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The term Big Data has come to encompass a number of concepts and uses within medicine. This
paper lays out the relevance and application of large collections of data in the radiation oncology
community. We describe the potential importance and uses in clinical practice. The important
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concepts are then described and how they have been or could be implemented are discussed. Impedi-
ments to progress in the collection and use of sufficient quantities of data are also described. Finally,
recommendations for how the community can move forward to achieve the potential of big data in
radiation oncology are provided. © 2018 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.13114]
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Acronyms
AAPM Association of Physicists in Medicine
AJCC American Joint Committee on Cancer
API Application Programing Interface
ASTP As-Treated Plan Sums
ASTRO American Society for Radiation Oncology
BDAR Big Data Analytic Resource Systems
CARO Canadian Association of Radiation Oncology
CDR Clinical Data Repository
CER Comparative Effectiveness Research
CTCAE Common Terminology Criteria for Adverse Events
DB Database
DICOMDigital Imaging and Communications in Medicine
DVH Dose–Volume Histogram
ESTRO European Society for Therapeutic Radiation

Oncology
EHR Electronic Health Record
FAIR Findable, Accessible, Interoperable, and Reusable
FHIR Fast Healthcare Interoperability Standards
FIGO International Federation of Gynecology and

Obstetrics
HIPAA Health Insurance Portability and Accountability Act
HL7 Health Level 7
ICD-O International Classification of Diseases for Oncology
ICD9 International Classification of Diseases, Ninth Revision
ICD10 International Classification of Diseases, Tenth Revision
JSON JavaScript Object Notation
NCCN National Comprehensive Cancer Network
NIH National Institutes of Health
OIS Oncology Information System
PACS Picture Archive and Communication Systems
PHI Protected Health Information
PQI Patient Quality and Improvement
PRO Patient-Reported Outcome
PROMIS
Patient-Reported Outcomes Measurement Information
System
REDCap
Research Electronic Data Capture
ROIS Radiation Oncology Information System
RCT Randomized Controlled Trial
ROILS Radiation Oncology Incident Learning System
RTOG Radiation Therapy Oncology Group
SQL Structured Query Language
TPS Treatment Planning System
XML Extensible Markup Language
VHA Veterans Health Administration

1. INTRODUCTION

To the clinician, it often seems that we have too much and too
little data at the same time. We spend more time than we
would like at computer terminals entering or reading data. Per-
haps, it would be better stated that we would like the data we
input to be transformed into information that we can use. This
is the aspect of Big Data that this manuscript addresses. Com-
puterized data handling has been an integral part of our field
since the introduction of computerized treatment planning and
record and verify systems. The question is, now that there are
highly successful algorithms for using computerized data to
make models for predictive purposes, can the radiation oncol-
ogy community harness our data for our patients’ benefit?

Pan et al. have provided a very clear picture of the dif-
ficulties that we face in collecting and using data in the
clinic.1 The questions we must answer are: (a) is it worth
making an effort to improve the situation, (b) what are the
details of the clinical data environment that need to be
addressed, and (c) how do we accomplish our goals? An
AAPM Science Council Focused Research Meeting
(FOREM) meeting, jointly sponsored with vendors, was
held in Ann Arbor in May of 2017, to address these ques-
tions. In this publication, we provide an overview and
summary of the answers that emerged.

2. MOTIVATION FOR EMBRACING BIG DATA

2.A. Need to learn from and adapt to emerging
therapies such as genetics, immunotherapy

It is now commonly understood that the explosion of data
and knowledge that has resulted from genomics will have a
great impact on all areas of cancer care, including radiation
therapy. A patient’s genetic profile may play an important
role in how they will react to certain agents or in their ability
to repair radiation damage.2 The tumor’s genetic profiles
(since many tumors have a multitude of different mutations)
are increasingly being used to determine the best therapy or
combination of therapies.3

Immunotherapy is another area of increasing importance.
The ability to use different aspects of the immune system to
target tumor cells is an area of great current interest.4

Radiation oncology is not alone in the interest and need for
better data on patients’ genetic profiles. NIH has been working
with a number of groups to establish a workable solution in
order to avoid the current problems such as laboratory-
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dependent formats, text-based storage, and lack of centralized
storage in current electronic health records (EHR).5

2.B. Cancer as chronic disease and multiple care
givers

As cancer therapy becomes more effective, more, and
more patients are living longer. As a result, the extent and
complexity of information which needs to be tracked to
improve understanding of outcomes is increasing. For exam-
ple, for patients who are essentially cancer free, monitoring
risk for treatment-related complications when their long-term
home location-based follow-up is not at the treatment center
is a challenge. Parry et al. estimate that there will be 18 mil-
lion cancer survivors by 2020.6 In addition, there are the
increasing numbers of patients who survive longer than ever
due to improvements in targeted therapies, better imaging,
and better methods for localizing dose.7 These advances can
lead to improved local control and better control of
oligometastases. The upshot is that as the number of patients
who suffer cancer-related health consequences increases over
time, the more likely it is that they will see a wider spectrum
of specialists and in a larger number of clinical settings, inter-
acting with a large variety of recording-keeping systems.

Even just considering the electronic health records, there
are no general standards for the selection and formatting of
data to be recorded. Different vendors, different institutions,
different departments, and even different physicians have dif-
ferent methods which are often not compatible. Finally, even
within well-structured organizations, much of the data exist
within text documents. Lack of standards for which data ele-
ments to gather, inconsistent processes for entry, and variabil-
ity among commercial systems for aggregation and reporting
increase the likelihood that physicians and staff will miss
information or have incorrect information regarding a
patient’s health and/or treatments that could potentially affect
decisions.

2.C. Comparative effectiveness research

In the last decade, comparative effectiveness research
(CER) has been seen as an important and necessary adjunct
to randomized clinical trials (RCT).8 In CER, two different
therapies or tests that are already accepted are compared,
whereas RCT’s focus on comparing a new to a current ther-
apy. The Patient Centered Outcomes Research Institute cites
CER as its primary method of research. Given the relatively
small numbers of cancer patients that are enrolled in RCT’s
(approximately 3%), the need to use the information that is
available through CER is understandable.

Comparative effectiveness research can be tailored along a
spectrum of methods ranging from essentially an RCT to a
comparison of current clinical practice with an integrated prac-
tice beyond the current norm. A recent paper by Fiore et al.
looked at four different trials that sought to use only data in
the current EHR’s.9 Their conclusions included: “We find that
EHR-based clinical trials are feasible but pose limitations on

the questions that can be addressed, the processes that can be
implemented, and the outcomes that can be assessed.”

Clearly, for progress to be made using CER practical
methods for the easy and accurate collection of data and for
the sharing of data must be available in clinics.

2.D. Quality improvement and error detection

The past few years have seen an explosion in the use
of data to reduce errors in radiation therapy. ASTRO and
AAPM have implemented the Radiation Oncology Incident
Learning System (RO-ILS) that relies on data submitted to
it to develop a shared learning platform. While this system
is not “big data” in the sense that it is in text format and
is a relatively small amount of data, it does count in our
definition of transforming data to information. In particu-
lar, the system is setup to provide users with more knowl-
edge about the sources of errors and how best to avoid
them. Another area is in artificial intelligence applications
of error detection. For example, Kalet et al. successfully
mined an OIS to develop a probabilistic model of the con-
tributing factors to errors.10

2.E. Modeling in radiation oncology

Perhaps the most widespread use of data in radiation
oncology is in modeling. The examples are too numerous to
list, but some of the most impactful models are the QUAN-
TEC models, outcomes, tumor control probabilities, equiva-
lent uniform dose, and biologically effective dose.11 As
construction of Big Data Analytics Resource Systems
(BDARS) aggregating a wider range of health care informa-
tion (e.g., laboratories, medications, genomics, demograph-
ics, patient-reported outcomes (PROs), etc.) expands, more
comprehensive models are progressing beyond dose metrics
alone.12–14 In addition, heuristic type models have been con-
structed for automating the objectives of inverse planning and
library-based contouring. A promising area for the more con-
ventional use of big data is in machine learning for automated
contouring. In this application, images that have been seg-
mented by experts are fed into a machine learning algorithm
and image features that predict the true contours are selected
to produce anatomical contour models.

3. STATE OF THE DATA

One of the most important concepts is that big data, in
most cases, implies more data than may be obtained by any
single institution. In order to use machine learning or any
modeling techniques, there must be enough data to (a) build
the model, (b) test the model, and (c) validate the model.
Optimally, validation (c) can be done with data from a differ-
ent institution in order to account for hidden variables that
may not be appreciated.15 In addition, as our ability to differ-
entiate patients improves, for example, genomics and radio-
mics, the number of patients suitable for any given model
decreases, thereby increasing our need for more
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comprehensive capture of intrainstitutional data as well as for
multi-institutional data. This has critical implications for how
organizations cooperate. Whereas success in medical
research in the past has favored very large single institutions
that can develop a critical mass of knowledge and resources
in close physical proximity, diffuse networks of institutions
able to generate and share information will have an advantage
in the future.

