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The sun’s meridional circulation and interior
magnetic field

Jeremy McCaslin Pascale Garaud

University of California Santa Cruz, ISIMA, 2010

Abstract
This effort explores the fundamental dynamics of a solar model such as that of

Gough and McIntyre[1]. The interaction of meridional flows downwelling from the
convection zone into the radiative interior with a confined interior magnetic field is
explored through a simple Cartesian model and linearized governing equations. Semi-
analytical solutions provide insight into these dynamics that have implications for
magnetic confinement and gyroscopic pumping, as well as for stellar mixing.

Introduction

Helioseismic observations[2, 3, 4] suggest that the solar convection zone exhibits a strong
level of differential rotation, whereby the rotation period of the polar regions is about 25% -
30% longer than the equatorial regions. Meanwhile, the radiative interior of the sun under-
goes nearly uniform rotation. These two regions are separated by a thin shear-layer called
the tachocline[5]. How is the differential rotation in the convection zone prevented from
propagating into the radiative interior? This has been a long-standing question in solar
physics. There is no strictly hydrodynamical model that could sustain this configuration.
The standard explanation for the uniform rotation of the radiative interior is the presence of
a large-scale primordial magnetic field through Ferraro isorotation[1]. However, this in turn
leads to the issue of magnetic confinement, as the field would otherwise naturally diffuse
radially outward. Large-scale meridional flows that downwell from the convection zone into
the radiative interior provide the mechanism for field confinement. The Coriolis force associ-
ated with the zonal (longitudinal) flows perpetually “pumps” the convection zone fluid, and
maintains a quasi-steady circulation, poleward near the surface[6, 7]. The amplitude and
spatial distribution of these meridional flows deeper in the convection zone remains essen-
tially unknown, as the sensitivity of helioseismic methods rapidly drops below the surface. As
a result, the question of whether some of the pumped mass flux actually penetrates into the
underlying radiative zone is still open, despite its obvious importance for mixing of chemical
species[8, 9], and its presumed role in the dynamical balance of the solar interior[1, 10, 11, 12]
and some models of the solar dynamo (see [13] for a review).
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In this paper, we construct a linearized, Cartesian toy model to gain insight into the
interaction of downwelling meridional flows with an interior, poloidal magnetic field. The
work stems from the hydrodynamic model of [14], extending it to the magnetic case. First,
we lay out the Cartesian model and the governing equations for our simplified system. Next,
we discuss the numerical results of the unstratified, Boussinesq case and derive analytical
scalings that match the numerical solutions. Lastly, we discuss the effect of a stratified
interior, relating our results to the recent work of [15].

A Cartesian model

Model setup

As a first approach to gain fundamental understanding of meridional circulation interacting
with an interior magnetic field, a simplified Cartesian model is sufficient and greatly simplifies
the required algebra. For non-dimensionalization of the equations, distances are normalized
by the solar radius R� and velocities to R�Ω�, where Ω� is the mean solar rotation rate. As
can be seen in figure 1, our Cartesian (x, y, z) coordinate system is chosen so that x represents
the azimuthal coordinate φ (with 0 < x < 2π), and y is the negative of the co-latitude such
that y = 0 and y = π correspond to the poles while y = π/2 corresponds to the equator.
The radial direction corresponds to z in our coordinate system, and is such that 0 < z < 1

Figure 1: Schematic of the Cartesian model. The shaded region designates the convection
zone, where forcing is applied. The system is π-periodic in the y direction. The dotted line
at z = h corresponds to the base of the convection zone. Red lines indicate the exponentially
decaying background magnetic field, blue lines indicate the uniform downwelling flow used
to balance diffusion of this field (see main text for details).

due to normalization. As can be seen by the shaded region, the convection zone represents
the region where z > h, while the radiative interior corresponds to 0 < z < h. The assumed
background state of the problem is clearly visible in figure 1, which will be discussed in the
next section.
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Model equations

The full set of (non-dimensional) governing equations for this system are, respectively, con-
servation of momentum and thermal energy, along with the induction equation, mass con-
servation equation and the solenoidal condition on the magnetic field:

∂U

∂t
+ U · ∇U + 2êz ×U = −∇P + T êz + V̄ 2

A J×B + Eν∇2U (1)

