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Abstract

Band Anticrossing Effects in Highly Mismatched Semiconductor Alloys
by
Jungiao Wu
Doctor of Philosophy in
Applied Science and Technology
University of California, Berkeley

Professor Eugene E. Haller, Chair

The first five chapters of this thesis focus on studies of band anticrossing (BAC)
effects in highly electronegativity-mismatched semiconductor alloys. The concept of
bandgap bowing has been used to describe the deviation of the alloy bandgap from a
linear interpolation Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero
(for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin
film deposition techniques have allowed the growth of semiconductor alloys composed of
significantly different constituents with ever-improving crystalline quality (eg.,
GaAs.«Nx and GaP1 Ny with x < ~ 0.05). These dloys exhibit many novel and
interesting properties including, in particular, a giant bandgap bowing (bowing
parameters > 14 €V). A band anticrossing model has been developed to explain these
properties. The model shows that the predominant bowing mechanism in these systems is
driven by the anticrossing interaction between the localized level associated with the

minority component and the band states of the host. In this thesis | discuss my studies of



the BAC effects in these highly mismatched semiconductors. It will be shown that the
results of the physically intuitive BAC model can be derived from the Hamiltonian of the
many-impurity Anderson model. The band restructuring caused by the BAC interaction is
responsible for a series of experimental observations such as a large bandgap reduction,
an enhancement of the electron effective mass, and a decrease in the pressure coefficient
of the fundamental gap energy. Results of further experimental investigations of the
optical properties of quantum wells based on these materials will be also presented. It
will be shown that the BAC interaction occurs not only between localized states and
conduction band states at the Brillouin zone center, but also exists over al of k-space.
Finally, taking ZnSTe and ZnSeTe as examples, | show that BAC aso occurs between
localized states and the valence band states. Soft xray fluorescence experiments provide
direct evidence of the BAC interaction in these systems.

In the final chapter of the thesis, | describe and summarize my studies of optical
properties of wurtzite InN and related alloys. Early studies performed on InN films grown
by sputtering techniques suggested a direct bandgap of ~1.9 eV for this semiconductor.
Very recently, high-quality InN films with much higher mobility have become available
by usng the molecular beam epitaxy growth method. Optical experiments carried out on
these samples revea a narrow bandgap for InN of 0.77 €V, much lower than the
previously accepted value. Optical properties of InGaN and InAIN ternaries on the In rich
side have also been characterized and are found to be consistent with the narrow bandgap
of InN. The bandgap bowing parameters in these aloys were determined. In the context
of these findings, the bandgap energies of InGaN and InAIN were found to cover a wide

spectral range from the infrared for InN to the ultraviolet for GaN and deep ultraviolet



for AIN. The significance of thiswork is rooted in many important applications of nitride

semiconductors in optoel ectronics and solar energy conversion devices.
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1. Introduction to Semiconductor Alloys

1.1 Virtual Crystal Approximation and Bandgap Bowing in Semiconductor Alloys

The simplest possible prediction of the physical properties of a semiconductor
aloy dstates that they scale linearly between the properties of the endpoint
semiconductors. Indeed, this is the case for lattice constants, which, in the absence of
phase transitions or other complications, do scale linearly with composition to a high
level of precision. This effect is expressed as the Vegard's law and has been applied
widely to determine the alloy compositions in x-ray diffraction experiments.

In contrast, it has been realized for over forty years that in most cases, the band
gap of an aloy semiconductor does not follow a ssimple linear trend with composition,
and that some degree of “bowing” away from the linear dependence is observed. From

the very beginning, a quadratic relationship has been used to characterize this behavior,

E2%(x) =(1- x)xEL + x>ES - bxx{1- x) (11)

9
where Eg‘ and EgB are the band gaps of the endpoint materials and b is the optical bowing

parameter. As an example, Figure 1.1 shows the bandgap bowing in ZnSe;-xTex aloys.
Given its great importance to fundamental semiconductor physics and to
technology, the phenomenon of bandgap bowing has been extensively studied. In the
early 1970's, it was shown that the form of EqQ. (1.1) could be derived by considering the
effects of aloy disorder within the currently available theoretica models, and that the
value of b could be estimated by considering the electronegativity mismatch of the

elementsin thealoy [1, 2].
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Fig. 1.1 Bandgap bowing in ZnSe;-xTe, aloys. The bowing parameter b is
approximately 1.2 eV.

In early studies of electronic structures of random alloys in the 1930's, a linear
dependence of the crystal potential on the alloy composition was adopted as the first-
order approximation [3]. In this approximation the composition disorder of the alloy is
neglected, and the crystal potential of the aloy that the valence electrons feel is assumed

to have perfect periodicity as in pure crystaline materials. The vaue of this periodic
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crystal potential is linearly interpolated between that of the endpoint crystals; therefore,
the alloy is approximated by a new, perfect crystal with this interpolated crystal potential.
Not surprisingly, this approach is named the “Virtual Crystal Approximation” (VCA). In
the framework of VCA the bowing parameter for the bandgap of a semiconductor aloy is
expected to be small, because there is no strong nonlinearity in the dependence of the
energy gap on the crystal potential in band-structure calculations. It has been proposed
that the total bowing parameter should be the sum of the intrinsic bowing b; found in the
VCA and the “extrinsic” bowing be associated with disorder (nonperiodicity) [1]. Table
1.1 shows the bowing parameters for the direct bandgap of some ternary alloys.

Potential fluctuations scatter electrons and mix band states, and hence modify the
band structures. As a result, the composition disorder can aso be responsible for the
deviations from linear behavior of many other electronic properties, such as the free

carrier effective mass and the spin-orbit splitting in semiconductor alloys.



Alloy b (eV) be (€V) Beaic (V) Dexp (€V)

GaAs-P 0.21 0.09 0.30 0.21
InAs-P 0.15 0.08 0.23 0.20, 0.26
GaInSb 0.12 0.24 0.36 0.43
GalnAs 0.28 0.29 0.57 0.33, 0.56
INAs-Sb 0.03 0.67 0.70 3 0.58
Ga-AlAs 0 0.03 0.03 ~0.20
GaInP 0.39 0.31 0.70 0.88
ZnS-Se 0.14 0.14 0.28 ~0
ZnSe-Te -0.04 1.14 1.10 ~1.28
ZnS-Te 0.28 212 2.40 ~2.40
Ag-Cul 0.14 0.11 0.25 0.58
Cul-Br -0.65 1.54 0.89 0.44
InP-N > 14
GaAs-N > 14
GaInN 1.43
Al-InN 3.0
Al-GaN 1.40

Table 1.1, the bandgap bowing parameter for some ternary aloys. All the
data are from ref.[1], except for the nitrides, which are based on our own
experimental results. The parameter beac is the calculated value obtained
using a dielectric model [1].



1.2 Unusual Properties of 111-V1.x Ny Alloys and Their Applications

Very recently, advances in thin film growth have led to semiconductor alloys
composed of elements with very large electronegativity mismatches; the zincblende
GaAs; Ny dloy is an example of such a system. Very large bandgap reductions have
been observed in this system for a small percentage of As substituted with N €.g., a
reduction of 0.18 eV at x = 0.01). Direct application of Eq. (1.1) to the observed
bandgaps of GaAs;-xNx with x up to about 0.05 would require a bowing parameter greater
than 14 eV, and would predict a negative bandgap for a large range of compositions. The
direct energy gap of GaAs;-xNx as a function of lattice constant is shown in Fig.1.2.

It has not yet been technically feasible to investigate this system outside of 0 < x <
0.05 due to the large immiscibility between GaAs and GaN. However, only 5% N
incorporation in GaAs aready forces the bandgap down to below 1 €V. InAs, on the
other hand, when aloyed with GaAs, reduces the bandgap less dramatically. The
bandgap of InAs;xN ternary does not deviate severely from the linear interpolation and
the bowing is much smaller than that in GaAs;xNy. Since the In atom is much larger than
the Ga atom, the incorporation of InAs in GaAs increases the lattice constant and
compensates the N-induced lattice contraction in GaAs;xNy. The quaternary alloy system
In,Gay.yAs1.xXNx can, therefore, be grown lattice-matched on GaAs substrates by adjusting
thelnand N content [4]. From Fig.1.2 and Vegard's law, it can be estimated that y » 3x is
the appropriate ratio for the lattice match with GaAs substrates. Adding In to GaAsN
further reduces the bandgap, but still maintains the direct type of the energy gap of the

system. Consequently, InGaAsN is considered a light-emitting material having bandgap



energies suitable for the application for 1.3 and 1.55 nm laser diodes for optica fiber
communication [4]. By combining InGaAsN with GaAs or other wide-gap
semiconductors that can be grown pseudomorphically on GaAs substrates, very deep
guantum wells can be achieved in the active layers. This novel material is very promising
for overcoming the poor temperature characteristics of conventional long-wavelength
laser diodes. In these structures electron overflow from the wells to the barrier layers at
high operation temperatures can be efficiently suppressed due to the strong confinement
in the deep wells. Shown in Fig. 1.3 is a single quantum well laser diode structure based

on this quaternary alloy proposed by Kondow, et. al. [4].
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Fig.1.2 The relationship between the bandgap and lattice constant for most
[11-V aloys [4]. The curve for GaAs;-xNx that exhibits huge bowing is a fit
to experimental bandgaps on the GaAs-rich side using Eq.(1.1).
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Fig. 1.3 Schematic cross section of a InGaAsN/GaAs single quantum well
laser diode [4].

The InGaAsN alloy has applications not only in the area of light emitting devices,
but aso in multijunction solar cells. Figure 1.4 shows the solar spectrum and materials
used in the multijunction solar cells that can covert the solar energy into photovoltaic
current at high efficiencies. The design of the multijunction solar cell takes advantages of
the fact that the materials used in the multijunction are all lattice matched (to GaAs for
example) and have gap energies covering the main portion of the solar spectrum when
assembled in series. The InGaAsN alloy is promising in this device because of its large

band-gap tunability (0.8-1.4 eV) while lattice- matched with GaAs.
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Fig. 1.4 Materias basis for multijunction solar cells. The layer in the box

“New 1.0 eV” could possibly be InGaAsN lattice-matched to Ge and

GaAs.

Comparably large bandgap reductions have also been observed in other N-

containing aloys such as GaPN [5, 6], InPN [7], and AlGaAsN [8], which will be
discussed in this thesis. The strong dependence of the bandgap on the N content has made
dilute 111-V nitrides important materials for a large variety of applications. The materials
physics behind the huge bandgap bowing in these dilute nitrides aso needs to be

understood from the basic research point of view.



2. |sovalent Impurity Statesin Semiconductors

2.1 Formation of Isovalent Impurity States

When a substitutional impurity atom has the same valence as the host atom it
replaces, it is referred to as an isovalent or isoelectronic center. Although they have the
same vaence, the impurity atom may differ from the host atom in many other aspects,
such as a different atom size and different electronegativity. When these differences are
significant, they may result in local defect potential associated with the isovalent
impurities. However, isovalent centers appear electrically neutral to the host crysta
except within the immediate vicinity of the impurities. Their potentials are thus short-
range, rather than long-range as in the case of the Coulomb potential of hydrogenic
defects. The highly localized nature of these potentials causes the isovaent states to
behave like deep centers in spite of the fact that their binding energies are very small. In
genera, therefore, the definition of the term “deep level” is extended to including these
defect states that have shallow energy levels but cannot be described by the effective
mass theory of hydrogenic impurities [9]. Unlike hydrogenic states, deep states have
localized wavefunctions in real space which may involve Bloch functions from several
bands over a large region of k-space. Their energy levels, therefore, do not follow one
specific band minimum (as the hydrogenic states do) whenthe band structure is gradually
changed by external causes such as applying pressure, changing temperature, and

alloying with other materials.



To calculate the energy positions of these deep levels, one needs to know the
defect potential and then solve the corresponding Schrédinger equation. In many cases
the exact functional form of the localized potential is not very crucia; the deep center
wavefunction is predominantly determined by the host crystal rather than by the deep
impurity. The main difficulty of the problem lies in the second step, i.e., finding the
solution to the Schrédinger equation.

In 1980, Hjalmarson et. al. made the first systematic theoretical investigation of
this problem [10]. Employing a Koster-Slater model for the localized potential, they
established the eigenvalue equation in a tight-binding-function basis. For A-symmetry
deep states, the strength of the defect potential was assumed to be equal to the difference
between the s atomic orbital energies of the impurity and the host atom it substitutes. The
energy levels for various substitutional impurities in common host semiconductors were
calculated by solving this eigen-value equation [10]. The results reproduce reasonably
well the chemica trend of the deep levels observed in experiments and are shown in

Fig.2.1.

10
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Fig. 2.1 Calculated energies of the Ai-symmetry deep levels in various
diamond and zinc-blende semiconductors [10]. The relevant impurities are
listed above the upper horizontal axis in the order of decreasing defect

potentials. The energy on the vertical axis is referenced to the conduction
band minimum.

As an example of isovalent impurities which are particularly relevant to this
thesis, we can see from Fig. 2.1 that nitrogen substituting group V eement in GaP
produces a deep level in the bandgap with energy close to the conduction band minimum.

In GaAs, in contrast, N substituting group V element forms alevel above the conduction

band edge, i.e., it becomes a resonant state in the conduction band.
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2.2 Experimental Observations

When the ternary alloy GaAs . xPx is formed between GaAs and GaP, the location
of the lowest conduction band minimum in reciprocal space switches from the zone
center (G point) to the zone edge (X point) a x ~ 0.45. As a result, the slope of the
conduction band minimum versus x (hence the slope of the energy levels of hydrogenic
donors which aways follow the conduction band minimum) changes abruptly at x~0.45.
On the other hand, the energy level of deep states, such as O and N in GaAs;-xPx, varies
continuously with x. Thisis because the energy of a deep state is determined by the entire
band, rather than by the lowest band minimum only, as in the case of hydrogenic states.
The energy levels discussed here are shown as afunction of x in Fig.2.2. The calculations
show reasonably good agreement with experimental data; especialy in the case of N in
GaAs;-xPx, the theory predicts a single ope for Ey as a function of x, a“shallow” bound

state in GaP and a resonant state in GaAs, which are all experimentally confirmed.

12
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Fig.2.2 Comparison of predictions with experimental datafor the N and O
Ai-symmetry deep levels as a function of the GaAs;.xPx alloy composition.

The resonant nature of the N level in GaAs can be seen from the Ey versus x plot
in Fig. 2.2. The extrapolation of this line to x=0 yields an energy level of Ey ~ 1.7 €V in
GaAs (at low temperature), which is above the conduction band minimum. This resonant
level does not bind electrons or excitons, but the impurity will behave as an efficient
scattering center for free electrons in transport process.