In addition to the need for broad (many patients) data
sources, we also need deep (relationships among key data
elements) sources. Systems promoted as big data sources
may in fact be shallow, capturing only a few data elements for
a large number of patients. For example, some data sources
draw upon billing records or imaging records for a large num-
ber of patients, but lack depth needed to enable linkage to
diagnosis, treatment, dosimetric, or outcomes details.
Another impediment to obtaining the “deep” type of data is
that sources often dump unstructured, “as-is,” data into data
lakes where key data elements and relationships can in princi-
ple be extracted, but in practice carry a high overhead for
extraction. Challenges for ensuring depth in aggregation of
key data elements needed for radiation oncology fall into four
categories

• Access — Staff possessing both domain knowledge of
radiation oncology and of informatics need access to
query data bases in source systems to construct func-
tional big data repositories.

• Data Integrity — Data elements that may not require
accurate entry to enable treatment but are vital for cor-
rectly identifying specific patient groups in practice
quality improvement (PQI) and research efforts require
changes in clinical processes to assure validity. This
often implies a cultural shift to prioritize recording data
in recoverable formats.

• Data Structure — The cost of free text is high. Lack of
standardized structure for entry undermines ability to
automate extraction of key data elements from text
fields such as notes. To assure accurate, high volume,
electronic extraction of key data elements, standardized
methods for encoding key data elements need to be
defined and implemented in clinical processes.

• Lack of integration among systems — Key data ele-
ments are entered and stored in a range of commercial
systems that frequently do not maintain linkages needed
to identify relationships between key data elements.
There is no existing standard of practice to link depart-
mental datasets with radiation oncology-specific con-
tent with large commercial and governmental datasets
such as the National Cancer Database Base.

4. PROCESS AND SYSTEM CHANGES

In reviewing current practices, a number of obstacles stand
in the way of obtaining the amount and quality of data needed
to make substantial progress. The following outline provides

a view that is geared toward identifying means of overcoming
them.

1. Failure to collect necessary structured data
2. Lack of data standardization
3. Inability of different electronic data systems to commu-

nicate.

Within each of these broad categories, it is useful to pro-
vide a finer grained view of how different aspects of our clini-
cal and electronic environments contribute to the overall
difficulty in achieving the data collection and use that we
seek.

4.1.A. Commercial system databases

Focus for development of commercial systems that store
the range of data needed for clinical data repositories is
often on the user interfaces rather than on the back-end
databases. The situation is similar to a clinical focus on
data required to treat the day’s patients and support billing
documentation with few resources devoted to standardiza-
tions and optimizations to increase big data extractions.
Individual systems may use multiple loosely connected
databases, complex compound keys, lack of indexing,
poorly designed schema, lack reasonable security, or use
nonstandard database technologies. Vendors may also
refuse to provide end-users access to extract their own
data. Some commercial systems are much better than
others, so end-user experience is variable.

4.1.B. Diagnosis and staging

Correct usage and quantified entry of diagnosis and stag-
ing information is central to many PQI and research efforts.
For example, incorrect entry of primary disease codes (e.g.,
prostate 185, C61) when treating subsequent bone (C79.51),
brain (C79.31), or lung (C78.00) metastasis and failure to uti-
lize functionality in radiation oncology information systems
(ROIS) to connect primary and metastatic diagnosis under-
mine the ability to use these codes to correctly identify
patient groups by codes. Failure to utilize functionality in
ROIS connecting treatment courses to these codes undermi-
nes ability to connect treatment elements (e.g., DVH metrics)
to patients. The cost of not taking a few seconds to select
ICD-O (International Classification of Diseases for Oncol-
ogy) values linked to ICD9 (International Classification of
Disease, revision 9) and ICD10 (International Classification
of Disease revision 10) in the ROIS is that subsequent ques-
tions about disease site location become prohibitively expen-
sive to answer because of the manual effort required to
retrospectively revisit the chart. When survival information is
obtained from EHRs, failure to utilize functionality in ROIS
to enter staging information undermines ability to factor stag-
ing into survival, recurrence, and other factors. Typically,
EHRs do not have functionality for quantifying diagnosis and
staging information according to guidelines (e.g., AJCC,
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FIGO) or to connect primary and metastatic disease. On the
other hand, ROIS generally do, but frequently this functional-
ity is not utilized fully as part of clinical practice.

4.1.C. Outcomes

Patient outcomes such as toxicity and disease site status (e.g.,
recurrence) are frequently entered into electronic records as free
text using unstandardized terminology. This renders them
unavailable for accurate, automated electronic extraction. Lack of
standardizations (a) for which toxicities are routinely measured,
(b) how treatment site categorizations are named (e.g., breast tan-
gents, breast tangents plus supraclavicular field, breast tangents
plus supraclavicular field plus internal mammary node field,
etc), (c) how categorizations for disease site status are named
(e.g., no-evidence-of-disease, local recurrence) or (d) in use of
regular schemas for text representation of these key data ele-
ments prevent this information from being used to its full value
in routine characterization of outcomes for treated patients.

4.1.D. “As-Treated Plan Sums”

To assess correlation of outcomes with dose–volume his-
togram (DVH) metrics, it is necessary to first create treatment
plan sums corresponding to the plans and number of fractions
treated, reflecting boosts, plan revisions, and incomplete
treatments. When these “as-treated” plan sums (ATPSs) are
created as part of routine practice, then automated solutions
for calculating DVHs metrics becomes possible. Unfortu-
nately, often these are not created as part of routine practice,
with the result that they must be constructed retrospectively,
ad hoc, preventing systematic, automated aggregation. Cur-
rently, no major commercial system, to our knowledge, has a
standard means for reporting ATPSs.

4.2.A. Prescriptions

Electronic prescription summaries that defined dose
levels, target structures, number of treatments, fractionation
groups (e.g., first course, plan revision, boosts, etc.) and
connection to target structures, organs at risk, treated
plans, and DVH metrics have been developed by a few
researchers.16,17 These custom solutions were developed to
fill the void left by commercial ROISs. Recently, ASTRO
has suggested a baseline set of guidelines for information
that should be included in prescriptions to promote stan-
dardization.18 Similar to ATPSs, commercial solutions and
clinical processes often lack ability to retrospectively
extract this key information.

4.2.B. Key treatment parameters

Ensuring ability to identify which patients were treated
with special technologies and details of those treatments is
important to being able to prove their efficacy. Examples
include breath hold technologies, radio frequency or radio-
opaque fiducials used for positioning, immobilization

devices, etc. However, commercial systems and clinical
approaches to utilizing those systems are frequently inade-
quate for retrospectively gathering this data.

4.3.A. Integration of treatment planning system with
ROIS

If systems do not use a common database for treatment
planning system (TPS) and ROIS, it is difficult to unambigu-
ously move from the ROIS record of plans actually treated
back to specific plans, plan sums and DVH curves in the
TPS. Some vendors may even discard DICOM Unique Identi-
fiers for plans from the TPS.

4.3.B. Integration with EHR

ROIS and TPS systems typically do not integrate with
EHR’s. Connections may be made through medical record
numbers and inferences around dates recorded in respective
systems. This is an area where Health Level 7 (HL7) Fast
Healthcare Interoperability Resources (FHIR) could signifi-
cantly improve integration.

4.3.C. Integration with specialty systems

Treatment devices other than conventional linear accelera-
tors (e.g., brachytherapy, particles, specialty accelerators,
MR-guided linacs) may provide minimal details back to the
ROIS or may use specialty tables in the ROIS that do not
integrate well with tables used to manage external beam ther-
apies. This limits the range of questions around treatment
details for these specialty modalities that can be addressed at
large scale for all patients treated.

4.3.D. Integration with institutional registry data

Institutions with the American College of Surgeons Com-
mission on Cancer and National Comprehensive Cancer Net-
work (NCCN) designations are required to have medical
registries that follow up on cancer patients. Registries docu-
ment demographics, diagnosis, staging, survival, cause of
death, and other factors. Registry data is rarely linked to radi-
ation oncology data repositories.

4.3.E. Integration with public databases

Institutional registries supply data to state registries. Pub-
lished state analyses are, unfortunately, many years behind
current practice. Although state registries have high volumes
of patients, there is no simple means to connect back to
patients to check on the validity of the data or to investigate
impact of cofactors on outcomes tracked in the registries.

5. ACCESS AND EXTRACTION ISSUES

As radiation oncology has developed, a number of struc-
tural issues have arisen that limit clinicians’, caregivers’, and
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researchers’ access to the data that we do have. Access
requires several key elements: knowledge of the format and
schema of the stored data, software that can identify and
extract the data, and permissions to view and extract the data.

Figure 1 illustrates the level of detail that is needed
regarding the treatment of rectal carcinoma patients under
three RTOG studies. To combine the data from these trials
requires knowledge of how the problem is framed (which
clinical data are needed, what are the key elements of those
data), how the data are formatted (type of value, allowed val-
ues, units, standards if applicable), and the specific software
needed to access the data (SQL, RDF triples, spreadsheets).

