm enables

the distributed nodes to only communicate gradients and equally share the load of aggregation,

which provides more opportunities for compressing gradients and improved load balance among

the nodes. And the partial aggregates are sent from one node to another is a circular fashion.
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This combination of lossy compression algorithm for gradients, NIC integrated compressed

accelerator and gradient centric aggregator free training algorithm is combined to alleviate the

communication bottleneck without affecting the mathematics of DNN training.

5.2 Distributed training for deep neural networks

DNN training involves determining weights w and using input data x and yields a prediction

y. Supervised training finds w by minimizing a loss function ‘(F(x,w),y *). DNNs are commonly

optimized using gradient descent, which updates the weights in the opposite direction of the loss

function’s gradient. The weights are updated using the following rule

w(t+1) = w(t)−η · ∂ lD
∂w(t)

= w(t)−η ·g(t)

w(t+1) = w(t)−η ·∑
i

∂ l
B(t)

i

∂w(t)
= w(t)−η ·∑

i
g(t)i

(5.1)

where w(t +1) , w(t) , and g(t) denote the next updated weights, the current weights, and

the current gradient, respectively. The parameter is the learning rate. However, contemporary

datasets D do not fit into the memory of a single computer and this is handled using stochastic

gradient descent where we sample a subset or minibatch B from D. To parallelize the D is divided

into partial sets Di and assigned to worker nodes ni which in turn divides it into minibatch Bi

to calculate partial gradient which are updated. The aggregator node, then, can send back the

updated weights w(t +1) to all worker nodes. This mathematical formulation avoids moving the

training data and only communicates the weights and gradients.

as illustrated 5.2, In these algorithms, worker and aggregator nodes construct a tree where

the leaves are the worker nodes that compute the local gradient (g(t)i) and the non-leaf nodes

are the aggregator nodes that collect the calculated local gradients to update the weights (w(t))

and send back the updated weights (w(t +1)) to worker nodes. However, each aggregator node

should communicate with a group of worker nodes and aggregate the local gradients, which
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Figure 5.2. Worker-aggregator approach for
distributed training.

Figure 5.3. Impact of floating-point trunca-
tion of weights, gradients on training accuracy.

becomes the communication and computation bottleneck.

In the above figure 5.3 we see the exchanged weight/gradient size and the fraction of

communication time when training DNN models. The communication/computation ratio

becomes even larger as the specialized accelerators deliver higher performance and reduces

the computation time and/or more nodes are used for training. To reduce the communication

overhead, INCEPTIONN aims to develop a compression accelerator in NICs. Leveraging the

three observations motivates for the design of our lossy compression for gradients. Both weights

and gradients in distributed training are normally 32-bit floating-point values, whereas they are

16 or 32-bit fixed-point values in the inference phase. Floating-point values are not very much

compressible with lossless compression algorithms. Thus, we employ a more aggressive lossy

compression, exploiting tolerance of DNN training to imprecise values at the algorithm level.

Figure 5.4. (a) The size of w/g. (b) % of the
time spent to exchange g and w in total training
time with a conventional worker-aggregator
approach.

Figure 5.5. Distribution of AlexNet gradi-
ent values at early, middle, and final training
stages.

This result from figure 5.4 shows that the truncation of g affects the predictor accuracy

significantly less than that of w, and the aggressive truncation of w detrimentally affects the
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accuracy for complex DNNs as precision loss of w is accumulated over iterations while that

of g is not. As shown in figure 5.5 all the gradient values are between -1 and 1 throughout the

three training phases and most values are close to 0. Given this, we focus on the compression of

floating-point values in this range to minimize the precision loss.

5.3 Gradient centric distributed training

(a) Worker group organization. (b) An example of distributed gradient exchange.

Figure 5.6. INCEPTIONN gradient-centric distributed training algorithm in a worker group.

The figure 5.6 illustrates the worker group organization of the INCEPTIONN training

algorithm. In this algorithm, there is no designated aggregator node in the worker group. Each

worker node maintains its own model w, and only exchanges and aggregates a subset of gradients

g with two neighboring nodes after each iteration. Following figure illustrates the algorithm

step by step. Initially, every worker node starts with the same w0 and INCEPTIONN evenly

partitions gradient vectors into four blocks, for four worker nodes. Every training iteration each

node loads and computes a mini batch of data based on the current w and then generates a local

g to be exchanged.

Subsequently, INCEPTIONN exchanges and aggregates g in two phases. (P1) aggregation

of gradients. worker[0] sends blk[0] to its next node, worker[1]. Worker[1] performs a sum-

reduction on the received blk[0] and its own blk[0] which happens concurrently across four

workers. This step is repeated two more times until all workers have fully aggregated all blocks.

(P2) propagation of the aggregated gradients. worker[3] sends blk[0] to worker[0] resulting in
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two fully aggregated blocks which happens concurrently across all workers. This step is repeated

until every worker has g which is fully aggregated from all four workers. In summary, the

INCEPTIONN training algorithm utilizes the network bandwidth of every worker evenly unlike

the worker aggregator approach, creating the communication bottleneck.

5.4 In network acceleration of gradient compression

Even a simple lossy truncation operation significantly increases the computation time, by

packing/ unpacking many g values and burdens the CPUs which negates the benefit of reduced

communication, decreasing the total training time. Therefore, to reduce both communication

and computation times, we need hardware-based compression for INCEPTIONN.