∂T

∂t
+ U · ∇T + b2U · êz = Eκ∇2T (2)

∂B

∂t
= ∇× (U×B) +Rm−1∇2B (3)

∇ ·U = 0 (4)

∇ ·B = 0 , (5)

where U is the velocity, B is the magnetic field, J is current, P is pressure, and T is
the temperature perturbation. Using a dynamic scaling for pressure and normalizing the
temperature perturbations to R�T̄z (the background temperature difference across the box),
the non-dimensional parameters introduced are

V̄ 2
A =

B2
0

4πρ0R2
�Ω2
�
, the Alfvén parameter; (6)

Eν =
ν

R2
�Ω�

, the Ekman number; (7)

b =
N

Ω�
, the frequency ratio; (8)

Eκ =
Eν
Pr

, the thermal diffusion parameter; (9)

Rm =
R2
�Ω�
η

, the magnetic Reynolds number; (10)

where B0 and ρ0 are unit field and density respectively, ν is the viscosity, κ is the thermal
diffusivity, and η is the magnetic diffusivity. N is the Brunt-Väisälä frequency and Pr = ν/κT
is the conventional Prandtl number (ratio of viscosity to thermal diffusivity). The Alfvén
parameter V̄ 2

A is the square of the ratio of the Alfvén speed to the characteristic speed R�Ω�,
and the frequency ratio b is simply the non-dimensional buoyancy frequency.

The buoyancy frequency N characterizes the transition between the model convective
and radiative zones, which goes from zero in the convection zone (z > h) to nonzero in the
interior (z < h). In order to model this behavior, we define the non-dimensional buoyancy
frequency to be of the form

b(z) =
brz
2

{
1 + tanh

(
h− z

∆

)}
, (11)

where brz is constant and characterizes the strength of stratification. Note that b ≈ brz in
the interior. The lengthscale ∆ can be thought of as the thickness of the “overshoot” region
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near the base of the convection zone, but in practice is mostly used to ensure continuity and
smoothness of the background state through the tanh function.

As previously mentioned, we are considering an axially symmetric, steady-state problem,
and therefore set ∂/∂x = ∂/∂t = 0. We further simplify our model by making assumptions
about the nonlinear terms in the momentum and energy equations (1) and (2). Within the
stably stratified radiation zone, U · ∇U and U · ∇T are assumed to be negligible. In the
convection zone, on the other hand, it is known that anisotropic turbulent stresses drive
the differential rotation. In order to model this simply and appropriately for our linear
approach, we replace the divergence of the stresses with a linear relaxation toward the
observed convection zone profile:

u · ∇u −→ Fturb =
u− ucz(y, z)êx

τ
(12)

where ucz models the observed azimuthal velocity profile in the solar convection zone and
τ is the relaxation timescale which can be viewed as a dimensionless convective turnover
timescale. This prescription is similar to that used in [16]. We adopt the profile

ucz(y, z) =
U0(z)

2

{
1 + tanh

(
z − h

∆

)}
eiky = ûcze

iky , (13)

where
U0(z) = U0(h) + S(z − h) (14)

and k = 2 to due to equatorial symmetry. The function U0(z) governs the nature of the
forcing in the convection zone, where setting U0(h) = 0 implies that the forcing goes to zero
at the base of the convection zone. S is the parameter that governs the imposed vertical shear
in the azimuthal direction. Note that the amplitude of the forcing is somewhat irrelevant
due to the linearity of the problem.

As for b(z) and ûcz(z) in equations (11) and (13), the dimensionless relaxation timescale
τ can be modeled as

τ−1(z) =
1

2 τc

{
1 + tanh

(
z − h

∆

)}
. (15)

For simplicity, we assume that τc is constant while keeping in mind that it varies by as much
as 3 orders of magnitude in the real solar convection zone.

Turbulent convection efficiently mixes heat in the convection zone, thus the asphericity
in the temperature profile is negligible in this region. Therefore we can model the advection
of temperature fluctuations by the fluid as an enhanced diffusivity:

u · ∇T −→ −D(z)∇2T . (16)

Again, we use the tanh function to model the diffusion coefficient:

D(z) =
D0

2

{
1 + tanh

(
z − h

∆

)}
, (17)

4



where D0 governs the amplitude of this enhanced diffusion. We will assume that D0 � 1,
meaning that the dimensionless diffusion timescale 1/D0 is much smaller than other typical
timescales in the physical system.