The issue of framing the medical problem is difficult but
rewards are high. The DICOM standard (and its radiation
therapy extension) has achieved such success in large part
due to its structuring of what an imaging study (radiation
treatment) is—what are its elements and how are they
related.19 Thus, regardless of the details of the implementa-
tion of a procedure, all partners in a communication exchange
agree on the essential elements. The definition of such stan-
dards in other areas of medicine is rapidly increasing. For
example, a relatively commonly used standard for data
exchanges between EHR’s is the standard Health Level 7
(HL7). HL7 version 2 standardized types of data and the
allowed values and permitted organizations and vendors to
develop software for the reliable interchange of certain data.
However, it was considered to be quite limited, and version 3

was built around the Reference Information Model which
was a much more robust view of healthcare in general.20

Even more recently, they have started developing HL7-FHIR
which instantiates an even more up-to-date view of medical
practice, but also highlights the importance of appropriate
technology. HL7-FHIR is built upon the REST specification
that is the current industry standard for web-based applica-
tions.21 Other data standards, such as the NCI thesaurus,22

provide additional resources that facilitate the development of
software for access and extraction of data.

With rare exception, major vendors of ROIS, TPS, and
EHR systems, store information in relational databases. A few
types of large volume objects (e.g., DICOM images) are
stored in files that are referenced in the relational databases.
Custom extractions from databases are carried out using struc-
tured query language (SQL). SQL queries may have dialecti-
cal variation among relational database systems (e.g., Oracle,
Microsoft SQL). Ideally, relational databases are designed
with categories of data grouped into tables and views (stored
SQL query results) reflecting an overall view of the procedure
itself. They also use normalization strategies to prevent redun-
dant information, reduce complexity in SQL queries, and
increase performance in retrieving data. Secure data retrieval
requires granting read access to specific authenticated net-
work accounts. Access may be controlled at the level of the
database, table, or views. Skill with SQL is essential to any
staff constructing or extracting data for a data repository.

FIG. 1. The data from RTOG 0012, RTOG 0247, and RTOG 0822 were converted into Resource Description Framework (RDF) specifications and were uploaded
onto the NRG/IROC/ACR node of the Varian learning portal. The mapping was performed according to the diagram shown above. Distributed learning is
enabled for contracted institutions. The distributed learning between this node and another node on the Varian learning portal (MAASTRO Clinic, the Nether-
lands) was tested successfully.
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Application programming interfaces (APIs) are provided
by vendors of many TPSs. These may be used to gather sub-
sets of information stored in the ROIS database or elements
only calculated at run time in the TPS (e.g., DVH curves for
some systems). APIs allow custom software applications to
be constructed by users that interface with the TPS. Access is
controlled by end-user system administrators, subject to con-
straints of the commercial system. Clinical staff members
with coding skills are necessary for effective use of API’s.

Legacy issues with vendor changes to both database and
API structures are an issue for groups automating extraction
from electronic records systems. Effort to re-write queries
and scripts when systems are upgraded can be substantial.

Patient-reported outcomes are important outcome mea-
sures and their routine monitoring during cancer therapy has
been demonstrated to improve survival.23 However, use of
paper based rather than electronic systems are more common.
Electronic systems are significantly better for making the data
accessible, but require substantial effort in setting up systems
and arranging for staffing resources to assist patients with
completing electronic surveys is required. In addition, lack of
standardization in instruments to be used, redundant ques-
tions between surveys, excessive length diminishing patient
willingness to participate, and question formats and logic that
translate poorly to electronic systems already used in patient
work flows are issues for generalized use of PROs.

Diagnostic images are stored on Picture Archive and Com-
munication Systems (PACS) in Digital Imaging and Commu-
nication in Medicine (DICOM) format and accessed with
DICOM servers. Graphic user interfaces for clinical use are
not well suited to large volume, batch access of sets of patient
images. The objective in utilizing these resources in connec-
tion with BDARS is not creation of a parallel PACS. Instead,
when large sets of images are identified for utilization in a
study, for example, developing predictive radiomics measures
for a disease type, downloading a large specific set of images
for batch processing is needed. Negotiating access is the pri-
mary barrier.

Finally, it is important to discuss the role that legal and
commercial considerations play in limiting access to data.
The Health Insurance Portability and Accountability Act of
1996 requires certain standards to be met when exchanging
private health information. The standards depend on the
intended use of the data, for example, clinical decisions,
insurance coverage, quality improvement, and research. They
also depend on the entities exchanging the information. These
standards add time, effort, and new procedures to any effort
to obtain data access. Intra-institutional exchange, for exam-
ple, between a departmental data repository and the hospital
EHR, is in general easier than between institutions, but even
that type of transaction usually requires some level of admin-
istrative oversight and/or procedure. In addition, storing data
in a clinical data repository for possible future research can
be viewed as problematic under national ethics guidelines for
human research.24 Overall, it is difficult to make any broad
statements or recommendations regarding these issues since
they are, to some degree, institution- and use-specific. In

addition, how the regulations are interpreted is evolving, par-
ticularly in response to some of the national healthcare pro-
grammatic initiatives such as the Affordable Care Act.

6. SELECTING TECHNOLOGIES

The objective is to use the treatment data, rather than to
utilize a novel database technology. Selecting database tech-
nologies which minimize investment overhead and risk while
maximizing productivity and interoperability for addressing
particular tasks requires careful consideration.25,26

At a high level, four process steps can be considered and
technology choices should be made fit-for-purpose for these
steps.

6.A. Capture of treatment data

The primary use for health care data is delivery of patient
care. Health care database technology is often vendor depen-
dent and under regulatory oversight. For structured data ele-
ments (e.g., record and verify, electronic health records,
outcome) relational databases are the most common tech-
nologies. Images and related objects such as treatment plans
and record are generally object stores (e.g., PACS) with a
relational schema containing object pointers.

6.B. Extraction

Since the primary use sources have to be taken as-is, the
extraction technologies providing connectors to these primary
sources should be able to handle many different sources and
formats including all common relational sources. They
should be able to handle nonrelational sources including
“databases” that researchers and physicians often use (e.g.,
Excel, SPSS) and include JSON and XML support as these
are common export format for more technical users. Ideally,
the technology can be extendible to support common medical
standards (HL7v2, HL7v3, HL7 FHIR and DICOM) as
needed.

A wide range of programming languages and standard
database import tools are frequently used. These have the
advantage of hiding very little from the user. There are also
commercial and open source software systems intended to
reduce the technical skill requirements for users with the
trade-off of obscuring details about the extraction, cleaning,
and loading processes. Since primary sources change and
extraction tools generally expand and change over time, a cru-
cial requirement is versioning. Users of technology should be
able to store different versions of the extraction scripts and
configurations so that subsequent users can re-use their solu-
tions.

6.C. Transformation, integration, and storage

For successful secondary use, the primary use sources
need to be combined, integrated, and common data elements
mapped on each other. An example is the combination of
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ROIS/EHR data (diagnosis, comorbidities, prescriptions,
treatments, follow-up), Record and Verify data (radiotherapy
treatment), and DICOM data (imaging/plan). This transfor-
mation and integration is generally the most time consuming
task of the process. Knowledge of the primary sources and of
the secondary use data model is a requirement for staff using
the tool. Again, versioning and manageability is crucial as
sources change and sharing transformation scripts with others
is needed for work to not be duplicated. Defining distinctions
between data element categories and relationships means
mapping the raw values onto a schema. For example, a
schema needs to be applied so that we can inform our analyt-
ics programs if an extracted value “30” corresponds to a dose,
an age, a day of the month, etc., and how that value relates to
other information e.g., toxicity, survival, PROs, treatment
dates, etc.

From a technology standpoint two main approaches exist.

• Schema-On-Aggregate (aka schema-on-write): Upon
extraction each data element from each source is con-
sidered more or less separately, transformed, and
mapped to the secondary use data model and then writ-
ten in the secondary use data store. Schema-on-aggre-
gate has as its main benefit that it often re-uses the
knowledge contained in the primary use schema and
forces one to decide up front how to map data items
and think about transformation for each data element.
The end-result is often a data store with a structured
schema. Relational databases are widely used for this
approach owing to their speed, ease of integration with
other systems and large pool of talent for use. Nonrela-
tional databases (e.g., object stores, graph databases
and triple stores) have also been used in some research
settings.

• Schema-On-Query (aka schema-on-read): The sec-
ondary use data model is applied when the secondary
user requests, or queries, the data from the secondary
source. In a schema-on-query system the data is stored
from the primary source “as-is” and by necessity this is
a nonrelational store (e.g., a data lake). An example is
Apache Hive which can be used for SQL-like schema-
on-query for Apache Hadoop. NoSQL databases, such
as MongoDB or CouchDB, are another example. The
main benefit of this approach is that the transformation
and secondary use data model can be defined fit-for-
purpose, and different for different use cases. Also, all
primary use data can be stored immediately for later
secondary use. The main drawback is that knowledge of
original schema is often not available by the time the
data is used and that data is stored without de-identifi-
cation. Variability in nomenclature for key data ele-
ments, relationships, and formats among the various
“as-is” sources requires creating and maintaining cus-
tom code for each to enable programmatic extraction.
Care must be taken to ensure consistent meaning at the
time of data entry so that contents of an element are
internally consistent and stable.