Another verification of this N resonant level in GaAs has been obtained by
Wolford et. al. [11] using hydrostatic pressure. The pressure coefficient of the G

conduction band minimum in GaAs is as large as 10 meV/kbar. The N level is much less

13



sensitive to applied pressure, because its wavefunction contains the Bloch states over a
large region in the Brillouin zone. The pressure coefficient of Ey takes the average of the
coefficients of all band states in k-space, much like the behavior of the composition
dependence. As the pressure increases, the N resonant level therefore gradually moves
into the energy gap and becomes a bound state. The energy position of this bound state
can be determined from the emission line of excitons that are bound to this N level. The
results are shown in Fig. 2.3. Similar to the energy versus composition plot, the

extrapolation of the pressure dependence to ambient pressure shows a resonant energy for

theN levd at ~1.7 eV.
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Fig. 2.3 The energies of L and X band minima, shallow-donor-bound
excitons, and N localized states and its phonon replica as a function of
applied hydrostatic pressure in GaAs [9, 11].

14



GaP is an indirect-gap semiconductor. However, it has been realized for a long
time that GaP becomes an efficient light emitter with the introduction of small amounts
of N. Light emitting diodes based on GaAs;xPx : N have been commerciadly
manufactured with wavelength covering the spectral range from the red to the green. The
N impurities were believed to break the trandational invariance in the crystal and relax
the momentum conservation in the light emission process. Recent progress in epitaxial
growth techniques provides the availability of GaAs and GaP films incorporated with N
at alloy concentration (~ several percent). These alloys exhibit new, interesting optical
properties that cannot be understood by the simple theory that has been used to explain

the properties of GaP : N at doping concentrations.
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3. Highly-mismatched Semiconductor Alloys. Group I11-V Based

3.1 Electronegativity Mismatch of the Constituents of Semiconductor Alloys

Electronegativity of the elements is an important property, which Pauling has
described in qualitative terms as “the power of an atom in a molecule to attract electrons
to itself.” [12]. A widely-used quantitative definition of the electronegativity has been
proposed by Mulliken [13]. He uses the arithmetic mean vaue of the first ionization

energy and the electron affinity of the element. The values of the electronegativity are

plotted in Fig.3.1 for most of the group II, 11, VI, V and VI elements starting from the
second period [14].
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Fig.3.1 Electronegativity of the elements as a function of atomic rumber
[14].
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It can be seen that, except for group 11, the electronegativity of the elementsin the

second period is much larger than that of the rest of the same group. Therefore, as the

atoms in a semiconductor are substituted with elements in the same group, the resultant

isovaent alloy can be classified into three categories based on the difference in the

electronegativities of the elements involved. Some examples of ternary alloys are listed in

Tab.3.1.

category dloys Electronegativity difference (eV)

[11-N-As 1.0
[11-N-Sb 1.2
[11-N-P 0.9

Highly mismatched
[1-O-Te 14
[1-O-Se 1.1
[1-O-S 1.0
1-S-Te 04

Moderately mismatched

l1-Se-Te 0.3
l1-P-As 0.1

Lightly mismatched
[1-S-Se 0.1

Tab.3.1 classification of

electronegativity difference.

semiconductor alloys based on the

The classification based on the difference in the electronegativities of constituent

elements can be justified by the electronic behavior of the alloy. For example, GaAsP

17



belongs to lightly mismatched alloys because the electronegativity difference between P
and As is only 0.1 eV. The bandgap of GaAsP shows a nearly linear dependence on
composition as predicted by the VCA theory. In Fig.3.2, the minimum bandgap of GaAsP

is shown as a function of GaP fraction [15].
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Fig.3.2 The minimum bandgap of GaAsP as a function of GaP fraction

[15].

In contrast to the behavior of GaAsP, the composition dependence of highly

mismatched alloys is expected to be very different. GaAsN is an example of such highly

mismatched alloy. Some experimental results for these materials will be presented in the

next section.
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3.2 Experimental results of GaAs;.xNx and In,Gas-yAs:.«Ny: Properties of HMA’s

Most of the experimental studies of semiconductor aloy systems have been
restricted to the cases where there are only small electronegativity differences between
the end-point semiconductor materials. Properties of such lightly-mismatched alloys are
close to the VCA predictions. In contrast, the properties of “highly mismatched” alloys
(HMA'’s) deviate drastically from the linear predictions of the VCA. The most prominent
class of HMA’'s comprises the I11-V1.Nyx aloys, in which electronegative nitrogen
substitutes group V anions in standard group I11-V compounds. The electronegativity
difference between N and Asisaslargeas 1.0 eV.

One of the striking effects of nitrogen incorporation into I11-V semiconductorsis a
dramatic reduction in the fundamental band gap. A band gap reduction of more than 180
meV has been observed in GaAs; Ny aloys with only 1% N [16, 17]. Similar effects
have been also observed in GaP1.xNx [5], INP1.xNx [7], GaSbyAsi-x.yNyx [18] and InSby.xNy
[19] aloys. The large band gap bowing and the lower-thanusual band gap pressure
dependence have been found aso in group 11-VI HMA'’s such as ZnS; «Tex and ZnSe;-
x e [20], where electronegative S or Se substitutes metallic Te atoms.

The composition dependence of the bandgap of GaAsN is shown in Fig.3.3 [21-
24]. In stark contrast to Fig.3.2, the dependence deviates significantly from the VCA
prediction. Even the trend of the change in the bandgap is reversed from the VCA
dependence on the As-rich side. While the VCA predicts a dlight increase in the bandgap,
it is observed the bandgap energy dropping rapidly as a function of N concentration. If

the dependence is expressed with the band bowing equation Eq.(1.1), a huge bowing
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parameter of more than 14 €V is required to accommodate this strong composition

dependence on the As-rich side.
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Fig.3.3 Measured bandgap of GaAsN as a function of GaN fraction [21-
24].
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3.3 Band Restructuring: Many-impurity Anderson Model in the Coherent Potential

Approximation

3.3.1 Background

Over the past severa decades, the physics of randomly disordered crystals has
been studied extensively. An especialy intense effort has been directed towards
understanding of the electronic structure of random semiconductor alloys. The simplest
treatments of such alloys is based on the Virtual Crystal Approximation [1, 2]. As stated
earlier, in this approximation the electronic properties of the alloys are given by the linear
interpol ation between the properties of the end-point materials. The alloy disorder effects
are typicaly included through a bowing parameter that describes the deviations from the
VCA. The description of the composition dependence of the band gap in terms of the
bowing parameter has been commonly used for alarge variety of semiconductor alloys. It
should be emphasized, however, that this approximation is expected to work reasonably

well only for systems with bowing parameters much smaller than the energy gap.

In contrast, the bowing parameter of HMA’s can be significantly larger than the
bandgap energy, as exemplified in section 3.2. In this case the aloy disorder effects
cannot account for the large deviation of the electronic properties from the VCA
predictions. The first attempts to explain these unusua behaviors were based on a
dielectric model that predicted highly nonlinear composition dependencies of the band
gap for the aloys of semiconductor compounds with very different properties [25]. The
model predicted a semiconductor to semi- metal transition in some of the alloys [26]. The
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large band gap reduction in GaNAs;.x aloys has aso been explained by Wei and
Zunger [27] in terms of a large composition dependent bowing parameter that could be
decomposed into three different contributions. a volume deformation, a charge exchange
and a structural relaxation. In the meantime, this approach has been abandoned, and
several other theoretical explanations of the large band gap reduction in 111-V-N aloys
have been proposed [28-32].

Alternatively, the energy band structure of HMA’s has been explained in terms of
the two-level Band Anticrossing (BAC) model [20, 33, 34]. The model accurately
describes the composition and pressure dependencies of the fundamental band gaps of
HMA'’s. Furthermore, it has been used to predict several new effects such as a N-
induced enhancement of the electron effective mass [35-36] and an increase in the donor
activation efficiency [37] in In/Gay.yAsi.Nx aloys, and the change in the nature of the
fundamental band gap from indirect to direct in GaP1-xNy [6]. All these predictions have

now been experimentally confirmed.

In the BAC model, the restructuring of the conduction band is a result of an

anticrossing interaction between highly localized Ay states of the substitutional N atoms

and the extended states of the host semiconductor matrix. The interaction between these
two types of states has been treated in the simplest possible manner in analogy to the
perturbation theory of a degenerate two-level system. More recently, it has been
demonstrated that the BAC model can be derived from a firmer theoretical base [38]. It
isthe direct result of the many-impurity Anderson model, which has been widely used to

treat the interaction between impurity states and band states [39].
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The original Anderson model was developed to describe a single impurity atom of
a transition metal or a rare-earth element in a non-magnetic metal. In Anderson’s s-d
exchange model [39], the electron system is separated into a delocalized part of the
matrix metal, which is described in terms of the band theory, and a localized level of the
d shell electrons of the transition metal impurity atom. A dynamical mixing term is
introduced into the Hamiltonian of the system to describe the hybridization between the
band states and the localized impurity states. Solving the Anderson Hamiltonian it has
been found that, as a result of the hybridization, the impurity d state becomes a virtua
energy state with an imaginary energy part proportiona to the strength of the s-d
hybridization. The imaginary part of the eigenenergy of the virtual state defines the
width of the density distribution of the d state, and determines the lifetime of the state
before the d electrons are delocalized into the band states through the exchange
interaction. Self-consistent calculations were performed to find the conditions for the

existence of localized magnetic moments.

The single impurity Anderson model has been extended to explain the properties
of cerium-based heavy-Fermion systems. A periodic coherent Anderson model has been
developed and investigated over the years to accommodate both the spatial periodicity
and the localization of the 4f orbitals in these systems [40, 41]. The energy dispersion of
the system is restructured into two subbands, a result of the hybridization between the
localized orbitals and the band states. The newly-created indirect gap between the
subbands has profound effects on the electrical and thermodynamical properties of the

system [42].
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A many-impurity Anderson model has been proposed to describe the electronic
properties of semiconductor crystals with low concentrations of deep-level transition
metal impurities [43, 44]. Unlike ordinary hydrogenic impurity states in semiconductors,
these impurity states are characterized by two independent parameters: the spatial extent
of their wave function and their energy level with respect to the nearest band edge of the
host. The phase diagram for the electronic properties of crystals with such impuritiesis
much richer than for the simple hydrogenic impurities. For example, as the impurity
concentration increases, in addition to the trend of the conductivity increasing as aresult
of the Mott transition [45], hybridization between the impurity states and the band states
of the host can suppress considerably the conductivity of the system in the form of inter-
state electron scattering. Therefore, transport properties of the crystal are diversified by
the competition between these two opposing processes.

In the following sections, we use the many-impurity Anderson model to evaluate
the interaction between the randomly distributed localized states and the extended states
in HMA'’s. We solve this problem within the single-site coherent potential approximation
(CPA). The calculations reproduce the BAC model results for the restructuring of the
conduction band. The imaginary part of the Green’'s function also yields new information
on the electronic level broadening that is used to determine the broadening of the optical

transitions and to calculate the free electron mobility.
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3.3.2 Hamiltonian and Green’ s Function Approach

We describe the electronic structure of HMA's (e.g., GaAs;-xNy) by considering
an interaction between the localized and extended states within the many-impurity

Anderson model. The total Hamiltonian of the system is the sum of three terms [43, 44],

H =3 Ecic +q Efdd, + eV, cid, +he), 31
k i

J—a(

where the first term is the Hamiltonian of the electrons in the band states with energy
dispersion Ex°. In the case of GaAs;.xNy, thisisthe G conduction band near the Brillouin
zone center. The second term corresponds to the energy of the electron localized on the
jth impurity site with energy E,-d. To simplify the expressions, we use a vector j to denote
the 3-dimentional coordinates of the jth site. The third term describes the change in the
single electron energy due to the dynamical mixing between the band states and the
localized states. N is the number of primitive cells in the crystal. It is assumed that only
one band and one impurity level are involved in the process. Following Anderson’s
scheme, the hybridization strength is characterized by the parameter Vi; defined by the

following equation [39],

(k|H ) = Té PR (- DH () (- for
:%é}_ >§a|_ Oi*(r' I)HHF (I‘)j d(r } j)dr (32
oi° gkl
N
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wherea(r-j) andj q(r-j) are the Wannier functions belonging to the band and the localized
wavefunction of the impurity on the jth site, respectively. H HF(r) is the single electron

energy described in the Hartree-Fock approximation [39].

The retarded double-time Green’s function for band electrons is defined as
G(t)o << cft) | c* (0) >>=- —q )<[ct).c*(0)], >, (33)
where q(t) is the step function, A(t)° €™ Ae ™ [A B, = AB + BA is the Fermi

anticommutator, and < A>=Tr (Ae' H/kT )/ Tr (e' H/ kT) represents the ensemble
average.

The Fourier transform of EQ.(3.3) is

G(E)°<<c|c* >>= ), G(t)el=) ", (3.44)
and
_ 1 ¢ -i(E+io )ern
G(t) 201 O G(E)e dE. (3.4b)

From the Heisenberg equation

Ih— Alt)=[Alt) H] = Al)H - HA(), (35)
the equation of motion of the Green’s function G(t) can be written,

ih%<<c()|c ss=dt) <[tk ¢ O)], > + <<[ct) H]Ic'(0)>>.  (36)

The corresponding equation of motion of G(E) is obtained from the Fourier transform of

Eq.(3.6) [46-47],

E<<c |c. >>:<[ck,c|j.J+>+<<[ck,H]|C;. >>, (37
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. . + —
Because of the commutation relation [Ck Gy ]+ = dk,k. , Eq.(3.7) leads to

1 [¢] iki
Gy = dkk' Glg(k)) + —Gﬁﬁ) a. ijekJ ij' d (3.8)
j

IN

where the coupling Green's function is defined as Fj,. << d; |G, >> and has the

following equation of motion,

1l o ik i
F.=H?—3aV,.e"“G.,. (3.9)
ik i N * K'j K
In Eq.(3.8) and (3.9), the unperturbed retarded Green’s functions are
G =d, (E- EC+i0*)* HO =d (E- EC+i0')" (310
KK’ Kk’ k J i i’ j . (3.10)
The Green's function for the impurity atomsis defined by H ; °<< d; |d >>.
Eq.(3.8) and (3.9) yield an integral equation for Gy of the form
1 ~ i e
G :dkk'Glick)) + WGéE)é.V xg! mGk" K (3.11)
k"
where the renormalized interaction parameter is given by
7 d 2 d
V=V, ¥, /[E- EY)»V(E- EY) (3.12)
In Eq.(3.12), V is the average value of Vi, assuming weak dependencies on k and j.
For the single impurity case, we can set j=0. The equation chain represented by

Eq.(3.11) is closed and has the following solution,

-~

Vv

é o u
Gy =4 GY + NGlﬁE)GIE‘OIZ‘ _é_]-' a Gk g - (313
% u

Meanwhile,
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1 N ro(e)

ac =3 =N
APk T E e L0 OB e xiof
i_.r.le . i
= N}l POEO_—(gderbro(Ed)g (3.14)

o R+iNpbr ,(E?) » ipbNr o(E¢)
where T o(e) is the density of states (DOS) of E® per unit cell. P ¢) represents the

principa value of the integral and is usualy very smal if r 0(e) does not change rapidly
near EY. Ris the real part of the integration and is small, so that it will be neglected in the
following discussions. Even if R is not negligible, it can be taken into account by
including a shift to EY, and the main conclusion of this theory is not affected. Since r ,(e)
depends only weakly on energy, we can assume that it is constant in first order
approximation of the imaginary part calculation, with an effective value equa to the
unperturbed DOS evaluated at EY and multiplied by a prefactor b.