We have simplified equations (1)-(5) with our steady state and axial symmetry assump-
tions, as well as our models for the nonlinear advection terms in the momentum and thermal
energy equation. We now proceed to linearize the remaining terms (the Lorentz force and
the field advection in the induction equation) by assuming that the velocity and magnetic
fields are

U = W0 + u = W0êz +


u
v
w

 (18)

B = B0 + b = B0(z)êy +


bx
by
bz

 , (19)

where the perturbations {u, v, w, bx, by, bz} (along with T in the momentum and energy
equations (1) and (2)) are to be solved for. The Lorentz force in (1) and the induction
equation (3) must be carefully expanded, and only terms linear in the perturbations are
kept. Assuming the perturbations to be periodic in y with an amplitude that depends on z,
i.e. seeking solutions of the form

q = q̂(z) eiky , (20)

our equations generate a system of ODEs for the perturbation amplitudes q̂. This system
of ODEs can be solved in a straightforward manner, upon one last clarification: the dimen-
sionless background magnetic field is defined as

B0(z) = e−z/δ , (21)

where δ corresponds to the thickness of the magnetic boundary layer (refer to figure 1).
Note that the previously defined B0 constant is the dimensional value of B0(0). In order to
balance the diffusion of this field, W0 is introduced. This balance is seen clearly from the y
component of the induction equation:

∂

∂z
(WB0) = Rm−1∇2(B0(z) + by) , (22)

where W = W0(z) + ŵ(z)eiky and by = b̂ye
iky. We can eliminate terms not proportional to

eiky if

W0(z)B0(z) = Rm−1dB0

dz
, (23)

assuming the arbitrary integration constant to be zero. Using (21), this implies that

W0 = − 1

Rmδ
or |W0| =

η

δ
, (24)
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which is the expected downwelling velocity required for confinement. Note that an expo-
nential choice of B0(z) allows for a constant W0, making it unnecessary to modify v in
satisfaction of mass continuity.

Based on all previously listed assumptions, the equations governing the perturbation
amplitudes become:

−2v̂ = ikV̄ 2
A b̂xe

−z/δ + Eν

(
d2û

dz2
− k2û

)
− û− ûcz

τ(z)
(25)

2û = −ikp̂− 1

δ
V̄ 2
A b̂ze

−z/δ + Eν

(
d2v̂

dz2
− k2v̂

)
− v̂

τ(z)
(26)

dp̂

dz
− T̂ =

1

δ
V̄ 2
A b̂ye

−z/δ + V̄ 2
A

(
ikb̂z −

db̂y
dz

)
e−z/δ + Eν

(
d2ŵ

dz2
− k2ŵ

)
− ŵ

τ(z)

(27)

ikûe−z/δ −W0b̂
′
x = −Rm−1

(
d2b̂x
dz2
− k2b̂x

)
(28)

W0

R�Ω�

db̂y
dz

+ (ŵe−z/δ)′ = Rm−1

(
d2b̂y
dz2
− k2b̂y

)
(29)

ikW0

R�Ω�
b̂y + ikŵe−z/δ = −Rm−1

(
d2b̂z
dz2
− k2b̂z

)
(30)

ŵ =
1

b2(z)
[Eκ +D(z)]

(
d2T̂

dz2
− k2T̂

)
(31)

ikv̂ +
dŵ

dz
= 0 (32)

ikb̂y +
db̂z
dz

= 0 . (33)

Note that p̂ in equations (26) and (27) now incorporates both the thermodynamic pressure
as well as the magnetic pressure caused by the background field. We proceed to solve our
system of ODEs numerically using a packaged two-point boundary value algorithm available
in MATLAB called bvp4c. Analytical scalings for the perturbations are derived for various
regions of the domain. These semi-analytical results reveal characteristic behavior of the
downwelling flows that we believe to be relevant to the regime of the solar tachocline.