Note that many solutions allow a combination of the above
approaches, with some data elements stored in a schema gen-
eration upon aggregate and some stored “as-is” for schema at
a later time point. In that case, key data elements are often
duplicated into the secondary use storage.

6.C.1. Secondary use application

Secondary use of subsets of data extracted from BDARS to
address specific research or clinical questions is a common use
case. The secondary user usually has defined their own data
model, store, and the application to analyze the data. The tech-
nology choices made by secondary users vary widely and lim-
ited influence exists especially if the secondary user is external
to the primary use institution. The main job of technology here
is to provide the secondary end-user with a dataset and format
which he or she can use (often called a data mart). Typical
requested formats include SQL database dumps, Microsoft
Excel, comma (or tab) separated values (CSV), DICOM, HL7
FHIR, HL7v3, HL7v2, XML, and JSON. Additionally, data
visualization and allowing the end-user to navigate the data
store established in the previous step increase the efficiency
and effectiveness of secondary use. The tools mentioned above
generally allow such export to a variety of data formats. Fig-
ure 1 illustrates one such use case, a semantic triple store data-
base (a.k.a. Resource Description Framework) was applied for
the purpose of combining datasets from several clinical trials.
Semantic triples can be used to define a range of relationships
between objects (e.g., PTV? is a type of? target structure).

7. SPECIFIC RECOMMENDATIONS FOR WORK
FLOWS AND STANDARDIZATIONS

1. Diagnosis and staging data should be entered into
quantified fields in accessible, electronic systems that

a. have quantified fields for staging elements and overall
staging, and staging guideline system used (e.g., Amer-
ican Joint Committee on Cancer (AJCC))

b. ensure correct selection of staging from component
elements

c. provide explicit linkage to treatment courses and plans
used to treat

d. link metastatic diagnosis (e.g., C79.51, Secondary
malignant neoplasm of bone) to diagnosis for originat-
ing sites (e.g., C34.1, Malignant neoplasm of upper
lobe, bronchus or lung).

In the current vendor landscape, the ROIS is frequently
the only system in the clinical process workflow meeting
these objectives.

2. Nomenclature standardizations recommended by
AAPM Task Group 263 should be adopted into routine
practice. These define standardized nomenclature for
structure, target and DVH metric naming to promote
ability to automate aggregation.27
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3. Course cumulative as-treated plan sums should be con-
structed as part of routine practice. Since more than
one image set may be used in the construction of the
ATPS’s, and relative positioning of structures may vary
between sets, using the image set providing the best
representation for the clinical evaluation carried out for
treatment is currently the most viable approach.

4. Toxicities, recurrence, and PRO outcomes need to be
routinely collected as quantified fields (instead of free-
text fields) in accessible electronic systems. Standard-
izations for specific items and values are needed. This
includes, for example, definition of recurrence nomen-
clature. Ability to automatically recover these values
from the electronic record is important.

5. Detailing of key data elements and relationships (i.e.,
an ontology) is needed for a broad range of practice
quality improvement and translational research efforts.
An initial set, drawn from experience in constructing
BDARS, is presented as an appendix to this paper. Suc-
cess in gathering this information requires that clinical
systems should be utilized to ensure ability to accu-
rately aggregate these elements and relationships from
the electronic record (ROIS, TPS, EHR). Ideally, pro-
fessional societies such as ASTRO, AAPM, ESTRO,
and CARO would combine efforts to eventually take
the role of maintaining standardized ontologies to pro-
mote interoperability among institutions and commer-
cial systems. Combining the ontology presented in the
appendix with related ontologies would be a valuable
step toward a common standard.28,29

6. In addition to demonstrating adherence to standard qual-
ity metrics, clinical entities will face increasing demands
for demonstration of the value of the care they deliver as
medicine in the transitions from fee for service to value
based payments. Success in the value based payment
environment will require the ability to conduct on-
demand analysis of patient and tumor characteristics, all
aspects of treatment delivery, outcomes, and cost of care.

We note that the task of creating ATPSs (item 3) needs to
begin as soon as possible, guided by clinical judgment, in
order to replace complete lack of data with reasonable data.
In addition, further refinement is needed. Collaborations
between professional societies, vendors and clinical trials
groups for defining standards for the end-of-treatment dose
composite are needed. Issues include means to quantify qual-
ity of the composite, identifying source images, identifying
trade-off decisions in image registrations, uncertainties in
structure dosimetric measures when multiple image sets are
used, and realistic appraisal of the role of image deformation.

8. EXAMPLES OF CLINICAL DATA REPOSITORIES

Several groups have been actively engaged in construction
of clinical data repositories (CDR), also known as data lakes
and BDARS. These systems become important components

for both research and clinical practice efforts in their clinics.
Practical recommendations from this group have been
grounded in the experience of constructing, using and sharing
these systems. Brief summaries of several are highlighted to
convey the scope and volume of these resources.

• The University of Michigan Radiation Oncology Ana-
lytics Resource (M-ROAR) automates aggregation of
electronic data from the Treatment Planning System
(TPS), Radiation Oncology Information System (ROIS),
Electronic Health Record (EHR), and other databases
for all patients treated. Data types include demograph-
ics, treatment and dosimetric data, chemotherapy, toxici-
ties, comorbidities, labs, medications, encounters, and
PROs. The system contains records for over 20,000
patients. Key data elements are extracted utilizing
a combination of SQL queries, TPS application pro-
gramming interface (API) based scripts and custom
code to extract and process data from multiple source
systems.25

• The UCLA Clinical Informatics Management System
(CIMS) consists of three major modules: a physician
interaction module that interacts closely with EHR, a
physics parameter module that handshakes with PACS
systems, treatment planning, and delivery stations for
quantitative value collection and exchange, and a
patient-reported outcome management system
[Patient-Reported Outcomes Measurement Information
System (PROMIS)] with a web/mobile portal. The
physician interaction module supports comprehensive
query for collection and integration of radiotherapy
relevant information from other departments. The
patient-reported outcome management module con-
sists of a front-end with site-specific patient-oriented
Common Terminology Criteria for Adverse Events
(CTCAE) questionnaires tailored to patients. As of
now, the registry contains records for 1790 definitive
prostate treatment, 209 post-operative prostate treat-
ment, 1950 breast, 663 lung, 531 brain metastasis,
484 GYN, 424 glioma, 409 meningioma, 209 rectum,
151 metastatic bone, 164 trigeminal, 111 pancreas, and
over 3000 general cases.30

• The Ohio State University Radiation Oncology
Department’s “Quality Database” has been designed
to serve as a data aggregation platform to capture
clinical, technical, and health outcome data on all
patients who receive radiation treatments. All data are
stored in a REDCap database. Smart texts have been
implemented in EHR to enable automated capture and
extraction of discrete data elements such as adverse
events from provider notes. The dosimetry data for
radiation therapy are extracted via TPS’s API. Demo-
graphics, diagnosis, tumor biomarkers, surgery, sys-
temic therapy, radiation therapy, and adverse events
constitute the collected data and provide means for
determining effectiveness of treatment modality. The
Quality Database currently contains 3385 patients and
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is being populated prospectively with new patient
data.

• Oncospace: Johns Hopkins University developed a
comprehensive data collection and data repository sys-
tem.31 The system consists of a network of data collec-
tion systems (ROIS, clinic computer terminals, mobile
devices, hospital EHR) that provides data that is trans-
formed and loaded into a SQL database. Using a feder-
ated database approach (including University of
Washington, University of Virginia, Odette Cancer Cen-
ter-Sunnybrook), each institution has implemented
compatible schemas so federation-wide queries will
succeed. This approach has the advantages of “crowd-
sourcing” ideas and technology and allowing each insti-
tution to keep control of their data while still permitting
individual flexibility.

• The Veterans Health Administration (VHA) developed
a pilot Radiation Oncology Practice Assessment
(ROPA) program to assess the quality of radiotherapy
across the entire VHA network with 40 institutions par-
ticipating.32 Data types include quality metrics targeted
at workup, diagnosis, treatment planning, delivery and
follow-up. The gathered quality metrics were developed
by the VHA in partnership with ASTRO for locally
advanced nonsmall cell lung cancer, limited stage small
cell lung cancer, and intermediate and high-risk prostate
cancer. Data extraction for the initial pilot project will
be completed in 2018. At that time, ROPA is anticipated
to contain 45,000 scores for 49 metrics aggregated from
approximately 2,000 patients.

