UCSF

UC San Francisco Electronic Theses and Dissertations

Title
The role of STAT5 in hematolymphoid development in vivo_

Permalink
https://escholarship.org/uc/item/3bt3g44H

Author
Snow, Jonathan W.

Publication Date
2003

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3bt3g44b
https://escholarship.org
http://www.cdlib.org/

The Role of STATS in Hematolymphoid Development in vivo.

by

Jonathan W. Snow

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

Biomedical Sciences

in the
GRADUATE DIVISIONS
of the .«
UNIVERSITY OF CALIFORNIA SAN FRANCISCO

and

UNIVERSITY OF CALIFORNIA BERKELEY ==




Copyright 2002
By

Jonathan W. Snow

il

'S
-

o -
e -5




Arma virumque cano, Troiae qui primus ab oris
Italiam, fato profugus, Laviniaque venit

litora, multum ille et terris iactatus et alto

vi superum saevae memorem lIunonis ob iram,;
multa quoque et bello passus, dum conderet urbem,
inferretque deos Latio, genus unde Latinum,
Albanique patres, atque altae moenia Romae.

Vergil, Aeneid, 1.1-7

ii

s

e

- =
acwr ™




Dedication
For my family, the whole lot of them. But especially for my mother, Catherine

Snow, who has always been my most important source of knowledge, guidance, and love.

iv




Preface

There are a number of important people I would like to acknowledge for help in
the completion of this odyssey of scientific and personal growth. For guidance and
support through my education, I am deeply indebted to a number of colleagues and
friends. First, I gratefully acknowledge the support of my family. I have a rather large and
complicated one, and they have all helped me in too many ways to count.

Second, I would like to thank my collaborators during my time in the Goldsmith
Lab. I gratefully acknowledge Mark A. Goldsmith for being a wonderful mentor, for
being excited about the science, for building a stimulating lab environment, and for
allowing me to grow scientifically at just the right pace. I thank Ninan Abraham for being
an incredibly generous and thoughtful colleague and role model and for keeping me well
stocked with pens, post-its, and pipet tips. I thank Melissa Ma for all of her excitement
and talented assistance as well as for her help in keeping us old guys up on the latest in
technology and electronica CDs.

I am grateful for the scores of friends from outside science who have provided so
much support and laughter at different stages in my life, especially those who moved to
San Francisco with me, Kevin Ma, Jeremy Woodlee, Matthew Wiltshire, and Andy
Berlind.

I am also grateful for Claudia Grossmann for being a fun and special person and
for making my last and perhaps most challenging year of graduate school one of the best.

I acknowledge Dr. Stephen Chan for scientific and life advice, for never hesitating

to give me a hard time, and for being a superb brother-in-arms throughout this entire

experience. I thank Mauricio Montano for always being willing to provide assistance,

PN




whether for science or otherwise. I thank Jason Kreisberg for useful comments (and many
that were specifically designed not to be) and many interesting lunches. I acknowledge

Brian F. Eames for helping me take myself less seriously.

Also, I thank the entire Goldsmith lab, and everyone at the Gladstone Institutes,
for creating such a fun, stimulating, and open environment for doing science.

I thank Dr. Kevin Shannon for taking a wayward Eph under his wing and the
entire Shannon lab for making me feel at home and teaching me much about mouse
models and cancer. I express gratitude to Dr. Warner C. Greene and Dr. J. Michael
McCune for many insightful thoughts regarding this work and for advice and support for
securing my post-doctoral position.

I thank Dr. Anthony DeFranco and Dr. Clifford Lowell, my thesis committee
members, for consultations from my orals through my thesis talk, for making very
generous offers of assistance after Mark’s departure, and for providing many helpful
comments to aid in the polishing of this work.

I thank the UCSF Laboratory Animal Resource Center animal care staff,
especially Allan Gray and Milton Griffon, for going above and beyond the call of duty in
keeping our animals happy. I also acknowledge the technical assistance of the Gladstone
Flow Cytometry Core and the Gladstone Histology Core in the conduct of these
experiments.

I express gratitude to Heather Gravois for entertaining conversations, for being a
partner in Southem pride, and for incomparable patience in answering numerous

questions. I express thanks to the Gladstone Graphics Department, especially Jack Hull

vi

w-



and John Carroll, for their assistance in the preparation of figures for this thesis, as well
as many talks and manuscripts.

[ thank Dr. James Ihle (St. Jude Children’s Research Hospital, Memphis, TN) for
kindly providing STATSA/5B™ mice, Dr. Tak Mak (Ontario Cancer Institute, Toronto,
Ontario, Canada) for providing IL-2RB” mice, and Dr. Sarah K. Bronson (The Penn
State College of Medicine, Hershey, PA) for providing Tg-Bcl-2 mice.

I am also grateful for the financial support of the Biomedical Sciences Program,
the Dean’s Health Sciences Fellowship, and the National Institute of Health.

All of the work described in this dissertation has been submitted to or published in
scientific journals. Chapter 2 contains an article published in Blood, reproduced with
copyright permission from the American Society of Hematology. Chapters 3, 4, and 5, as
well as the Appendices I and II, contain manuscripts submitted for possible publication in

scientific journals.

vii



The Role of STATS in Hematolymphoid Development in vivo.

Jonathan W. Snow

Hematolymphoid development is regulated by multiple systems delivering signals
from physiologic inputs. Among these are cytokines delivering signals to target cells
through activation of cognate cell surface receptors. The role of specific signaling
molecules utilized by cytokines in hematolymphoid development in the context of the
organism has not been fully elucidated.

We hypothesized that Signal Transducer and Activator of Transcription 5
(STATS), a signal transduction molecule activated by many cytokine receptors in
hematopoiesis, would play a significant role in the efficient performance of this process
in vivo. Using STATS5A/5B-deficient mice, we found this molecule to be critical in
maintaining wild-type levels of multiple blood lineages at steady-state, due to cell-
autonomous defects in hematopoietic progenitors, perhaps related to decreased survival
of these cells.

Examination of STAT5A/5B-deficient mice expressing a Bcl-2 transgene
revealed that ectopic expression of Bcl-2 was not sufficient to rescue all hematopoietic
defects seen in STATSA/5B-deficient mice, indicating alternate biological roles of
STATS in early hematopoietic progenitors.

Suspecting that defects in cells other than hematopoietic progenitors were
contributing to hematopoietic defects in these mice, we found that loss of tolerance in

these mice leads to an autoimmune pathology affecting multiple processes including
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hematolymphoid development. STATS’s toleragenic role may be contributing to the
homeostatic survival of CD4'/CD25" regulatory T cells. We were also able to show that
hematopoietic defects in STAT5A/5B™ mice could be rescued with transplant of wild-
type bone marrow, indicating that STATS5A/5B-deficiency in non-hematopoietic tissue
did not adversely affect hematolymphoid development at steady-state.

Finally, we wished to explore the role of STATS as a molecular effector of IL-7
receptor activation in normal lymphocyte development. Using mice expressing an IL-7
transgene, we found a STATS5-dependent role for this cytokine in the preferential
development of CD8" T-cells. In addition, we found that heterozygosity of STATS was
able to provide protection from the IL-7-induced lymphomas found in these Tg IL-7
mice.

Taken together, these discoveries will add significantly to our understanding of
cytokine-dependent signal transduction, in particular that of STATS, in hematolymphoid -
development in vivo. In addition, these findings will contribute to our understanding of |

this molecule as a therapeutic target.
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Chapter 1

Introduction



Hematolymphoid Development

Hematolymphoid development can be simply defined as the process through
which mature cells of the major blood lineages, including red blood cells, platelets,
neutrophils, basophils, eosinophils, mast cells, monocytes / macrpophages, dendritic
cells, natural killer cells, B-cells, and T-cells, are derived from a small population of
hematopoietic stem cells (HSC) throughout the lifespan of the organism (Fig. 1). Pictured
is a simplified schematic, which represents the differentiation of HSC to mature blood
cells via intermediate populations, such as the common lymphoid progenitor (CLP),
common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP),
megakaryocyte-erythroid progenitor (MEP), and lineage-committed progenitors. The
populations making up the current proposed hierarchy have been defined in recent years
by their prospective isolation and functional characterization. However, the paradigm of a
three compartment hematopoietic system was put forth over 40 years ago [1] after the
ability of bone marrow to provide radioprotection in mice was appreciated [2,3] and the
first attempts at human bone marrow transplantation had been initiated [4]. This model
proposed a stem cell population, a population of progeny cells with progressively more
restricted self-renewal capacity and differentiative potential, and the mature cells of the
blood lineages. The first experimental support for these concepts was initiated by in vivo
spleen colony assays began in the early 1960’s [5-7]. In addition, the concepts of a
myeloid-lymphoid split, and a further granulocyte-monocyte split from other myeloid
lineages, have long been proposed, based on in vivo transfer assays [8], in vitro colony

types observed in response to defined growth factors [9], the existence of multipotential
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cell lines [10], clinical observations, and assumptions concerning the functional closeness
of mature cells.

The HSC are operationally defined as cells competent to reconstitute the
hematopoietic system of a recipient individual [11] and they are unique in two ways:
firstly, they possess the potential to differentiate into all hematopoietic lineages (and
although considered controversial, perhaps into cells of other tissues [12-16]), and
secondly, they have a remarkable, albeit limited, capacity for self-renewal. Indeed, one
HSC from a donor animal has the ability to repopulate the hematopoietic system of a
lethally irradiated recipient mouse [17] and to give rise to progeny with long-term
repopulating ability [18]. The HSC-containing population can be quantified and / or
separated using a number of different criteria, most notable of which is that pioneered by
I. L. Weissman and colleagues using the presence or absence of various surface proteins
to delineate HSC identity. In this paradigm, it is widely accepted that cells fitting a
lineage marker dim (Lin®™ Sca-1", c-kit" profile are in fact HSC [19]. Other common
approaches utilize surface binding of lectins such as WGA [20] or exclusion of vital dyes
such as rhodamine 123 [21] and Hoechst3342 [22]. HSC have been isolated in humans as o
well (reviewed in [23]).

There are a number of assays for testing HSC number / function, which all rely on
measuring the long-term output of mature hematopoietic cells. These assays include long-
term reconstitution, competitive repopulation, colony-forming-unit-spleen (CFU-S) based
assays, long-term culture initiating cell assay (LTCIC), cobble-stone-forming cell assay

(CAFC) (reviewed in [24]). The major limitation with these assays is that defects in HSC



or post-HSC progenitors lead to reductions in the read-out and may lead to overdrawn
conclusion in terms of the stage of defect.

The HSC population is itself rather heterogeneous and can be separated into at
least three subpopulations in mice, the long-term-HCS (LT-HSC), the short term-HSC
(ST-HSC), and the multipotenital progenitor (MPP) based on surface expression of other
markers Mac-1 and CD4 [25]. The long-term HSC (LT-HSC) type has the ability to fully
reconstitute hematopoiesis for the lifespan of the organism. The short term HSC (ST-
HSC) has limited self-renewal activity and can only repopulate all hematopoietic lineages
for 8-10 weeks, while the multipotenital progenitor (MPP) has no self-renewal activity,
and is therefore not a stem cell per se, and can only transiently repopulate multilineage
hematopoiesis [25]. In addition, different activation states based on alternate markers,
such as CD34 [26] and CD38 [27], and FIt3 [28,29] can be observed. In addition, strain
differences can affect the markers used [30].

Post-HSC progenitors include the CLP and CMP, which are restricted to
lymphoid and myeloid lineages respectively and have limited, if any, self-renewal
potential. CLP have the ability to give rise to B-cells on stromal layers and T-cells in fetal
thymic organ cultures (FTOC) as well as B-cells, T-cells, NK cells, and dendritic cells
[31,32] in vivo. In addition, transplant of this sub-population can provide protection from
CMY infection post HSC transplant [33]. CMP have the ability to give rise to in vitro
colonies consisting of CFU-Mix, burst-forming units-erythroid (BFU-E), CFU-
megakaryocyte (CFU-Meg), CFU-megakaryocyte / erythroid (CFU-MegE), CFU-
granulocyte / macrophage (CFU-GM), CFU-granulocyte (CFU-G) and CFU-macrophage

(CFU-M) as well as cells from all myeloid lineages in vivo [34]. In addition, this sub-
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population can provide protection against fungal infection post HSC transplant [33]. This
cell type gives rise to two progenitor subsets with further restricted myeloid potential, the
GMP and the MEP. MEP give rise to CFU-Meg, BFU-E, or CFU-MegE colonies in vitro
and in vivo [34,35]. In addition, these cells are sufficient to provide short-term
radioprotection in lethally irradiated mice [36]. GMP give rise to CFU-M, CFU-G, or
CFU-GM colonies in vitro and granulocytes and macrophages in vivo [34]. CMP have
been isolated in humans as well [37].

Lineage-committed progenitors undergo specialized terminal differentiation
processes in the bone marrow, and in the case of T-cells, in the thymus. The committed
progenitors for B-cells [38], T-cells [39], and mast cells [40] have been isolated by
surface phenotype, but the analogous progenitors for all other lineages have not been
identified to date. Mature cells of the given lineages are highly specialized in both
structure and function.