The poles of Eq.(3.13) give the dispersion relations for the system,

i
E={ (3.15)
1

E¢ +V2R+ipbV2r ,(E)» E¢ +ipbv2r ,(EY)
This is the original Anderson localization model for magnetic impurities in metals. It
shows that the band state energy is unaffected, but the energy of the localized state gains
an imaginary part, implying that the DOS of the localized state is broadened by the

dynamical mixing.

In the case of x = 1, there is one localized state in each unit call. The modd then
becomes a “periodic Anderson model”, which applies to heavy fermion system [40, 41].

In this case the equation chain given by Eq. (3.11) is also closed and takes aform,
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G, =d,GY +NG(0)\/a et IG,.,

K"

=d Gy + (O)Va A G (3.16)
=d, GO[1- VG?]"
Combined with Eq.(3.10) and (3.12), the Green’s function given by E.(3.16) has poles
given by,
(E- ES)HE- EY)=V? (317)
which shows a spectrum restructuring [40,41]. The dispersion relations E.® and E°

anticross each other and result in two new dispersions, i.e., the algebraic solutions of

Eq.(3.17).
3.3.3 Coherent Potential Approximation

For concentrations between 0 and 1, O<x<1, the summation in Eq. (3.1) extends
over XN sites that are occupied by impurities. This situation corresponds to the so-called
“many-impurity Anderson model”. The equation chain EQ.(3.11) is not closed and
approximation is needed for a solution.

We perform the Fourier transform of Eq.(3.11), and obtain the equation of the

Green's function in real space representation,
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N2 kk
_ 1 o O iK' - K" ix 7, (318)
=G +Saa "' VG["G,.,
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=G + é. GI(jO)VGjI' :
i

In matrix form, Eq.(3.18) is written as the Dyson equation,

G=G" +G" G

5 o (3.19)
=GO +GO GO +GO X 3G TGO + .,

where (V),, = pVd,. is the effective perturbation matrix. p = 1 if the I-th site is
occupied by an impurity atom, and p; = 0 otherwise.

In the dilute limit, O<x<<1l, we assume that the impurities are distributed
randomly and homogeneously in space. A configurational averaging can be carried out,
neglecting correlations between positions of the impurities. In this case, the single-site
coherent-potential-approximation (CPA) is adequate for the many-impurity system. In the
CPA, consecutive multiple scattering from a single impurity atom is fully taken into
account, but correlations between scattering from different impurity atoms are neglected
due to the lack of coherence between the randomly distributed impurity sites. This
approximation is illustrated by the following Feynman diagrams in Fig.3.4. We retain

diagrams like (a), (b), (c), etc., but ignore (d), (e), (f), etc..
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Fig.3.4 Feynman diagrams of the CPA. Each solid segment represents an

unperturbed Green's function, and each dashed segment represents a

scattering interaction.

The CPA treatment leads to the result that [43, 48, 49], after the configurational
averaging, the average Green's function partially restores the space trandational
invariance, and k resumes its well-defined properties as a good quantum number. In

momentum space, the diagonal Green’s function in CPA can be written as [43, 48, 49]

1

Gy (E) = [E B Elf -S (E)] ' (3.20)

where the average self-energy is proportional to the impurity concentration,

s (E)=—= X\Zo 0 XY _ (3.21)
1-(V/IN)JA G, 1-VG(E) |
k

The average Green’s function in real space, G(E), is determined by the self-consistency

equation,
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ki BZ
-1 3 1 _
N EE- xV/[L- VG(E)| (322)
r,(e)de

The poles of the average Green’s function determine the elgen-energies of the system. In

the next section, the approximate solutions of Eq.(3.22) will be discussed.
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3.4 Discussion and Comparison between Theory and Experiments
3.4.1 Simplified Representation: Two-level Band Anticrossing Model

In general, G(E) can have an imaginary part, and the DOS for the conduction
band in the entire Brillouin zone is rather complicated. Therefore, numerical calculations
are needed to find the solution to the transcendental Eq.(3.22). Considering that, similar
to the case of Eq.(3.14), the imaginary part of the denominator of the integrand in
Eq.(3.22) is very small (proportional to a small number x), we can replace EQ.(3.22) by

Eq.(3.14) as the lowest order approximation,

G(E)» pc‘)ro(L)senpbro(Ed)» ipb?, (E¢) (3.23)

Equation (3.20) isthen

xV u
G (E)» gE- Ef - —————=v
B & B b [E
p -1
_& e Vix
& © E-E‘-ipbVr,(E’)q (3.24)

_E- (Bl ripbvir EY)
(E- ES)HE- (E? +ipbVv?r ,(E?))- VX'

The new dispersion relations are determined by the poles of Gy« (E), and the solutions are

given by an equivalent two-state- like eigenvalue problem,

ES - E(K) VA/x

= O’ .
Vix  E'+iG - EK) (3.25)

33



where G, =pbV °r O(E") IS the broadening of Edin the single-impurity Anderson Model.

If G=0, Eq.(3.25) is reduced to the BAC model [20, 33, 34] with two restructured

dispersions for the upper and lower conduction subbands,

E+(k)=%\$(EE +E)xy(E: - E°F +4V2X§- (3.26)

If the broadening Gy is nonzero but small, so that 2V A/x >>pr2rO(Ed) and

ES - Ed| >>pbV?2r O(E"), we obtain an approximate analytical solution for Eq.(3.25),

N X (=1
E.(k)» E. (k) Gd[E J"‘ (

- e]+EW-E7] ™ (k)+iG.(k) (3.27)

where E, (k) has been defined in EQ.(3.26). The imaginary part of the dispersion
relations defines the hybridization-induced uncertainty of the energy. We note that the
imaginary part in Eq.(3.27) is proportional to the admixture of the localized states to the
restructured wavefunctions in the two-state-like-perturbation picture described by

Eq.(3.25),

G (k)=|d|E. (k) . (329

As an example, Fig.3.5(a) shows the dispersion relations given by Eq.(3.27) for
GaAs.095No.oos Near the Brillouin zone center. The broadening of the dispersion relations
is given by the imaginary part of Eq.(3.28). In the calculation, the hybridization
parameter V =2.7€V is taken to be an experimentally-determined constant [20]. The
dengity of states for the GaAs conduction band edge is assumed to have a parabolic form

following the effective- mass theory,

ro(e)=4pe- E /1e)?, (3.29)



where e, = 72(2p /b)*/(2m') is of the order of the conduction band width. The lattice
constant of the unit cell is b=5.65 A, and m =0.067my is the electron effective mass of
GaAs. The prefactor b is taken to be equal to 0.22, as will be estimated in a later section.
This anticrossing interaction between the localized states and the G conduction
band states which all have the same A symmetry, is similar to the band anticrossing
effect frequently seen in intrindc semiconductors. Shown in Fig.3.5(b) is the band
gructure of pure GaAs on a large energy scale over the whole Brillouin zone. A band
anticrossing between two %-symmetry bands in intrinsic GaAs along the ? line is

shown.
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E (eV)

Fig.3.5 (@) Conduction band restructuring according to EQ.(3.27) for
GaAs.995Nooos. The broadening of the dispersion curves of the newly-
formed subbands illustrates the energy uncertainties defined in Eq.(3.27).
All the energies are referenced to the top of the valence band of GaAs. (b)
The band structure of GaAs and the localized N level at EY (dashed line)

over the whole Brillouin zone.
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3.4.2 Comparison with Experimental Results: GaAs;-xNy, €tc.

In this section the predictions of the BAC model are compared with some
fundamental experimental results. The bandgap reduction in GaAs;.xNx dloys is
accounted for by the downward shift of the conduction band edge caused by the
anticrossing interaction. Fig.3.6 shows the fundamental bandgap as a function of N
concentration from various reports [21-24] together with the dependence calculated from

Eq.(3.26). The best fit is obtained with an interaction constant of V=2.7eV.

11}

Energy gap (eV)

® Uesugi, et. al.
[ O Keyes,et. al.
1L A Malikova, et. al.
[ 4 Bhat, et al
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Fig.3.6 Energy gap of GaAs;.xNy as afunction of the N concentration from
various reports [21-24]. The solid curve is afit based on the BAC modd.
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The additional E. transition at energies blue-shifted from the previously observed
N resonant level [31] suggests a strong interaction between the N states and the host
GaAs. Fig.3.7(a) shows the photo- modul ated reflectance (PR) spectra for GaAs; Ny for a

range of N concentrations [50]. The critical energies are plotted as a function of x in

Fig.3.7(b). In Fig.3.7(b) it can be seen that the spin-orbit transition energy E + D,
follows E._, indicating that the top of the valence band of GaAs is not affected by the N

incorporation. The symmetric shift of E, and E. is a typical behavior for interacting

two-level systems. On the other hand, the E; energy that corresponds to the inter-band
transition along the ? line in the Brillouin zone shows a much weaker composition
dependence. This implies that the effect of N on the band structure of GaAs away from

the Brillouin zone center is much weaker.
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Fig.3.7(a) Photomodulated reflectance spectra showing the critical
transitions [50]. (b) The critical energies obtained from (a) plotted as a

function of x.
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The anticrossing character of E, and E_ isnot only reflected in the composition
dependence, but can also be seen in their pressure dependencies. Fig.3.8 shows the
energy positions of the E, and E. transition for GaAsyessNoois as a function of
hydrostatic pressure [50]. The solid curves represent the pressure dependencies calcul ated
from Eq.(3.26), using previously-known pressure coefficients dE€ /dP =10.8 meV/kbar

for the GaAs conduction band edge and dE®/dP=1.5 meV/kbar for the N locaized

states.
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Fig.3.8 Energies of the E; and E. transitions obtained from PR

experiments as a function of hydrostatic pressure for GaA S.9s5No.015 [50].

At present, growth of I11-V-N aloys is considered challenging; bulk material has

not been reported and most studies use epitaxial techniques such as gas source molecular
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beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD) to grow thin
films. Because only asmall concentrationof N (~1%) can lead to alarge modification in
the energy band gap of 111-V-N materias, ion implantation is an attractive and feasible
alternative approach to synthesize these alloys. We have synthesized a series of 111-V-N
alloys [51] using ion implantation technique and their optical properties have been
subsequently characterized. In the following text, the quaternary alloy AlGas-yAS:xNx IS
discussed as an example.

As in the case of GaAs;xNy, N incorporation in AlyGa;.zAs has also been
observed to have similar effects. We have observed a significant N-induced reduction of
the band gap in N-implanted AlyGas.yAs thin films. For the implantation, N* ions were
implanted into 0.3-0.5 nm Al Ga;-yAs epitaxia films MOCV D-grown on GaAs substrates
with y up to 0.61. Multiple N implants with energies in the range of 33 - 160 keV were
used to create ~ 200-350 nm thick layers with a uniform N atomic fraction. Rapid thermal
annealing was performed on the implanted samples in a flowing Nb ambient over the
temperature range of 560-950°C for 5-120s. The samples were then optically investigated
by PR spectroscopy. Positions of both the lower E. and upper E. subbands for AlGa;-
yAs1.xNy determined from the PR measurements are shown in Fig.3.9 as a function of
AlAs mole fraction y. Note that the optical transitions to the indirect band gaps at L or X
minima are not observed in the PR spectra. The known dependencies of the G, X, and L
conduction-band minima on y are also shown in the figure. The dependence of the
localized nitrogen level Ex on'y has been determined from published results on N-related
photoluminescence lines in AlyGay.yAs alloys doped with N at low concentrations [11,

52]: En=1.65+0.58 y (eV) for the N level at room temperature. This dependence is shown
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by the dotted line in Fig.3.9. It is worth noting that the change of Ey by about 0.58 eV for
y changing from O to 1 is very close to the valence band offset between GaAs and AlAs,
0.55 eV. This indicates that the energy Ey is practically constant independent of the
AlGaAs alloy composition when referenced to an absolute energy scale, a characteristic
feature of highly localized levels that has also been previously observed for the N level in

GaAsP dloys[10], as has been discussed in Ch.2.
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Fig.3.9 The E; and E. transition energies measured with ion beam
synthesized AlyGay.yAsi.XNx samples. The variation of Ey and the G, X,
and L conduction band edges as a function of AIAs mole fraction in

Al,Gas.yAs alloys are also shown.

Resultsin Fig.3.9 show the evolution of the E. and E+ energies as functions of the
composition. The composition dependence of the relative locations of the interacting Ey

and G levels leads to a change in the nature of the E. and E; subbands. At larger y the G
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edge moves to higher energies and the E. subband acquires more G band-like character.
This compositiontinduced evolution of the anticrossing interaction closely resembles a
change in the nature of E. and E. states with hydrostatic pressure. The symmetric shift of

E, and E. from the positions of Eg and Ey with increasing AIAs composition is another

manifestation of the two-level anticrossing interaction in the system.

Similar band anticrossing effects have also been observed in several other N-
containing 111-V dloys, such as GaP1.xNx [5], InP1.Nx [7], GaSbyAsi.yNy [18] and
INSb1xNx [19]. Shown in Fig.3.10 is the bandgap bowing of InP;.xNx grown by gas-
source molecular beam epitaxy with small N concentrations [53]. The energy of the
localized N level E%=2.0 eV above the valence band edge of InP was estimated from the
valence band offset of 0.35 eV between InP and GaAs. A BAC fitting leads to a

coupling constant of V=3.5 €V in InP1.xNy.
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Fig.3.10 Energy gap of InP1xNx as a function of x. The solid line is a fit
based on the BAC modd.

The strong bandgap bowing is a characteristic of the localized-extended
anticrossing effect in the system. This effect is frequently observed in I11-V-N alloys
because of the large electronegativity mismatch between N and the group V element it
substitutes.