Large datasets from sources outside of radiation oncology
are now available for analysis. Waddle et al. recently pub-
lished utilization data derived from insurance records from a
commercial warehouse (Optum Labs) to examine treatment
technologies used (proton, stereotactic body radiotherapy,
IMRT, 3D, other) by diagnosis code used in billing records.
The data base contains utilization data on a subset of 474,533
radiation oncology patients from a larger database of over
100 million insured lives. However, connection of this data to
clinical outcomes and other cofactors was pending at the time
of that analysis.33

9. RECOMMENDATIONS FOR NEXT STEPS
NEEDED TO IMPROVE DATA AVAILABILITY

9.A. Adopting national standards

As discussed above, an important aspect of data exchange
is employing a generally recognized view of the medical pro-
cess. HL7 FHIR is an emerging standard and one that has the
crucial elements of (a) flexibility, (b) state-of-the-art techno-
logically, and (c) widespread support.34 As this standard is
just not being formalized, this is an excellent time for the
radiation oncology community to support efforts to develop
radiation oncology-specific resources for this standard.35

9.B. Increasing multi-institutional collaborative
efforts

Real, effective standards emerge from being actively
engaged in exchanging data with outside groups as part of
more frequent collaborations. Professional and government
grant support for research efforts that develop and proof these
standards as by-products are important to their emergence.

Included in this effort is the need to facilitate information
exchanges that support retreatment. As patients are able to
survive longer with cancer, likelihood of visiting more than
one center for subsequent treatments also increases. Clinical
process and data exchange standardizations needed to facili-
tate these exchanges should also support collaborative efforts.

9.C. Links to institutional registries

Institutions which are members of the National Compre-
hensive Cancer Network (NCCN) are required to have access
to a registry which carries out longitudinal follow-up on a
few key data elements (e.g., survival, cause of death) for trea-
ted patients. EHR database records may be substantially dif-
ferent from registry database records. Providing electronic
access registry databases provides opportunities to synchro-
nize data sources in constructing BDARS.

9.D. Support for public data sets

The value of producing data sets that can be publicly shared
(without compromising PHI) has been heralded by several
authors.36–38 There is growing interest from funding agencies for
publicly funded research to produce publically available datasets.
Similarly, an increasing number of journals require publication
of datasets accompanying findings. Recently Medical Physics
has introduced a special publication category just for data sets.
Principles for ensuring that data are findable, accessible, interop-
erable, and reusable (FAIR) for public access of data sets have
been set out by Wilkinson et al.39 and others.40

The National Cancer Institute has recently begun to imple-
ment a Cancer Research Data Commons which meet the stan-
dards of FAIR. In their announcement, they echo a number of
the themes that we have set forth in this article. This is clearly
a propitious time for radiation oncology to join with others in
the oncology fields to make these sorts of community-wide
efforts more productive.41

9.E. Informatics training

Clinical staff bring great value to informatics efforts
because of the depth of their clinical domain knowledge with
respect to key data elements, their interrelationships, clinical
processes by which data is entered, end user expectations for
meaning, etc. The set of clinical staff that take on expanding
their informatics skills to include database, programming,
statistical analysis, and machine learning also improve ability
to develop practical solutions bridging needs between the
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larger number of specialists entirely focused in either the clin-
ical or informatics domains.

10. CONCLUSIONS

We have laid out an argument for why it is important for
the radiation oncology community to improve the means by
which we can collect, share and use the data that we encoun-
ter every day. However, for various reasons, much of this data
remains inaccessible to us in a format that makes it easy for
us to transform data to knowledge.

The technological challenges to implementing a commu-
nity-wide system of data collection, sharing and usage are
formidable but the tools have been or are currently being
developed. More difficult is developing the collective will to
make it happen. Such a change in our clinical behavior and
workflow requires buy-in from everyone, including clinic
staff, physicians, and vendors. It is our hope and expectation
that this sea change has already started to occur as diffuse
networks grow in size and analytic power. It is necessary to
do so if we are to continue to be at the forefront of harnessing
technological advances to improve the treatments that we pro-
vide our patients.
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APPENDIX

KEY DATA ELEMENTS AND RELATIONSHIPS: A
RADIATION ONCOLOGY TRANSLATIONAL
RESEARCH ONTOLOGY

We have defined of a common set of key data elements
and relationships important to a broad range of patient
quality improvement and translational research efforts.
Ranking treatment information for effectiveness requires a
broad scope of information types: Radiation Treatments,
Surgery, Outcomes, etc. While it is desirable to have all the
data readily available, that is not a practical starting point.
Our objective here is to define a minimal set of information
needed to handle frequently encountered questions as a
common use starting point. With that, technical and proce-
dural efforts attempting to automate electronic aggregation
supporting Big Data efforts can use these recommendations
as a guide.

Optimally professional organizations (e.g., AAPM,
ASTRO, ESTRO, CARO) would establish an official

listing of key data elements and relationships. Our inten-
tion here is to provide a practical starting point from
our experience in aggregations from multiple source
systems.

The listing of key data elements and relationships
define an explicit conceptualization of a body of formally
represented knowledge about Radiation Oncology, that is,
an ontology42. The listing provided here was based on
the ontology developed for M-ROAR25 and expanded as
an outgrowth of discussions at the Practical Big Data
Workshop. Incorporation of the ontology into a program-
matic form using Ontology Web Language (OWL) is
underway.

Classes (⊕) of information, list key data elements (aka
properties) denoted by one of three symbols ( ●, ⊙, s).
Most elements (●) do not require special consideration for
protection of patient health information (PHI). Elements that
contain PHI (⊙) are problematic for data sharing or storage
in cloud based systems. Alternatives (s), containing, reduced
information, may be sufficient for a wide range of collabora-
tive efforts or cloud based storage.

For example, dates are a type of PHI that institutional
review boards (IRB) will not allow for many applications.
For a wide range of investigations, detailing temporal rela-
tionships between events is important. Recording the
patient’s age at the event, rather than the date for the event
is an alternative. For example, if the date of an event is 3/
2/2013, and the patient’s date of birth is 8/17/1967, then the
patient’s age at the time of the event, to three decimal
places (Decimal F3), is 45.541. This is sufficient resolution
to differentiate day on a timeline and meets requirements
for protecting PHI.

Several key data elements typically are not present as dis-
tinct values in source data systems but have to be program-
matically derived (⌘) from other elements. For example, the
age of the patient at the time of an event is derived from date
of birth and date of the event. Starred (*) items indicate par-
ticular need for recommendations of standardized values rec-
ommendations from professional societies.

When elements have only one instance they are indicated
by the name of the class or element (e.g., DateOfBirth,
Patient). When there may be more than one instance of an
element, this is indicated by specifying a list of elements of
this class (e.g., List<Course>).

Relationships among classes are categorized as Parent
(⇦), Child(⇨), Sibling (⇔) or Property(■). Parent–child is
a dependent relationship: a parent class object is referenced
in each instance of a child class object. Sibling relationships
are tracked if elements exist but do not imply dependence.
Sibling relationships rather than parent–child relationships
may be selected when the current state of the data will not
practically support the dependent relationship. For example,
Prescriptions are used in sibling relationships with respect to
TreatedPlans because the current state of electronic data is
inadequate to assure consistent mapping. Property relation-
ships are used when class incorporates a set of elements
grouped under a single concept.
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⊕ Patient -

⊙ PatientMRN (String) -:Medical Record Number
s PatientGUID (String): Generalized Universal Identi-

fier that can be used in cloud based storage, when
PatientMR is not.

⊙ DateOfBirth (Date)

s YearOfBirth (Int?) ⌘
⊙ DateLastSurvivalCheck (Date?)

s AgeAtLastSurvivalCheck (Decimal F3) ⌘
⊙ DateOfDeath (Date?)

s AgeAtDateOfDeath (Decimal F3) ⌘
• IsAlive (Bool) – Status at last at Last Survival Check

Date
• *CauseOfDeath (String) – Need for standardized list
• Gender (String)
• Race (String)
• Ethnicity (String)

Child class relationships

⇨ List<Radiation Therapy Course>
⇨ List<Prescription>
⇨ List<DiagnosisAndStaging>
⇨ List<TreatedPlan>
⇨ List<PatientTreatmentOutcome>
⇨ List<PatientReportedOutcome>
⇨ List<PlanningStructureSet>
⇨ List<HealthInformation>
⇨ List<Lab>
⇨ List<Medication>
⇨ List<Image>
⇨ List<Chemotherapy Course>
⇨ List<Surgical Procedure>
⇨ List <Pathology>
⇨ List <Charge>

⊕ RadiationTherapyCourse ⌘ – These are the treatment
courses. A course Every patient has a list of courses

• CourseName (String)
• NTxSessionsInCourse (Int) ⌘ – Each treatment epi-

sode is a session, sessions used for imaging only are
exclude from the count

⊙ DateFirstTreatment (Date)
Ο AgeAtFirstTreatment (Decimal F3) ⌘
⊙ DateLastTreatment (Date)
Ο AgeAtLastTreatment (Decimal F3) ⌘

Sibling Class Relationships

⇔ List<Prescription>
⇔ List<Chemotherapy Course>
⇔ List<Surgical Procedure>

Child class relationships

⇨ List<TreatedPlan>
⇨ List<DiagnosisAndStaging> – Typically only one per

Course
⇨ List<PatientTreatmentOutcome> – Typically only

one per Course
⇨ List<Charge>

Parent Class Relationships

⇦ Patient

⊕ Prescription : The prescription needs to fully convey the
intent of the physician for the treatment plan. The Course
contains a list of prescriptions