Important caveats to this schematic include the possibility that there are multiple
pathways to derive some populations [41]. In addition, the schematic may be more
accurately portrayed as a continuum rather than as discreet populations. Also, alternate
models, such as the sequential model, have been proposed [42] and the current paradigm
is still subject to debate [43-46].

Hematopoiesis demonstrates ontological changes in location and functional output
during embryonic development. Fetal hematopoiesis is derived from both extraembryonic
and intraembryonic tissue. Extraembryonically derived hematopoiesis is found in the
yolk sac at day E7 [47] and is thought to be transient in nature. These hematopoietic cells

are derived from the hemangioblast, a precursor that also gives rise to endothelial tissue
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or endothelial cells themselves [14]. The first intraembryonic hematopoietic cells, also
found around day E7, are derived from the para-aortic-splanchnopleura (PAS) / aorta-
gonad-mesonephros region (AGM) [47], probably from specialized endothelial cells [14].
Starting at day 10, these HSC move to the fetal liver, where they remain until they
colonize the bone marrow and to some extent the spleen. As work from multiple groups
show, fetal hematopoiesis is likely to follow rules that are similar to those for adult
hematopoiesis, but with some distinctions [48]. Fetal liver HSC are defined by alternate
markers [49] and are functionally disparate. They possess increased competitive
repopulating ability [50]. Also, they possess distinct differentiative potential, as
exemplified by the differences in the mature cells produced such as Vy3 and V4 T-cells,
Bla B-cells, and primitive macrophages that cannot be produced by adult HSC [51-54].
Also, differences in potential are demonstrated by the differential lineage relationships of
the post-HSC progenitors derived from fetal liver HSC [55-57]. In addition, it is currently
unclear whether there is a developmental switch converting fetal HSC to adult HSC or
whether they are derived separately [48].

Although some functional aspects of the mammalian hematopoietic system are
found in very early organisms from the Kingdom Animalia, the first recognizable forms
are observed in organisms possessing true coelums, the Coelenterata, within the
bilaterally symmetric organisms. Specialized blood cells that produce and transport
oxygen-binding proteins (replacing soluble proteins in hemolymph) are first found in true
coelumates, however only sporadically in various Phyla until Chordata.[58].

Cells involved in the professional performance of scavenging and innate

immunity arose in coelumates as well. In D. melanogaster, there are at least two



“hemocyte” lineages produced during embryogenesis from the mesoderm, and later in a
specialized tissue known as the lymph gland, already demonstrating a divergence in
production sites during ontogeny [59]. The plasmatocytes are small rounded cells that are
able to phagocytose apoptotic cells, foreign material, and pathogens, as well as to
produce anti-microbial peptides. The second cell, called the crystal cell, is involved in the
encapsulation of pathogens by melanization [60].

In addition, hemostasis, the process of maintaining the integrity of a circulation
system, is first noted in these organisms. In D. melanogaster, this role is also undertaken
by crystal cells. The melanization cascade, although not equivalent to the vertebrate
clotting cascade, shares functional and some molecular similarities [61].

It is within the Craniata, of the Phylum Chordata, that hematopoiesis first closely
resembles the same process found in mammals. In the jawed fish, Danio rareo, there are
red blood cells [62] and thrombocytes [63], which share some structural features with
mammalian platelets. In addition, D. rareo have a clotting cascade analogous to that
found in mammalian organisms [64]. Multiple myeloid cell types with segmented nuclei
join macrophages in innate immunity [65] and the adaptive branch of the immune system
is first evident in jawed vertebrates, the Gnathostomata. It is now speculated that
lymphocyte-like cells arose following genome duplication events and that the subsequent
ability to rearrange Ig and TCR followed the genomic insertion of a transposase [66].
Although hematopoieis occurs in the kidney, secondary lymphoid organs such as the
spleen and thymus are detected in jawed fish [67]. In addition, all Craniata possess a
highly regulated vasculature system with endothelial cells [68]. These cells stem from the

hemangioblast, a common ancestor with hematopoietic cells [62]. Perhaps most striking



is the presence of the sequential program of hematopoietic development, with stem cells
and multipotential progenitors, in these organisms [62].

Many of the molecular mechanisms controlling both the differentiation and
function of hematopoietic cells are conserved throughout phylogeny. Transcription
factors, which are involved in the specification of stem cells and the commitment and
differentiation of various lineages in mammals, such as GATA and RUNX family
homologes, are found in both fish and flies [62,69]. Cytokines and cytokine signaling
pathways, such as the JAK-STAT pathway [70,71], are also shared among these species.
In short, hematopoiesis is both extremely old and conserved in its function, organization,

and molecular regulation.

Homeostatic Regulation

Regulation of this rather complex developmental process is carried out by
multiple inputs and strives to balance the somewhat opposing goals of hematopoiesis: to
maintain a quiescent population of HSC available for continuing hematopoietic
production through out the lifespan of the organism and to maintain a dynamic wor
homeostasis in the production of the various hematopoietic cells with their different and
opposing functions as dictated by the physiologic needs of the organism. The physiologic
requirements of the organism are defined as the size of the peripheral compartment of a
given lineage needed to optimally accomplish its function. Homeostasis is maintained by

modulating two factors: the rate of production of a given lineage, and the half-life of the

mature cells (Figure 2).



The half-life of mature cells of a given lineage at steady-state is highly variable
depending on the lineage and ranges from a few hours for mature granulocytes [72], to a
few days for platelets [73], to a few weeks for erythrocytes [74,75], and from a few days
to up to years for lymphocyte [76-78] in the mouse. The half-life of mature cells can be
altered by modulating their survival and in the case of erythrocytes and platelets, their
removal by the reticuloendothelial system.

Both the total number of cell produced and the distribution of production among
various cell lineages are dictated by the organismal requirements. At steady state, it has
been estimated that 2.4 x 10® cells must be generated per day to maintain homeostasis in
the mouse [79]. At steady state, distribution of production for a given lineage is inversely
proportional to the half-life of the lineage and the size of the compartment, so
granulocyte progenitors are the predominant lineage committed population in the bone
marrow. Regulation of production is operationally achieved by altering the expansion of
multi-potential and / or committed progenitors that are forbearers of the lineage or
lineages needed (as well as mature cells in the case of lymphocytes).

Physiological stressors can lead to the alteration of the size of the peripheral
compartment, the half-life of mature cells of a given lineage, and the production of
mature cells by progenitors. These stressors include genetic lesions and environmental
causes. The size of the peripheral compartment of a given lineage can be affected by
alterations in the environmentally dictated demand for a given lineage, for example
infection or change in pO2. The half-life of mature cells can be affected by the inability
of mature cells to respond to appropriate stimuli and abnormalities leading to decreased

survival of mature cells, either genetic or acquired. In addition, destruction of cell can be
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mediated by non-specific blood loss, selective destruction of mature cells by pathogens,
or aberrant immune response. The rate of production of mature cells can be affected by
supply of appropriate stimuli and the ability of progenitors to respond to them, defects in
the machinery that specifies lineage commitment, defects in the uptake and storage of
various molecules necessary for development by support cells or utilization of these
molecules by progenitors. In addition, selective destruction of progenitors by pathogens
or aberrant immune response can occur as well.

Biologically, the regulation of production consists of controlling the behavior of
HSC, post-HSC progenitors, and lineage committed progenitors. For HSC that translates
into controlling the rate at which quiescent cells differentiate, self-renew, apoptose, or
mobilize into peripheral tissue and home to bone marrow [80]. For post-HSC-progenitors
and lineage committed progenitors that translates into controlling the rate at which cells
differentiate, proliferate, apoptose, or mobilize into peripheral tissue and home to bone
marrow (Figure 3).

Mechanistically, these biological behaviors are regulated utilizing two different

n,\‘«‘i': -

approaches. First, hematopoietic cells can be controlled by soluble mediators either in
systemic feedback loops or in microenvironments within the sites of hematopoietic
production. Soluble mediators include two basic classes of molecules. First, protein
mediators include growth factors and chemokines. Cytokines, TGFp family members,
and ligands for receptor tyrosine kinases are involved in positive or negative regulation of
proliferation, survival, and differentiation. Chemokines are involved primarily in the
regulation of chemotaxis. Second, non-protein molecules are involved in controlling

proliferation, survival, differentiation, and chemotaxis. Hematopoietic cells can also be
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controlled via cellular interactions with mediators anchored to other cells and to
extracellular matrix components (ECM). These mediators include cytokines or
chemokines anchored to cells or to ECM, involved in the same regulation as above. In
addition, transmembrane ligands for the TNF family of death receptors, and
transmembrane adhesion molecules such as integrins, lectins, and sialomucins are

involved in the regulation of proliferation, survival, differentiation, and adhesion.

Cytokines and Receptors

One broad class of soluble mediators are the helical cytokines, which comprise a
large family of small molecular weight glycoproteins with an anti-parallel four-helix
bundle structure with diverse biological activities [81,82]. The study of these molecules
as regulators of hematopoiesis was initiated with in vitro colony assays in the presence of
conditioned media [83,84]. Their subsequent purification and characterization in vitro,
the elucidation of their physiologic role through the use of purified protein
administration, transgenics, and gene targeting in mice, and their clinical utility, has
solidified this family of molecules as critical for the efficient regulation of
hematolymphoid development. Some features of this family include, pleotropic effects,
synergism with other factors, and, often, redundancy of function. Cytokines also tend to
act at multiple stages in hematopoietic development. For example, many act on the HSC
themselves, such as granulocyte-colony stimulating factor (G-CSF), interleukin-6 (IL-6),
interleukin-11 (IL-11), thrombopoietin (TPO), and leukemia inhibitory factor (LIF) [85]

Others, such as erythropoietin (EPO), TPO, and G-CSF, act on lineage-committed
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progenitors exclusively or in addition to their earlier effects [86-88]. For a comprehensive
review of in vivo roles of various cytokines see [89].

There are two families of cytokines known as type I and type II. Cytokines that
utilize class I cytokine receptors in particular play an indispensable role in controlling
hematopoietic development and function. These Class I, or hematopoietin, receptors have
the following characteristics. In the extracellular domain, the receptors share a number of
conserved cysteine residues and a characteristic WSXWS domain [82,90]. With the
exception of these characteristics, cytokine receptors are fairly diverse, and can be
subdivided, based on order of oligimerization, structural similarities, and shared subunits,
into the GH family, Bc family, gp130 family, gp130 related family, and the yc family.
Intracellularly, most of the sub-family members possess a conserved multi-domain Jak-
binding region and a number of distal tyrosines. Activation of these receptor complexes
involves ligand-induced dimerization and conformational shifts [82].

Ligand-induced activation of cytokine receptors has been hypothesized to have a
number of potential biological effects on target cells within the hematopoietic system,
including regulation of the actions of proliferation, apoptosis, mobilization / homing, and
differentiation mentioned above.

Cellular division is the result of a tightly regulated cell cycle in which DNA is
doubled and the cellular components divided, resulting in two daughter cells. The cell
cycle is regulated by an independently acting system that controls downstream processes
corresponding to the different phases of the cell cycle. Quiescent cells are in GO. These
cells move into G1 to initiate the protein synthesis required for DNA synthesis. To pass

the G1/8S transition, cyclin proteins are upregulated by extrinsic and intrinsic factors.
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These proteins interact with cyclin dependent kinases, which direct downstream cell
cycle processes via phosphorylation of target molecules, including Rb-E2F complexes,
releasing its inhibition of entry into the cell cycle, and DNA synthesis machinery. After
S-phase, G2 represents a gap in the cycle during which DNA synthesis is checked for
completion. Other cyclin / cdk complexes regulate the checkpoint before M-phase, during
which the physical act of cell division, mitosis, occurs [91]. Cytokine-mediated control of
proliferation occurs at the G1/GO to S transition, as cells committed to S-phase are
largely insensitive to growth factors. Growth factors regulate this transition through
upregulation of members of the Cyclin D family to contribute to the formation of cyclin /
cyclin dependent kinase (cdk) complexes noted above. In addition, cytokines are known
to be involved in the regulation of cdk-inhibitiors of the INK4 class (p16, p19) and
KIP/CIP class (p21, p27), which antagonize cdk activity [92].