It is well known that large band gap bowings also exist in al group I11-Sb aloys
in which metallic Sb is replaced by either P or As. Given the moderate electronegativity
difference between Sb and P or As, an interesting question arises. could the strong
bowings also be explained by the band anticrossing interaction? Fig.3.11(a) shows the

composition dependence of the energy of the conduction band edge in GaAsSbi-x [54]
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and InAs,Sb.y [55] along with the results of calculations based on the BAC model. The
calculations account well for the conduction band shifts assuming that the energy of the
localized As level lies at 1.6 €V above the valence band of GaSb and the coupling
constant is 0.95 eV. The band anticrossing effects in these materials are significantly
weaker compared with I11-N-V alloys because of the smaller electronegativity difference
of 0.2 eV between Sb and As.

Somewhat larger anticrossing effects are expected for 111-V aloys in which Sb
with an electronegativity of 1.8 eV is partialy replaced by P with an electronegativity of
2.1 eV. Such alloys containing P and Sb are difficult to grow because of a large
immiscibility between the components. A successful synthesis of GaP«Sh;-x has shown
that this alloy system exhibits a large band gap bowing [56]. The energy of the
conduction band edge as a function of the P content is shown in Fig.3.11(b). As expected,
the anticrossing effects are more pronounced in this case than in the case of GaAsSb;.x or
InAs,Sb1.y alloys. Note that there is quite alarge deviation of the conduction band energy
from the prediction of the VCA represented by Ey. Again, calculations based on the BAC

model account very well for the downward shift of the conduction band edge.

45



P EFETEPIFN IIFENIPE NAFEAr A Ly
005 0.1 015 0.2 025 03

Composition, x ory

1.2_|||||||||||||||||||||||v|||||

0.4—|||||||||||||||||||||||\|||||
0 005 01 015 0.2 025 0.3

Composition, x
Fig.3.11(a) Energy of the conduction band edge in GaAsShix and
INAS,Sby1.y. The energies are relative to the valence band maximum of
GaSb [54, 55]. (b) Conduction band minimum as a function of
composition in GaPShi.x. The solid line shows the results of BAC
calculations with Ey representing the conduction band edge obtained
within the VCA [56].
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3.4.3 GaAs;-xN/GaAs Quantum Wells: Theory and Experiments

When semiconductor aloys form quantum wells (QW), the optical and the
electronic transport properties can be changed significantly. The potential for important
practical applications in high-efficiency optoelectronic devices clearly necessitates a
good understanding of the electronic structure of the I11-V-N based QW’s. In this section,
the results of studies of GaAs;-xNx/GaAs quantum superlattices will be shown. The
Interband transitions in GaAs;-xN,/GaAs multiple QWs were studied at room temperature
by PR spectroscopy as a function of well width, the nitrogen concentration, and
hydrostatic pressure. It will be shown that all the experimental data can be explained
guantitatively using the dispersion relationship obtained from the BAC model to calculate
electron confinement effects in a finite depth quantum well.

A series of GaAsxNy/GaAs multiple QWs with different GaAs.xNx wel
thickness from 3 to 9 nm, N concentrations 0.012 < x < 0.028, and 20 nm GaAs barriers
were grown by gas-source molecular beam epitaxy on a semi-insulating GaAs substrate
and capped by a 50 nm GaAs layer [57]. The QW structure is shown in Fig.3.12.

The PR spectra for GaAsN/GaAs QW’s with 7 nm well width and four different

N concentrations are shown in Fig.3.13(a).
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Fig.3.12 Structure of GaAsN/GaAs multiple QWs used in this study.
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Fig. 3.13(a) Raw PR spectra taken at room temperature for GaAs;-xNy /
GaAs QW'swith 7 nm well width and different N concentrations. (b) First
and second transition energies E; and E; as a function of N concentration
for the PR spectra shown in (). Solid curves: calculated values using the
band anticrossing (BAC) modedl and finite-depth single well confinement
with GaAs;.xNy electron effective mass given by Eqg. (3.30); Short dashed
curves. caculated values assuming GaAs;xNx electron effective mass
equal to M’ gaas. Long dashed curve: band gap of bulk GaAs;.xNy given by
the BAC modd.

The feature at 1.42 €V arises from the GaAs cap layer and barriers. Two
trangitions at lower energies are also clearly identified. We assign them to transitions
from the GaAsN valence band to the two confined levels of the conduction band and
denote them E; and E;. These assignments are illustrated in Fig. 3.14. As shown in Fig.
3.13(b), the features corresponding to both transitions shift to lower energy with

increasing X. The shifts can be attributed to the bandgap reduction observed in bulk
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GaAs;-xNx [34]. It should be noted that the data in Fig.3.13 and in Fig. 3.18 in the

following text agree, within experimental error, withsimilar data presented in Ref. [58].

GaAs GaAs,N, GaAs
CB —

VB

Fig.3.14 Band alignment and optical transitionsin the QW.

In first order perturbation theory, the BAC model predicts a hybridized lowest
conduction band given by Eq.(3.26). The GaAs conduction band near the G point can be
represented well by a parabolic disperson function with effective electron mass
M Gaas=0.067 my. The band gap of bulk GaAs;.xNx givenby Eq. (3.26) is aso plotted in
Fig.3.13(b). It can be seen that the transitiors in the QW's are blue shifted from the bulk

energy gap due to quantum confinement.

To evauate the confinement quantitatively, we applied a finite-depth square well
confinement model with depth and width of the well and the effective mass inside (mi,)
and outside (moy) the well as input parameters. Since the barrier layer is much thicker

than the active layer, we neglect the coupling between neighboring QW's and simplify
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the system into a single QW problem. Furthermore, the electron dispersion given by Eq.
(3.26) is non-parabalic; hence the electron effective mass in the conduction band is
dependent on the k vector, resulting in an inseparable Schrédinger equation. To simplify
the calculation, we have assumed that the effective mass of the electrons in the quantum

well can be approximated by an energy-independent density-of-state mass at the bottom

of the lowest conduction band [33, 59],

d u
E (0) E a (3.30)
e JE©)- ') +avaxll

D: ('D>|Q> M-

dE / dk]|, _ Moans

This B a good approximation, because as can be seen in Fig. 3.13, the confinement
energies are below 0.2 eV, such that a change of the effective mass of less than 5% is
estimated for the energy corresponding to the ground state confinement. Shown in Fig.
3.15 are the dispersion curves of E.(k) and the parabolic approximation assuming an
electron effective mass given by Eq.(3.30). It can be seen that within the energy range of

0.2 eV from the E. bottom, the parabolic approximation mimics E.(k) quite well.

51



GaAsp.984No.016

M =M 62as=0.067 mr=0.102

E(K) (V)

E (k)

1] 0.05 0.1 0.15 0.z

k (UA)

Fig.3.15 The dispersion relation of E.(k) for x=0.016, and the parabolic
approximations to it near the band edge assuming different electron
effective masses. Eq.(3.30) gives an effective mass of m = 0.102 for this
N concentration.

Photoluminescence [60] and x-ray photoelectron spectroscopy [61] studies of
GaAs;-xNy/GaAs heterostructures indicate a dightly type-11 band lineup with a very small
negative valence-band offset of PE,| < 20meV/%N. For this type-Il band lineup, the
transition energies are not sensitive to the value of the valence band offset, because the
holes are not confined in the active well layer. Consequently, the lower states of the
optical transitions in the well are always located at the top of the valence bard, and the
energies of the two observed transitions are given by the locations of the ground and first
excited states of the confined conduction band electrons [60].

In the following discussion, we neglect the strain effect induced by the lattice
mismatch between the GaAs;xNx layer and the GaAs layer. For x<0.03, the lattice

constant of GaAs;-xNy is changed from that of GaAs by less than 0.5% [62]. The biaxial
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tensile strain introduced by this small mismatch may raise the valence band of GaAs;-xNx
by 40 meV at most [63]. The quantum confinement of the holes by this shallow well has
been estimated to decrease the transition energies by less than 20 meV for all the QW’s
studied here. It is important to note that the small energy shifts resulting from the biaxial
strain-induced hole confinement do not depend on the external hydrostatic pressure and
are the same for al the optical transitions observed. Also, the maximum energy shift is
equivalent to the shift produced by a change of the N content of lessthan 0.2 %, which is
below the accuracy of our determination of the alloy composition. It can therefore be
argued that the conclusions of this study are not affected by the omission of the strain

effects on the valence band offsets.

A
N i
- B2
) S
1
-a/2 al2 Z)

Fig.3.16 A schematic of the ground state and the first excited state

wavefunctions in the QW.

The one-dimensional time-independent Schrédinger equation is written as

1A% d i
| e VY @)= 6 @) B2
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where U(2) is the square potential shown in Fig.3.16. The boundary conditions are [64]

iy (- ¥)=y (+¥)=0
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1 d 1 d
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fm, dz > My, dz >*

The equation and these boundary conditions lead to a number of transcendental
equations, from which the bound-state eigen-energies of the system can be determined.
For example, the evenparity states (ground state, second excited state, etc.) have the

following equation set:

tan?(ina 9: koutrnin ,
1 e 2 a kinrnout
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The numerical solutions for the set have been found and the transition energies
have been calculated. The energies of E; and E; calculated using the QW effective mass
obtained from Eq.(3.30) are shown as solid curvesin Fig. 3.13(b). The calculations are in
good agreement with the experimental results. The agreement is even more remarkable
considering the fact that no adjustable parameters have been used in the calculations. We
have used al the parameters (i.e., E® and V) that were previously determined from the
studies of composition and pressure dependence of the optical properties of bulk GaAsN
alloys[33, 34]. For al the four samples shown in Fig. 3.13, the effective mass calculated

from EQ.(3.30) is equa to about 0.11mg, which is over 60% larger than the eectron
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effective mass of GaAs. To demonstrate the effect of the heavier electron mass, we have
also calculated the optical transition energies assuming that the electron effective mass of
GaAsN dloys is the same as that of GaAs. The results are shown as dashed curvesin Fig.
3.13(b). Clearly, much better agreement with the experiment is reached when the N
induced enhancement of the electron effective mass is incorporated in the model. Similar
vaues of the effective mass have aso been theoreticaly predicted [65] and
experimentally observed. Jones and co-workers measured via three different techniques
an effective mass of ~0.13myg for 1. 07Gapa3AS.08Noo2 [66]. Hetterich et. al. observed an
effective mass increased by ~0.03mg in an InGaAsN alloy with 1.5% N [35]. All these

independent results agree reasonably well with the values predicted by Eq.(3.30).
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Fig.3.17 The electron effective mass given by Eq.(3.30) as a function of N
concentration x and hydrostatic pressure P.
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Figure 3.18 shows the optical transition energies as a function of the well width

for a fixed N concentration, x=0.016. The data clearly show increasing quantum

confinement with decreasing well width. Again, the theoretical calculations agree well

with the measured data if the heavier effective mass given by Eq.(3.30) is used in the

calculations as opposed to a fixed value of 0.067my. The effect of the heavier effective

mass is especially pronounced for the optical transitions to the first excited state in the

well (Ey).
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Fig. 3.18 E; (circles) and E» (sguares) transition energies as a function of

well width for x=0.016. The meaning of the curvesisidentical to thosein

Fig. 3.13(b).
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The hydrostatic pressure dependence of the E; transition is shown in Fig. 3.19,
along with the predicted pressure dependence of the bulk GaAsN conduction band edge
Epuk. It can be seen that the confinement energy, Ei-Enuk, decreases with increasing

pressure. This effect is a result of the pressure-induced increase of the electron effective

mass predicted by the BAC modd [33]. Because of the much different pressure
coefficients of the extended states and the localized N states [33, 34], the conduction
band edge shifts towards EY under hydrostatic pressures. According to Egs.(3.26) and
(3.30), this shift results in a flattening of the dispersion relation and an increase of the
electron effective mass in the lowest conduction band. For the sample in Fig. 3.19, the
effective mass increases from 0.11myg at ambient pressure to 0.28mg at 70 kbar, four times
larger than the effective mass of the GaAs host. The calculated effective mass as a
function of pressureis shown in Fig. 3.17. It is also evident from Fig. 3.19 that, as shown
by the dashed curve, the calculations assuming a pressure-independent effective mass
deviate from the experimental results at high pressures. The increase of electron effective

mass with pressure has also been reported in Ref [66].
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Fig.3.19 Thefirst transition energy E; as a function of hydrostatic pressure
for x=0.016 and well width=7nm. Solid curve, calculated values with
GaAs;-xNx electron effective mass given by EQ.(3.30); Long dashed curve,
calculated values assuming GaAs.xNx electron effective mass equa to
M Gaas The pressure dependence of the band edge in bulk GaAs;.xNy
expected from the BAC model is shown as a short dashed line.
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3.4.4 Variational Cadculations of the Ground State of Shallow Donors, Neutral

Impurities, and Excitons in GaAs;-xNy

In this section, the ground state binding energies of hydrogenic donors, neutral
impurities, and excitons in GaAs;.xNy aloys are calculated based on the new dispersion
relation in the context of the BAC model. It will be shown that due to the N-induced
nonparabolicity of the dispersion and the downward shift of the conduction band, the
Bohr radius and binding energy of shallow donors exhibit strong dependencies on the N
concentration.

According to the BAC model, the interaction of the N resonant state with the
conduction band of the GaAs matrix gives rise to the formation of two conduction sub-
bands, E. and E., with non-parabolic dispersion relations given by Eq.(3.26). For lightly

doped GaAs, the corduction band of the matrix can be well described by a parabolic
dispersion function with a constant effective mass, m" = 0.067m, .

We consider the hydrogen atom problem for a band with a dispersion relation
given by Eq.(3.26). For convenience, we define atomic units in which the unit of length is

hzer/(m*ez) (»10.4 nm for GaAs, the Bohr radius of a hydrogenic donor), the

wavevector unit is the reciprocal of the length unit, and the energy unit is 2” 13.6m’ /e ?
(» 10.46 meV for GaAs, twice the Rydberg of the hydrogenic donor). In atomic units, the
free-carrier-screened Coulomb potential for a hydrogenic donor is written as
V(r)=- & /r, where 1/b is the screening length measured in atomic units.

It is well known thet the static dielectric constant that affects the binding energy

of the hydrogenic impurities depends on the electronic band structure. The dielectric
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function consists of the contributions from lattice vibrations and vaence band e ectrons.