As shown figure 5.7-5.9, we insert the accelerators within the NIC reference design and

integrate the compression and decompression engines. For output traffic, the packet DMA

collects the network data from the host system through the PCIe link and goes through the

Compression Engine that stores the resulting compressed data in the virtual FIFOs that are used

by the 10G Ethernet MACs. These MACs drive the Ethernet PHYs on the board and send or

receive the data over the network. For input traffic, the Ethernet MACs store the received data

from the PHYs in the virtual FIFOs. Once a packet is complete, the Decompression Engine

starts processing and passing it to the packet DMA for transfer to the CPU. Both engines in

figure 5.7, 5.8 use the standard 256-bit AXI-stream bus to interact with other modules. These

algorithms process streams of floating-point numbers, while the NIC deals with TCP/IP packets

and accelerators need to be customized for it. NIC needs to provide the abstraction that enables

the software to activate/deactivate the lossy compression per packet basis. Compression Engine

first needs to identify which packets are intended for lossy compression. Then, extract payload,

compress it, and then reattach it to the packet. It processes packets in bursts of 256 bits, as an

AXI interface can deliver in one cycle. API marks a packet compressible by setting the Type of

Service field in the header to a special value. If ToS value mismatches, compression is bypassed.
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Figure 5.7. 256-bit burst
compressor architecture.

Figure 5.8. 256-bit burst
decompressor architecture

Figure 5.9. Dataflow across
the software stack and NIC

hardware.

As shown the payload burst feeds into the Compression Unit equipped with eight Compres-

sion Blocks (CBs), each of which performs the compression described. Each CB produces a

variable-size output in the size of either 32, 16, 8, or 0 bits, which need to be aligned as a single

bit vector. Binary shifter tree produces the aligned bit vector. The 2-bit tags of the eight CBs

are simply concatenated as a 16-bit vector. Finally, the aligned bit vector and tag bit vector are

concatenated as the final output of the Compression Unit. For each burst, a variable-size (16 –

272) bit vector needs to be aligned so that we can transfer the 256-bit burst via the AXI interface

and is done by the alignment unit. Using ToS field the decompression unit needs to identify the

compressed packets. The compressed burst has 8 FP numbers which overlap two consecutive

bursts could be insufficient to proceed to the decompression. Therefore, a Burst Buffer that

maintains up to two bursts is present. Once filled it feeds the 16-bit tag to the Tag Decoder to

calculate the size of the eight compressed bit vectors which along with tag bit vectors are fed

into the eight Decompression Blocks, which executes algorithm, concatenates and transfer via

AXI interface. For the next cycle, Burst Buffer shifts away the consumed bits and reads the next

burst.

Packets that need to be modified are tagged with a reserved value of 0x28. When we co-run

DNN training application and some other networking applications on a server MPI collective

communication comp is used to tag TCP/IP packets. MPI collective communication comp

propagates a variable down to the OpenMPI networking APIs and sets the ToS option of the
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Figure 5.10. Training time between the worker-aggregator based approach and the INCEP-
TIONN with and without hardware-based compression in NICs.

corresponding TCP sockets used for communication. Based on the value, comparator selects to

use or bypass the compression engines.

5.5 Evaluation

Irrespective of DNN model less than 30% time is spent for local computation and 70% of

time is spent for communication. Graph from figure 5.10 shows that even in a small cluster

without compression, the INCEPTIONN’s training algorithm offers shorter total training time.

The concurrent utilization of all the links among nodes makes it efficient. Also balanced gradient

exchange contributes to the reduction of computation time as the gradient summation is done

by all the nodes in a distributed manner. The Inceptionn with gradient compression provides

80.7% and 53.9% lower communication time than the work aggregator and Inceptionn baseline

providing a 2.2 – 3.1X speed up. The accuracy loss due to compression as shown in figure 5.11

might affect the final accuracy or prolong training time. On measuring only a modest number of

epochs are needed to achieve similar accuracy and still offers the same speed up.

(a) (b)

Figure 5.11. (a) compression ratios and (b) impacts on prediction accuracy of DNNs trained by
INCEPTIONN training with lossy compression schemes.)
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The naı̈ve truncation of fp values provides low constant compression ratios while suffering

from accuracy loss as errors here are uncontrollable and open ended. Also, the truncation

is limited by mantissa where dropping more bits will perturb the exponent. In contrast the

lossy compression provides higher compression ratios(15X) and preserves the training quality

(error < 2%). The compression ratio of the gradients is not necessarily proportional to the

reduction in communication time as we do not reduce the total number of packets and the

network stack overhead such as sending network packet headers remains the same.

Gradient exchange time was measured for scalability. It consists of both gradient/weight

communication and gradient summation time, and represents the metric in the scalability evalua-

tion, because only communication and summation overheads scale with the number of nodes,

while the time consumed by other DNN training steps such as forward pass, backward pass,

weight update are constant due to their local computation nature. The gradient exchange time

increases almost linearly with the number of worker nodes in the WA cluster; however, it remains

almost constant in the INCEPTIONN cluster. As in WA the communication and summation

loads congest the aggregator node, while the INCEPTIONN approach balances these two loads.

5.6 Conclusion

Communication is a significant bottleneck in distributed training. The community has pushed

forward to address this challenge by offering algorithmic innovations and employing the higher

speed networking fabric. However, there has been a lack of solution that conjointly considers

these aspects and provides an interconnection infrastructure tailored for distributed training.

This handled by INCEPTIONN by using in-network accelerator for the lossy compression of

gradients and by using gradient centric distributed training. The communication time by reduced

by 70.9 ∼ 80.7% and offers 2.2 ∼ 3.1x speedup over the conventional training system, while

achieving the same level of accuracy.
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Chapter 6

Future Work

I believe that there are many important possible direction of research for expanding the multi

tenancy property of DNN accelerators. The main idea is to split the monolithic systolic array

into multiple parts to execute different DNN inferences. The task scheduler helps to prioritize

the important work thereby increasing inferences. This helps improve the throughput a lot. Few

state of the art technologies can be used to improve the power and flexibility of our design.