Results

The Unstratified Case

We begin our analysis with the unstratified case by setting brz = 0. The constraint will be
lifted in the next section, but the essence of the problem can be shown in the absence of
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stratification. In the unstratified, purely hydrodynamic study of [14], it was demonstrated
that downwelling meridional flows in the convection zone only penetrate into the radiation
zone in the presence of a no-slip boundary condition at the interior of the sun. As artificial as
this boundary condition may be, the implications are very important: there must be stresses
present in the radiation zone in order for the Taylor-Proudman constraint to be broken and
allow downwelling flows to return to the convection zone. If stress-free conditions are used
at the bottom of the domain, meridional flows do not penetrate into the interior, but rather
return at the base of the convection zone, i.e. where there is a mechanical pathway that
allows them to do so. This is illustrated in figure 2, which shows that the flow amplitude in
the radiation zone scales with Eν if the lower boundary condition is stress-free.

The Lorentz Force

The motivation for this work is based on the findings discussed above. The presence of
a confined magnetic field within the solar interior adds a Lorentz force in the momentum
equation, thus providing the mechanical pathway required for the penetration of meridional
circulation into the solar interior. It will also be seen that Lorentz forces will allow for larger
mass fluxes (more penetration) than solely the shear stresses confined to a very thin Ekman
Layer, in the purely hydrodynamic case. This accommodation of greater mass fluxes has
implications for stellar mixing (i.e., lithium stars[15]).

In the absence of stratification, the thermal energy equation (31) and T̂ in equation
(27) can be neglected. As a first check for the unstratified case, we solve the case for either
B0 = 0 or V̄ 2

A = 0 (no Lorentz force), as seen in figure 2. We obtain the purely hydrodynamic,

Figure 2: The unstratified case with B0 = 0. The lower boundary is stress-free (∂zû = ∂zv̂ =
0) and impermeable (ŵ = 0). The perturbation ŵ scales with Eν in the interior.

unstratified solution of [15], where the downwelling perturbation ŵ scales with the Ekman
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number in the radiation zone (for the stress-free boundary condition). After reproducing
the hydrodynamic solution in the case of no magnetic field, we set the Lorentz parameter
V̄ 2
A to a nonzero value. It is clear in figure 3 that when Lorentz forces dominate viscous

Figure 3: A small, nonzero Lorentz force eliminates the scaling of ŵ with Eν in the interior.

stresses in the momentum equation radically different dynamics are observed. In particular,
the dependence of the solution on Eν dissapears. We study this effect more systematically in
figure 4 by gradually increasing the strength of the Lorentz force. A layer develops within the
interior where the downwelling perturbation ŵ decays exponentially. Further increasing the
Lorentz force causes this magnetically dominated region to span the entire radiation zone,
eventually suppressing the flows in the convection zone if the Lorentz force becomes strong
enough (see figure 4). Because our model assumes all perturbations to be axisymmetric in x,
we can define the velocity streamfunction Ψ and the magnetic potential a and use them to
visualize streamlines and magnetic field lines. The magnetically dominated region discussed
above is clearly visible, as shown in figure 5. False color images of the azimuthal velocity and
magnetic field perturbations are also shown. We see 3 main regions: the convection zone,
where dynamics are dominated by the convection stresses and drive pumping, a magnetic free
region in Taylor-Proudman balance and, finally a magnetically dominated region in uniform
rotation.

Because the background field B0(z) has no Lorentz force, its only physical effect is mag-
netic pressure, which has been included in the thermodynamic pressure. It is therefore
important to note at this point that due to linearization, the Alfvén parameter V̄ 2

A and the
magnetic Reynolds number Rm are physically coupled. This can be seen mathematically by
folding the Alfvén parameter into the magnetic perturbations, b̄i = V̄ 2

A b̂i, and recasting the
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(a) Formation of magnetically dominated region. (b) Magnetically dominated region spreading across
radiation zone.