Mobilization of HSC and progenitors into the periphery and its’ converse, homing
to hematopoietic niches, are processes with unclear physiologic relevance, but huge
clinical applications. Homing of hematopoietic stem and progenitor cells to the bone
marrow occurs naturally in development as these cells migrate from the fetal liver me
beginning at E17 [93] and mobilized progenitors appear to continue to home at low levels
throughout life. The process of homing to hematopoietic niches is best understood for
bone marrow and it is thought to be regulated by interactions of the chemokine SDF-1
with its receptor CXCR4 [94,95] and upregulation of adhesion molecules, especially 1-
integrins (VCAM) [96,97] and sialomucins such as CD34 [98]. Mobilization of stem and
progenitor cells into the peripheral blood and secondary sites of hematopoiesis such as

the spleen and liver has been known for over 40 years [99] and the physiologic relevance
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of this process has been explored [100,101]. Mobilization is generally considered to
involve disruption of the same pathways utilized to achieve homing of the cells to
hematopoietic niches. Cytokine-mediated control of homing and mobilization consists of
increasing or decreasing the expression or function of the chemokine and adhesion
molecules that mediate these processes. Administration of a number of cytokines,
including G-CSF, interleukin-3 (IL-3), granulocyte / macrophage-colony stimiltaing
factor (GM-CSF), TPO, fms-like tyrosine kinase 3 ligand (FIt3L), stem cell factor (SCF),
and interleukin-8 (IL-8), as well as myeloablation via radiation and cytotoxic drugs
increases the rate of mobilization of these cells. Mobilization via G-CSF has been the
most extensively studied and may be a common pathway for mobilization. G-CSF
mobilizes neutrophils as well as progenitors. However, this process is not a non-specific
release of bone marrow cells, as other cells such as eosinophils are not released [102]. G-
CSF is thought to operate indirectly on progenitors by causing the G-CSF receptor-
dependent release of proteases. These proteases cleave proteins important for the
adhesion of stem and progenitor cells within the bone marrow [103-105], such as VCAM,
known to be important in mobilization [106]. In addition other mechanisms may be
important, such as the downregulation of SDF-1 concomitant with upregulation its
receptor [107,108], or upregulation of other proteases in non-hematopoietic cells [109] or
directly impacting function of adhesion molecules [110].

Differentiation can be divided into two processes in hematopoietic development.
The first is the decision of differentiation versus self-renewal for stem cells. The
regulation of this process likely involves transcription factors that help to maintain

“stemness”, such as homeobox genes [111,112] and Ikaros family members [113], as
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well as extrinsic factors that promote self-renewal division over differentiation division,
including members of the Notch [114,115], Wnt [116], TNF-o [117], and bone
morphogenic protein (BMP) [118] families. In addition, molecules that maintain
quiescence, such as TGF- [119,120], appear to positively affect stem cell maintenance
perhaps through regulation of cdki p21 [121]. The role of cytokines in this process is
thought to favor differentiation division [122], although some combinations are reported
to expand stem cells [123]. The molecules involved are not well understood and efforts
are now being made to define stem cell specific molecules, which may be important
[124]. The second process of differentiation is the decision to commit to a specific
lineage (or set of lineages) from multiple choices for multi-potential progenitors. Lineage
specification is currently thought to involve positive regulation of a specific lineage
program [125] concomitant with negative regulation of alternate lineage programs [126]
by transcription factors within the cell. Recent evidence supports a model in which
multipotential progenitors are “primed”, i.e. express lineage specific transcription factors
for multiple lineages simultaneously [127-129]. Competing factors are known to
antagonize the transcriptional activity of one another at the protein level, hypothetically
resulting in dominance of one factor, which is then reinforced. This leads to the
downregulation of other factors and the lineage of the dominant factor is chosen at the
expense of others [11]. The role of cytokine receptor signaling in differentiation and
commitment to a specific lineage path and the subsequent differentiation is a point of
much debate. Two paradigms have been proposed and consist of the stochastic and the
instructive models. There is compelling evidence for each of these and there is also the

possibility that elements of both models may be applicable. The stochastic model states
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that the lineage of a progenitor cell is “chosen” in a random manner by the cell and that
the ensuing differentiation is an intrinsic program without need for any external signals
for its completion. In this model cytokine receptors merely allow the cell to escape
apoptosis and to proliferate. Swapping of the cytoplasmic tails of cytokine receptors in
vivo results in normal lineage commitment in multiple cases [130,131]. Bcl-2 can rescue
differentiation of some multipotential progenitor cells in the absence of cytokine-
signaling in vitro [132] and in vivo [133,134]. These data collectively imply a purely
survival function for cytokines.

However, there is a large body of evidence that supports an instructive model.
The instructive model states that a progenitor cell is instructed to follow a specific lineage
path and that the differentiation program will not move to fulfillment in the absence of
these receptor-specific signals. This model implies that proliferative, anti-apoptotic, and
specific differentiative signals can all be generated by cytokine receptors. There is also a
large body of results supporting this model. The combination of cytokines given in the
medium can dramatically skew the number of lineage-committed precursors toward a
particular lineage [135]. Furthermore, ectopic expression of various cytokines or
receptors can result in lineage-specific gene expression in cell lines [136-138] and
transdiffierentiation to myeloid lineages in CLP and Pro-T cells [139]. Thus, these
findings assign some level of differentiation instruction to certain cytokine receptors.

In addition, some evidence supports a compromise of these two models. Bcl-2 can
only rescue specific differentiation phenotypes in another G-CSF-dependent cell line
[140]. This result implies that at this stage in lineage commitment, there is an intrinsic

“program” that directs some differentiation processes, while another program requires
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direct and specific G-CSF receptor signals. Retroviral delivery of a constitutively » ,

activated EPO receptor with EPOR, GHR, or c-mpl cytoplasmic tails result in

erythrocytosis, while receptors with G-CSFR resulted in half of the animals displaying

anemia and neutrophilia [141].

Apoptosis and cytokine-mediated regulation of this process will be discussed in

detail in Chapter 3.

Signaling Pathways

Cytokine receptors utilize multiple downstream signaling pathways to effect

biological outcomes. Many cytokine receptors utilize catalytic domains located within
their cytoplasmic tails to transduce signals [82]. However, cytokine receptors of the Class
I family do not possess any nascent enzymatic activity, but instead rely on associated
kinases of the Janus (JAK) and Src family for generating intracellular signals. The JAK L
kinases are required for cytokine receptor signaling as their removal in vitro or in vivo ( -
abolishes all downstream signaling [81]. Upon ligand-induced dimerization, the L
associated JAK kinases cross-phosphorylate each other, undergo a conformational shift
that increases their activity, and phosphorylate the cytoplasmic tyrosine of the cytokine
receptors. These tyrosines serve as docking sites for SH2 domains on other signaling
molecules, which are then phosphorylated by the JAK kinases and other associated
kinases.

Downstream pathways that are recruited and triggered by cytokine receptors
include signal transducers and activators of transcription (STAT), the Ras / mitogen

activated protein kinase (MAPK) pathway, the phosphatidylinositol 3-kinase (PI3K) /
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Akt pathway, and the PI3K / phospholipase C y (PLCy) pathway, Src kinases family

members, the Pyk2 pathway, and perhaps others not yet characterized (Figure 4)

[81,142]. The relative contribution of each of these pathways to the biological outcomes
executed by various cytokines in vivo requires further study.
Cytokine receptors are also subject to multiple pathways of negative regulation.

First, receptor-mediated endocytosis and degradation limit the lifespan of receptors on the

1 4

cell surface. Second, critical tyrosine residues are dephosphorylated by receptor activated
phosphotases, such as SHP. Finally, members of the CIS family interfere with binding of
proteins to SH2 domains on the receptor and target various components of the receptor
complex for degradation (reviewed in [143]).

How this family of receptors generates specificity in biologic outcomes has been a
point of considerable interest. It probably involves the combination of multiple . 8
mechanisms including spatial and quantitative limits on availability of the cytokine, .
restricted receptor expression, and the state of the target cell [81]. In addition, although :
these pathways are often studied or considered as separate entities, it is important to
recognize that they are actually subunits of highly interconnected networks. Signals from
multiple different inputs, both within the cytokine receptors family and from other
sources activate overlapping sets of pathways that together effect biological outcomes.
Processing of the combination of incoming signals likely results from both summation of

inputs as well as the temporal characteristics of the pathways [144,145].

STAT Factors

18




The discovery of the JAK-STAT pathway [146] appeared to offer one mechanism
through which cytokine receptors could selectively upregulate distinct target genes and
be responsible for specific biological behaviors through the mechanism of distinct
intracellular signaling pathways. STATS are cytoplasmically located, latent transcription
factors that are activated by JAK kinases and receptor tyrosine kinases. There are seven
STAT proteins, denoted STAT1, STAT2, STAT3, STAT4, STATSA, STATSB, and
STAT6. STAT proteins share some basic structural features, including an N-terminal
domain important for tetramerization, a coiled-coil domain, a DNA binding domain, a
linker domain, an SH2 domain, and a C-terminal domain containing both a critical
tyrosine residue and a transactivation domain. The SH2 domain of STAT proteins is
involved in recruitment to phosphotyrosines on the cytoplasmic tails of receptors.
Differences in SH2 domain structure are thought to lead to the specificity of STAT-
receptor interactions [147,148]. In addition, there is evidence that STATSs can be recruited
to bind to the JAK kinases directly [142]. Upon binding to a phosphotyrosine motif in an
activated receptor complex, the STAT protein is phosphorylated on the C-terminal
tyrosine. The molecule then homo-oligimerizes with other STAT molecules allowing
translocation into the nucleus perhaps through internalization of a nuclear import signal.
Once in the nucleus, STATSs bind DNA and increase the transcription of target genes by
binding to specific DNA sequence motifs known as the y-interferon-activated site (GAS).
[142,149-151].

STAT proteins are thought to display different target specificity dependent on the
dimerization partners and whether dimerization or tetramerization is involved [152]. In

addition, STAT proteins often accomplish transcriptional activation in conjunction with
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other nuclear factors. Various genes have been shown to be upregulated by STAT
molecules, including those involved in cell cycle progression, anti-apoptosis, and
regulation of cytokine signaling (reviewed in [153]).

The realization that there were a very limited number of these proteins and that
many were activated by multiple cytokine receptors with different functions, reduced the
emphasis for the one STAT, one function-model. However, STAT signaling is still
thought to be important for contributing to specificity of signaling by cytokine receptors.
Specificity of signaling is though to de dependent on the receptor-specific STAT
complexes activated, cell-specific expression of STAT proteins, crosstalk between

receptors, and interaction with co-factors.

STATS

One member of the STAT family, STATS, was first characterized as mediating
signal transduction from the prolactin (PRL) receptor [154,155]. This molecule has
subsequently been shown to be activated by diverse cytokine receptors involved at
multiple levels within the hematopoietic system and in other tissues (Figure 5) in addition
to receptor tyrosine kinases and non-receptor tyrosine kinases [156-159]. The widespread
engagement of its two isoforms, STATSA and STATS5B, has implicated STATS as a
potentially important component of cytokine receptor signaling in hematopoietic cells.
Cell culture studies supported a role for STATS in hematolymphoid development. For
example, STATS was shown to be involved in EPO-induced proliferation of TF-1 cells

[160] and in IL-2 mediated survival of 32D cells [161]. STATS has also been implicated

20




in both interleuken-3 (IL-3)-induced proliferation and G-CSF-induced differentiation in
32D cells [162] and the proliferation and survival of Baf3 cells [163].

STATS is known to upregulate the proteins in hematopoietic cells that are
involved in the regulation of proliferation, such as Cyclin D1 [164], c-myc [165], Cyclin
D2 [166], and p21 [167]; survival, such as Bcl-x [168-170], Bcl-2 [164], pim-1 [171],
and fas [172]; and growth factor signaling, such as oncostatin-M (OSM) [173] and IL-
2Ra [174). STATS also upregulates transcription of multiple genes involved in the
specific function of non-hematopoietic cells, including B-casein [175], B-lactoglobulin
[176], bile acid co-transporter [177], insulin [178], and aromatase [179]. In addition,
STATS upregulates cytokine-induced suppressor (CIS), a protein involved in the
negative regulation of cytokine signaling [180,181]. Naturally occurring forms of STATS
that are truncated and function as dominant negatives have been found [182-184].

STATS is known to interact with a number of nuclear factors, which may add to
its function, such as the glucocorticoid receptor and N- myc interactor (NMI) [185,186].

To determine physiologic relevance of STATS in cytokine signaling, various gene
deficient mice were generated. Mice deficient for either STATS5A [187] or STATSB
[188] were found to exhibit dramatic defects in specific non-hematopoietic tissues, which
demonstrated indispensable roles for these two isoforms in mammary gland development,
and body growth and liver gene expression, respectively. These models confirmed the
role of STATS in signal transduction from growth hormone (GH) and PRL receptors that
had been demonstrated in cell culture. In addition, these models demonstrated a
divergence of function for the two molecules in vivo. However, the individual isoform-

deficient mice possessed only subtle alterations in the regulation of hematopoietic cells
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[189-191], which led to the hypothesis that they could compensate for each other in this
context. Despite the expectations that a compound knock-out would reveal importance in
hematopoietic development, mice deficient in both the STAT5A and STATSB isoforms
were reported to have no further defects in the production of mature blood cells of
various lineages with the exception of decreased numbers of peripheral T-cells [192].
However, some evidence of additional hematologic dysregulation was evident in these
animals, such as reduced bone marrow colony counts in vitro and notable extramedullary
hematopoiesis [192,193]. In addition, marked fetal anemia in vivo as well as defects in
EPO-dependent production and survival of fetal liver hematopoietic colonies in vitro
were subsequently reported [194].