Accelerators used by Planaria still consume almost similar amount of power. New method-

ologies can be used to improve the power consumption of this systolic arrays. Like Minerva

automates the design of DNN accelerators that achieve minimum power consumption while

maintaining high prediction accuracy. This automated method if we are able to combine with

Planaria will help achieve subsequent increase in throughput along with automatic deployment

of low power DNN accelerators. The methods are discussed in the coming sections.

Also currently Planaria is only limited to DNN accelerators as it uses googles TPU archi-

tecture. The flexibility of this can be improved by incorporating TABLA which is a template

based framework to accelerate the design phase of accelerators. The main idea that could be

implemented is to use the automated flow to bring up different types of accelerators on planaria

itself to exploit both dynamic allocation of accelerators along with automated design flow to

improve its flexibility across multiple machine learning algorithms. This method are discussed

in the following sections.
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There could be many novel methods like bit level slicing, sparse networks, analog modelling.

However, these two main ideas could have potential impact and change the performance and

deployment of hardware accelerators. In following section we just briefly see how the designs

are individually designed and leave to the future work for the integration part.

6.1 Low-Power, Highly Accurate Deep Neural Network
Accelerators

6.1.1 Introduction

Deep neural networks are gaining popularity for solving a wide range of problems, from

datacenters down to battery powered mobile and IOT devices. DNNs have become famous

because of availability of massive dataset, access to highly parallel computational resources

and improved algorithms. Through training we obtain the parameters that are fitted to data.

While training is one-time cost, we need to perform inference continuously and this needs

to be optimized for efficiency and power[30]. So, this paper tries to automate the design of

DNN accelerators that achieve minimum power consumption while maintaining high prediction

accuracy.

Figure 6.1. Survey reveals the
disconnect between ML research
and designing DNN accelerators.

Figure 6.2. The five stages of Minerva. Analysis
details for each stage and the tool-chain are presented

The following figure 6.1 shows values of MNIST prediction error and corresponding power

consumption for different neural network implementations. The ML algorithms try to minimize

the error, while the hardware community focusses on reducing the error. Current generation

164



mobile devices already exploit DNN techniques across a range of applications. However, they

typically offload computation to backend servers. This might pose problems of latency, autonomy,

power consumption, and security for the growing number of applications. Rendering offloading

is impractical pushing towards novel power reduction techniques.

Minerva, a highly automated codesign flow that combines insights and techniques across

the algorithm, architecture, and circuit layers, enabling low power accelerators for executing

highly accurate DNNs as shown in figure 6.2. Its flow first establishes a fair baseline design by

exploring the DNN training and accelerator micro architectural design spaces, identifying an

ideal DNN topology, set of weights, and accelerator implementation. After these three cross-

layer optimization steps are applied to this baseline design: fine-grain, heterogeneous datatype

quantization, dynamic operation pruning, and algorithm-aware fault mitigation for low-voltage

SRAM operation. Implementing the above provides 8X power reduction compared to baseline.

6.1.2 Overview

Minerva consists of five stages : Stages 1–2 establish a fair baseline accelerator implemen-

tation. Stage 1 generates the baseline DNN: fixing a network topology and a set of trained

weights. Stage 2 selects an optimal baseline accelerator implementation. Stages 3– 5 employ

novel co-design optimizations to minimize power consumption over the baseline in the following

ways: Stage 3 analyzes the dynamic range of all DNN signals and reduces slack in data type

precision. Stage 4 exploits observed network sparsity to minimize data accesses and MAC

operations. Stage 5 introduces a novel fault mitigation technique, which allows for aggressive

SRAM supply voltage reduction. For each of the optimization stages ML level measures the

impact of prediction accuracy, while architecture level evaluates hardware resource savings, and

the circuit level characterizes the hardware models and validates simulation results.

The organization of five stages in 6.2 is done to minimize the possibility of compounding

prediction error degradation. Initially training space exploration is done. Minerva first establishes

a fair DNN baseline that achieves prediction accuracy comparable to state-of-the-art ML results.
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This stage leverages the Keras software library to sweep the large DNN hyperparameter space. Of

the thousands of uniquely trained DNNs, Minerva selects the network topology that minimizes

error with reasonable resource requirements. The optimal network from Stage 1 is then fed

to a second stage that thoroughly explores the accelerator design space. This process exposes

hardware resource trade-offs through micro architectural parameters. Minerva then uses an

optimal design point as the baseline to compare against. Minerva optimizes DNN data types

with linear quantization analysis, independently tuning the range and precision of each DNN

signal at each network layer. Quantization analysis minimizes bit widths without exceeding a

strict prediction error bound. Compared to a 16-bit fixed-point baseline, data type quantization

reduces power consumption by 1.5. The DNN kernel mostly comprises repeated weight reads

and MAC operations. Analysis of neuron activity values reveals many operands are close to zero.

Minerva identifies these neuron activities and removes them from the prediction computation

such that model accuracy is not affected. Selective pruning further reduces power consumption

by 2.0 on top of bitwidth quantization. By combining inherent algorithmic redundancy with

low overhead fault mitigation techniques, optimization Stage 5 saves an additional 2.7 power

by aggressively scaling SRAM supply voltages. Minerva employs state-of-the-art circuits to

identify potential SRAM read faults and proposes new mitigation techniques based on rounding

faulty weights towards zero. Minerva’s optimizations reduce power consumption by more than 8

without degrading prediction accuracy.