Figure 4: The magnetically dominated region spreads across the radiation zone as the Lorentz
force is increased, eventually suppressing the circulation in the convection zone.

momentum and induction equations:

2êz × u = −∇P + j×B + Eν∇2u− u− uczêx

τ
(34)

∇× (U×B) = −Λ−1∇2B , (35)

where the dimensionless parameter Λ is the Elsasser number, defined as

Λ = V̄ 2
A Rm =

B2
0

4πρ0ηΩ�
(36)

in this case. For negligible viscosity in the presence of Lorentz forces (as was shown in
figure 3), Λ is becomes the only dimensionless parameter for this unstratified case. The
physical reasoning for this goes as follows: as the background field itself has no Lorentz
force, increasing the strength of the Lorentz force means increasing the interaction of the
velocity perturbations with the background field (the LHS of the equation (35)). Through
the induction equation, this has the equivalent effect of increasing the effective magnetic
Reynolds number. If Rm is very large, there is strong interaction between the field and the
flow, but if Rm is small the field diffuses away and the flow does not “feel” that it is there.
The exact same behavior can be obtained by decreasing or increasing η of course. This
mathematical and physical reasoning is evident in figure 6, where increasing Rm (decreasing
η) has the same effect as increasing V̄ 2

A .

Structure of the Magnetically Dominated Region

As the background magnetic state corresponds to the imposed B0(z) = e−z/δ, it is important
to explore the effect that δ has on the behavior of the solution. The parameter δ governs
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(a) Streamlines reveal where the flow is forced to turn
around.

(b) The azimuthal component of the magnetic per-
turbation is strongest near the turn-around region.

(c) Velocity streamlines and magnetic field lines. (d) The azimuthal velocity shows uniform rotation
in the magnetically dominated region and Taylor-
Proudman rotation above up to the base of the con-
vection zone.

Figure 5: (a) provides visualization of the magnetically dominated region; (b) demonstrates
the azimuthal component of the magnetic perturbation; (c) shows Ψ = constant lines super-
imposed on magnetic field lines; (d) demonstrates how azimuthal velocity is affected by the
magnetic field.

how much of the normalized solar radius is magnetically dominated, for a given interior field
strength as measured by Λ. Figure 7(a) demonstrates the effect that increasing δ has on the
perturbation ŵ. It is also clear from figure 7(a) that δ has a slight effect on the magnitude
of the downwelling flow, but more interestingly it also affects the thickness of the transition
between the magnetically dominated region and the region of constant ŵ (this region will be
mentioned in the next section). For the value of δ = 0.2, the transition region is becoming
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Figure 6: Decreasing η has the same effect as increasing the strength of the Lorentz force
(figure 4).

(a) Varying δ affects the thickness of the magnetically
dominated region, the thickness of the transition re-
gion, and the magnitude of ŵ.

(b) Plotting ŵ verse z/δ suggests an exponential de-
cay that is independent of δ.

Figure 7: The effect of δ on the perturbation ŵ.

somewhat difficult to resolve. This is not largely important, as having a δ of 20 % of the
normalized solar radius does not have physical relevance. If we plot ŵ as a function of z/δ
rather than z, we see in figure 7(b) that there is a suggested universal exponential profile for
ŵ that is a function of z/δ only.
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Analytical Perturbation Scalings

As was demonstrated in figure 7(b), the exponential scaling of ŵ seems to exhibit a uni-
versal solution in the magnetically dominated region, for a range of δ. Because viscosity is
negligible, and we are in the radiative interior where there is no forcing, we neglect viscous
stresses and the forcing terms. The system of equations (25)-(30) becomes

−2v̂ = ikV̄ 2
A b̂xe

−z/δ (37)

2û = −ikp̂− 1

δ
V̄ 2
A b̂ze

−z/δ (38)

dp̂

dz
=

1

δ
V̄ 2
A b̂ye

−z/δ + V̄ 2
A

(
ikb̂z −

db̂y
dz

)
e−z/δ (39)

ikûe−z/δ −W0b̂
′
x = −Rm−1

(
d2b̂x
dz2
− k2b̂x

)
(40)

W0

R�Ω�

db̂y
dz

+ (ŵe−z/δ)′ = Rm−1

(
d2b̂y
dz2
− k2b̂y

)
(41)

ikW0

R�Ω�
b̂y + ikŵe−z/δ = −Rm−1

(
d2b̂z
dz2
− k2b̂z

)
. (42)

This system of ODEs can be solved analytically for ŵ to yield the form

ŵ ′′ − 2ŵ ′ =
4

k3δ4Λ2
e4z/δ︸ ︷︷ ︸

Π(z)

L(ŵ) , (43)

where L(ŵ) is a linear, differential operator containing first and higher order derivatives
of ŵ only. If we consider the limit where the coefficient Π(z) � 1, then the solution ŵ
must be proportional to e2z/δ. This is in fact the behavior of ŵ we find numerically in the
magnetically dominated region, as visible in figure 8(a) for a range of δ. This scaling begins
to deviate slightly for δ = 0.3 (30 % of the normalized solar radius), which is not of concern.