• Name (String)
• NTxSessions (Int)
• NTxPerDay (Int)
• DaysBetweenTxSessions (Decimal) ⌘
• StartOnNthDayFromCourseStart (Int) ⌘
• StartOnNthSessionInCourse (Int) ⌘
• RxDoseUnits (String) – “cGy” or “Gy” or “CGE”
• IsCourseCummulativePrescription (Bool) ⌘ – Only

one value of True per Course

Class Property Relationships

■ List<PrescriptionDoseLevel>
■ List<PrescriptionDVHObjectives>

Sibling Class Relationships

⇔ List<TreatedPlan>

Parent Class Relationships

⇦ DiagnosisAndStaging
⇦ Patient
⇦ Course

⊕ PrescriptionDoseLevel

• RxDose (Decimal F3)
• RxStructure (String) – AAPM TG263 compliant

name
• RxPointName (String)

Parent Class Relationships

⇦ Prescription

⊕ PrescriptionDVHObjectives

• Structure (String) – AAPM TG263 compliant name
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• DVHMetric (String) – AAPM TG263 compliant
name, e.g., Max[Gy], V20Gy[%]

• Constraint (String) – allowed values are =,<,≤,>, ≥,
ALARA

• Value (Decimal F3) – null if constraint is ALARA

Class Property Relationships

■ Prescription

⊕ DiagnosisAndStaging

• StagingSystem (String) – e.g., AJCC 7, FIGO
• ICD9Or10 (String)
• ICD0 (String) – Defines location of disease
• Laterality (String) – Left, Right, Bilateral
• Overall Staging (String): e.g., IIa, X,
• T (String)
• N (String)
• M (String)
• P (String)
• G (String)
• OtherStagingComponents (String) – Staging com-

ponents other than T,N,M,P,G
• PrimaryOrMetastatic (String) ⌘– Either “Primary”

or “Metastatic”

Child Class Relationships

⇨ PatientTreatmentOutcome
⇨ DiseaseSiteStatus

Parent Class relationships

⇦ PrimaryICD9Or10? – If Metastatic, indicate Primary
DiagnosisAndStaging element

⇦ Course
⇦ Patient

⊕ DiseaseSiteStatus

• DateOfStatus (Date)
⊙ AgeAtDateOfStatus (Decimal F3) ⌘

• *Status(String) – Need standardized list, e.g., No
Evidence of Disease, Local Recurrence, Regional
Recurrence, Distant Recurrence

⊕ TreatedPlan : Every course has a list of treated plan
objects. One table for all types of plans defining key ele-
ments to track. This simplifies mixed modality tracking
e.g., External + Brachy and handling of individual plans vs
plan sums. Only plans actually treated are tracked. Details
of actual vs number of fractions delivered are tracked.

• PlanName (String): Corresponds to PlanID in
ARIA

• *TreatmentAreaClassifier (String): e.g., Head and
Neck, Lung_L, Breast_R+SC

• TPSSourceSystem (String) ⌘
• IsCourseCummulativePlan (Bool): The plan or

plan sum(ATPS) represents all plans treated in
the course

• IsPlanSum (Bool): The dose associated with the
plan is created by summing dose from other plans

⊙ DateOfFirstPlanTreatment (DateTime)
s AgeAtFirstPlanTreatment ⌘
⊙ DateOfLastPlanTreatment (DateTime)
s AgeAtLastPlanTreatment ⌘

• PrimaryTxDeliveryFacility (String) – Facility where
most of plan fractions were delivered

• PrimaryTxDeliveryMachine (String) – Machine on
which most of the plan fractions were delivered

• NFractions_Planned (Int)
• NFractions_Delivered (Int)
• TotalDose_Planned (Decimal) – Dose planed for

highest dose structure, e.g., PTV_High
• TotalDose_Delivered (Decimal) – Dose delivered

for highest dose structure, e.g., PTV_High
• TotalDose_Units (String) – Gy, cGy, CGE
• UsedFiducials (Bool) ⌘
• FiducialType (String) – Gold, Calypso, Carbon
• UsedBreathMotionControl (Bool) ⌘
• BreathMotionControlType (String): SDX, ABC,

Compression
• MeanSessionTimeMinutes(Int) ⌘
• MeanSessionBeamOnTimeMinutes (Int) ⌘
• MeanSessionImagingTimeMinutes (Int) ⌘
• NImages_MV (Int) ⌘ - Total number of MV images

for all sessions treating this plan
• NImages_kV (Int) ⌘ - Total number of kV images

for all sessions treating this plan
• NImages_CBCT (Int) ⌘ :Total number of CBCT

for all sessions treating this plan
• NImages_MR (Int) ⌘: Total number of MR images

for all sessions treating this plan
• List<SupplementalTreatmentDetail>

Sibling Class Relationships

⇔ Prescription
⇔ List<Images> – Image Class Objects related to the

TreatedPlan, e.g., CBCT, kV

Child Class Relationships

⇨ PlanningStructureSet
⇨ List<DVHCurve>
⇨ List<DVHMetric>
⇨ List<PatientPositioningDevice>
⇨ TreatmentPlanDetails_XRT
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⇨ TreatmentPlanDetails_Brachy
⇨ TreatmentPlanDetails_Particles
⇨ PlanningStructureSet

Parent Class Relationships

⇦ Patient
⇦ Course
⇦ ComponentOfATPS (TreatedPlan) – Plans that are

components of ATPS link back to the ATPS

⊕ PlanningStructureSet

• StructureSetName (String)
• ImageModality (String) ⌘ : e.g., CT, MR

⊙ DateOfImageAcquisition (Date)
s AgeAtImageAcquisition (Decimal F3) ⌘
⊙ DICOMImage_UID (String) DICOM_UID of

image use for the plan. In the Image list attached to
the patient.

⊙ DICOMPlan_UID (String)
⊙ DICOMStructure_UID (String)
⊙ DICOMDose_UID (String)

• PatientPosition (String)

Parent Class Relationships

⇦ Patient
⇦ TreatedPlan

⊕ PatientPositioningDevice

• *DeviceCategory (String) – Need standardized list
• DeviceName(String)
• SetupDetails (String)

⊕ TreatmentPlanDetails_XRT

• List<EnergyModality>
• TotalPlanMU (Decimal)
• UsedIMRT (Bool) ⌘
• UsedVMAT (Bool) ⌘
• UsedFIF (Bool) ⌘
• UsedWedges (Bool) ⌘
• UsedBolus (Bool) ⌘
• UsedNonCoplanarBeams (Bool) ⌘
• NBeams (Int) ⌘
• NFractionsPlanned (Int)
• NFractionsDelivered (Int)
• List<SupplementalTreatmentDetail>

Parent Class Relationship

⇦ TreatedPlan

⊕ TreatmentPlanDetails_Brachy

• List<EnergyModality>
• NSourcesTotal (Int)
• TotalActivity (Decimal)
• *TotalActivityUnits (String)- Need standardized list,

e.g., MBq, Ci, mCi, GBq
• UsedRadiopharm (Bool)
• UsedApplicator (Bool)
• TotalHDRDwellTimeMin (Decimal)
• TotalPDRDwellTimeMin (Decimal)
• TotalLDRImplantTimeMin (Decimal)
• List<SupplementalTreatmentDetail>

Child Class Relationships

⇨ List<Applicator>

Parent Class Relationship

⇦ TreatedPlan

⊕ Applicator

• *ApplicatorType (String) Need standardized list
e.g., Needle, BrachyCath, TandemAndOvoid,
Cylinder, Mamosite, Savi

• NApplicatorsInserted (Int) ⌘
• NApplicatorsUsedInTx (Int) ⌘

Parent Class Relationships

⇦ TreatmentPlanDetails_Brachy

⊕ TreatmentPlanDetails_Particles

• List<EnergyModality>
• UsedPassiveScattering (Bool)
• UsedSpotScanning (Bool)
• UsedEndOfRangeToSpareCriticalOAR (Bool)
• List<SupplementalTreatmentDetail?>

Parent Class Relationships

⇦ TreatedPlan

⊕ EnergyModality

• Energy (String) – Need standardized list, e.g., X06,
X06FFF, X10, X10FFF, E06, E09, E12, E16, E20,
Ir192, I125, P70, C250

• *Modality (String) – Need standardized list, e.g.,
XRT, HDR, LDR, Proton, CyberKnife, Gamma-
Knife

Parent Class Relationship
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⇦ TreatedPlanDetails_XRT
⇦ TreatedPlanDetails_Brachy
⇦ TreatedPlanDetails_Particles

⊕ SupplementalTreatmentDetail

• Name (String)
• Value (String)
• ValueType (String)

Parent Class Relationships

⇦ TreatedPlanDetails_XRT
⇦ TreatedPlanDetails_Brachy
⇦ TreatedPlanDetails_Particles
⇦ TreatedPlan