6.1.3 Architecture

Stage 1 of Minerva explores the DNN training space, identifying hyperparameters that

provide optimal predictive capabilities. To explore this configuration space, Minerva considers

the number of hidden layers, number of nodes per layer, and L1/L2 weight regularization

penalties. Minerva then trains a DNN for each point and selects the one with the lowest

prediction error.Figure 6.3 shows that larger networks often have smaller predictive error which

eventually saturate.
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Figure 6.3. The black line indicates the
Pareto frontier, minimizing DNN weights
and prediction error. The red dot indicates
the chosen network.

Figure 6.4. Intrinsic error variation is mea-
sured using random initial conditions and
optimized design is maintained accuracy
degradation below this.

Minerva modifies the calculations performed by the original DNN to optimize power and

chip area for the resulting hardware accelerator which comes with increase in prediction error.

To maintain DNN accuracy, we constrain the cumulative error increase from all Minerva opti-

mizations to be smaller than the intrinsic variation of the training process. This interval is not

deterministic, but sensitive to randomness from both the initialization of the pre-training weights

and the stochastic gradient descent (SGD) algorithm. Figure 6.3,6.4 shows the average prediction

error and a corresponding confidence interval, denoted by 1 standard deviation, obtained across

50 unique training runs. We use these confidence intervals to determine the acceptable upper

bound on prediction error increase due to Minerva optimizations. For MNIST, the interval is

0.14%.

Stage 2 of Minerva takes the DNN topology and searches the microarchitectural design space

for a superior DNN accelerator by generating and evaluating thousands of unique implemen-

tations using Aladdin and ultimately yields a power-performance Pareto frontier. We select a

baseline design from this frontier that balances area and energy and then apply all remaining

optimizations. The accelerator consists of memories for input vectors, weights, and activities

as well as multiple data path lanes that perform neuron computations. Figure 6.6 below shows

the layout of a single data path lane, consisting of two operand fetch stages F1 and F2, a MAC

stage M, a linear rectifier activation function unit A, and an activation writeback WB stage.
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Figure 6.5. High-level architecture,from a DSE over the accelerator implementation space, and
energy and area analysis of resulting Pareto frontier designs.

The parts in black are optimized by Aladdin to consider different combinations of intra-neuron

parallelism, internal SRAM bandwidth for weights and activities, and the number of parallel

MAC operations. These features, in addition to inter-neuron parallelism collectively describe a

Figure 6.6. The microarchitecture of a single datapath lane. Modifications needed for optimiza-
tions are shown in red

single design point in the design space shown in Figure 6.6 . The red denotes additional logic

needed to accommodate the optimizations described. The area and energy consumed by each

of these Pareto design points is further shown in Figure. DNNs become parallel with memory

bandwidths being the bottleneck, which is resolved by heavily partitioning SRAM into smaller

memories. However, excessive scaling costs higher area at lower energy improvements. Under

these constraints, the chosen design maximizes performance and minimizes power.

Stage 3 of Minerva aggressively optimizes DNN bitwidths. The use of optimized data types is

a key advantage that allows accelerators to achieve better computational efficiency than general-

purpose programmable machines. In a DNN accelerator, weight reads and MAC operations
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account for most power consumption. Fine-grained per-type, per-layer optimizations significantly

reduce power and resource demands. Figure shows three signals that we independently quantize:

neuron activity, network weights and the product that determines the multiplier width. The

notation Qm.n describes a fixed-point type of m integer and n fractional bits. Minerva considers

all possible combinations and granularities of m and n for each signal within each network layer,

independently.

The minimum number of bits required is set to be the point at which reducing the precision

by 1 bit exceeds MNIST’s error confidence interval of 0.14%. All data path types are set to the

largest per-type requirement. While reducing layer wise produces power savings, it requires large

number of unique SRAMs which increases area. Stage 4 of Minerva reduces the number of edges

that must be processed in the dataflow graph. Using empirical analysis of neuron activity, we

show that by eliminating operations involving small activity values, the number of weight fetch

and MAC operations can be reduced without impacting accuracy. From figure we see that there

are many zeros, skipping whose operations would save power from avoiding multiplications and

SRAM accesses.

Figure 6.7. Minimum precision
requirements for each datapath sig-
nal while preserving model accu-
racy within our established error
bound

Figure 6.8. Analysis of neuron activities and sensitivity of
prediction error to pruning. The vertical line corresponds to
the point our error bound is exceeded.

Figure 6.7,6.8 shows that if we remove activities with magnitude less than 1.05, the overall

prediction error is unaffected. This is because the rectifier output eliminates negative numbers

producing zeros, which can be pruned to improve performance. In this way selective pruning
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reduces the power by 1.9X. The operations to be pruned cannot be determined directly. To

achieve this, the data path lane splits the fetch operations over two stages. F1 reads the current

neuron activation from SRAM and compares it with the per-layer threshold to generate a flag

bit, which indicates if the operation can be skipped. Subsequently, F2 uses the flag to stall

the following MAC using clock-gating to reduce the dynamic power of the data path lane.

The hardware overhead for splitting the fetch operations, an additional pipeline stage and a

comparator, are negligible.

The final stage of Minerva optimizes SRAM power by reducing the supply voltage. However,

reducing voltage increases bit cell fault rate which is mitigated by co-designed fault mitigation

techniques. Scaling SRAM voltages is challenging due to the low noise margin circuits used in

Figure 6.9. SRAM supply voltage scaling
trends for fault rate and power dissipation

Figure 6.10. Illustration of word masking
(faulty weights set to zero) and bit masking
(faulty bits set to sign bit) fault mitigation
techniques.