Considering the case when Π(z) ∼ 1, the exponentially decaying solution is no longer
valid and the solution changes to ŵ = constant (as clearly seen in figure 7(a) for a variety
of δ). Although it is not clearly obvious from equation (43) why ŵ becomes constant, one
can see that a trivial solution is ŵ ′ = 0 (therefore L(ŵ) = 0).

Similar scalings can be derived for all of the remaining perturbation quantities q̂:

q̂ ′′ − n q̂ ′ = Πq L(q̂) , (44)

where Πq is the coefficient corresponding to the perturbation q, and n is given for each
perturbation in table 1. This means that

q̂ ∼ enz/δ , (45)
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(a) The scaling ŵ ∼ e2z/δ is valid for a range of δ. (b) The exponential scalings for all of the perturba-
tions.

Figure 8: Analytical scalings for the velocity and magnetic field perturbations.

Table 1: Values of n for each perturbation.

n q̂

1 b̂y, b̂z
2 v̂, ŵ

3 b̂x
4 û

and the corresponding scalings can be seen graphically in figure 8(b).
Going back to the case of ŵ the point z where Π(z) ∼ 1, should correspond to the position

of the transition point between the exponentially decaying and ŵ = constant regions. Solving
the equation

Π(z) =
4

k3δ4Λ2
e4z/δ = 1 (46)

yields

z =
δ

4
log

(
k3δ4Λ2

4

)
. (47)

This prediction for the position of the transition point is compared with the numerical
solution in figure 9 and shows excellent agreement.
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Figure 9: Prediction of transition location as a function of Λ, based on equation (47).

The Stratified Case

In the previous section, we discussed the effect of the Lorentz force, as measured by the
Elsasser number Λ, on the character of the downwelling perturbation ŵ. We also looked
at how the structure of the magnetically dominated region depends on δ and developed
analytical solutions for the exponential decay of the perturbations in this region. In this
section, we increase the physical realism of the model by adding stratification to the radiative
interior (brz 6= 0).

Regimes of Stratification

In order to study the effect of stratification, we return to the full system of equations (25)-
(33). Before doing so, we review the recent work of Garaud and Bodenheimer[15], where
the role of stratification is explored for the purely hydrodynamic case. The relevance of this
work will be clear when we look at the results. In [15], three regimes are found, depending
on the strength of stratification (as measured by brz):
(1) the unstratified regime, where the downwelling circulation is indistinguishable from the
case of no stratification;
(2) the weakly stratified regime, where the downwelling perturbation remains constant with
depth and scales as an Eddington-Sweet velocity;
(3) the strongly stratified regime, where the flows decay exponentially with depth below the
convection zone:

ŵ ∼ e±σ(z−h) , ±σ = ±
√

Pr
brz
2
k . (48)
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In figure 10, our numerical solution of the full system is shown, for ŵ, for a fixed Elsasser
number and increasing values of brz. The magnetically dominated region is clearly visible,
while the region above exhibits the the three regimes discussed earlier. The values of brz =

Figure 10: Demonstration of the three regimes for stratification.

10−5, 10−3, and 10−1 correspond to the green, red, and cyan lines, respectively; and each of
these lines fall directly on type of the purple line of brz = 0. This indicates that these values
of brz fall into the unstratified regime. Similarly, the values of brz = 1, 3, and 10 (purple,
yellow, and black) show that ŵ is still constant in the intermediate region, with a value
which follows roughly the Eddington-Sweet scaling (ŵ ∝ Ω�

NEκ
) and therefore belong to the

weakly stratified regime. The figure indicates that the values of brz = 30 and 100 (blue and
green) transition from the weakly to strongly stratified regime, which is characterized well
by the red line, corresponding to brz = 300. The dashed line displays the exponential decay
ŵ ∼ eσz found in [15].