A certain expectation of importance for STATS5 in hematolymphoid development
had been dictated by its profiles of activation by class I cytokine receptors and extensive
in vitro data demonstrating its key role in signaling by this family of receptors. However,
in vivo evidence produced by multiple groups provided an unclear and contradictory
picture of the importance of this molecule in hematolymphoid development. Elucidating
the role of STATS in vivo at the start of this work was a critical objective in the fields of
cytokine receptor biology and hematopoietic development. This was an important aim,
not only for determining the role of STATS and the cytokines that activate it in this
process, but for furthering our understanding of the molecular mechanisms of cytokine
signaling in general. The goal of this project was therefore to extensively characterize the
functions of STATS in vivo using mouse genetics and rigorous assays for hematopoietic

development in order to clarify these issues.
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Figure Legends

Figure 1. Hematopoietic development proceeds through stages of increasingly
restricted developmental potential and proliferative capacity. Pictured is a simplified
schematic, which represents the differentiation of HSC to mature blood cells via
intermediate populations, such as the common lymphoid progenitor (CLP), common
myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), megakaryocyte-

erythroid progenitor (MEP), and lineage-committed progenitors.

Figure 2. Homeostasis in hematopoietic development is set by the physiologic needs
of the organism. The physiologic requirements of the organism is defined as the size of
the peripheral compartment of a given lineage needed to optimally accomplish its
function (box). Homeostasis is maintained by modulating two factors: the rate of

production of a given lineage, and the half-life of the mature cells (arrows).

Figure 3. Hematopoietic cell production is regulated by controlling the biological
behavior of progenitor cells. Biologically, the regulation of production consists of
controlling the behavior of HSC, post-HSC progenitors, and lineage committed
progenitors. That translates into controlling the rate at which quiescent cells differentiate,
self-renew, proliferate, apoptose, or mobilize into peripheral tissue and home to bone

marrow.
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Figure 4. Type I cytokine receptors activate multiple dounstream signal
transduction pathways. Downstream pathways that are recruited and triggered by

cytokine receptors via their JAK kinases include the signal transducers and activators of

transcription (STAT) pathway (black), the Ras / mitogen activated protein kinase
(MAPK) pathway (gray), the phosphatidyl-inositol 3-kinase (PI3K) / Akt pathway, and

the PI3K / phospholipase C y (PLCy) pathway (white), as well as Src kinases family

members, the Pyk2 pathway, and others not yet characterized.

Figure 5. STATS is activated by a diverse array of cytokine receptors. STATS has
been shown to be activated by diverse cytokine receptors involved at multiple levels
within the hematopoietic system and in other tissues in addition to receptor tyrosine e

kinases and non-receptor tyrosine kinases (not shown).
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Figure 5
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Chapter 2
STATS Promotes Multilineage Hematolymphoid Development in Vivo Through

Effects on Early Hematopoietic Progenitor Cells
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Introduction

Cytokines of the type 1 family receptors are themselves catalytically inactive and
require the presence of an associated kinase to signal to the cell upon ligand-induced
activation. The primary group of kinases thought to provide this role in vivo is that of the
Janus kinase (JAK) family. One class of downstream molecules that is phosphorylated
and activated by these kinases, is the signal transducer and activator of transcription
(STAT) family of transcription factors.

One STAT in particular, STATS, was hypothesized to be extremely important in
cytokine signaling transduction in vivo, due to its ubiquitous activation and apparent
importance in cytokine-mediated responses in vitro. However, mice deficient for one or
both isoforms of STATS5 appeared to exhibit only minor hematopoietic defects upon first
examination [1-6].

However, some evidence of additional hematologic abnormalities was evident in
these animals, such as reduced bone marrow colony counts in vitro and notable

extramedullary hematopoiesis [6,7]. In addition, marked fetal anemia in vivo as well as

defects in EPO-dependent production and survival of fetal liver hematopoietic colonies in et

vitro were subsequently reported [8].

The contradictory results of these previous studies led to a controversy in defining
the role that STATS played in hematolymphoid development in vivo. In addition, the
difficulty of interpreting subtle phenotypes of gene-deficient mice is well appreciated.
We hypothesized that the resolution and rigor of the assays used previously to examine
the state of hematolymphoid development in STAT5A/5B-deficient mice in vivo might

have lead to incomplete assessment of the hematopoietic health of these mice.
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The goal of this project was to utilize assays of hematopoietic progenitor function
in vivo in conjunction with detailed phenotypic analysis of progenitor subsets in
STATSA/5B-deficient mice for an analysis of more breadth and depth in evaluating the
role of STATS in hematolymphoid development. We found that in contrast to previous
results there were steady state hematopoietic abnormalities, including multilineage
cytopenias in these mice. In addition, we found a marked reduction in the number and
function of early multilineage progenitor cells. Most striking was the complete lack of
competitive repopulating potential of HSC from these mice.

These data helped to provide further evidence that STATS plays an important role
in hematolymphoid development in vivo. Although the absence of this molecule does not
lead to a complete block in production of mature blood cells, it does play an important
role in maintaining the number and function of progenitor cells and normal levels of
peripheral blood cells at steady state. These results also underscore the necessity for
careful and complete analysis of gene-deficient mice in cases where the molecule may

have a non-essential, but significant role.
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HEMATOPOIESIS

STATS promotes multilineage hematolymphoid development in vivo through
effects on early hematopoietic progenitor cells
Jonathan W. Snow, Ninan Abraham, Melissa C. Ma, Nancy W. Abbey, Brian Herndier, and Mark A. Goldsmith

The transcription factor signal transduc-
ers and activators of transcription §
(STATS) is activated by numerous cyto-
kines that orchestrate blood cell deveiop-
ment. Muttilineage peripheral blood cyto-
penias were observed in aduit mice
lacking both isoforms of STAT5 (STAT5A
and STAT5B) as well as accelerated rates
of apoptosis in the bone marrow. Al-

though the hematopoietic stem cell (HSC)

these mice, the post-HSC progenitor
populations were diminished and a
marked reduction in functional progeni-
tors (spleen colony-forming units) was
detected. Competitive bone marrow trans-
piantation studies in vivo revealed a pro-
found impairment of repopulation poten-
tial of STATS5-null HSCs, leading to
complete lack of contribution to the my-
eloid, erythroid, and lymphoid lineages.

heightened proliferation activity in the
HSC fraction, suggesting the action of
homeostatic mechanisms to maintain suf-
ficient levels of diverse blood cell types
for viability. Thus, STATS normally sus-
tains the robust hematopoietic reserve
that contributes to host viability through
crucial survival effects on early progeni-
tor cells. (Blood. 2002;99:95-101)

© 2002 by The American Society of Hematology

population was preserved In a number of These abnormalities were associated with

Introduction

Hematolymphoid development is a complex process controlled by
multiple positive and negative regulatory systems to maintain
homeostasis. This process begins with hematopoietic stem cells
(HSCs), which possess a high proliferative capacity, a differentia-
tive potential encompassing all hematopoietic lineages, and the
ability to repopulate the hematopoietic system of a bone marrow—
ablated animal for its lifespan. In response to unknown signals,
HSCs undergo a differentiation program, yielding cells that have
short-term repopulating activity. These cells subsequently give rise
to multilineage progenitors that are restricted to either the myeloid
(common myeloid progenitor, or CMP) or lymphoid (common
lymphoid progenitor, or CLP) lincages.!? Lineage-specific differen-
tiation of these pluripotent cells and further expansion produces
mature cells of a given lineage.?

Cytokines that use class I cytokine receptors play an indispens-
able role in controlling hematopoietic development and function.
Many of these cytokines act on the HSCs themselves, such as
granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-
6), IL-11, thrombopoietin (TPO), and leukemia-inhibitory factor.*
Others, such as erythropoietin, TPO, and G-CSF, act on lineage-
committed progenitors exclusively or in addition to their earlier
effects.>” How this family of receptors generates specificity in
biologic outcomes while employing shared intracellular signaling
pathways has been a point of considerable interest. The discovery
of the JAK-STAT pathway appeared to offer one mechanism
through which cytokine receptors could selectively up-regulate
distinct target genes and be responsible for specific biologic
behaviors. STATs are cytoplasmically located, latent transcription
factors that dimerize on phosphorylation by an activated receptor

complex, translocate into the nucleus, and increase the transcrip-
tion of target genes by binding to specific DNA sequence motifs.%?
Various genes have been shown to be up-regulated by STAT
molecules, including those involved in cell cycle progression,
antiapoptosis, and regulation of cytokine signaling.!?

One member of the STAT family, STATS, is activated by diverse
cytokine receptors involved at multiple levels within the hematopoi-
etic system. The widespread engagement of its 2 isoforms,
STATSA and STAT5SB, has implicated STATS as a potentially
important component of cytokine receptor signaling in this tissue.
Cell culture studies have suggested a possible role for STATS in
hematolymphoid development. For example, STATS was shown to
be involved in erythropoietin-induced proliferation of TF-1 cells.!!
STATS has also been implicated in both the IL-3-induced prolifera-
tion and G-CSF-induced differentiation in 32D cells.!? Surpris-
ingly, therefore, mice deficient in either STAT5A!? or STAT5B'
were found to exhibit dramatic defects in specific nonhematopoi-
etic tissues, but only subtle alterations in the regulation of
hematopoietic cells.'"'” Moreover, mice deficient in both the
STATSA and STATSB isoforms were reported to have no further
defects in the production of mature blood cells of various lineages
with the exception of decreased numbers of peripheral T cells.'8
However, some evidence of additional hematologic dysregulation
was evident in these animals, such as reduced bone marrow colony
counts in vitro and notable extramedullary hematopoiesis.'®!% In
addition, marked fetal anemia in vivo as well as defects in
erythropoietin-dependent production and survival of fetal liver
hematopoietic colonies in vitro were subsequently reported.?
Finally, an increase in apoptosis of cultured STATSA/SB-deficient
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bone marrow progenitors in the presence of granulocyte-
macrophage colony-stimulating factor was also described.2!

In view of these provocative findings and the fact that compen-
satory mechanisms may mask the biologic action of a particular
molecular component in vivo, we examined the hematologic status
of STATSA/5B-deficient mice in depth. Our studies uncovered an
important role for STATS in hematopoiesis at an early progenitor
stage in vivo. In these mice, marked impairment in hematopoietic
potential affecting diverse blood lineages is linked to significant
abnormalities in central and peripheral hematolymphoid tissues.

Materials and methods

Handling and characterization of mice

STATS5A/5B~'~ mice!* were obtained from Dr James [hle (St Jude
Children’s Research Hospital, Memphis, TN) and back-crossed onto a
C57BV/6 background at least 3 generations. Mice were housed in a
pathogen-free rodent barrier facility and received mouse chow and acidified
water ad libitum. All studies were performed on 8- to 10-week mice unless
otherwise specified, and littermates were always used as wild-type controls.
Peripheral blood was obtained via cardiac puncture, and EDTA-treated
samples were used for complete blood counts (IDEXX Veterinary Service,
Sacramento, CA). Bone marrow was harvested by flushing femurs and
tibias into 6 mL phosphate-buffered saline (PBS) containing 2% fetal
bovine serum, and cell counts were determined after ACK (NH,CI) lysis by
trypan blue exclusion.

Flow cytometry

All antibodies were obtained from Pharmingen (San Diego, CA), and the
following clones were used: Sca-1 (E13-161.7), Ly-76 (Ter-119), Gr-1
(RB6-8CS5), CD3 (145-2C11), CD41 (MWReg30). CD45.1 (A20), CD45.2
(104), B220 (RA3-6B2), and CD11b (M1/70). For blocking nonspecific
binding to Fc receptors, purified antibody to CD16/CD32 (2.4G2) was used
at 1:100 for 3 minutes. Subsequently, antibodies to surface markers of
interest were used at 1:60 dilution. Apoptosis staining was performed by
using AnnexinV-GFP2 (generously provided by Dr Joel Emst, University
of California, San Francisco, CA) in conjunction with antibodies to selected
surface markers as well as one of 2 DNA dyes, ToPro (Molecular Probes,
Eugene, OR) or 7-AAD (Pharmingen, San Diego, CA). DNA content was
assessed by an initial incubation with antibodies to selected surface
markers, followed by a 30-minute fixation and permeabilization step using
2% formaldehyde in H,0, a 30-minute exposure to ToPro in the presence of
1 mg/mL RNase (Sigma, St Louis, MO), and fluorescence-activated cell
sorter (FACS) analysis using a slow acquisition. All FACS analyses were
performed by using a FACScalibur, and all sorting was performed by using
a FACSvantage (Becton Dickinson).