⊕ Image: Information about image objects relevant to
patient’s treatment

• ImageName (String)
• DICOM_UID (String)
• ImageModality (String), e.g., CT, kV, CBCT, MR-

T1w, MR-T2w, PET, etc.
• SourceSystem (String) ⌘ Where to find the image

and how to get it, e.g., ARIA, Velocity, Hospital
PACS, etc

⊙ AccessionNumber (String)

• StudySeries (String)
• BodySite (String)

⊙ DateOfImageAcquisition (Date)
s AgeAtImageAcquisition (Decimal F3) ⌘

• RelevanceComment (String?), e.g., TumorResponse

Sibling Class Relationships

⇔ List<ImageDataFeature>
⇔ TreatedPlan
⇔ Course

Parent Class Relationships

⇨ Patient

⊕ DVHCurve: Store the DVH curve for as treated (i.e.,
number of fractions delivered) plans and plan sums.
Every Treated Plan has a list of DVH curves

• StructureName (String) – Use TG263 Standardiza-
tion

• Volume[cc] (Decimal)

• Min[Gy] (Decimal)
• Max[Gy] (Decimal)
• Mean[Gy] (Decimal)
• Median[Gy] (Decimal)
• Stdev[Gy] (Decimal)
• DVHCurve (String) ⌘ – Dose, Volume tuples sepa-

rated by semi-colons. Dose is in units of Gy, Vol-
ume is in units of percent of structure volume, e.g.,
0,100; 50,100; 50.5,99.5; etc.

Sibling Class Relationships

⇔ List<DVHMetric>

Parent Class Relationships

⇦ TreatedPlan

⊕ DVHMetric: Metrics provide quick look up of most
important values. Sibling relationship to DVH curves is
maintained so that they can be reported separately if
needed.

• StructureName (String) – Use standard nomencla-
ture from TG263

• MetricName (String) – Use standard nomenclature
from TG263

• Value

Sibling Class Relationships

⇔ List<DVHCurve>

Parent Class Relationships

⇦ TreatedPlan

⊕ ImageDataFeature: specific values associated with the
image that e.g Radiomics values.

Every Image has a list of image data features

• *FeatureName(String) – Need for a standardized list
of defined feature names and acceptable values

• Data Type (String): text, number, datetime, bool
• Value (String) ⌘

⊙ DateOfImageDataFeature (Date)
s AgeAtImageDataFeature (Decimal F3) ⌘

Parent Class Relationships

⇦ Image
⇦ Patient
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⊕ PatientTreatmentOutcome

• *DiseaseStatus (String) – Need standardized list,
e.g., Local Recurrence, NED, BiochemicalFailure

⊙ DateOfStatus (Date)
s AgeAtStatus (Decimal F3) ⌘

Class Property Relationship

■ DiagnosisAndStaging

Parent Class Relationships

⇦ Patient
⇦ Course

⊕ PatientReportedOutcome

• *SurveyInstrumentName (String) – Need for stan-
dardized list

• *ElementName (String) – Need for standardized list

⊙ DateOfPRO (Date)
s AgeAtPRO (Decimal F3) ⌘

• Value (String)
• ValueType (String) – e.g., Bool, Date, Number

Sibling Class Relationship

⇔ Course

Parent Class Relationship

⇦ Patient

⊕ ProviderReportedToxicity

• *ToxicityName – Use standard names from CTCAE
or other standards

• ToxicityStandard (String), e.g., CTCAE

⊙ DateOfReportedToxicty (Date)
s AgeAtReportedToxicity(Decimal F3) ⌘

• Value (String)
• ValueType (String) – e.g., Bool, Date, Number
• Attribution (String)

Sibling Class Relationship

⇔ Course

Parent Class Relationship

⇦ Patient

⊕ HealthInformation: Used to record data elements rele-
vant to patient status, e.g., smoker, rock climber, diabetes,
etc.

• *HealthInformationItemName (String) –Need for
standardized list, e.g., HasDiabetes, IsCur-
rentSmoker, SmokingPackYears

⊙ Date (Date)
s AgeDate (Decimal F3) ⌘

• Value (String) – e.g., True, 20
• ValueType (String) – Decimal, Bool, Date, String

Sibling Class Relationships

⇔ List<Course>

Parent Class Relationships

⇦ Patient

⊕ Lab

• LabName (String)
• LOINCShortName (String)
• LOINCCodeName (String)

⊙ Date (Date)
s AgeAtDate (Decimal F3) ⌘

• Value (String)
• Units (String)
• ValueType (String) – Decimal, Bool, Date, String

Sibling Class Relationships

⇔ Course

Parent Class Relationships

⇦ Patient

⊕ Medication

• MedicationType (String)
• MedicationName (String)
• DosageValue (Decimal)
• DosageUnit (String)
• Frequency (String)

⊙ DateOfMedicationRecord
s AgeAtMedicationRecord (Decimal F3) ⌘
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Sibling Class Relationships

⇔ Course

Parent Class Relationships

⇦ Patient

⊕ ChemotherapyCourse: Set of Chemotherapy administra-
tions

• *Protocol (String) – Need standardized list
• Agent (String)
• Facility (String)
• IsNeoAdjuvant (Bool)
• IsConcurrent (Bool)
• IsAdjuvant (Bool)

⊙ DateFirstTreatment (Date)

s AgeAtFirstTreatment (Decimal F3) ⌘

⊙ DateLastTreatment (Date)

s AgeAtLastTreatment (Decimal F3) ⌘

Sibling Class Relationships

⇔ Radiation Therapy Course
⇔ Surgical Procedure

Child Class Relationships

⇨ List<Chemotherapy Administration>

Parent Class Relationships

⇦ Patient
⇦ DiagnosisAndStaging

⊕ ChemotherapyAdministration

• Agent (String)
• Dosage (String)

⊙ DateOfAdministration (Date)
s AgeAtAdministration (Decimal F3) ⌘

⊕ SurgicalProcedure

• Facility (String)
• *Purpose (String) – Need for standardized list
• *Margins (String) – Need for standardized values
• *BiopsyStatus (String) – Need for standardized val-

ues
• Is PreIrradiation (Bool)

⊙ DateOfSurgery (Date)
s AgeAtSurgery (Decimal F3) ⌘

Sibling Class Relationships

⇔ Radiation Therapy Course
⇔ ChemoTherapy Course

Parent Class Relationships

⇦ Patient
⇦ DiagnosisAndStaging

⊕ Pathology

• *ElementName(String) – Need standardized list
• *ElementValue (String)
• *ElementType (String)

⊙ DateOfPathology (Date)
s AgeAtPathology (Decimal F3) ⌘

Sibling Class Relationships

⇔ DiagnosisAndStaging

Parent Class Relationships

⇦ Patient

⊕ Charge

• CPTCode (String)
• NCodeInstances(Int)
• DateStartRange (Date)
s AgeAtStartRange (Decimal F3) ⌘

• DateEndRange (Date)
s AgeAtEndRange (Decimal F3) ⌘

Parent Class Relationships

⇦ Patient
⇦ Course

a)Author to whom correspondence should be addressed. Electronic mail:
cmayo@med.umich.edu

REFERENCES

1. Pan HY, Mazur LM, Martin NE, et al. Radiation oncology health infor-
mation technology: is it working for or against us? Int J Radiat Oncol
Biol Phys. 2017;98:259–262.

2. Kerns SL, Ostrer H, Rosenstein BS. Radiogenomics: using genetics to
identify cancer patients at risk for development of adverse effects follow-
ing radiotherapy. Cancer Discov. 2014;4:155–165.

3. Stevens EA, Rodriguez CP. Genomic medicine and targeted therapy for
solid tumors. J Surg Oncol. 2015;111:38–42.

Medical Physics, 45 (10), October 2018

e809 Mayo et al.: PBDW2017-Treatment Info e809

mailto:


4. Jaffee EM, Dang CV, Agus DB, et al. Future cancer research priorities
in the USA: a lancet oncology commission. Lancet Oncol. 2017;18:
e653–e706.

5. Shirts BH, Salama JS, Aronson SJ, et al. CSER and eMERGE: current
and potential state of the display of genetic information in the electronic
health record. J Am Med Inform Assoc. 2015;22:1231–1242.

6. Parry C, Kent EE, Mariotto AB, et al. Cancer survivors: a booming pop-
ulation. Cancer Epidemiol Biomarkers Prev. 2011;20:1996–2005.

7. Oeffinger KC, Argenbright KE, Levitt GA, et al. Models of cancer sur-
vivorship health care: moving forward. Am Soc Clin Oncol Educ Book.
2014;4:205–213.

8. Witt CM, Herman PM, Tunis S. Comparative effectiveness research in
integrative oncology. JCNI. 2017;52:Igx013.

9. Fiore LD, Lavori PW. Integrating randomized comparative effectiveness
research with patient care. N Engl J Med. 2016;74:2152–2158.

10. Kalet AM, Gennari JH, Ford EC, Phillips MH. Bayesian network models
for error detection in radiotherapy plans. Phys Med Biol. 2015;60:2735–
2749.