SRAMs, including ratioed logic in the bit cell, domino logic in the bit line operation, and various

self-timed circuits. Figure 6.9 shows the bit cell fault rates when scaling the supply voltage. So,

Razor double sampling method is used for fault detection. Unlike parity, Razor monitors each

column of the array individually, and hence there is no limit on the number of faults that can

be detected, and information is available on which bit(s) are affected. The overheads for Razor

SRAM fault detection are 12.8% and 0.3% for power and area.

Razor SRAMs provide fault detection, not correction. A lightweight approach is used which

does not reproduce the original data but instead attempts to mitigate the impact of intermittent
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bit-flips to the DNN’s model accuracy. To prevent prediction accuracy degradation, we combine

Razor fault detection with mechanisms to mask data towards zero when faults are detected at the

circuit level. Masking can be performed at two different granularities: word masking: when a

fault is detected, all the bits of the word are set to zero; and bit masking: any bits that experience

faults are replaced with the sign bit. This achieves a similar effect to rounding the bit position

towards zero. Figure 6.10 shows a simple illustration of word masking and bit masking fault

mitigation. The combination of Razor fault detection and bit masking fault mitigation allows the

weight SRAMs to tolerate 44 more faults than word masking. This drops power by 2.7X on an

average. Bit masking requires modifications to the weight fetch stage (F2) of the data path lane.

6.1.4 Evaluation

Figure 6.11. Results from applying the Minerva design flow to five application datasets to
investigate general error.

Figure 6.11 shows the power reduction due to each step. On average, Minerva generated

DNN accelerators dissipate 8.1 less power. There is tradeoff between specialization and power

reduction. However, using programmable accelerator uses 2.4X more power. The largest

overhead here is memory leakage.

6.1.5 Summary

An optimized hardware accelerator for deep neural networks that achieve minimal power

consumption while maintaining high prediction accuracy is designed. Minerva is a holistic,

highly automated co-design flow that combines insights and techniques across the algorithm,
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architecture, and circuit levels, enabling low-power accelerators for highly accurate DNN

prediction. By aggressively optimizing data types, selectively pruning operations, and reducing

SRAM voltages safely with novel fault mitigation techniques, Minerva can reduce the overall

power consumption across five diverse ML datasets by an average of 8.1 without impacting

prediction error. Minerva makes it possible to deploy DNNs as a solution in power-constrained

mobile environments.

6.2 Templated Based Framework For Auto Deployment

6.2.1 Introduction

A wide range of commercial and enterprise applications rely on Machine Learning techniques.

These have computationally intensive workloads which are repeated for large number of iterations.

While the demand for these computationally intensive techniques increases, the benefits from

general-purpose computing are diminishing. Programmable accelerators implemented on FPGAs,

can provide large gains in efficiency and performance by restricting the workloads. The increasing

availability makes them option to accelerate ML algorithms, however, development with FPGAs

still need expertise in hardware design and implementation and the overall design cycle is long.

TABLA,[26] a template-based solution tackles this challenge by developing from circuit

to programming model, for using FPGAs to accelerate statistical machine learning algorithms.

It devises necessary programming abstractions and automated frameworks that are uniform

across range of ML algorithms. It avoids higher level of abstraction from hardware design by

leveraging commonalities in learning algorithms and expressing them as stochastic optimization

problems. The learning models can be optimized using stochastic gradient descent where

learning task becomes solving an optimization problem using SGD that iterates over the training

data and minimizes an objective function. Although the SGD solver is mostly fixed across

different learning algorithms, the objective function varies. Therefore, the accelerator for these

learning tasks can be implemented as a template design, uniform across a set of machine
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learning algorithms which comprises of general framework. To be able to specialize the template

design for a specific learning task, a hardware block implementing the gradient of the objective

function for the algorithm needs to be designed and integrated. TABLA provides framework to

automatically do the following. Therefore, with TABLA, the developer only needs to specify the

learning model as the gradient of the objective function

TABLA automatically generates an accelerator for the specific learning algorithm while

considering high-level design parameters of the target FPGA. TABLA-generated accelerators

provide better speedups compared to CPU and GPUs. These benefits are achieved while the

programmer write less than 50 lines of code. These results suggest that TABLA takes an

effective step toward widespread use of FPGAs as an accelerator of choice for machine learning

algorithms.

6.2.2 Overview

Machine learning generally involves two phases–the learning phase and the prediction phase.

The learning phase generates a model that maps inputs onto outputs which then is used to predict

the dependent variable for a new unseen input. The learning phase is more compute intensive

and can benefit significantly from acceleration. Therefore, TABLA aims to provide solution that

can automatically generate accelerators to accelerate the learning phase of a class of machine

learning algorithms. Figure 6.12 illustrates an overview of TABLA workflow. It provides a

high-level programming model that enables the programmers to specify the gradient of the

objective function that captures the learning algorithm. TABLA focuses on learning algorithms

as shown in figure 6.13 that can be implemented using stochastic gradient descent, therefore,

the gradient of objective function is sufficient to generate the entire accelerator design. After

providing the gradient of the objective function, one of the major components of TABLA, named

the design builder, automatically generates the accelerator and its interfacing logic. The design

builder uses a predefined set of accelerator templates to generate the accelerator.

The output of the design builder is a set of synthesizable Verilog codes. The inputs to the
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Figure 6.12. Overview of the workflow with Tabla.

design builder are the gradient function, high-level specification of the target FPGA hardware, a

predesigned set of accelerator templates in Verilog. The predesigned templates used to design

accelerator are generic and uniform across a large class of stochastic machine learning algorithms.

These predefined templates are designed by expert hardware designers and comprise of both the

accelerator and the interfacing logic that connects the accelerator to the rest of the system.