Bone marrow transfer studies

Recipient mice were 8-week-old sex-matched C57BU/6 obtained from
Jackson Laboratories (Bar Harbor, ME). Recipients were y-irradiated from
a Cesium source in two 450-rad doses 4 to 5 hours apart. Spleen
colony-forming unit (CFU-S) studies were performed as previously de-
scribed.?® Briefly, whole bone marrow cells from donor mice were injected
via tail vein, spleens were harvested 8 or 12 days after transfer, and
macroscopic colonies were enumerated. Mice receiving the transplants
were maintained on 2.5 mg/100 mL Sulfatrim Pediatric Suspension
(Alpharma, Baltimore, MD). Competitive repopulation studies were per-
formed as previously described.?* Lin®™Sca-1* tester cells (CD45.2*),
derived from wild-type littermate or STATSA/5B~/~ whole bone marrow,
were sorted by using antibodies to Sca-1 and Ter-119, Gr-1, CD3, B220, and
CD11b. Competitor whole bone marrow from congenic B6.SLJ (CD45.1*)
mice was harvested as above. Tester and competitor cells were mixed at
various ratios (see “Inferior competitive repopulating capacity of STATSA/
SB-deficient HSCs™) and injected into irradiated recipients, prepared as
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above. After 8 to 10 weeks, chimeric mice were killed. and peripheral
blood, spleen, thymus, and bone marrow were collected and analyzed by
FACS for contribution of CD45.1*- and CD45.2*-derived cells to
selected lineages.

Homing assay

Cell labeling with 5- and 6-carboxyfluorescein diacetate succinimidyl ester
(CSFE) was performed as described previously.?® Briefly, whole bone
marrow from donor mice was labeled in PBS at a final concentration of 15
1M CSFE (Molecular Probes). After 12 minutes at 37°C, further dye uptake
was prevented by adding a quarter volume of fetal bovine serum. Cells were
washed twice with PBS, and 5 X 10¢ CFSE-labeled cells were injected into
the tail vein of recipient mice that had been irradiated 18 hours before
injection. Bone marrow was harvested 23 hours after injection, stained with
lineage markers and Sca-1 as before, and the number of CFSE* cells in
each subset was enumerated by FACS.

Statistical analysis

Data are presented as mean * SEM. Statistical significance was assessed by
2-sided Student ¢ test.

Results

Adult STAT5A/5B-deficient mice exhibit cytopenias affecting
multiple peripheral biood lineages

We characterized the peripheral blood compartment of adult
STATS5A/5B-deficient mice and found significant abnormalities in
multiple blood lineages. At 8 weeks of age, STATSA/SB~/~ mice
exhibited significantly decreased numbers of erythrocytes in periph-
eral blood compared with wild-type littermate controls (Figure
1A). Platelets, a second myeloid lineage, were also reduced in these
mice, although this effect was less profound (Figure 1B). A marked
decrease in lymphocyte number in peripheral blood was also
observed (Figure 1C); both T cells and B cells were decreased in
STATS5A/5B-deficient animals (data not shown). Finally, although
no significant difference in peripheral neutrophil counts was
detected (Figure 1D), we observed a significant reduction in mature
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Figure 1. Muitiiineage cytopenias in adult STATSA/SB-deficient mice. Complete
blood counts were performed on whole peripheral biood from STATSA/58-/~ and
STAT5A/58*/* mice. (A) Hematocrit (P < .001). (B) Platelets (P = .01). (C) Lympho-
Cytes (P = .003). (D) Neutrophils (P = 1.0).
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neutrophils (Gr-1") in the bone marrow (see below). Thus, the
absence of STATSA/SB was associated with abnormalities in
multiple blood cell lineages.

STAT5A/5B-deficient mice have hypocellular bone marrow and
a defect within early progenitor cells

Such broad defects in peripheral blood cell numbers in STAT5SA/5B-
deficient mice could be due to accelerated peripheral consumption
or destruction of mature cells, to a lowered capacity to produce
mature cells, or to a combination of these 2 mechanisms. The
multilineage character of the effects we observed suggested that a
primary pathophysiologic defect might be in the bone marrow,
where both unique and shared precursors for these cell types exist.
Gross examination of bone marrow in STAT5A/5B-deficient mice
revealed generalized hypocellularity compared with wild-type
mice (Figure 2A). This 2-fold decrease in total nucleated cells in
the bone is consistent with the hypothesis that a central defect in the
bone marrow is responsible for the pancytopenia observed in
the periphery.

Various cytokines that trigger STATS activity are critical for the
regulation of hematopoiesis at all levels of differentiation, includ-
ing stem cells, multipotent progenitors, lineage-committed progeni-
tors, and mature blood cells. We therefore sought to determine the
specific developmental stage(s) in which the functional effects of
STATS are manifested in the bone marrow. We used FACS analysis
to subset bone marrow cells by expression of canonical surface
lineage-defining markers (lin) and Sca-1 (Figure 2B). The HSCs,
which are defined as cells that have both the capacity for
self-renewal and the ability to reconstitute the multilineage hemato-
poietic system, are found within the lin®™Sca-1* fraction.? This
population was increased as a percentage of total nucleated bone
marrow cells in STATSA/B-deleted mice compared with controls
but was unchanged in absolute terms (Figure 2C). In contrast, the

>

3

-1 W STATSA/SB
[ sTaTsass

g & 8

b

Total Nucleated Bone Marrow
Cells (per mouse, x 106)
8 i
Lineage (PE)

>

™ - ® w0
STATSA/SB** STATSA/SB Soet TC)

1

STATSA/5B*/* STATSA/58

(2]

s

3 &

ooe moven, x 195
~
Lin®™/Sca-1"9t
(per mouse, x l%. o

‘o

-

04
STAT5A/5B*/* STAT5A/S87

Figure 2. D d total cells in the bone marrow of STAT5A/5B-
deficient mice. Total cells were obtained from both hind legs, and cell
counts were determined after red blood cell lysis. Subsetting was performed
according to surface expression of lineage-defining markers and Sca-1. Absolute
values were generated by multiplying gated p ges by total ‘ cell
numbers. (A) Total nucleated cells (P = .002). (B) Rep FACS analysis to
quantitate bone marrow subsets. (C) The lin®Sca-1* compartment, containing
HSCs (P = .7). (D) The lin®™Sca-170% compartment, containing post-HSC progeni-
tors (P = .002). PE indicates phycoerythrin; FITC, fluorescein isothiocyanate.
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preserved h g of HSCs from STAT5A/5B-deficient mice. (A) Irradi-
ated recipients received enher 2.5 x 10° STATS5A/5B*/* whole bone marrow cells
(n = 6),2.5 x 105 STAT5A/5B /- whole bone marrow cells (n = 8), or no donor cells
(n = 3). Survival rates are shown as a Kaplan-Meyer plot. (B) Irradiated recipients
received 5 x 10 CFSE-labeled whole bone marrow cells from a STAT5A/58°/*
donor (n = 3) or a STATSA/SB~/~ donor (n = 3). Bone marrow was harvested 23
hours after ion, and the absolute number of CFSE* cells within the HSC
(lin®*™/Sca-1*) galo per mouse was determined.

lindimSca- 1" population, containing CLPs,2 CMPs,' and oligopo-
tent progenitors, was dramatically decreased in STATSA/5B-
deficient animals (Figure 2D). Also, we observed that the absolute
number of mature neutrophils (Gr-1") in the bone marrow was
decreased (wild type = 12.5 X 10° = 4.1 per 2 hind legs and
knock-out = 5.5 X 10° * 1.6 per 2 hind legs) as well as progeni-
tors for neutrophils (Gr-1i™) (wild type = 10.4 X 105 * 3.0 per 2
hind legs and knock-out = 5.2 X 10% = 1.1 per 2 hind legs),
erythrocytes (Ter119%) (wild type = 6.6 X 10° * 0.96 per 2 hind
legs and knock-out = 3.3 X 10° = 0.79 per 2 hind legs), and B
cells (B220*) (wild type = 12.6 X 106 = 2.1 per 2 hind legs and
knock-out = 5.0 X 10 = 0.71 per 2 hind legs). Therefore, the
absence of STATSA/SB results in a marked decrease in lin4™Sca-
1m&/ cells as well as in specific lineage marker-positive cells in the
bone marrow despite preservation of the earlier lin9™Sca-1* HSC.

A number of short-term bone marrow transfer assays were
performed to assess the functional capabilities of bone marrow
from the STATSA/5B-deficient mice. Lethally irradiated wild-type
mice typically die of hematopoietic failure between 7 and 18 days
after irradiation unless they are given new hematopoietic progeni-
tors from a donor animal. Therefore, one functional assay deter-
mines the radioprotective ability of whole bone marrow from a
donor mouse. A dose of 2.5 X 10° transplanted whole bone marrow
cells from wild-type littermate control mice provided radioprotec-
tion to 100% of lethally irradiated recipient mice for 20 days
(Figure 3A). In contrast, the same dose of whole bone marrow from
a STAT5A/5B-deficient donor provided radioprotection to only
12.5% of recipient mice through the same period (Figure 3A),
demonstrating that these cells have markedly decreased reconstitut-
ing capacity as indicated by radioprotective effects. To determine
whether this phenotype derives from defects in homing or in
postengraftment expansion and hematopoiesis, irradiated recipi-
ents were injected with wild-type or STAT5A/5B-deficient whole
bone marrow that had been labeled with the membrane dye CFSE.
We found that the number of CFSE* cells in the HSC-containing
lin9im/Sca-1* fraction that had homed to the bone marrow after 23
hours was comparable when whole bone marrow from either
STATSA/5B-deficient or wild-type littermate donors was injected
(Figure 3B).

A second, direct, functional assay for progenitor cells is the in
vivo CFU-S assay,? in which macroscopic colonies in the spleens
of irradiated recipients are counted 8 or 12 days after bone marrow
transfer.26 We detected a pronounced reduction in CFU-S (day 12)
colonies per donor in the STAT5SA/5B-deleted mice relative to
wild-type littermate controls (Figure 4A), which indicates an
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abnormality in the early pluripotent progenitors. We observed a
similarly dramatic decrease in CFU-S (day 8) per donor in
STATSA/5B~/~ mice (Figure 4B), which indicates an abnormality
in lineage-committed progenitors. Moreover, spleen colonies de-
rived from STATSA/5B-deficient donor cells were markedly smaller
in size, both macroscopically and microscopically, compared with
those produced by wild-type donor cells, reflecting that fewer
progeny cells are produced per colony (data not shown). The
reduction in both number and size of spleen colonies in these
experiments indicates a marked functional impairment in both
multilineage progenitors and lincage-committed progenitors in
mice lacking STAT5A/5B.

Bone marrow deficiency invoives increased apoptosis, rather
then decreased proliferation

In principle, the cellular effects described might be caused by
various mechanisms, including decreases in the rates of prolifera-
tion, survival, or differentiation of selected progenitor popula-
tions. We used cell labeling with Annexin-V in conjunction with
a DNA dye, To-Pro, to measure rates of apoptosis in the bone
marrow. The absence of STATSA/SB was associated with an
increase in the rate of apoptosis of unfractionated bone marrow
(31.1% * 2.65%) relative to wild type (17.6% * 0.73%). This
2-fold increase in cell death was seen in both the lin* population
as well as the lin9™Sca-1%#% population (Figure 5A), whereas
the lin™Sca-1* compartment showed only a modest increase in
the rate of apoptosis (Figure SA). To measure proliferation, we
used ToPro in conjunction with cell surface markers to quanti-
tate DNA content in bone marrow by using DNA content more
than 2n as an indirect measure of the proportion of cells
undergoing cell cycle. An insignificant increase in the propor-
tion of cells with DNA content more than 2n was observed
among the unfractionated whole bone marrow population of
STAT5A/5B-deficient bone marrow (17.2% * 1.79%) in com-
parison to the wild-type marrow (13.4% * 1.01%). Lin* cells
likewise showed little change in proliferation activity in STATSA/
5B-deleted mice (Figure 5B). In contrast, both the early
lin®®Sca-1%#% and the lin%™Sca-1* subsets exhibited a 2-fold
increase in the percentage of cells with DNA content more than
2n in STAT5A/5B-deficient mice (Figure 5B). Together, these
findings provide evidence of globally decreased cellular sur-
vival (represented as increased apoptosis) in bone marrow cells
in the absence of STAT5A/5B, with a concurrent increase in
cellular proliferation among the least differentiated
hematopoietic cells.
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Inferior competitive repopulating capacity of
STAT5A/5B-deficient HSCs

A rigorous functional test of stem cell fitness is the competitive
repopulation assay, which measures the capacity of “tester” HSCs
to reconstitute the hematopoietic system of irradiated recipient
mice in direct competition with wild-type “competitor” bone
marrow cells.2627 For the representative experiment shown, we
injected 2500 lin%™Sca-1* tester cells from STAT5A/5B-deficient
mice or wild-type littermate control mice, carrying the CD45.2
allele, together with 2 X 10° whole bone marrow competitor cells
derived from congenic mice carrying the CD45.1 allele. An
additional control group received 2 X 10% whole bone marrow
competitor cells alone to establish the level of ablation achieved by
the irradiation regimen. After 10 weeks, peripheral blood, thymus,
spleen, and bone marrow were harvested for analysis of hematopoi-
etic lincages by using various antibodies to lineage markers and to
the 2 alleles of CD4S. At this ratio of input cells, which was
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Figure 6. Abeence of STATSA/SB~/- contribution (CD45.2*) to granulocytes
(Gr-1+) in peripheral blood after petitive lation. Peripheral biood from

lvmdlmdrodplonurooeMngeompoﬁlovcohon'y(A) competitor cells plus
STATSA/5B8*/* tester celis (B), or competitor celis plus STATSA/SB~/- tester cells
(C) were analyzed 10 weeks after initiation of competitive repopulation assay.
Peripheral blood was stained for CD45.1, CD45.2, and Gr-1 after red blood cell lysis
and shown here are rep ive dot-piots p ying CD45.1 versus CD45.2

expression within the Gr-1* gate.
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weighted to favor tester cells, wild-type tester cells (CD45.2%)
gave rise to approximately 80% of all cellular lineages in all tissues
examined, including Gr-1* (Figure 6), and other specific lineages
within peripheral blood, including T cells (CD3*) and B cells
(B220*) (Figure 6A). As is commonly observed, residual radiore-
sistant CD3* T cells from the recipient mouse are detected in all
groups, including those mice that received competitor cells alone
(Figure 7A). Likewise, bone marrow cells representing the granulo-
cyte (Gr-1*), B-cell (B220*), megakaryocyte (CD41%) lineages,
and erythroid progenitors (Ter-119*), as well as thymocytes
(CD3%), were predominantly CD45.2* (Figure 7B). In contrast, at
the same input doses, STATSA/5B-deficient tester cells failed to
give rise to significant numbers of cells of any lineage within
peripheral blood, spleen, thymus, or bone marrow (Figures 6 and 7
and data not shown); in no case was the CD45.2* signal greater
than that of the background observed in animals not receiving tester
cells. Complete competitive failure was also observed in 2 other
independent experiments with highly backcrossed donors (G4 and
G7, respectively).