The total static dielectric constant of GaAsis e, (0) =1+ ¢, (0)+ ¢, (0) » 13.2. The lattice
contribution to the static susceptibility, ¢, (0)» 2, is the difference between the high-

frequency e, and the static e, (0) [9]. ¢, (0) is assumed to be less sensitive than ¢ (0) to
the few percent incorporation of N. To estimate the effect of the modified band structure
on the dielectric constant, we adopt an empirical equation proposed by Chadi and Cohen

that correlates the static electronic susceptibility to the fundamental band gap, Eg, for a

wide variety of materials with zincblende structure[67],

, (3.34)

inwhich b equal to 159.0 (eV A*?) isa universal constant, ard & is the lattice parameter.
Since the fundamental band gap is reduced by alloying with GaN according to Eq.(3.26),
the total static dielectric constant can be calculated and is shown in Fig. 3.20. In our
calculations, we have neglected the variation in ag. It can be seen that Eq.(3.34) predicts
that the N-induced modification in the conduction band structure raises the total static
dielectric constant. It has been observed experimentally that the refractive index of
In,Gay.yAs1. Ny, which is directly related to the dielectric constant, indeed increases upon
the incorporation of N [61]. However, no systematic experimental data of e, are

available for a quantitative test of the applicability of EQ.(3.34) in GaAs;-xNx.
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Fig.3.20 Minimum band gap predicted by the BAC model and total static

dielectric constant calculated from EQ.(3.34) as functions of x.

Considering the complications introduced by the non-parabolic dispersion relation

in Eq.(3.26), we seek solutions of the Schrédinger equation in momentum space. With an

eigen-energy W, one writes the Schrodinger equation as [64]

(E(k) - W)F (k) =- ¢y/(k - @)F (a)da,

(3.35)

where E(K) is the kinetic energy associated with the dispersion relation. The screened

Coulomb potential in momentum space is obtained with a Fourier transform,

V(K)© L@-‘R*V(r)dr

(2p)’°

(2p)°
1

-1 -ikr e-br

2p2(b? +K?)

dr

(3.36)
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For a central force potential, the Schrodinger equation is separable, and the
wavefunction can be factorized as F | (k) u %gl (k)Ylm(q,f ) . For the ground state (1s) of
the shallow donor, the radial part of Eq.(3.35) is given by

1 ¥
[E60 - Wixg(k) = aQulk.a) (@) (337)

where the integral kernel is

(k+q)° +b?

O (3.38)

Q, (k. q) =%'n

This integral equation can be numerically solved using the variational principle. For a

hydrogenic donor in nitrogenfree GaAs, the disperson is parabolic,

E(k)=E°(k)=k?/2 (in atomic units). Assuming no free-carrier screening, b=0,

Eq.(3.37) has an analytical solution with an eigen-energy W = - % (» -5.23meV), and a

wavefunction

9 (K) VI ( ! 2)2 . Thisisthe Fourier transform to momentum space of the
1+k

ground- state wave function of a normal hydrogenic atom, e .

For the variationa calculation of the non-parabolic conduction band in GaAs;-xNy,

we choose

£t5/4 K

k.t) =
go( 1t) 4—\

¥
\

as atria function. This function is aready normalized, 0

2
w k’dk =1 When the

parameter t=1, go(kit) returns to the original exact solution, go(k), for norma hydrogenic
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donors with parabolic dispersion relation. The corresponding wave function in real space

isthe origina one, rescaled by afactor Jt:

- Aftr
do(k,t) - PR Co(r,t) i re ' (3.40)
K r r

Thetotal energy isthe sum of the kinetic energy and potential energy,

(k+q) +b

W(t) = 5 E(K)|go(k,t)] dk - % ayn R 9, (k. 1)g,(q,t)dkdg.  (3.41)

The minimum point of the W(t) dependence gives the best approximation for the ground
state energy for this trial wave function. The integration should be performed within the
first Brillouin zone, but due to the strong localization of the wavefunctions in momentum
gpace, one can extend the upper limit of the integration to infinity as a good
approximation.

Choosing the dispersion relation E(k)= E. (k), the lower sub-band of GaAs; N
in Eq.(3.26), we can approximate the ground-state energy numerically. At the minimum

point t=tn,, the binding energy is given by the difference between the ground-state energy
and the bottom of the conduction sub-band, E =M(t,)- E (0)|. The extent of the
wavefunction in real space (Bohr radius) isgiven by a; =1/ Jt: in atomic units.

As an example, Fig.3.21 shows the curve of W(t) for the unscreened Coulomb
potential. The minimum point of the curve gives the values of ty, and W(t,,). From these
values the Bohr radius and the binding energy of the system can be calculated. It can be
seen that as x increase from 0 to 0.02, the minimum point of the curve shifts downward

and rightward, corresponding to a lower eigenenergy and a smaller Bohr radius,

respectively.
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Fig.3.21 The total energy as a function of the variational parameter t for
unscreened Coulomb potential (b=0) for x=0 and 0.02. The change in &
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The binding energy and the Bohr radius of the ground state of a hydrogenic donor

as functions of x calculated for the case of negligible free-carrier screening of Coulomb

potential (b=0) are shown in Fig.3.22(a). The initial rapid increase of the binding energy

shown in Fig. 3.22(Q) is attributed to the N-induced increase of the effective mass. The

gradua decrease of the binding energy for x > 1% is associated with the increase of the

dielectric constant. If the change of the dielectric constant predicted by Eq.(3.34) is

neglected and a compositionindependent e€,=13.2 is adopted, the binding energy

increases monotonically, reflecting the increase of the electron effective mass with

increasing N composition. These two situations should correspond to the upper and lower

limits for the composition dependence of the binding energy. The effects of the

composition dependencies of the effective mass and the dielectric constant are also

clearly visible in the dependence of the Bohr radius on the N content shown in Fig.

3.22(b).
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Fig.3.23 Calculated donor binding energy and Bohr radius as functions of

N concentration for a free-carrier screened Coulomb potential with

screening factor b=1.
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Figure 3.23 shows the binding energy and the Bohr radius as a function of the N
concentration for a Coulomb potential screened by free carriers with screening factor

b=1, i.e, a screening length :h2er/(m*ez):1:r2

" 10.4(nm). The binding energy

increases dramatically as x increases from 0 to 0.02. The Bohr radius decreases rapidly
for x increasing from O to 0.01. At x=0.01, the predicted two-fold reduction of the

effective Bohr radius should cause a large, eight-fold increase of the critical

concentration for a metal-insulator transition for shallow donors in GaA 99N 1.

Due to the lack of Coulomb attraction, the potential of a neutral impurity is
usualy much weaker and shorter-ranged than that of the hydrogenic defect. Several
functional forms have been proposed to model the potential of neutral impurities [69].

Among them, the simplest ones are probably the “square” potential and the exponential

potential, - be ™ . These potentials are shown in Fig. 3.24 for comparison.
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Fig.3.24 Comparison between different functiona forms of potentials.
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Similar variational calculatiors can be performed for these neutral impurity
potentials. For example, for the exponential functional form, the integra kernel in

Eq.(3.37) should be replaced by

= _be™ ¥ _bbe 1 | 1 U
V(r) =-be™ %%IHE® Q (k Q) o STk b§+(k+q)ZH(3'42)

The calculated binding energy and Bohr radius for exponential potential with b;=b,=1 are
shown in Fig. 3.25 in comparison with the previously-shown results of the Coulomb
potential. It can be seen from Fig. 3.25 that, due to the much weaker attraction of the
neutral impurity potential, the binding of electrons is much weaker. Nevertheless, its

dependence on the N composition is similar to that of the hydrogenic donor.
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Fig.3.25 The binding energy and Bohr radius of a shallow donor (-1/r) and
a neutral impurity potential (-€"). The change in & shown in Fig. 3.20 is
not considered in the calculation.
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The ground-state energy of excitons can be calculated in a similar way. Assuming
a single parabolic dispersion for the hole with effective mass my" (approximately 0.45mg

for heavy holesin GaAs), the total kinetic energy of the system can be written as

m k2
E(k) =E (k) +E (k) =E _(K) + ——. (3.43)
m, 2
This energy is also sensitive to external pressure P, linked by the pressure dependencies
of EY and E%(k) through E.(k). Shown in Fig.3.26 is E(k) calculated at ambient pressure

and for P=100kbar.
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Fig.3.26 The kinetic energy of the direct exciton system for x=0.01 at
ambient pressure and P=100kbar. The energy is measured in atomic units

referenced to the bottom of the conduction band of GaAs, E(0).

Assuming an unscreened Coulomb interaction between the electron and the hole,
substitution of Eq.(3.42) into Eq.(3.41) for the variational calculation gives the Bohr
radius and binding energy as a function of pressure and N concentration. The results for

x=0.01 are shown in Fig. 3.27. The Bohr radius is reduced to ~1/4 of the ambient-
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pressure value at 120 kbar. Thisis due to the effect that the pressure-induced flattening of
the dispersion encourages the wavefunction to expand in k space, correspording to a
shrinkage of the wavefunction in real space. The increase in the binding energy is aso
considerable. At ambient pressure, the hole mass is much larger than the electron “mass’,
therefore the exciton is “hole-centered”, and the binding energy is close to the binding
energy of a hydrogenic donor (~5meV). At high pressures, the conduction dispersion is
flattened; hence the electron effective “mass’ is greatly enhanced (see Fig. 3.17).

Therefore, the exciton becomes “electron-centered”. As a result, the binding energy of

the exciton approaches the binding energy of hydrogenic acceptorsin GaAs (~35meV).
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Fig.3.27 The calculated Bohr radius and binding energy for x=0.01 as a
function of pressure. The change in @ shown in Fig.3.20 is not included in
the calculation.
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The variational calculations found the approximate binding energy and Bohr
radius of various binding systems in GaAs;xNyx with this specia nonparabolic
conduction dispersion. The results not only provide a possible way to understand some
interesting observations made with this alloy, such as the behavior of the linewidth of
excitonrelated optical transitions [70], but it can be also used to analyze and predict new
properties of this alloy, such asthe threshold of a Mott transition and transport properties

under pressure.
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3.4.5. State Broadening and Related Effects

In preceding sections, the N-induced modification of the conduction band
dispersion and some related effects are discussed in detail. In addition to the changes in
the dispersion relation, the band restructuring caused by the BAC effect also includes a
significant broadening of the conduction band as illustrated in Fig. 3.5(a). In this section
the band broadening effect will be discussed.

As the expression of the Green’s function is obtained, the density of states of free

electrons can be calculated from the imaginary part of the Green’s function [71],

r(E)=21m8 Gy (E) == ¢y o (E¢)Im[G,, (E)ES. (3.44)

1
p p
The integration converges rapidly with E; in asmall range that isin proportion to x. The
calculated perturbed DOS for GaAs;-xNx with several small values of x is shown in Fig.
3.28. Note that the anticrossing interaction leads to a dramatic redistribution of the

electronic states in the conduction band. The most striking feature of the DOS curves is

the clearly seen gap between E. and E. that evolves with increasing N content.
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Fig.3.28 Density of states of GaAs;-xNx aloys for arange of values of x as
compared with the unperturbed DOS. The two black dots in each curve
indicate the energy positions of the E. and E. subband edges.

In order to illustrate the effect of the state broadening on the optical properties, we
consider the spectral dependence of the interband absorption in InGay.yAs;.xNy alloys.
The optical absorption coefficient due to the transitions from the valence bands to the

restructured conduction bands can be written in the form of the joint density of states as

aB)u =& ¢ o(Esmle, (E + EY laes. (3.45)

1
E
In this expression, the sum over v represents the sum of the contributions from the heavy-

hole, the light-hole, and the spin-orbit split-off valence bands. Assuming parabolic forms
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for the dispersion of the valence bandsE, near the Brillouin zone center, the optical

absorption is calculated for InypsGapgsASogeNoo1 for which experimental results are
available [72]. The comparison between the calculation and the experimental data is
shown in Fig.3.29. In the calculation, the only parameter that has been adjusted is the
prefactor b used to scale the energy broadening. The best fit with the experimental datais
obtained with b=0.22. The calculation clearly reproduces the two edges in the absorption,
one starting at ~1.8 €V due to the onset of the transitions from the heavy-hole and light-
hole valence bands to E., and one starting at ~1.5 €V attributed to the transition from the
split-off valence band to E.. The more rapid rise of the experimental data at the
fundamental absorption edge near 1.2 eV is most likely due to the continuum exciton

absorption effect, which has not been included in the calculation[9].
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Fig.3.29 Calculated optical absorption coefficient in comparison with
room-temperature experimental data for free-standing
INy.04GapgsAS.9090N001. The oscillations below the absorption edge are due
to Fabry-Perot interference.

According to the band anticrossing Eq.(3.26), the hybridization results in an

energy gap near EY witha magnitude depending on X,

6 VX

>y —. (3.46)
o |E°- E

D=E,(0)- E° :%§/(Ed SEf +avix- (BC- E)

~

The broadening of Ei(k) near the edge of the smal gap is approximately

G, =pbV?r O(Ed ) To have a well-defined band restructuring, the gap between the two
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subbands should be larger than the energy uncertainty, i.e, D> G,. This condition

defines a lower limit of x for the band restructuring,

x> X, ° 4p°b ><QEd - Ere, )" (3.47)

For N in GaAs, this concentration limit is X ~ 0.0016.

The band broadening function in Eq.(3.27) defines the lifetime of the free
electrons through the uncertainty principle. The mean free path of the electrons is the
distance that a free electron on the Fermi surface travels within its lifetime. The upper
limit of x for the applicability of CPA treatment can be set as the concentration for which
the average distance between impurity atoms is equal to this mean free path. The upper
limit of x is thus inversely proportional to the free electron concentration, linked by the
Fermi velocity.