Varying Field Strength with Stratification

We have seen that adding stratification changes the scaling of the velocity in the magnetic-
free region that lies in between the magnetically dominated region and the unstratified
convection zone, according to the three regimes found in [15]. How does this behavior
interact with the effect of increasing the Elsasser number Λ? Numerical results suggest that
stratification and field strength are decoupled in the sense that increasing the field strength
lengthens the magnetically dominated region (as shown in the absence of stratification);
while increasing the stratification affects the magnetic-free region, according to the three
regimes of [15]. This behavior is evident in figure 11. Within each plot, different colors
indicate different values of brz; while figure 11(a) corresponds to Λ = 107 and figure 11(b) to
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(a) Varying brz, Λ = 107. (b) Varying brz, Λ = 108.

Figure 11: Different colors within each plot show different values of brz; different figures show
different values of Λ.

Λ = 108. The dashed line demonstrates the ŵ ∼ e2z/δ scaling in the magnetically dominated
region. It is clear that increasing Λ by an order of magnitude merely increases the size
of the magnetically dominated region, while the amplitude of the downwelling flows in the
magnetic-free region remains controlled only by the level of stratification.

Conclusion

The meridional circulation driven by the observed differential rotation profile in the solar
convection zone may penetrate into the solar interior, having implications for both magnetic
confinement as well as stellar mixing. In fact, the standard Gough and McIntyre model[1]
requires an interior field to explain the interesting configuration of the sun, for which there
is no purely hydrodynamic explanation. In this work, a uniform downwelling flow has been
used to balance the diffusion of the background magnetic field, and a linear analysis has
been performed in a simplified Cartesian geometry. The perturbations to both the magnetic
and velocity fields have been solved for numerically, and analytical scalings for the solutions
provided. The intent of this work is to gain fundamental understanding into the interaction
of penetrating meridional circulation with a confined, interior poloidal field.

In the first part of this paper, we used the simplifying assumption of an unstratified solar
interior to add to the work of [14], demonstrating that in order for meridional circulation to
downwell into the solar interior, there must be forces present in order to break the Taylor-
Proudman constraint within the interior, allowing the flows to return to the convection
zone. The presence of Lorentz forces provide the necessary mechanical pathway for this to
occur. Lorentz forces also accomodate higher mass fluxes and are more relevant to the solar
interior than the viscous stresses of [14]. Interestingly, the magnitude of the downwelling
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flow in the magnetic-free region does not know about the size of the magnetically dominated

Figure 12: The relevance of the solar tachocline to the weakly stratified regime, taken from
[14].

region below, which is a function of the Elsasser number. This parameter merely governs the
point at which the downwelling flows turn over and return the convection zone. Analytically
deriving exponential scalings for the perturbations in the magnetically dominated region, the
point at which ŵ transitions from magnetically dominated to magnetic-free can be solved
for and is in good agreement with numerical solutions.

The second half of the paper works toward increasing the physical realism of the model
by adding stratification to the solar interior. We find that field strength and stratification
are decoupled from one another, in that increasing the field strength has the exact same
effect that it did in the absence of stratification. The scaling of ŵ in the magnetic-free
region is governed by the level of stratification and can be categorized into three regimes:
unstratified, weakly stratified, and strongly stratified. This result is in accordance with the
recent findings of [15]. In short, this work has found two regions of interest:
(1) the magnetically dominated region, for which the same treatment as the unstratified case
applies for the weakly stratified regime (which we believe is relevant to the solar tachocline).
Analytical scalings have been developed that predict the behavior of this region.
(2) the magnetic-free region, for which the scaling of ŵ is dictated by the level of stratification
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and falls into the three regimes of [15]. Figure 12 demonstrates the relevance of the solar
tachocline to the weakly stratified regime, for which our analytical scalings hold.

Although this model is helpful as a first step in understanding the interaction of down-
welling meridional circulation with an interior magnetic field, the background flow confining
the field is not physical. Rather, the downwelling perturbations that we solve for in this
model are what confine the field. In future work, we seek a way to link these perturbations
to the downwelling background flow that we have imposed; this would essentially close the
model and provide insight toward meridional circulation that confines an interior, primordial
field within the solar radiation zone.
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