Finally, because STAT5A/5B-deficient mice exhibited broad
hematopoietic deficiencies, we sought to identify the earliest stage
of differentiation at which defects were evident in the competitive
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Figure 7. STAT5A/5B-deficient HSCs p inferior titive

apacity. Perip blood, thy and bone marrow were harvested from irradiated
recipients 10 weeks after receiving either 2 x 10% competitor cells only (“No Tester,”
n =2), 2 x 10° competitor cells plus STATSA/5B*/* tester cells (“STATSA/5B*/*
Tester,”n = 3), or 2 X 10° competitor cells plus STAT5A/5B -/~ tester cells (“STAT5A/
5B/~ Tester,” n = 6). FACS analysis was performed by using lineage markers and
CD45.1 and CD45.2, and the results for the indi lineage-specifi bsets are
displayed. (A) Peripheral blood cells positive for Gr-1* (P < .001), B220* (P < .001),
or CD3* (P = .002). (B) Cells from hematolymphoid organs, including bone marrow
cells expressing for Gr-1 (P < .001), B220 (P = .001), Ter-119 (P = .001), or CD41
(P < .001) and thymocytes expressing CD3 (P < .001). (C) Bone marrow cells from
the lin* (P < .001), lin®Sca-1"9% (P < .001), and lin®*"Sca-1* (P < .001) subsets;
in this case CD45.2" cells were scored according to CD45.1- phenotype.
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repopulation assay. We failed to detect lin4™Sca-1* cells, lin™Sca-
1re#/lo cells, or lin* cells derived from STAT5A/5B-deficient cells at
levels significantly above background (Figure 7C). Therefore,
STATS5A/5B-deficient cells are inferior to wild-type cells in their
ability to occupy the limited niche available for stem cells, early
pluripotent cells, and oligopotent progenitor cells. The STAT5A/
SB~/~ HSCs thus failed to compete effectively with wild-type
competitor cells in the same tissue environment in the production
of progeny cells representing diverse hematolymphoid lineages.
Overall, STAT5A/5B-deficient cells exhibit a profound defect in
HSCs that is independent of both nonhematopoietic cell genotype
and indirect effects mediated by mature cells, such as T cells.

Discussion

The transcription factor STATS is activated by multiple and diverse
cytokines on binding to their cognate receptors, including several
that act on the hematopoietic system. However, mice deficient for
STATSA, STATSB, or both were reported to have surprisingly
subtle deficiencies in hematolymphoid development, including
reduction in peripheral T cells,'>!!® impaired fetal erythropoi-
esis,?® and decreased survival of monocyte progenitors.2! Because
numerous and complex regulatory pathways impinge on hematolym-
phoid development in vivo, we sought to define the hematologic
features of STATSA/5B-deficient mice to determine whether
compensatory mechanisms may mask greater contributions of
STATS in hematopoiesis in vivo.

The first phase of our characterization revealed multilineage
effects in peripheral blood at steady state, including marked
decreases in erythrocytes and reduced numbers of circulating
platelets. We also observed significant lymphopenia affecting both
T cells and B cells. Moreover, although there was no abnormality in
levels of peripheral blood neutrophils, a substantial decrease in the
pool of mature neutrophils in the bone marrow was observed. In
addition, histologic analysis of whole long bones and spleen in
STAT5A/5B-deficient mice revealed extramedullary hematopoiesis
in the enlarged spleens that was nearly exclusively erythropoietic
tissue, as well as an exaggeration of myelopoiesis and few
erythropoietic cells within intramedullary tissue in bone (data not
shown). Hematologic stress in the mouse characteristically induces
a myelopoietic dominance within bone marrow sites and height-
ened erythropoiesis within extramedullary sites such as the spleen.2
Therefore our histologic findings may represent further evidence of
hematopoietic stress in these mice. We note that our peripheral
blood analysis of STATSA/5B-deficient mice differs from the
initial characterization of these mice.'® One possible explanation is
the age of the mice examined, because the influence of maturity has
not been studied. Another possible factor is genetic background,
because hematopoiesis is likely influenced by numerous strain-
specific determinants. In any event, our findings indicate that there
are defects in the circulating levels of 3 distinct blood lineages
associated with signs of overall hematopoietic stress.

Multilineage cytopenia can be caused by hyperactive consump-
tive mechanisms broadly affecting peripheral blood cells, by
multiple and independent defects affecting production or survival
of individual cell types, or by a central bone marrow defect
affecting progenitor cells that are common to multiple lineages.
The scope of the blood cell abnormalities evident in STATSA/
5B~/ mice was most consistent with a central hematopoietic
defect. Although STATSA/5B-deficient mice possessed marked
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bone marrow hypocellularity overall, the cell population contain-
ing HSCs (lin%™Sca-1*) was preserved quantitatively, whereas
cells of more restricted differentiation potential were profoundly
reduced. Collectively, these findings based on cellular representa-
tion within the bone marrow strongly suggest that the absence of
STATSA/SB leads to a quantitative loss in the population of cells
that contain the CMP,! the CLP? oligopotent progenitors, and
lineage-committed progenitors.

To complement the flow cytometry data, we performed several
in vivo reconstitution assays. The short-term radioprotection assay
showed a severe defect in the ability of whole bone marrow from
STAT5A/5B-deficient mice to protect a recipient from radiation-
induced hematopoietic failure. In addition, we found that the
reduction in the functional capability of the bone marrow from
STATSA/SB-deficient mice was not due to decreased homing
ability. We used a second assay, the CFU-S assay, to quantitate
early progenitor cells on the basis of functional criteria. These
experiments revealed a dramatic reduction of hematopoietic colo-
nies derived from STATSA/SB-deficient animals. These results
support our carlier finding that there is a diminution of the population
(lin%™mSca-1#%) within the bone marrow reported to contain oligopo-
tent or lineage-committed cells and demonstrate that STATSA/SB is a
regulator of the biology of early progenitor cells.

A decrease in the overall cell numbers in STATSA/5B-deficient
bone marrow could be caused by various mechanisms involving
insensitivity of hematopoietic progenitors to one or more cyto-
kines, including a reduction in survival half-life, a decrease in
proliferation potential of progenitors, or an impaired execution of
differentiation programs. We detected an increase in the rate of
apoptosis in both the lin* and lin%™Sca-1"¥% fractions of bone
marrow in STAT5SA/5B-deficient mice. Although these studies do
not elucidate the precise mechanism of antiapoptosis, impaired
regulation of Bcl-X?02! or other antiapoptotic mediators may be
operative. We also detected an increased proportion of bone
marrow cells in the S/G2/M phases of the cell cycle, a feature
present in both the HSC and post-HSC populations. We propose
that this increase in the proportion of cycling cells represents part
of a compensation mechanism seeking to counter relative ineffec-
tive hematopoiesis in STATSA/SB-deficient mice. Alternatively,
slowed rates of progression through cell cycle in vivo might also
underlie our results, as prolonged in vitro doubling times have been
reported for STATSA/5B-deficient progenitors.?! Finally, progeni-
tors from STATSA/5B-deficient mice have been shown to differen-
tiate fully to mature cells in vitro,?! implying that there is no
absolute loss of differentiation potential of progenitor cells in the
absence of STATSA/SB. Overall, these findings provide evidence
of globally decreased cellular survival in bone marrow cells in the
absence of STATSA/5B, with a concurrent increase in the proportion of
cycling cells among the least differentiated hematopoietic cells.

To establish definitively the abnormalities in the stem cells of
STATS5A/5B-deficient mice, we applied the most rigorous func-
tional assay for stem cell fitness, the competitive repopulation
assay.27 Cells from STATSA/5B~/~ animals were unable to give
rise to significant numbers of cells of any lineage in any tissue
examined, despite being introduced at a dose that yielded wide-
spread reconstitution by STAT5SA/5SB*/* cells. Additionally, these
experiments addressed the cell autonomy of the STATSA/SB-
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mediated defect in these cells. Because the STATSA/SB~/~ stem
cells compete poorly with wild-type competitor cells in the same
biologic environments, the functional defect evidently is indepen-
dent of both nonhematopoietic cell genotype and indirect effects
mediated by mature cells such as T cells.

Thus, these analyses of the role of STATS in hematopoiesis in vivo
reveal that STATSA/5B is an important positive factor that promotes
HSC fitness and multilineage hematopoiesis. Relative insensitivity to
cytokines such as G-CSF, TPO, growth hormone, IL-3, or others that act
on progenitors could be responsible through either a reduction in the
overall signal intensity or the loss of specific signals mediated by these
cytokines. Bone marrow from STATS5A-deficient mice was shown to
produce fewer in vitro colonies in the presence of fli3-ligand, a cytokine
known to be important for hematopoietic progenitor homeostasis.” At
the cellular level, STATS may provide an antiapopiotic signal that lifts
the threshold of survival in the context of internal and external apoptotic,
antiapoptotic, proliferative, and differentiative signals. At the organismal
level, this effect translates into lower viability of bone marrow hemato-
poietic cells, which likely results in fewer cells produced per stem cell
that enter the differentiation program. In the context of lineage-specific
defects shown in our analysis of post-HSC populations and in earlier
reports regarding STATS deficiency, it remains unknown to what degree
the cytopenias seen in these mice are attributable to the HSC, multilin-
eage, or lineage-specific effects. In fact, evidence from some models in
which stem cells or multilineage progenitors are affected’®2 suggests
that defects at these stages alone may not induce mulitlineage cytopenias
in some contexts. Nevertheless, our findings establish a novel and
important role for STATS in the regulation of these early hematopoietic
cells. This role is quantitative and nonessential, but genetic modifiers
may control the degree of severity. These modifying loci could be
responsible for multiple compensation mechanisms, such as extramedul-
lary hematopoiesis and increases in bone marrow proliferation, which
together allow the organism to achieve levels of hematopoietic produc-
tion that are compatible with life but reduced nonetheless.

Further studies in these animals may promote better understand-
ing of the molecular pathogenesis of some forms of bone marrow
failure. Additionally, STATS may act in a similar manner in human
hematopoiesis and would thus be an attractive target for therapy in
hematologic settings. Cytokine therapy is often used to ameliorate
the phenotypes of lineage-specific and multilineage cytopenias, but
it may be associated with increased rates of leukemic transforma-
tion in some settings.*> Perhaps directed activation of specific cytokine-
mediated intracellular signals would serve to increase blood cell
production without a concomitant rise in the rate of transformation.
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Introduction

The relative physiological importance of various biological tasks mediated by
cytokines and the specific signaling pathways responsible for these distinct biological
outcomes are still areas of intense research. Recent studies have focused on the
importance of maintenance of survival as the chief biologic consequence of cytokine
signaling. The cytokine dependent, multilineage-potential cell line, FDCP-mix, is rescued
for differentiation into multiple lineages with ectopic expression of bcl-2 [1]. Complete
rescue of defects in two mouse models lacking IL-7 and M-CSF respectively, by
transgenic expression of hBcl-2 provided further in vivo evidence for the paradigm that
cytokines act predominantly through the provision of survival signals [2,3]. These studies
seemed to indicate that differentiation and proliferation could be regulated by intrinsic
factors or by alternate extrinsic factors in the absence of cytokine signaling as long as
survival signals were provided ectopically.