For n-type GaAs;-xNy, the electronic transport properties are also strongly affected
by the BAC effect. The conductivity of the system is closely related to the imaginary part

of the Green’s function [49, 71],

_2¢h ¥ = Tf(E E:)oe 2
s (X)—p—VQdEg T 2 k) imle, (E)F, (348)

where f(E,E. ) =1/{L+exp|(E - E.)/(ksT)] isthe Fermi distribution, and

(3.49)

is the group \elocity of the free electrons. The Fermi energy is determined by the free

carrier concentration with the following equation,

¥

n=q (E)f(E E- )dE. (3.50)

The mobility of the system is given by
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m{x,n) =2 (x.n) (3.51)

exn

From these equations it can be seen that the transport properties are more
sensitive to the level broadening than the optical properties are. Indeed, the limit on the
mobility imposed by the N-state scattering is completely dictated by the broadening
function. Experimertally it has been observed that the incorporation of N into GaAs
reduces drastically the mobility of the material. For ntype GaAs, the roomtemperature
Hall mobility can easily exceed 1000 cn?/V's [73]. Hall mobilities of 190 cnf/Vs for as-
grown IryosGaoesAsogeNoor and 70 cnf/V's and 140 cnf/Vs for as-grown and 650 °C
post-growth-annealed 1y 0sGap 92AS.97N 003 have been reported [74]. This effect can be at

least qualitatively understood from the band state broadening mechanism. The emergence
of the imaginary part in I:i_, (k) defines a broadening in the energy levels, dong with a
finite lifetimet ~7/C,. The mobility of the system, neglecting phonon scattering, is
givenby m»<t /m’ >=<n/ (mi xq) > Therefore, the mobility of the system is reduced
because of two effects caused by the impurity scattering: the increase in the effective

mass and more strongly, the finite energy broadening. Figure 3.30 shows typical transport

properties of an InGaAsN sample.
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Fig.3.30 Transport properties of an unintentionaly doped sample
measured by Hall effect. (a) electron concentration, (b) mobility and (c)
resistivity as a function of temperature. The numbersin meV represent the

activation energy calculated from the slope on the Arrhenius plot.
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3.4.6 Band Anticrossing in the Entire Brillouin Zone: GaP;-xNx

GaP is an indirect-gap semiconductor. It has been demonstrated that the
incorporation of N into GaP changes the nature of the fundamental bandgap from indirect
to direct [6]. Very recently, the transition of the lowest bandgap from indirect to direct
has been shown to occur around a most x~0.5% by usng timeresolved
photol uminescence spectroscopy [75]. A new conduction band minimum is formed at the
? point as a result of the anticrossing between the ? edge of the conduction band and the
N level, which is located at 2.15eV above the top of the valence band (dightly below the
X band edge). The interaction strength has been determined to be V=3.05 eV. Figure 3.31
shows the energies of E. and E. as a function of N concentration observed using PR
spectroscopy, in comparison with the BAC calculations [6]. Since the modulated PR
technigue responds to direct transitions only, these observations confirm the direct nature
of the fundamental bandgap of the GaP;.x\Ny alloy. The energy level of the localized N
states in GaP has previously been directly observed by photoluminescence spectroscopy

[11].
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Fig.3.31 E+ and E. measured by PR as afunction of x for GaP;.xNx. The
point at x = 0 and E. = 2.18 eV is not measured but the predicted nitrogen
level in dilute limit. The curves are the BAC calculations.

On the other hand, since the wavefunction of the nitrogen state is highly localized
in real space, its Fourier transform has significant contributions by off- zone-center
components in the Brillouin zone. It is, therefore, expected to couple not only to the G

conduction state, but also to other conduction states such as the L and X band minima

This section summarizes our low temperature investigations of the hydrostatic pressure
dependence of the fundamental band gap of GaP;-xNy aloyswith x varying from 0.7% to
2.3%. It will be shown that at high pressures the fundamental band gap shifts to lower

energy as a function of pressure, approaching the negative pressure dependence of the X
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band minimum of GaP. This pressure dependence is explained by the interactions of the
N localized state with the lowest conduction band of the host GaP.

The GaP1-xNx samples are epitaxial layers grown on GaP substrates by gas-source
molecular-beam epitaxy using an rf plasma nitrogen radical beam source. The layer
thickness varies from 0.75 to 0.9 nm. Prior to the growth of the GaP;_xNy layer, a 0.2nm
GaP buffer layer was deposited on the substrate. The nitrogen concentration of the
samples was determined from highresolution xray rocking-curve measurements and
theoretical dynamical simulations. A detailed discussion of the sample preparation and x-
ray measurements has been published [76].

Shown in Fig. 3.32 is the absorption curve of a GaPN film grown on a GaP
substrate. The substrate has been thinned down to ~15 mm. As a comparison, the
absorbance of a N-free GaP sample thinned to about the same thickness is also shown.
The onset of the GaP X-band absorption is seen at ~ 2.3 eV. Compared with the GaP
absorption curve, the GaPN film exhibits a strong absorption band below the GaP X-band
edge. The bottom curve shows the difference between these two curves, corresponding to

the absorption solely due to the GaPN film.
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Fig.3.32 The absorbance (absorption coefficient multiplied by thickness)
of two samples. GaPg.gg3No017(0.9um)/GaP(15um) and GaP(15um). The
bottom curve shows the difference between the absorbance of these two

samples.

The GaP1-xNx samples exhibit intense PL visible to the naked eye even a room
temperature. Figure 3.33 Shows the PL signal obtained from a GaPN sample with arange

of temperature. As the temperature increases, the PL intensity drops significantly.
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Fig.3.33 PL signa (log scale) for x=0.017 at ambient pressure (~Okbar) for
a wide range of temperature. The right panel shows the peak energy and
the integrated intensity (log scale) of the PL signal as a function of

temperature.

As demonstrated earlier [6], the PL also decreases in intensity as the pressure is
increased. The roomtemperature PL becomes undetectable at high pressures (e.g., above
~ 35 kbar for x = 1.3%). Shown in Fig. 3.34 isthe PL of the same sample obtained at 69.4
kbar and different temperatures. The PL intensity depends on temperature in a very
similar way as at ambient pressure. However, at ambient pressure, the PL persists as
temperature increases and is still strong enough to be detected at room temperature.
Figure 3.34 shows that at 69.4 kbar, the PL intensity drops below the noise level (or
buried by the diamond PL from the diamond anvil cell used for the application of the
hydrostatic pressure) beyond ~ 150 K. Figure 3.35 shows the Arrhenius plot of the
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integrated intensity as a function of inverse temperature. The numbers on the plots
indicate the slope of the dependence measured in terms of the activation energy. These
activation energies provide useful information for identifying the nature of the
luminescence. It can be concluded that cooling down the sample greatly improves the
luminescence efficiency. If the luminescence properties are to be studied at high pressure,

the experiment has to be carried out at low temperature.
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Fig.3.34 PL signa (log scae) for x=0.017 a 69.4K and different
temperatures. The right panel shows the peak energy and the integrated
intensity (log scale) of the PL signal as a function of temperature.
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Fig.3.35 Arrhenius plot of the integrated intensity of the PL signal & a
function of temperature at ambient pressure and 69.4kbar, respectively.

Shown in Fig. 3.36(a) is the 30K PL spectrum of a GaPpg77Noozs sample at
different hydrostatic pressures. The PL signal decreases in intensity with increasing
pressures, but remains detectable to pressures above 100 kbar. Figure 3.36(b) shows the
peak energy and the integrated area of the PL as a function of pressure. The PL intensity
starts to decrease abruptly at ~ 80+10 kbar, the pressure at which the peak energy reaches

its maximum. This phenomenon implies a fundamental change in the nature of the lowest

conduction band edge at this pressure.
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Fig.3.36(a) Photoluminescence spectra of a GaPyg77Noo2s Sample at a
range of pressures. All the PL spectra were taken at T=30K. (b) Pressure
dependencies of the peak energy and the integrated PL intensity of
GaPog77Noozs a 30 K. Note the logarithmic scale of the integrated

intensity.

At low pressures, the PL signal from GaP;-xNx corresponds to the direct transition
from the lowest conduction band to the top of the valence band. As a result of the
anticrossing between the G conduction band minimum of GaP and the N localized level,
the peak energy of the PL signal blueshifts at a small rate with increasing pressure [6].
The PL peak energy for GaPyg77Nooes as a function of pressure is shown in Fig. 3.37,
together with the results from two other samples with x=0.007 and 0.017. The full width

at haf maximum (FWHM) of the PL peak is about 0.12€eV. It should be noted that N-free
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GaP did not show a detectable PL signal under the same experimental conditions. A

smilar non-monotonic pressure behavior is observed for all three N-containing samples.

Interestingly, the PL peak energies of all the three samples tend to approach the same
asymptotic pressure dependence at high pressures. The difference between the peak
energies for x=0.007 and 0.023 is reduced from 160meV at ambient pressure to 50meV at
~110kbar. As is well known, in GaP the X band minimum (Ex) is located at ~ 2.35eV
above the valence band edge at ambient pressure at 30K [77], and has a negative pressure
coefficient of about -0.0024eV/kbar [78]. The energy of this band minimum is aso
plotted in Fig. 3.37. It is evident that at high pressures the PL peak energies of all three

alloys approach the indirect band gap (X-G,) of the host GaP.
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Fig.3.37 PL peak energy at 30K as a function of pressure for three samples
with different N concentrations. The short-dashed lines indicate the
pressure dependencies of the N localized state, the G band and the X band
minima of GaP. The solid curves are the calculated lowest conduction
band energies for the three N concentrations based on the band
anticrossing model. The kinks in the calculated curves indicate the
crossover of the nature of the lowest conduction band from N-G mixing to
N-X mixing. The other subband edges at higher energy are also shown in
dot-dashed lines.

To explain the pressure behavior of these PL spectra, we describe the conduction

band states by the BAC model represented by EQ.(3.26). The coupling between the N

states and the band states of GaP is described by the adjustable parameter V and is

assumed to be wavevector-dependent.
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The location of the G conduction band edge Eg in GaP as function of the
hydrostatic pressure is well known and has been shown to be described by

E.(P)=2.9+0.0097P - 3.5" 10°°P? [78, 79], where Eg(P) is measured in eV and P is

the hydrostatic pressure in kbar. With the known pressure dependencies of Ex(P) and
Ec(P), we fit the lowest edge of the E.(k) subband calculated from Eq.(3.26) to the
experimental points in Fig. 3.37. Asis seen in Fig. 3.37, the pressure dependence of the
PL peak energy can be divided into two regimes. At low pressures, the PL is attributed to
the direct transitions from the lowest conduction band edge Ene., which evolves from the
En level through a band anticrossing interaction with Eg, to the top of the valence band.
The pressure coefficient for this transition is small and positive, similar to that of the Ey
level. At higher pressures the Ex edge shifts downwards, consequently the Enx- edge
resulting from the anticrossing interaction between Ex and En becomes the lowest
conduction band edge. The indirect transitions from Enx- to the top of the valence band
are responsible for the PL signal in this pressur e regime. The abrupt decrease of the PL
intensity shown in Fig. 3.37(b) is consistent with this predicted change in the character of

the fundamental band gap.
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Fig.3.38 Typical time-resolved PL image of a GaPN sample. The curves
plotted on the upper and right margin show schematicaly the time-
integrated PL as a function of wavelength and the wavelength-integrated

PL as afunction of time. The laser pulse excitesat t » 0.4 ns.

For a better understanding of the nature of the luminescence at different pressures,
the PL lifetime is an important characteristic quantity. Figure 3.38 shows the typical
time-resolved PL of a GaPN sample at 79K. The spectrum can be integrated over time or
wavelength and the spectral or temporal dependencies of the luminescence are thus

obtained. The sharp PL peak at ~690nm is due to the ruby luminescence used for pressure
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calibration. The broad emission band at shorter wavelengths is due to the inter-band
transition from the GaPN sample. The lifetime can be determined from the decay kinetics
of its wavelength-integrated PL intensity. Shown in the inset of Fig. 3.39 is the time-
resolved PL intensity of GaPyg77Noos a different pressures. It can be seen that the
lifetime of the PL is much longer than the duration that can be measured with our
equipment. However, athough the PL does not show considerable decay within our
measurement time window (~ 2 ns), the height of the step in the time-resolved PL curve
generated by the excitation pulse shows a quite eproducible trend as a function of
pressure. Considering the time interval of 13.2 ns between sequentia excitation pulses,
the step height can be used to estimate the lifetime of the PL assuming a single
exponential tempora decay. The obtained lifetime is plotted in Fig. 3.39 as a function of
pressure. Also shown is the pressure dependence of the PL intensity. Although the
mechanisms of nonradiative recombination in these aloys have not been determined at
this stage, it can be seen that both the lifetime and the PL intensity change abruptly at ~
80 kbar, i.e., the pressure where the peak energy of the PL reaches its maximum. This
phenomenon further confirms the change in the nature of the lowest conduction band

edge at this pressure.
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Fig.3.39 The lifetime of the PL of GaPyg77Noo2s as a function of pressure
at 79K. The pressure dependence of the PL integrated intensity at 30K is

also shown. Inset, the time-resolved PL curve evolving with pressure.

Although considerably weaker, the emission due to indirect transitions is till
possible, because the localized N centers partialy break the trandational invariance of
the crystal and relax the wavevector conservation requirement. Green's function
calculations have shown an energy broadening of ~10 meV due to the N-atom scattering
at the edge of the lower subband for GaAsy.95sNoos [38]. The N-induced relaxation of the
k-vector conservation aso allows intraband scattering within the lowest conduction
subband. Asis seenin Fig. 3.37, the measured PL peak erergy makes a smooth transition
between the low and high pressure regimes, rather than showing a kink as on the
calculated curves. This fact suggests a strong mixing between the Eng. and Enx-
conduction band minima when they are degenerate in energy. The best agreement with

the data, as denoted by solid lines, was obtained by using the previously determined [6]
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coupling constant Vng=3.05eV at the G point and setting Vnx=0.90eV for the coupling
constant at the Brillouin zone edge. The energy of the N localized state was set to be at
En ~ 2.15eV with a small pressure dependence of 1.2 meV/kbar. This energy location and
pressure dependence are consistent with the average values for the variety of bound
exciton lines in dilute N-doped GaP observed in previous reports [5, 80]. Although X

states could be expected to be more concentrated than G states on the group V sites

(where N substitutes), the XN coupling is much weaker than the G-N coupling. As
pointed out in Ref.[81], this is partly because X states are essentially antibonding p-like,
while G states are s-like with the same A; symmetry as the N localized state.

Evidence of similar off-zone-center coupling in GaAs;.xNyx aloy has been
observed by Seong et.al. using resonant Raman scattering [82] and by Perkins et.al. using
the electroreflectance technique [83]. In these ambient-pressure experiments, a coupling
between Ey and the conduction band edge E, at the L point of the Brillouin zone was
observed. This is because in GaAs, the Ey leve is closer to the L bard minima -
En=0.12 eV) than to the X minima Ex — Enx = 0.27 V), whereas in GaP Ey is located
much closer to the X band minimathan to the L minima, Ex - Ey = 0.17 eV and E, - En
=0.46 eV. In GaAs, the negative pressure derivative resulting from the coupling between
En levels and Ex minima can be observed only at very large pressures when the X band
minimum shifts down to the band edge. In fact, the onset of this effect has been observed
in GaAs;-xNy at apressure of about 120 kbar [50] (see Fig. 3.8).