Figure 6.13. Tabla leverages SGD as an abstraction between hardware and software to create a
unified framework for accelerating ML algorithms.

Another component of TABLA is the model compiler that statically generates an execution

schedule for the accelerator. The inputs to the model compiler are the structure of the accelerator

and the specification of the gradient function. This converts the gradient function to a dataflow

graph and augments it with the dataflow graph of the gradient descent. Then, it uses a minimum-

latency resource-constrained scheduling algorithm to generate the accelerator schedule. It

generates an order for the model parameters that will be learned, and this will determine the

layout of parameters in the memory and streamlines the interfacing logic that communicates

with the memory. As Figure depicts, TABLA can potentially target different platforms and new

backends need to be developed for each target.
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SGD forms the abstraction between hardware and software for TABLA that generates

machine learning accelerators and therefore forms the template-base of TABLA. SGD is an

optimization algorithm that aims to find the set of parameters that minimize a function. Each

machine learning task in our target class is characterized by its objective function which learns a

set of parameters. The objective function quantifies the error between the predicted value of the

output and the actual output value corresponding to an input dataset. The ML algorithm learns

the model by solving an optimization problem that minimizes the objective function over the

entire training data according to:

minwtεR ∑
i

f
(
wt

ixi
)

(6.1)

In the equation 6.1, wt represents the parameters of the model that needs to be minimized, xi

is the input and f (wt
ixi) is the objective function which is minimized using SGD optimization

algorithms. SGD starts with an initial set of parameter values and iteratively minimizes the

function. This iterative minimization is achieved by taking steps in the decreasing direction of

the function’s derivative or gradient which is:

wt+1 = wt−µ×
∂ (∑i f (wt

ixi))

∂wt (6.2)

As the above equation 6.2 shows, wt+1 goes in the negative direction of ∂ f/∂w with a rate

µ . That is, in a single iteration of gradient descent, it calculates the derivative of the objective

function over the entire training data and generates the next set of parameters (wt+1) as shown

by equation. The overhead of large training data is avoided using SGD where it divides the

objective function into smaller differentiable functions requiring a single element. Therefore,

the gradient of the smaller function is calculated only over a single element. The equation for

stochastic gradient descent transforms into:
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wt+1 = wt−µ×
∂ f (wt

ixi)

∂wt (6.3)

SGD takes more iterations to converge to minimum value, however, the benefits obtained

by avoiding the data access to all the input elements for each iteration is higher than the cost

incurred by having more iterations.

6.2.3 Architecture

The programmer needs to express different learning algorithms by specifying the gradient

of the objective function as shown in algorithm 2. Programming interface is a high-level

interface that enables the representation of ML algorithms close to the mathematical models, it

comprises of language constructs and keywords that are commonly seen in several statistical ML

algorithms. The programming interface comprises of two types of constructs, data declaration

and mathematical operations. Data declarations enable the programmer to specify the different

data elements which include model input, model output, model parameters, gradient, and iterators.

The model input keyword refers to a single input dataset while the model output declaration

refers to the corresponding output provided as the training data. Both these data types are inputs

to the machine learning task and are read-only while the ML algorithm learns the model. The

model keyword refers to the model parameters that get updated every iteration. The iterator

declaration enables the programmer to declare the dimensions of arrays. Moreover, iterators also

clearly depict the autonomy of operations.

Mathematical operations allow the programmer to express different operations and functions

which are subdivided into three categories like basic, group and nonlinear. The basic operations

constitute mathematical operations like −,+,<,>,∗ and require two arguments A and B. Group

Operations are performed over a group of elements and includes the following operations,∑

(sum),∏ (group multiply), and ‖‖ (norm). Also, these operation types require an iterator argument

to operate on a group of elements. They produce an output with dimension one less than the
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input dimension. Nonlinear Operations constitute functions like Log, Sigmoid, Gaussian, and

Sigmoid Symmetric. The output has the same dimensionality as the input as this operation is

performed element by element. Using the data and operation language declarations defined ,

programmer can represent several statistical ML algorithms.

Figure 6.14. A complete dataflow
graph of the logistic regression algo-
rithm

Figure 6.15. Dataflow graph for basic, group and nonlin-
ear type of operations

Algorithm 2. Laguage declaration
model input x[m]; //model input features
model output y′[n]; //model outputs
model w[n][m]; //model parameters
gradient g[n][m]; //gradient

iterator i[0 : m]; //iterator for group operations
iterator j[0 : n]; //iterator for group operations

//m parallel multiplications followed by
//an addition tree; repeat n times in parallel
s[ j] = sum[i](x[i]∗w[ j][i]);

y[ j] = sigmoid(s[ j]); //n parallel sigmoid operations
e[ j] = y[ j]− y′[ j]; //n parallel subtractions
g[ j][i] = x[i]∗ e[ j]; //n∗m parallel multiplications
rg[ j][i] = λ ∗w[i][ j]; // n∗m parallel multiplications
g[ j][i] = g[ j][i]+ rg[ j][i]; // n∗m parallel additions

The above code 2 shows how the gradient of logistic regression can be expressed in a few

lines using TABLA’s programming interface. In this code the programmer first declares the

data types: model input, model output, model, and the gradient. Then, two iterators i and j

177



are declared as the model values are two dimensional. Next, operations are performed over the

declared data types beginning with the sum operation. This operation performs multiplication

x[i] * w[j][i] and adds up all the multiplication results into a single result (s[j]) in the i dimension

assuming a constant j. Finally, the result generated by this code is the gradient for the given

model input, model output and model. Several ML algorithms can be represented using the

above-mentioned language declarations.