Apoptosis is composed of three interconnected pathways that ultimately lead to
activation of the caspases, cysteine proteases that cleave cellular targets resulting in
programmed cell death of the target cell. The receptor-mediated pathway involves
signaling by pro-apoptotic receptors of the TNF receptor family that activate initiator
caspases via death-domain interactions, which in turn activate the effector caspases that
then destroy the cell. The receptor-mediated pathway is triggered in cells to maintain
homeostasis such as through Fas / FasL-dependent destruction of erythroid progenitors
by more mature progenitors [4]. The cytotoxic pathway involves the delivery of
granzymes to cells by T-cells via perforin-pores in the cellular membrane. These

granzymes activate the cellular caspase system. The cytotoxic pathway is utilized to kill
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damaged cells such as virally infected cells. The mitochondria-mediated pathway
involves the disruption of mitochondrial membrane. This ultimately leads to the release
of cytochrome ¢, which combines with Apaf-1 to initiate effector caspase activation. In
addition, mitochondrial dysfunction can lead to alteration in other parameters, such as
cellular redox. The mitochondrial pathway can be triggered by multiple pathways linked
to the overall health of the cell, such as DNA damage through the p53 pathway, as well
as a cell’s physiologic value, such as the death by neglect of megakaryocyte progenitors
at limiting concentrations of TPO [5]. Pro-survival action of cytokines in hematopoietic
progenitors is thought to impinge on regulation of these pathways at multiple levels [6],
but most importantly through regulation of the mitochondrial-dependent pathway.
Cytokines affect mitochondrial health by modulation of members of the Bcl-2 family
either through transcriptional regulation or biochemical modification. This family is
composed of pro-survival and pro-apoptotic members, which may act through a putative
channel-forming activity [7-11].

Mounting data from multiple groups, using a model deficient for STATS,
indicated that the major role of this molecule in hematolymphoid development in vivo
was linked to the maintenance of target cell survival. Lineage specific progenitors from
both the erythroid and myeloid lineages as well as multilineage progenitors from
STAT5A/5B-deficient mice display higher rates of apoptosis [12-16]. Mechanistically,
STATS is thought to act at the level of Bcl-2 family members by upregulating pro-
survival family members, such as Bcl-x, Bcl-2, and A1 [17-21]. Cytokine dependent

upregulation of pro-survival Bcl-2 family members has been shown to depend on STATS5
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in vitro [13-15]. In fact, overexpression of these molecules in vitro can ameliorate the
apoptosis observed in selected lineage specific progenitors [14,15].

The goal of the following study was to utilize combinatorial genetics to attempt to
complement the loss of STATS in with the transgenic expression of Bcl-2. The results
indicate that while peripheral blood counts are normalized in STAT5A/5B-deficient mice
in the presence of the Bcl-2 transgene, that the majority of defects in the bone marrow,
including hypocellularity and inferior competitive repopulating ability are not rescued by
the presence of the transgene.

These results indicate that our understanding of the role of STATS in cytokine-
mediated biological outcomes is incomplete and must be revised to accommodate the

importance of STATS in promoting other biological pathways.
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Abstract

Cytokines bind high affinity receptors expressed on hematopoietic cells to initiate
signaling cascades that regulate differentiation, proliferation, and survival. Previous
studies have established a role for STATS in transducing survival signals for
hematopoietic progenitor cells in response to cytokines. To determine if constitutive
expression of a member of the Bcl-2 family of anti-apoptotic proteins could compensate
for the loss of STATS, we utilized combinatorial genetics to generate STAT5A/5B-
deficient mice expressing a Bcl-2 transgene. Although Bcl-2 expression restored
peripheral blood counts to normal in STATSA/5B™ mice, we noted a striking failure of
this transgene to correct defects in hematopoietic stem and progenitor cells. These data
imply important effects of STATS in addition to survival in modulating hematopoietic

cell fates.
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Introduction

STATS is activated by diverse cytokine receptors involved at multiple levels
within the hematopoietic system. The widespread engagement of its two isoforms,
STATSA and STATSB, has implicated STATS as a potentially important component of
cytokine receptor signaling in this context [1]. In fact, mice deficient in both the STATSA
and STATS5B isoforms were shown to have multiple defects in hematopoietic
development affecting all stages of differentiation from the hematopoietic stem cell
(HSC) [2-4] to lineage-committed progenitors [5-7]. In addition, some abnormalities in
the function of mature hematopoietic cells have been described in mice either singly or

doubly deficient for the STATS isoforms [7-14].

The biological mechanism responsible for many of these defects, specifically in
hematopoietic progenitors, is thought to be a reduction in cytokine-mediated survival of
these cells in the absence of STATS [15,16]. For example, erythroid progenitors lacking
STATS5A/5B exhibited increased apoptosis in vivo and in vitro in response to
erythropoetin (EPO) [5,6]. Similarly, committed myeloid progenitors lacking
STAT5A/5B demonstrated increased cell death in vitro in response to granulocyte /
macrophage-colocy-stimulating-factor (GM-CSF) or interleukin-3 (IL-3) [7]. Finally,
early multipotential progenitors in STATSA/5B-deficient mice exhibited increased
apoptosis in vivo [2]. The relevant molecular targets of STATS in hematopoietic
progenitors that are responsible for these survival effects are thought to consist of anti-

apoptotic members of the Bcl-2 family of proteins, predominantly Bcl-x [5-7,15-17].
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Members of this family of proteins are important for regulating mitochondrial
homeostasis, by positively or negatively impacting mitochondrial compartmentalization

of cytochrome c [18-20], a major junction point in the cellular decision to apoptose.

Combinatorial genetics to explore whether a survival factor can rescue defects
resulting from the loss of a cytokine signaling was first employed to show that the
hematopoietic defects of op/op mice and IL-7 receptor-deficient mice could be rescued
by transgenic expression of a human Bcl-2 [21,22] and has since been used extensively to
interrogate the ability of this family of survival factors to complement loss of cytokine
signaling molecules [23-26]. To determine the role of Bcl-2 expression in mediating the
contributions of STATS to hematopoiesis, we generated STAT5A/5B-deficient mice in
which a Bcl-2 transgene was expressed from the constitutive B-actin promoter [27]. We
found that ectopic expression of Bcl-2 was not sufficient to rescue all the hematopoietic

defects in STATSA/5B-deficient mice.
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Materials and Methods

Handling and Characterization of Mice.

STATSA/5B™ mice [8] were obtained from Dr. James Ihle (St. Jude Children’s Research
Hospital, Memphis, TN) and back-crossed onto a C57B1/6 background at least 9
generations. Mice with a murine Bcl-2 transgene expressed under the control of human £-
actin promoter and Bcl-2-deficient mice have been described[27,28). Mice were housed
in a pathogen-free rodent barrier facility and received mouse chow and acidified water ad
libitum. All studies were performed on 6-8 week old mice unless otherwise specified,
and littermates were always used as wild-type controls. Peripheral blood was obtained via
cardiac puncture, and EDTA-treated samples were used for complete blood counts
(IDEXX Veterinary Service, Sacramento, CA). Bone marrow was harvested by flushing
femurs and tibias into 6 ml phosphate buffered saline (PBS) containing 2% fetal bovine
serum (FBS) and 2 mM EDTA, and cell counts were determined after ACK (NH4Cl)
lysis by trypan blue exclusion. Single cell suspensions of spleens were generated by
passing them through a 70 pm nylon mesh strainer into 5 ml PBS containing 2% FBS and
2mM EDTA, and cell counts were determined after ACK (NH4Cl) lysis by trypan blue

exclusion.

Flow Cytometry.
All antibodies were obtained from Pharmingen (San Diego, CA), and the following
clones were used; Sca-1 (E13-161.7), Ly-76 (Ter-119), Gr-1 (RB6-8C5), CD3 (145-

2C11), B220 (RA3-6B2), CD11b (M1/70), c-kit (2B8), CD45.1 (A20), CD45.2 (104),
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Bcl-2 (3F11). For blocking non-specific binding to Fc receptors, purified antibody to
CD16/CD32 (2.4G2) was used in at 1:100 for 3 minutes. Subsequently, antibodies to
surface markers of interest were used at 1:60 dilution. For intracellular staining of Bcl-2,
cells were stained for expression of surface markers, then fixed and permeabilized for 1 h
at 25° C in 1% paraformaldehyde (PFA) with 0.1% Tween-20, washed, stained for 30
minutes at 25° C with anti Bcl-2 antibody at a 1:5 dilution, then washed. All FACS
analyses were performed using a FACSCalibur and all sorting was performed using a

FACSVantage (Becton Dickinson).

Competitive Repopulation Studies.

Recipient mice were 8 - 10 week old C57B1/6 obtained from Jackson Laboratories (Bar
Harbor, ME). Recipients were y-irradiated from a Cesium source in two 450 rad doses
4-5 hrs apart. Transplanted mice were maintained on 2.5 mg/ 100 ml Sulfatrim Pediatric
Suspension (Alpharma, Baltimore, MD) in the drinking water. Competitive repopulation
studies were performed as previously described.[29] Whole bone marrow (CD45.2%),
derived from wild-type littermate or STATSA/5B™, with or without the Bcl-2 transgene, -
were mixed at a 1:1 ratio with competitor whole bone marrow from congenic B6.SLJ
(CD45.1%) and injected into irradiated recipients, prepared as above. After 10-12 weeks,
chimeric mice were sacrificed and peripheral blood and bone marrow were collected and
analyzed by FACS for contribution of CD45.1" and CD45.2" derived cells to selected

lineages.

Statistical Analysis.
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Data are presented as mean * SEM when appropriate. Statistical significance was

assessed by two-sided Student's t-test.
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Results

Bcl-2 transgene is expressed in mature cells and progenitor subsets in the bone

marrow

To determine the ability of exogenously expressed Bcl-2 to rescue hematopoietic
defects in STATSA/5B-deficient mice, we used mice expressing Bcl-2 under the B-actin
promoter to generate STATSA/5B-deficient mice expressing this transgene. To show that
the Bcl-2 transgene under control of the B-actin promoter was expressed in hematopoietic
progenitors and mature blood cells, we performed intracellular staining for Bcl-2 on
various bone marrow subsets from Bcl-2-deficient mice crossed with the B-actin-Bcl-2
transgenic line [27,28]. We detected robust Bcl-2 expression in lineage-positive bone
marrow cells, in the Lin®™Sca-1"#"c-kit" fraction containing post-HSC, including
common lymphoid progenitors (CLP), common myeloid progenitors (CMP), and

oligopotent progenitors, and in the lin®™Sca-1*c-kit" fraction containing HSC[30] (Fig.

l)’ lt:'-:-":\".;«v,-. ]

Expression of transgenic Bcl-2 rescues cytopenias in adult STATSA/SB-deficient
mice.

We then examined peripheral blood lineages from STAT5A/5B** and
STAT5A/5B” mice without (-Tg) or with (+Tg) the Bcl-2 transgene. As shown
previously, [2,3] STATSA/5B™, -Tg mice displayed cytopenia affecting a number of

peripheral blood lineages, including a marked drop in hematocrit, platelets, and
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+/+ and

lymphocytes. When we examined peripheral blood lineages from STATSA/5B
STATSA/5B™ mice with (+Tg) the Bcl-2 transgene, we found that Bcl-2 expression
restored erythrocyte and platelet and lymphocyte numbers to levels equivalent to wild-
type in STATSA/5B™ mice (Fig 2A-2C). Both erythrocytes and lymphocytes in
STAT5A/SB™, (+Tg) mice demonstrated trends of reduced numbers compared to
STATSA/5B*"* mice with the Bcl-2 transgene that were not statistically significant. The
number of neutrophils was not significantly different between STAT5A/5B™", -Tg mice
and STAT5A/5B*", -Tg mice (Fig. 2D). A similar equivalence was observed in the
number of neutrophils in STAT5A/5B™", +Tg compared to STAT5A/5B**, +Tg mice (Fig
2D.). Thus the presence of Bcl-2 fully rescues all the values of peripheral blood lineages,
supporting the hypothesis that a major role of STATS in hematopoiesis is indeed to

modulate cell survival.