In order to calculate the BAC effect over the entire Brillouin zone, the interaction
constant V has to be known as a function of wavevector. The hybridization parameter is

essentially the Fourier transform of the interaction matrix element between the localized
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impurity state and the Wannier function of the band [39]. In the Green's function
calculation in section 3.3, the k dependence of Vy; is assumed to be weak on the
momentum scale we are interested in. In Eq.(3.12), the parameter V,; is averaged over the
impurity sitesand in k space. In the simplest case, al the impurity atoms are of the same
type, so that the j dependence of V; is removed. The k dependence of V; can be

estimated from Eq.(3.2). Assuming that the Hartree-Fock energy varies dowly in space

and can be replaced by a constant e, , we have
Ve=e,xaeep (r-1) ,(r)or. (352)
|
Due to the localized character of both a(r) and j ,(r), the overlap integral in Eq.(3.52) is
essentially zero when a(r) and j ,(r) are located on two sites far apart from each other,
In an attempt to model the k-dependence of Vi, we replace the integral in Eq.(3.52) by an
exponentially decaying function ~ exp(- 1/1,), and obtain

. V
V. —e o eulote-l/ld - Y%
k HFaI (1+|§k2)2

(3.53)
Experimental evidence indicates that the values of Vi at the L point in GaAs;-xNx
[83] and at the X point in GaP1-xNy [84] are about 3 ~ 4 times smaller than the V at the C
point. This ratio corresponds to a wavefunction decay length (l4) of the order of the lattice
constant, which is consistent with the strongly localized nature of the N states. This result
also demonstrates that the off- zone-center conduction band minima are affected by the
anticrossing interaction only when their energies are close to the localized level.

Shown in Fig.3.40 is a schematic diagram of the conduction band of GaPy g77Noo23

at ambient pressure. The energy minima restructured from the G-N and X-N anticrossing
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interactions at 100 kbar are also shown in symbols. The fundamental bandgap of the

material changes from direct at ambient pressure to indirect a high pressures. In this

BAC calculation, the dispersion relations are obtained by substituting the wavevector-

dependent interaction constant into Eq.(3.26).
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Fig.3.40 BAC-caused restructuring of the conduction band of GaP;-xNx.

The curves show the lower E (k) and the upper E. (k) band edges at
ambient pressure. The symbols show the energy minima at 100kbar: open
triangles, Ey; open circles, Ey (including Eg and Ex); solid triangles, E.
(including Ene and Enx.); solid circles, E+ (including Engr and Enx-+).
Note the change in the nature of the lowest conduction band edge, from
direct at ambient pressure to indirect, mostly X-like at 100 kbar.
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Figure 3.41 shows the ambient-pressure bandgap energy of four samples with

different N concentrations measured using PL at 30K. The lowest solid line represents the

N-like conduction band minimum of GaP;.x\Nx restructured through the interaction

between |N) and |G as calculated from Eq.(3.26). Also shown in solid lines are the

predicted energy of the other minimum restructured from the interaction between | N) and

the X band, and two higher energies corresponding to the X-like and G-like edges of the

upper subbands calculated from EQ.(3.26). These higher critical energies may be

observed by modulation spectroscopy.
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Fig.3.41 PL peak energy at 30K and ambient pressure of four GaPN
samples as a function of N concentration. The dashed lines mark the

energy locations of the N state, the G band, and the X band minima of

GaP. The solid lines are the energies of the subbands edges as a result of

the band anticrossing repulsion.
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Summarizing this section, photoluminescence measurements have been
performed on GaP;.xNx aloys at 30K. Based on the non-monotonic pressure dependence
of the PL peak energy, it is demonstrated that the fundamental bandgap in GaPi-xNx
changes its nature from direct to indirect at high pressures. The anticrossing repulsion
between the N localized state and the X conduction minima of the host GaP explains the
negative pressure dependence of the fundamental band gap at high pressures. The
coupling between the N localized state and the G band dtates is more than three times
stronger than the coupling between the N localized state and the X band states. This
finding accounts for a number of previous observations indicating that the off-zone-
center minima are affected only when their energies lie close to the localized N-level

energy.
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4. Highly-mismatched Semiconductor Alloys. Group |1-VI Based

4.1 Conduction Band Anticrossing (CBAC) in II-VI Alloys

The classification scheme of the semiconductor aloys based on the
electronegativity mismatch applies not only to 1l1I-V compounds, but aso to 1I-VI
compounds. For example, according to Tab.3.1, ZnSeS belongs to lightly mismatched
alloys because there is only a small electronegativity difference between S and Se (0.1
eV). Figure 4.1 shows the composition deperdence of the low-temperature band gap of
ZnSeS dloys on the ZnSerich side. The bowing parameter is~ 0.3 eV, indicating a small
deviation from the VCA prediction, similar to the case of GaAsP shown in Fig. 3.2. Asa
comparison and a typical example of more mismatched I1-VI1 aloys, Fig.1.1 shows the
large band gap bowing of ZnSe;.xTe. The bowing parameter is ~ 1.2 eV, much larger
than that of the ZnSeS system.

Effects of the electronegativity mismatch are reflected not only in the bandgap
bowing. Because states with different characters have different pressure behaviors, the
pressure dependence of optical transition energies is widely used to study the nature of
the states involved in the transition. Shown in Fig. 4.2 is the pressure dependence of the
band gap of ZnSeygsSoos measured by optical absorption at room temperature. The
pressure dependence of the band gap of ZnSe is dso shown as a comparison. These
pressure curves are fitted to a second order polynomia of the pressure. It can be seen
from the figure that the pressure dependencies of these two materials are very similar. For

example, the linear pressure coefficient of ZnSey 95 05 differs from that of ZnSe by 2%
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only. For more highly mismatched aloys, this difference can be much larger. For
example, 4% ZnSe aloyed with ZnTe results in a reduction as large as 10% in the linear

pressure coefficient, as will be shown in the following text.
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Fig. 4.1 Bandgap as a function of composition for ZnSeS alloys. The solid
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The large bandgap bowing has been attributed traditionally in part to the
nonlinearity of the electronic band structure associated with the matrix elements of the
VCA potential and in part to compositional and structural disorder [85]. The recently
discovered BAC model offers a different approach to an understanding of the same
effect. The BAC mode has been used to explain successfully the electronic properties of
[11-V-N dloys where a very large bowing of the bandgap is observed [33,34]. In the
context of this work, it isof great interest to study the generality of the applicability of
the BAC model, and inquire if the interaction is not an isolated effect but also occurs in
other systems with large bandgap bowing parameters. The most important feature of the
[11-V-N aloys is that the highly electronegative N atoms introduce localized A; levels
close to the conduction band edges (CBE's) of I11-V compounds. The interaction of these
levels with the extended states of the conduction band strongly affects the electronic
states that determine the basic electrical and optical properties of the alloys. Most notably
the interaction produces a downward shift of the lowest CBE, which leads to the large
bowing of the fundamental bandgap. Unfortunately, the N content in currently available
GaAs-xNx as well as in other group 111-V-N aloys is limited to several atomic percent,
precluding the use of these alloys to study the large bandgap bowing effects over the
whole composition range. To overcome this limitation, we have chosen to study the
alloys ZnSe; xTex and ZnS;.xTex. These aloys also exhibit large bandgap bowing effects
and are readily available over the whole composition range. In Te-rich ZnSe;.xTex and
ZnSe; xTey (X close to 1), similar effects are expected as metallic Te atoms are partially

replaced by much more electronegative S or Se atoms.
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Shown in Fig.4.3 is the CBE of Te-rich ZnSTe and ZnSeTe measured by optical
absorption as a function of hydrostatic pressure, reported by Walukiewicz et. al [20]. A
remarkable feature of the data shown in Fig.4.3 is a strongly nonlinear shift of the
absorption edge with increasing pressure that clearly resembles the pressure dependence

of the fundamental band gap previousy observed in GaAsN aloys [34,50].
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Fig.4.3 Dependence of the CBE in Te-richZnSTe and ZnSeTe on pressure
[20]. The solid lines represent the dependencies calculated using the BAC
moded. The energies of the localized S and Se-derived A; states are also
shown. All the energies are relative to E,(ZnTe) at ambient pressure. Note
that in this graph the Te concentration is represented by 1-x (in ZnSTe) or
1-y (in ZnSeTe), in different notation as in this thesis.
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It has been shown in the case of 111-V-N dloys that the localized, N-derived A;
states interact primarily with the conduction band [33,34,50]. The valence band states
experience only a gradua shift expected from a linear interpolation between the end-
point compounds. Since the available IlI-V-N aloys are limited to very low N
concentrations, it has been a good approximation to assume that N does not have any
effect on the valence band structure [50]. However, since the I1-VI aloys studied here
cover arelatively wide range of S or Se contents, we need to decompose the total shifts of
the conduction and the valence band edges (VBE'S) into their linear parts given
approximately by the VCA, and the nonlinear parts associated with the large bowing. The
linear contributions to the band edge (including the spin-orbit valence band edge) shifts
are calculated from the known VBE offsets [86]. With the known locations of E,V* asa
function of composition, we can determine the composition dependent energy of the CBE
from the measured energy gaps.

The strongly nonlinear pressure dependence of the band gaps shown in Fig. 4.3
indicates a strong interaction between the localized S or Se level with the band states of
ZnTe matrix, similar to the situation in GaAsN alloys. We formulate the problem in the
following mathematical way that is coherent with a later analysis of the alloy system on
the other composition side. We first discuss ZnSe;.xTex as an example. For Te-rich
ZnSeTe (x® 1), the BAC model predicts a new CBE formed by the anticrossing
interaction between the Se localized states and the G conduction band of ZnTe [34]. The

Hamiltonian matrix of the system can be written as,

P2 ETe rlch ) CznTe-Se /1_ X

§ s s (4.2)

Q-l-l-O:
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where E*"*"(x)=2.24- 0.31- x) isthe VCA interpolated value of the CBE on the Te-
rich side, referenced to the top of the ZnTe valence bands. The conduction band and
valence band offsets between ZnTe and ZnSe are assumed to be 0.7 and 0.3 eV,

respectively [86]. Eg, isthe energy of the Se localized level, and is determined by fitting

the calculated results with the data. C, ..o, isthe coupling constant between E!*"*" and
E... The restructured CBE is given by the lower eigenvalues of H_, and has the
functional form of the E. subband as given in Eq.(3.26). The fundamental bandgap on the
Te-rich side, E;e' (%), is given by the energy separation between this restructured CBE
and the top of the valence bands that is linearly interpolated between ZnTe and ZnSe
VBEs based on their offsets.

In good agreement with existing data [87], the pressure dependence of E; in the
ZnTe matrix shown in Fig. 43 can be well described by the relation
E.(P)=224+10.9" 10°P- 425" 10 °P?, where P is the pressure in kbar. The
nonlinear term originates from the pressure dependence of the bulk modulus in ZnTe. It
is quite evident from the data shown in Fig.4.3 that aloying of ZnTe with both ZnS or
ZnSe considerably afects the pressure coefficients. The best fit to the experiment was
obtained by assuming that the locations of both the S and the Se levels depend slightly on
pressure and are given by E,, =2.85+1.5" 10°P and E; =2.60+1.5" 10 °P. It should
be noted that this is about the same pressure dependence as the one found for the N level
in 111-V-N dloys [34, 50]. For both ZnSe;.xTex and ZnS;.xTex samples, good agreement
between the calculations and the experiments is obtained by setting the coupling constant

a Cure. s » Core.s » 1 €V. The value of the coupling parameter is significantly smaller
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than the coupling parameter V=2.7 eV used previously to describe the interaction
between the N levels and the extended states in GaAs;.xNyx aloys [33,50]. This & not
surprising, however, since as can be seen in Tab.3.1, the electronegativity difference

between N and As (1.0 €V) is more than 2 times larger than between Seand Te (0.3 eV).
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Fig.4.4 The energy gap of MgZm.-xTe measured by PR as a function of x
[88].

The perturbation of the Se and S localized states on the ZnTe conduction band
described by the matrix in Eq.(4.1) thus accounts successfully for the hydrostatic pressure
dependence of the fundamental bandgap on the Te-rich side. It also explains why the
large bowing parameters are observed only in the aloys involving highly electronegative
elements (anion aloys) and are much smaler when more metdlic elements are
exchanged (cation aloys). As can be seen in Fig.2.1, the localized A; levels of more
metallic atoms have higher energies and thus only very weakly interact with the CBE
states. A good example of the later case is ZnMgTe where only a small bowing parameter
is found [88] despite a significant electronegativity difference between Zn (1.5 eV) and

Mg (1.2 eV) [13]. The results are shown in Fig.4.4 [88].
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To further investigate the different effects of isovalent substitution in these anion
and cation 11-V1 aloys, we extend our studies to Mg,Zm.yTe and and Mg,Zn.yTer.xSex
alloysto determine if band anticrossing effects are found in aloys with electronegativity-
mismatched cations (i.e. Mg and Zn). Also, as is seen from EQ.(4.1), the strength of the
anticrossing interaction depends on the location of the localized level relative to the band
edges of the host matrix. Quaternary alloy systems create the possibility to independently
vary the band edge energies and thus the energy difference between the localized level
and the conduction band minimum. It is important to determine the applicability of the
BAC model to this system. The results ow that, indeed, for the anion-mismatched
systems the anticrossing interaction is entirely controlled by the location of the
conduction band relative to the localized level. It was also found that aloys with
significant electronegativity difference on the cation sites do not show nonlinear effects
and are well described within the VCA.

Figure 4.5 shows the optical absorption curves of Mg 10ZNo.g0 T€0.92S€008
measured for a range of hydrostatic pressures. The dashed curve at the top represents a
PR spectrum taken at room temperature and ambient pressure. The bandgap energy
determined from the PR spectrum, 2.28eV, is in agreement with the gap energy defined
by the crossing point of the steeply rising portion and the saturation line of the absorption
curve. The apparent absorption below the band edge originates from the fact that the
reflection of the beam from the surface of the sample has been neglected in the

absorbance calculation.
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Fig.4.5 Roomtemperature  optical absorption curves  of
M@.10ZMogo Ten.02Sem s at different hydrostatic pressures. The dashed
curve in the top portion of the figure is a PR spectrum obtained at ambient

jpressure.