After the programmer provides the gradient of the objective function, TABLA’s model

compiler first integrates this objective function with the stochastic gradient descent. To generate

a concrete accelerator, the model compiler then generates a dataflow graph as shown in figure

6.14,6.15 that can be mapped and scheduled on hardware. Dataflow graphs are intermediate

representations that can be translated into the accelerator and its execution schedule. Thus,

the final phase of compilation is the scheduling phase in which the compiler generates a static

schedule for the learning task that is represented by a dataflow graph.

The model compiler appends the above generate DFG with SGD. The Figure shows the

data-flow graph for at least one operation of each type - basic, group and nonlinear. These

dataflow graphs show the input and output edges along with the intermediate nodes that perform

the computation of each operation. The group operations involve more than one computational

node. The dataflow graph also depicts the opportunities for parallelism that will be exploited

by the hardware accelerator. The model compiler combines the DFG of individual operations

according to the code that expresses the gradient. The DFG for a ML task can be generated

by combining the DFG of each operation with the code of the gradient function as shown in

figure. After the compiler framework generates the DFG, different scheduling algorithms can

be used to schedule each operation in the DFG. We perform this scheduling using a Minimum

Latency Resource Constrained Scheduling algorithm, which schedules operations given a limited

set of resources. The above graph is scheduled using As Soon As Possible algorithm in which

operations are scheduled as soon as all the predecessors of an operation are completed. This

algorithm is faster but consumes lot of area, hence Minimum Latency Resource Constrained
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Scheduling is used. This algorithm assumes that operations are single step and use a single type

of resource which is valid as the base design comprises of processing engines which just take

one step to generate results.

Distance from sink of an operation is the number of operations that need to be performed

after the op to reach the final output/sink. This quantifies the priority of each operation where

higher the distance from sink, the higher its priority is. So, in scheduling algorithm, an operation

is scheduled at cycle if all the predecessors have been scheduled and completed, it has the highest

priority among the unscheduled ready ops and resource is available to accommodate the op. The

algorithm terminates when all the operations are successfully scheduled. After the schedule for

operations is generated, TABLA framework generates the design for hardware accelerator that

can accommodate this schedule.

Owing to flexibility and reconfigurability FPGAs are used to accelerate machine learning

tasks. TABLA’s compilation framework produces different schedule for different learning

algorithms. Thus, we propose a reconfigurable accelerator design that can accommodate these

schedules and can be specialized to accelerate a range of ML algorithmsas shown in figure 6.17.

The fundamental and reconfigurable component of this accelerator architecture is a Processing

Engine as shown in figure 6.16. The components within a PE and its interconnection with other

PEs are customized and designed to accelerate the learning algorithm.

As the figure illustrates, PEs comprises of a computational unit that performs calculations

and a storage unit that stores the model parameters and data elements. PEs include some fixed

components like the ALU, Data/Model Buffer, Register and Bus while others can be reconfigured.

As all the statistical ML tasks have some form of mathematical operation making the ALU a

crucial component of PE. A buffer is necessary to store the model or other incoming data from

external DRAM. The register is used for some group operations such as sum (∑) or pi (∏).

Finally, a bus interface is crucial and is reserved for retrieving training data and model parameters

from the external memory. However, the communication with other PEs is not always required

and is dependent on the algorithm. The exchangeable components in a PE include specialized
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(a) ) Processing Engine (PE) (b) Processing Unit (PU)

Figure 6.16. (a) A PE comprising of compute and
memory units.(b) PU comprising of 8 processing
engines connected through a intra-PU bus.

Figure 6.17. Accelerator design showing
the processing units and processing engines.

control unit, nonlinear unit, multiplexers, and the neighbor input and output communication. In

the above example it is only used for summation output, hence using a nonlinear unit in every PE

wastes area and power. Therefore, a nonlinear unit is only provided in the final PE which accrues

results. Finally, communication between neighboring PUs is useful for algorithms that combine

data. Reading the neighbor’s result will avoid contention on the bus if multiple PEs need data

from the other PEs. Allowing neighboring PE communication leverages spatial locality. Once

the PE is finalized in congruence with algorithm, it is incorporated into the processing unit.

Processing Unit contains eight identical PEs as shown. Although the design can scale to

larger or smaller numbers of PEs, frequency is maximum with 8 PEs. The bus between the PEs

is referred to as the intra-PU bus and between the PUs is referred to as inter-PU bus. As shown

the design comprises of multiple PUs connected through a pipelined global bus. This pipelined

global bus also connects our design to the AXI interface which in turn connects to an external

memory. The training input and output data is transferred from the external memory to the

programmable logic after every iteration of the learning algorithm. The initial model parameters

are only transferred once at the start of the execution. The number of PUs in the design are

dependent on the algorithm being implemented and varies accordingly.
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6.2.4 Evaluation

Tabla framework is evaluated by implementing hardware on FPGA platform. It outperforms

ARM by an average speed up of 15.0. While Maximum speedup of 46X has been obtained

for Reco model due to relatively larger model topology which provides greater opportunity

for parallelism. However, GPUs outperform Tabla, Tesla provides 59X and GTX provides

15.5X in comparison to Tabla which provides 15X speedup. As the speedup results show, the

TABLA-generated FPGA accelerators provide significant speedup over both multicore CPUs and

the Tegra K1 GPU within a limited power budget of 2W. We compare the performance-per-watt

to understand the benefits of FPGA acceleration without the variations in the power budget.

TABLA, on average, achieves 30.1 and 81.7 over ARM and Xeon, respectively. On the GPU side,

TABLA’s FPGA accelerators provide 22.7×, 53.7x, and 30.6X higher performance-per-Watt

compare to Tegra, GTX 650, and Tesla GPUs as shown in 6.7,6.8.