Expression of the Bcl-2 transgene does not rescue hypocellular bone marrow and

incompletely rescues defects in progenitor subsets in STATSA/5B-deficient mice

To determine whether defects in hematopoietic progenitors observed previously
in STATS5A/5B-/- mice would be rescued by the ectopic expression of Bcl-2, we
examined the bone marrow of mice without (-Tg) or with (+Tg) transgene. As shown
previously, STAT5A/5B-deficient mice possessed a hypocellular bone marrow compared
with wild-type mice [2,3] (Fig. 3). This defect in cellularity was not rescued by

transgenic expression of Bcl-2 (Fig. 3).
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We next performed FACS analysis of bone marrow from mice of each
STATSA/5B and Bcl-2 Tg genotype to quantify various progenitor subsets within the
bone marrow by expression of surface lineage-defining markers (Lin), Sca-1, and c-kit.
The Lin®™Sca-1*c-kit" population was increased, but not to a statistically significantly
degree, in STATSA/5B™, -Tg mice compared to STAT5A/5B**, -Tg mice (Fig. 4A).
Presence of the Bcl-2 transgene reduced this subset of cells in STAT5A/5B-deficient
bone marrow to numbers comparable to wild-type (Fig. 4B). The Lin®"Sca-1"¥"c-kit"*
population was substantially decreased in STAT5A/5B™, -Tg mice compared to
STAT5A/5B**, -Tg mice (Fig. 4C). Ectopic expression of Bcl-2 did not restore this
subset of cells in STATSA/5B-deficient bone marrow (Fig. 4D). Thus the presence of the
Bcl-2 transgene does not rescue bone marrow cellularity or the number of post-HSC
progenitors in STATSA/5B-deficient mice, while the number of HSC was returned to

normal in the these mice.

Inferior competitive repopulating capacity of STATSA/5B-deficient HSC is not o

rescued by presence of the Bcl-2 transgene.

We next performed competitive repopulation experiments to determine whether
expression of the Bcl-2 transgene would complement the defective competitive
repopulating potential of STATSA/5B-deficient HSC [2,3]. Tester cells of each
STATSA/SB and Bcl-2 Tg genotype were mixed with congenic CD45.1" wild-type
C57Bl/6 competitor cells at a 1:1 ratio and injected into irradiated recipients. Peripheral
blood and bone marrow were harvested from recipient mice 10 weeks later and the

relative contribution of the tester and competitor populations to different hematopoietic
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lineages was assessed by FACS. At this ratio of input cells, STATSA/5B**, -Tg tester
cells (CD45.2") and STATSA/5B*"*, +Tg tester cells gave rise to greater than 50% of the
differentiated cells within peripheral blood, including granulocytes (Gr-1"), T-cells
(CD3"), B-cells (B220"), and monocytes (Macl*/Gr-1) (Fig. 5A, 5B). By contrast,
STATS5A/SB™, -Tg tester cells were impaired in their ability to repopulate these lineages
in recipient mice (Fig. S5A). Expression of the Bcl-2 transgene did not significantly
enhance the repopulating potential of STATSA/5B-deficient bone marrow (Fig. 5B). We
observed similar results in peripheral blood assayed at 4 weeks post-transfer (data not

shown).

Previous studies demonstrated minimal contribution by STAT5A/5B-deficient
tester cells to the Lin®Sca-1*, HSC-containing, population in competitive repopulation
experiments [2]. We observed that the presence of the Bcl-2 transgene did not increase
the contribution by STAT5A/5B-deficient tester cells to this compartment and therefore
was unable to rescue the restricted ability of STATSA/5B-deficient HSC to fill a limited

“niche” in the bone marrow (Fig. 6A, 6B) as previously described.
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Discussion

Previous evidence from multiple groups has established a role for STATS in
providing survival signals for hematopoietic progenitor cells in response to cytokines
[2,5-7]. In particular, STATS has been shown to upregulate the transcription of Bcl-2 and
Bcl-x [1,17]. In addition, erythroid cell lines unable to activate STATS have increased
rates of apoptosis [31] and mice deficient for one or both isoforms of STATS have
increased cell death in specific hematopoietic cells, leading to marked hematopoietic
defects [2,5-7]. To determine the extent to which constitutive Bcl-2 expression can
substitute for STATS in fulfilling its role in hematopoiesis, we examined STAT5A/5B-

deficient mice without (-Tg) or with (+Tg) a Bcl-2 transgene, under the control of the -

actin promoter [27].

We have shown that ectopic expression of a Bcl-2 transgene rescues some, though
not all of the hematopoietic defects in STATSA/5B-deficient mice. Restoration of normal
peripheral blood counts is consistent with previous data showing an important role for
STATS in providing protection from apoptosis in lineage-committed progenitors and . }
mature cells through upregulation of Bcl-2 family members. A role for Bcl-2 family
members in the survival of erythroid progenitors [32,33] and megakaryocytes [34,35] has
been reported and STATS has been implicated in contributing to the upregulation of Bcl-
x in erythroid progenitors [5,6], granulocyte and macrophage progenitors [7], and mast
cell progenitors [17]. In addition, the lifespan of mature T-cells and B-cells has been
shown to be sensitive to the level of Bcl-2 family members [24,36,37] and STATS may

play a role in the physiologic regulation of these molecules [38,39].
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Recent studies have also defined a role for STATS in multipotential progenitors
and in HSC [2,3,7]. There is widespread expression of Bcl-2 family members in
multilineage progenitors and HSC (reviewed in [40]) and regulation of these cells
depends in part on an apoptosis that can be modulated by levels of Bcl-2 [40-42].
Interestingly, the Bcl-2 transgene failed to rescue defects in these compartments. Thus,
while the absence of STATS does lead to increased apoptosis in these cells [2,7], it
appears that other STAT5-dependent biological responses are of equal importance to in

these cells.

These data support the existence of additional functions of STAT5A/5SB that are
unrelated to promoting survival through Bcl-2 family members. Consistent with this
conclusion, STATS has been implicated in the regulation of hematopoietic cell
proliferation in studies of mice deficient for one or both isoforms [4,10,17,43] and
STATS has been shown to upregulate genes that positively regulate the cell cycle, such as
c-myc and cyclin D1 [39,44]. However, in our initial studies, we found that proliferation
did not appear to be affected in the Lin®™/Sca-1* and Lin®"/Sca-1" populations from
STATS5A/5B-deficient mice by DNA content [2]. In addition, the proportion of cells in
cycle and rate through the cycle was not decreased in these populations from
STAT5A/5B™ mice as assessed by BrdU incorporation (data not shown). This evidence
against a role for proliferation defects in hematopoietic progenitors in STAT5A/5B-
deficient mice could be explained by the heterogeneous nature of the populations
examined, which may contain subsets of cells, irrelevant to efficient hematopoietic
development, with increased proliferation. In fact, there is a population of Lin®™/Sca-

1*/ckit” cells that is dramatically increased in the bone marrow of STAT5A/5B™ mice
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that appears linked to an autoimmune phenotype observed in these mice (Chapter 4). In
addition, loss of STATS could result in cell cycle dysfunction that is not measured by our
assays [17]. Therefore, impairment of this or some other biological process in the absence

of STATS5A/5B may underlie the persistent hematopoietic defects.

It is interesting to note that the Bcl-2-independent role of STATS appears largely
dispensable in steady-state hematopoiesis for maintaining wild-type peripheral blood
counts. It is possible that the addition of hematopoietic stress, such as cytotoxic drugs,
might reveal defects in maintaining peripheral blood counts in these mice. It also implies
that defects in early progenitors can be overcome in maintaining peripheral blood counts,
at least in a non-competitive setting, if later progenitors and mature cells function
normally.

It is formally possible that all of the effects of STAT5A/5B are mediated through
survival pathways, and that Bcl-2 is unable to substitute for other family members under
all circumstances. Indeed, other anti-apoptotic proteins, such as Bcl-x, may be the
relevant target molecule in some progenitors [5-7]. However, this seems unlikely, as the
interchangeability of these two family members has been shown [45]. Additionally o
transgenic expression of Bcl-2, or a related family member, would likely not provide
protection from cell death caused by a Bcl-2 insensitive mechanism, such as that caused
by absence of T-Cell Receptor (TCR) in Ragl” mice or by negative selection [46,47].
Bcl-2 is also a well characterized inhibitor of proliferation and may compound
proliferation defects resulting from the loss of STATS [42,48,49]. Finally, variable

hematopoietic effects of transgenic Bcl-2 observed depending on the species origin of the

Bcl-2 protein, the promoter controlling the transgene [41,50], and perhaps position effects
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may complicate interpretation. However, combinatorial genetics has been used
extensively to explore the ability of Bcl-2 to rescue defects resulting from the loss of

cytokine signaling as noted above [21-26].

In summary, our data imply activities of STAT5A/5B in HSC and hematopoietic
progenitors that are unrelated to its ability to suppress apoptosis. Further study will be
necessary to identify other functions of STATSA/5SB targets and specifically how they

influence early hematopoietic progenitors.
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Figure Legends

Figure 1. Bcl-2 Transgene under control of the B-Actin promoter is expressed in
HSC, post-HSC, and lineage positive cells in the bone marrow. Bone marrow from
Bcl-2" mice expressing the Bcl-2 Transgene was analyzed using FACS for intracellular
Bcl-2 staining in conjunction with surface expression of lineage-defining markers, Sca-1,
and c-kit. Samples stained with isotype control (solid line) and anti Bcl-2 antibody

(dotted line) are shown.

Figure 2. Multilineage cytopenias in adult STATSA/SB-deficient mice are rescued
by ectopically expressed Bcl-2. Complete blood counts were performed on whole
peripheral blood from STAT5A/5B™ and STAT5A/5B** mice without (-Tg) or with
(+Tg) the Bcl-2 transgene. (A) Hematocrit. (B) Platelets. (C) Lymphocytes. (D)
Neutrophils. For STATS A/5B*, -Tg, n =7, for STAT5A/5B™, -Tg, n =9, for STATS

A/5B**, +Tg, n =17, for STATSA/5B™, +Tg, n = 4.

Figure 3. Decreased total nucleated cells in the bone marrow of STATSA/5B-
deficient mice is not rescued by the presence of the Bcl-2 Transgene. Total nucleated
cells were obtained from one femur and tibia and cell counts were determined after red
blood cell lysis for bone marrow from STATSA/5B™ and STAT5A/5B** mice without (-

Tg) (A) or with (+Tg) (B) the Bcl-2 transgene. For STATS5 A/5B*, -Tg, n =3, for
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STATS5A/5B™, -Tg, n = 3, for STAT5 A/5B**, +Tg, n = 3, for STAT5A/5B™, +Tg, n =

4.

Figure 4. Presence of the Bcl-2 Transgene incompletely rescues progenitor defects in
the bone marrow of STATSA/5B-deficient mice. Subsetting was performed based on
surface expression of lineage-defining markers, Sca-1, and c-kit. Absolute values were
generated by multiplying gated percentages by total nucleated cell numbers. The
Lin®™Sca-1*/c-kit" compartment, containing HSC, from mice without (-Tg) (A) or with
(+Tg) (B) the Bcl-2 transgene and the Lin®™Sca-1"#"°/c-kit* compartment, containing
post -HSC progenitors, from mice (-Tg) (C) or with (+Tg) (D) the Bcl-2 transgene are
shown. For STATS A/5B*"*, -Tg, n = 3, for STAT5A/5B™", -Tg, n = 3, for STATS

A/5B*™, +Tg, n =3, for STAT5A/5B™, +Tg, n=3.

Figure 5. Transgenic Bcl-2 does not rescue inferior competitive repopulating
capacity of STATSA/5B-deficient bone marrow. Peripheral blood was harvested from
irradiated recipients 10 weeks after receiving either 5x10°> competitor cells only ("No
Tester", n=6), 5x10° competitor cells plus 5x10° STATSA/5B™", -Tg tester cells
("STAT5A/5B** -Tg Tester", n=6), or 5x10° competitor cells plus 5x10° STAT5A/5B™", -
Tg tester cells ("STAT5A/5B™, -Tg Tester", n=6) (A) or 5x10° competitor cells only
("No Tester", n=5), 5x10° competitor cells plus 5x10° STATSA/5B**, +Tg tester cells

("STAT5A/5B*"*, +Tg Tester", n=5), or 5x10° competitor cells plus STATSA/5B™, +Tg
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tester cells ("STATS5A/5B™, +Tg Tester", n=8)(B). FACS analysis was performed using
lineage markers and CD45.1 and CD45.2, and the results for the indicated lineage-
specific subsets are displayed. Peripheral blood cells positive for Mac-1(Gr-17), Gr-17,

B220", or CD3" are shown.

Figure 6. Transgenic Bcl-2 does not rescue inability of HSC from STATSA/5B-

deficient bone marrow to occupy stem cell niches. Bone marrow cells was harvested

from irradiated recipients 10 weeks after receiving either 5x10° competitor cells only

("No Tester", n=6), 5x10° competitor cells plus 5x10° STAT5A/5B*", -Tg tester cells

("STATSA/5SB*"* -Tg Tester", n=6), or 5x10° competitor cells plus 5x10° STATSA/5B™, -

Tg tester cells ("STATSA/SB™, -Tg Tester", n=6) (A) or 5x10° competitor cells only

("No Tester", n=5), 5x10° competitor cells plus 5x10° STATSA/5B*", +Tg tester cells

("STAT5A/5B™", +Tg Tester", n=5), or 5x10° competitor cells plus STAT5A/5B™, +Tg

tester cells ("STATS5A/5B™, +Tg Tester", n=8)(B). FACS analysis was performed using

lineage markers, Sca-1, and CD45.1 and CD45.2. CD45.2" cells in the Lin®™Sca-1" L - .

subset were scored based on CD45.1° phenotype.
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