11. Bentzen SM, Constine LS, Deasy JO, et al. Quantitative analyses of nor-
mal tissue effects in the clinic (QUANTEC): an introduction to the scien-
tific issues. IJORBP. 2010;76:S3–S9.

12. Mayo CS, Matuszak MM, Schipper MJ, Jolly S, Hayman JA, Ten Haken
RK. Big data in designing clinical trials: opportunities and challenges.
Front Oncol. 2017;7:187.

13. Luo Y, El Naqa I, McShan DL, et al. Unraveling biophysical interactions
of radiation pneumonitis in non-small-cell lung cancer via Bayesian net-
work analysis. Radiother Oncol. 2017;123:85–92.

14. El Naqa I, Kerns SL, Coates J, et al. Radiogenomics and radiotherapy
response modeling. Phys Med Biol. 2017;62:R179–R206.

15. Lambin P, van Stiphout RGPM, Starmans MHW, et al. Predicting out-
comes in radiation oncology–multifactorial decision support systems.
Nat Rev Clin Oncol. 2013;10:27–40.

16. Mayo CS, Pisansky TM, Petersen IA, et al. Establishment of practice
standards in nomenclature and prescription to enable construction of
software and databases for knowledge-based practice review. Pract
Radiat Oncol. 2016;6:e117–e126.

17. Matuszak M, Anderson C, Lee C, et al. An integrated application for
radiation therapy treatment plan directives, management, and reporting
(SU-G-TeP4-06).Med.Phys. 2016;43:3686.

18. Evans SB, Fraass BA, Berner P, et al. Standardizing dose prescriptions:
an ASTRO white paper. Pract Radiat Oncol. 2016;6:e369–e381.
https://doi.org/10.1016/j.prro.2016.08.007Epub 2016 Aug 24 PubMed
PMID: 27693224.

19. https://www.dicomstandard.org/; accessed 1/26/18.
20. http://www.hl7.org; accessed 1/26/18.
21. https://www.hl7.org/fhir/DSTU1/http.html; accessed 1/26/18.
22. https://ncit.nci.nih.gov/ncitbrowser/; accessed 1/26/18.
23. Basch E, Deal AM, Kris MG, et al. Symptom monitoring with patient-

reported outcomes during routine cancer treatment: a randomized

controlled trial. J Clin Oncol. 2016;34:557–565. https://doi.org/10.1200/
JCO.2015.63.0830

24. https://www.hhs.gov/ohrp/international/ethical-codes-and-research-sta
ndards/index.html; accessed 1/26/18.

25. Mayo CS, Kessler ML, Eisbruch A, et al. The big data effort in radiation
oncology: data mining or data farming? Adv Radiat Oncol. 2016;1:260–
271.

26. Bailis P, Hellerstein JM, Stonebraker M. Readings in Database Systems,
5th edn. Burlington, MA: Morgan Kaufmann.http://www.redbook.io/
pdf/redbook-5th-edition.pdf

27. Mayo CS, Moran JM, Bosch W, et al. AAPM TG-263 standardizing
nomenclatures in radiation oncology. IJORBP. 2018;100:1057–1066.

28. http://bioportal.bioontology.org/ontologies/ROO, accessed 2/30/2018
29. https://bioportal.bioontology.org/ontologies/DLORO, accessed 2/30/

2018
30. Wang P, Kupelian P, Ruan D, et al. Implementation of a comprehensive

radiation therapy registry: focus on feasibility and reliability. IJORBP.
2012;83:S664.

31. Robertson SP, Quon H, Kiess AP, et al. A data-mining framework for
large scale analysis of dose-outcome relationships in a database of irradi-
ated head and neck cancer patients.Med Phys. 2015;42:4329–4337.

32. Caruthers D, Brame S, Palta JR, et al. Development and implementation
of quality measures for the survey based performance assessment of
radiation therapy in the VA. IJROBP. 2017;99:E391–E392.

33. Waddle MR, Kaleem TA, Niazi S, et al. Cost of acute and follow up care
in patients with pre-existing psychiatric diagnoses undergoing radiation
therapy. IJROBP. 2017;99:1231.

34. http://argonautwiki.hl7.org/index.php?title=Main_Page; accessed 1/26/
18.

35. Phillips M, Halasz L. Radiation oncology needs to adopt a comprehen-
sive standard for data transfer: the case for HL7 FHIR. Int J Radiat
Oncol Biol Phys. 2017;99:1073–1075.

36. Skripcak T, Belka C, Bosch W, Baumann M, et al. Creating a data
exchange strategy for radiotherapy research: towards federated databases
and anonymised public datasets. Radiother Oncol. 2014;113:303–309.

37. Nyholm T, Olsson C, Montelius A, et al. A national approach for auto-
mated collection of standardized and population-based radiation therapy
data in Sweden. Radiother Oncol. 2016;119:344–350.

38. Roelofs E, Dekker A, Lambin P, et al. International data-sharing for
radiotherapy research: an open-source based infrastructure for multicen-
tric clinical data mining. Radiother Oncol. 2014;110:370–374.

39. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding
principles for scientific data management and stewardship. Nat Sci Data.
2016;3:160018.

40. https://ncip.nci.nih.gov/blog/face-new-tragedy-commons-remedy-better-
metadata/; accessed 1/26/2018

41. https://ncip.nci.nih.gov/blog/towards-cancer-research-data-commons/
42. Gruber TR. A translation approach to portable ontology specifications.

Knowl Acquis. 1993;5:199–220.

Medical Physics, 45 (10), October 2018

e810 Mayo et al.: PBDW2017-Treatment Info e810

https://doi.org/10.1016/j.prro.2016.08.007
https://www.dicomstandard.org/
http://www.hl7.org
https://www.hl7.org/fhir/DSTU1/http.html
https://ncit.nci.nih.gov/ncitbrowser/
https://doi.org/10.1200/JCO.2015.63.0830
https://doi.org/10.1200/JCO.2015.63.0830
https://www.hhs.gov/ohrp/international/ethical-codes-and-research-standards/index.html
https://www.hhs.gov/ohrp/international/ethical-codes-and-research-standards/index.html
http://www.redbook.io/pdf/redbook-5th-edition.pdf
http://www.redbook.io/pdf/redbook-5th-edition.pdf
http://bioportal.bioontology.org/ontologies/ROO
https://bioportal.bioontology.org/ontologies/DLORO
http://argonautwiki.hl7.org/index.php?title=Main_Page
https://ncip.nci.nih.gov/blog/face-new-tragedy-commons-remedy-better-metadata/
https://ncip.nci.nih.gov/blog/face-new-tragedy-commons-remedy-better-metadata/
https://ncip.nci.nih.gov/blog/towards-cancer-research-data-commons/

	 Acronyms
	1. Intro�duc�tion
	2. Moti�va�tion for embrac�ing Big Data
	2.A. Need to learn from and adapt to emerg�ing ther�a�pies such as genet�ics, immunother�apy
	2.B. Cancer as chronic dis�ease and mul�ti�ple care givers
	2.C. Com�par�a�tive effec�tive�ness research
	2.D. Qual�ity improve�ment and error detec�tion
	2.E. Model�ing in radi�a�tion oncol�ogy

	3. State of the data
	4. Pro�cess and sys�tem changes
	4.1.A. Com�mer�cial sys�tem databases
	4.1.B. Diag�no�sis and stag�ing
	4.1.C. Out�comes
	4.1.D. ``As-Treated Plan Sums''
	4.2.A. Pre�scrip�tions
	4.2.B. Key treat�ment param�e�ters
	4.3.A. Inte�gra�tion of treat�ment plan�ning sys�tem with ROIS
	4.3.B. Inte�gra�tion with EHR
	4.3.C. Inte�gra�tion with spe�cialty sys�tems
	4.3.D. Inte�gra�tion with insti�tu�tional reg�istry data
	4.3.E. Inte�gra�tion with pub�lic databases

	5. Access and extrac�tion issues
	fig1

	6. Select�ing tech�nolo�gies
	6.A. Cap�ture of treat�ment data
	6.B. Extrac�tion
	6.C. Trans�for�ma�tion, inte�gra�tion, and stor�age
	6.C.1. Secondary use appli�ca�tion


	7. Speci�fic rec�om�men�da�tions for work flows and stan�dard�iza�tions
	8. Exam�ples of clin�i�cal data repos�i�to�ries
	9. Rec�om�men�da�tions for next steps needed to improve data avail�abil�ity
	9.A. Adopt�ing national stan�dards
	9.B. Increas�ing mul�ti-institutional col�lab�o�ra�tive efforts
	9.C. Links to insti�tu�tional reg�istries
	9.D. Sup�port for pub�lic data sets
	9.E. Infor�mat�ics train�ing

	10. Con�clu�sions
	 Acknowl�edg�ments
	 Con�flicts of inter�est
	 Key data ele�ments and rela�tion�ships: a radi�a�tion oncol�ogy trans�la�tional research ontol�ogy
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38
	bib39
	bib40
	bib41
	bib42