Figure 6.18. Speedup of Tabla in comparison
to a range of CPU and GPU platforms.

Figure 6.19. Comparison of performance-per-
Watt between CPUs, GPUs and Tabla.

The TABLA-generated FPGA accelerators close the performance gap but provide much

higher efficiency and operate at lower power budget. Area depends on the model size. Back-

propagation utilizes least area because of its smaller model size while Reco uses more area as its

default configuration is larger. Empirically, a PU design with 8 PEs strikes a balance between

frequency and intra PU parallelism. The number of PE and PU can be reconfigured according to

the algorithm. As shown in figure 6.20,6.21 increasing number of PEs leads to linear increase

in speedup. However, beyond a certain number of PEs we either observe diminishing returns

or a decrease in the speedup as the parallelism in the algorithm is limited and increasing would

lead to wastage of resources. The frequency change is negligible as frequency increase with
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Figure 6.20. Speedup change for varying
number of PEs in the design in comparison
to ARM CPU.

Figure 6.21. Speedup with varying Band-
width for Tabla generated accelerator in com-
parison to ARM CPU.

increasing PEs is countered by requirement of wider global bus. Data transferred from external

memory to the accelerator uses the AXI interface which has limited bandwidth. The bandwidth

can be bottleneck at very low values such as 0.25 of the default bandwidth. As the bandwidth

increases the speedup starts to increase but observe diminishing returns beyond a point. By

providing a bandwidth that is 4 the default value the speedup numbers only increase by 60% of

the default speedup.

6.2.5 Summary

ML algorithms include compute-intensive workloads that can benefit significantly from

acceleration. FPGAs are an attractive platform for accelerating these important applications.

However, FPGA design still requires relatively long design cycles and extensive expertise

in hardware design. TABLA bridges the gap between the machine learning algorithms and

the FPGA accelerators. It leverages SGD as the abstraction between hardware and software

to automatically generate accelerators for a class of statistical machine learning algorithms.

Compared to CPU,GPU the TABLA generated accelerators deliver an average speed up of

2.9 and 30.6 higher performance-per-Watt, respectively. These gains are achieved while the

programmers only write less than 50 lines of code. These results suggest that TABLA takes an

effective step in a widespread use of FPGAs for machine learning algorithms.
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6.3 Conclusion

Both the design flow explained above, one optimizes for flexibility and other optimizes for

power have been presented. The integration of which can be left as a future work. While there is

a large body of research on the design of deep learning accelerators, only a few of them have

focused on adopting them in data centers. We believe it is necessary to revisit server architectures

to support accelerators. In addition, we need to consider both power and flexibility in order to

accommodate multiple machine learning algorithms apart from just deep neural networks. We

also need to address OS level challenges such as sharing accelerators among different processes

and scheduling tasks on multiple processes on an accelerator. We believe that exploring these

lines of research will unearth significant benefits from investing in automated design development

and mixed-signal devices, accelerators.
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Chapter 7

Conclusion

As we have seen now a days deep neural networks are used everywhere. It is a corner stone

of modern AI systems. Its enables application ranging from smart assistance, image/speech

recognition to self-driving cars, modern health care. But these new AI applications brings

new challenges to the underlying hardware systems and infrastructure. Example we need high

performance throughput for applications like self-driving cars which deal with a large amount of

data. We also need low latency in smart assistance to have a smooth conversation. In addition,

energy efficiency is becoming important now a days as many devices run on battery. With the end

of Dennard scaling and diminishing benefits from transistor scaling general purpose architectures

could no longer support the challenges as we have discussed. This led to rise of domain specific

architectures which perform specific functions more efficiently in contrast to general purpose

CPUs.

Accelerator design has come a long way. In related work we have see the performance

improvements that are made. Starting with design of main compute block, there are many

improvements done like data flow modelling, NOC architecture design, sparse networks and so

on. Also new methods like analog computing, real time AI, tensor processing units, multi chip

accelerators have been discussed. Most of these accelerators have made their way into consumer

electronics. But their limited computational capacity still necessitates offloading most of the

inference task to cloud. InFaaS has become the backbone of deployed applications like voice
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assistants smart speakers, and enterprise applications. As the demand for INFaaS scales, one

solution could be continuously increasing the number of accelerators in the cloud. Although

intuitive, this approach is neither cost-effective nor scalable with the ever-increasing demand for

DNN services. On the other hand, multi-tenancy, where a single node is shared across multiple

requests, has been a primary enabler for the success of cloud-computing in current scale. Without

multi-tenancy, it is hard to even fathom the progress and future of datacenters and cloud-based

computing. Nonetheless, multi-tenancy has not been a primary factor in the design of DNN

accelerators because of the arms race to design the fastest accelerator, the utmost recency of

accelerator adoption in datacenters, and challenges associated with multi-tenancy in accelerators.

Planaria explore this timely, yet unexplored dimension of multi-tenancy in the architecture design

of DNN accelerators. The key idea is dynamically fissioning the DNN accelerator at runtime to

spatially co-locate multiple DNN inferences on the same hardware.

This idea is relatively new and has lot of scope for improvements which are discussed as

part of future work. Even though we have dynamic allocation of multiple DNN inferences the

power consumption remains same. This could be enhanced by using automated flows discussed

to improve the power requirements. Also current design is restricted to only DNN which can be

extended to many machine learning algorithms by automating the design flow to improve both

power, flexibility and throughput.

In conclusion, hardware accelerator design has come a long way and there is still scope for lot

of improvements. The main idea of neural networks started by imitating the brain functionality.

Going in the same lines trying to imitate the nature helps us design high computing engines with

low power consumption.
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