It is evident from Eq.(4.1) that an analysis of the experimental data in terms of the
BAC mode requires knowledge of the composition and pressure dependence of Es. and
E."®"™ It has been shown previously that energies of highly localized levels remain
constant on an absolute energy scale [89]. This means that their erergy can be deduced

from the known band offsets in a given alloy system [90].
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To determine the pressure dependence of the localized level, we have measured
oxygenrelated PL with unintentionally O-doped ZnTepg9Sepo1. The PL spectra recorded
at 30K at different hydrostatic pressures are shown in Fig. 4.6. The broad emission band
at low energies (1.8-2.1eV) is associated with the oxygen impurity [91]. The band edge
emission a higher energies with its phonon replicas is aso clearly seen. The broad,
smooth features at higher energies are due to impurity luminescence from the type-I
diamonds in the diamond anvil cell. It is clear from Fig. 4.6 that the energy of the oxygen
deep level shows a much weaker pressure dependence than the band edge. In Fig. 4.7, the
peak energies of the O-related PL and the inter-band PL and their phonon replica are
shown as a function of the number of phonons emitted. The linear dependence is clearly
seen, and the dopes of the linear dependence that corresponds to the energy of the
phonon emitted are essentialy the same (~ 26 - 29 meV). This phonon energy is very
close to the LO phonon energy of ZnTe listed in the literature (25.6 meV, or 6.2 THz a
room temperature) [92]. A linear fit to the no-phonon line of the O-related PL yields the
relation Eguy = 2.0 + 1.3 10°# for the pressure dependence of the oxygen level. This
pressure coefficient is quite close to the pressure coefficient of the Se localized level used
in Fig.4.3, 1.5 meV/kbar [20]. We attribute the small positive pressure coefficient of the

localized O level to the pressure-induced downward shift of the VBE.
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Fig4.6 Photoluminescence spectrum of an  oxygencontaining
ZnTepgeSepo sample at 30K.
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Fig.4.7 The peak energies of the oxygenrelated and inter-band PL of

ZnTepgeSepo and their phonon replica. The straight lines are linear fits.
The inset shows the no-phonon line energy as a function of pressure.

The theoretically calculated [93] valence band offsets DE,(ZnTe/MgTe)=0.73 eV
and DE,(ZnTe/ZnSe)=0.76 €V and the known bandgap energies of the end-point
compounds were used to determine the location of the CBEs of the host semiconductor
matrices. Using the determinations of the composition dependence of the VBEs, we plot

in Fig. 4.8 the measured CBE energies relative to a common energy reference, i.e., the
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VBE of ZnTe at ambient pressure. It is important to note that the CBE energy in
Ma.1ssZnosis Te has nearly the same pressure dependence as that of ZnTe, showing
clearly that the replacement of Zn with less electronegative Mg does not strongly affect
the pressure dependence of the resulting aloys. This is consistent with the results
presented in Fig.4.4 that show no strong bowing in the composition dependence of the
bandgap of Mg,Zn,.,Te aloys[88].

It is also seen in Fig. 4.8 that the presence of Se in ether ZnTepgsSepos OF
Map.1Zno.9 Ten.g2Sep s considerably changes the pressure dependence of the CBE energies
in these alloys. The observed tendency for the CBE energy to saturate at high pressuresis
a clear indication of an anticrossing effect between the localized Se level and the
extended states of the conduction band. Thisisin contrast to the case of Mg replacing Zn
cations where the same electronegativity difference does not produce any unusual effects.
The sudden reduction of the CBE energy in Mg .1Znp 9 Ten02Sen 08 @ the pressure of 85
kbar is attributed to the onset of a pressure-induced phase transition, which has been

observed previously in Mg,Zm.yTe aloys [94].
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Fig.4.8 Pressure dependencies of the CBE of four compounds with respect
to the VBE of ZnTe at ambient pressure. The energy of the Se localized

level and the no-phononline energy of the oxygen impurity level

determined from the PL goectrum in ZnTep 99Se 01 are aso shown. The

solid curves through the data points of the two Se-containing samples

represent the dependencies calculated using the BAC model. The line
through the data points of the ZnTe sample is a quadratic fit. All the data

points were obtained at room temperature except for the oxygen deep level

data, which were taken at 30K.

The solid lines in Fig. 4.8 are BAC model-based calculations using the pressure

and composition dependencies of the host band edge and the localized level discussed

above. The best fit with the experiment is obtained with a coupling coefficient Cugznte
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s=1.1 eV and aSelocalized level Es.=2.9 eV. These values are in quantitative agreement
with the values determined in Fig. 4.3 for ZnTe;«Se tenaries (Cznrese=1 €V and
Es=2.85 eV) [20]. It isimportant to note that, as is exemplified by the case of the Eqyy,
the energies of the localized levels do not depend on pressure in our present energy
reference, i.e., with respect to the ambient-pressure VBE of ZnTe.

The successful, simultaneous fitting of the BAC model to both the Mg-containing
and Mgfree samples with nearly the same values of the parameters implies that, unlike
alloying with ZnSe, the incorporation of MgTe into ZnTe results in a linear variation of
the band edge energies that can be well described by the VCA. Thus, the change in the
bandgap of the quaternary aloy Mg, Zm.yTe;.xSex can be decomposed into a linear VCA
alloying effect and a nonlinear BAC effect arising from the hybridization between the Se
localized level and the VCA conduction band edge.

An extreme case of electronegativity mismatch between the aloy congtituents, is
represented by group I1I-VI-O system in which highly electronegative oxygen
(electronegativity=3.5 eV) [14] partidly substitutes other group VI elements. A large
BAC effect is expected in this system as it is a direct analog of group I11-V-N aloys.
Indeed, it is now well established that substitutional oxygen introduces localized states
close to the CBE in many I1-VI compounds [91]. The epitaxial growth of O-containing
[1-V1 aloys has turned out to be a difficult task. The achievable concentrations of O
dopant are too low to clearly show any aloying effects. We have successfully
synthesized Cd;.,Mn,O,Te1x quaternary alloys by using the ion implantation technique,

followed by a rapid thermal annealing treatment to activate the implanted O atoms [95].
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The band gap of these dloys is shifted downward from that of the O-free ternaries, in

agreement with the predictions of the BAC model. The results are summarized in Fig.4.9.
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Fig4.9 Room temperature bandgap energies of un-implanted and O-
implanted Cd;.yMn,Te samples as a function of y for 0.1<y<0.64. The
known dependencies of the conduction band minima on the MnTe mole
fraction and the estimate of oxygen level on y are aso shown. The solid
lines are the upper and lower subbands calculated by the BAC model

using a C? x value of 0.02.
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4.2. The Entire composition Range of ZnSeTe and ZnSTe

It has been shown in the last section that the bandgap reduction observed in these
aloys on the Te-rich side (x > ~ 0.8) can be explained by the conduction band
anticrossing (CBAC) modd [20]. In this section, we show that the predominant bowing
mechanism in these systems over the entire composition range is driven by the localized
nature of the states of the minority alloy element, specificaly the presence of a Te level
above the VBE at low x and the presence of a Se or S level above the CBE at high values
of x. By considering the interactions between these localized levels and the extended
states using the BAC model, the behaviors of the bandgap, valence and conduction band

shifts, and the spin-orbit splitting are accurately predicted.

4.2.1. Experimental Observations

Figure 4.10 shows typica PR spectra obtained from the ZnSe;.xTex aloys with

several compositions. Two features can be clearly identified in these spectra. The one at
lower energy (E,) corresponds to the critical transition from the top of the degenerate
heavy-hole hh) and light-hole (Ih) valence bands to the CBE, and the one at higher
energy (E, + D,) is attributed to the trangtion from the top of the spin-orbit (so) split
valence band to the CBE. The fundamental bandgap and the spin-orbit splitting of ZnSe;-
x 1€ are shown as afunction of composition in Fig. 4.11. The data shown in Fig. 4.11 are

in quantitative agreement with previous measurements by electro-reflectance

spectroscopy [96] and photoconductivity methods [97]. The energy gap shows a convex
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dependence on the Te concentration with a significant deviation from the linear
dependence as predicted by the VCA. The spintorbit splitting, in contrast, shows a
concave dependence on the alloy composition. D, increases rapidly for small x until x ~
0.5. The different behavior of D, on the Se-rich and the Te-rich side suggests different
origins of the bandgap bowing in Se- and Te-rich ZnSe;.xTex alloys. The notion of a
different origin of the bandgap bowing on the Te- and Se-rich side is further supported by

the large asymmetry in the composition dependence of the PR linewidth shown in the

inset of Fig. 4.10.

DR/R

1.8 2 22 24 26 28 3 32 34
E (eV)

Fig. 4.10 Typical PR spectra of ZnSeTe alloysover the entire composition
range.

In Te-rich alloys (x® 1), the large reduction of the bandgap can be explained by

the CBAC modd. The modd predicts a new CBE that forms by the anticrossing
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interaction between the Se localized states and the G conduction band of ZnTe [20]. Due
to the large energy separation between the Se localized level and the valence bands, the
valence bands are not involved in this localized-extended anticrossing interaction; i.e., the

energies of the VBE and the spin-orbit splitting follow the VCA interpolations between
the values of ZnSe and ZnTe. The fundamental bandgap on the Te-rich side, E;~"(x),

is given by the energy separation between the restructured CBE and the top of the
valence bands. The perturbation of the Se localized states on the ZnTe conduction band
described in Eq.(4.1) explains successfully the composition and hydrostatic pressure

dependencies of the fundamental bandgap on the Te-rich side [20].
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Fig. 4.11 Band gap and spin-orbit splitting as a function of composition as
determined from Fig. 4.10. Inset, the composition dependence of the PR
linewidth. The lines are fits based on the interpolation between the CBAC
and VBAC model (see text).
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4.2.2. Vaence band Anticrossing (VBAC) in ZnSeTe and ZnSTe

For Se-rich aloys (x® 0), the rapid increase in D, at smal x implies that the
incorporation of ZnTe in ZnSe perturbs he valence bands. It is known [98] that an
isoelectronic Te impurity substituting Se in ZnSe forms a localized level above the VBE.
At dilute concentrations, the Te level gives rise to a strong broad luminescence line
below the bandgap [98]. In close analogy to the anticrossing effect between the Se
localized level and the ZnTe conduction band on the Te-rich side [20], we consider the
hybridization between the localized Te level and the valence bands of the host material.
The origina four Gg and two G; valence bands are described by the conventional 6 6
Kohn-Luttinger k:p matrix [99] with band-edge energies set at corresponding VCA

values. An 8 8 Hamiltonian matrix is formed by augmenting the 6 6 matrix with two

localized Te states with energy E,, and opposite spins. The valence band restructuring is

computed by diagonalizing this 8 8 matrix. Specifically, we choose as a basis the
following six time-reversal symmetry-invariant wavefunctions [99] for the valence bands

and the two Te states with opposite spins for the Te localized level,
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In this basis the Hamiltonian matrix can be written as [99],
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In this 8" 8 matrix, the parameters involved are defined in the following,
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118



H=- 2’::0 .2 +k,2)o. +9,) + .2 (@, - 20,)}

L=- 2’:‘0 2+ k2o, - 0.)+ k(0. + 20,)]

a :ﬁ%[kz(kx - ik, o (4.4)
b :?%Z[(kxz -k, - 2K,k G,

D=L- H,

S=%(L+H)- D,,

where k is the wavevector, and the g vector and Dy are the the Kohn-L uttinger parameters
and the spin-orbit splitting for the valence bands, respectively. V is the hybridization
energy between the Te localized states and the three wavefunctions of the Gy
representation of the Ty crystal group,

Vo (Telu|X) = (TeU|Y) = (TelU|Z) = C e re/X - (4.5)

In Eq.(4.5), a smilar sguare-root dependence on the impurity concentration is assumed as

in the previously considered case of the conduction band hybridization [20]. C, o, 1. ISa@
parameter that describes the mupling strength and is to be determined by fitting with
experimental data. The energy levels are given by the four doubly-degenerate eigen
valuesof H,. Inthe Brillouin zone center, they can be labeled according to the nature of
their wavefunctions as E. s Einiiker Einiiker @d  Eg, iN the order of descending
eigenenergy. Since the energy level of the Te localized states is |ocated above the top of

the original valence band, a new VBE is formed at energy E., The fundamental

e-like "
bandgap in Se-rich ZnSeiTey, denoted as E;*"“'(x), is attributed to the transition

between the VCA conduction band edge and this newly-formed VBE. The spin-orbit
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splitting is given by the energy separation between E., . and E ... We note that the

orthogonality between opposite spin states leads to two zero-vaued off-diagonal matrix

3 e

As a result, the heavy- hole band does not mix with the Te states at the G point, and the

elements in Eq.(4.3), i.e, (Te—

3 _> and their Hermite conjugate elements.
2" 2

energy of the heavy-hole band edge remains unchanged. The light-hole and spin-orbit
valence band edges, on the other hand, are pushed downward by the anticrossing

repulsion from the up-lying Te level. The energy degeneracy between the heavy-hole and
the light-hole bands at G point is thus removed. The band restructuring in the whole

composition range is schematically shown in Fig. 4.12.

Te

NN

ZnSe ———— Serich ——— Terich ————ZnTe

~ W \
/,
™~

Fig.4.12 The schematic band diagram showing the band restructuring of

ZnSeTe over the entire composition range.
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In order to fit the experimental data over the entire composition range (O£ x £ 1),
we adopt a linear interpolation scheme, similar in spirit to the original VCA interpolation,

between these two effects, i.e., the conduction band anticrossing (CBAC) on the Te-rich

side and the valence band anticrossing (VBAC) on the Se-rich side. For the composition

dependence of the fundamental bandgap, it is written as
E, (x) = (- x)xEF " (x)+ x>} "(x). (4.6)
This linear interpolation weighs the importance of these two effects by the concentration

of the maority component from each side. In the calculation, the band offset values

between ZnTe and ZnSe are adopted from the literature and are shown in Fig. 4.13.
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A 2.24
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Y
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0.1 Do
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0.4 SOE A 0.2

nSe ZnTe’

Fig. 4.13 The band offsets used in the calculation [93].
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The calculated bandgap and the spin-orbit splitting are compared in Fig. 4.11 with

the experimental results. The best agreement with the experimental data gives a coupling
parameter C,, . . =0.30 eV and the Te localized level at 0.10 €V above the top of the

origina ZnSe valence band. This energy location is close to the value reported in ref.
[98].
It is worthwhile to note the unusual composition dependence of the PR linewidth

of the E, transition shown in the inset of Fig. 411. An abrupt broadening of the

linewidth is observed on the Se-rich side. This composition dependence of the PR
linewidth is quite similar to the behavior of the previously reported PL linewidth in
ZnSe; xTey dloys [97]. The asymmetry in the PR line broadening behavior is associated
with a change in the nature of the band edge states. As indicated by Eq. (3.28) in the
Green's function calculations [38], the energy broadening of an eigenstate in the
localized-extended hybridization system is proportional to the admixture of the localized
states in its wavefunction. The curve in the inset is afit to the linewidth data based on the
percentage of localized states in the wavefunction of Etejike. The large linewidth for small
x values is associated with the locdized nature of the Te-like states at the top of the
valence band. For x close to 1, the delocalized nature of both the conduction and the
valence band edges results in a narrow linewidth for the PR spectra.

The valence anticrossing interaction does not only shift the band edges in the
Brillouin zone center, but also affects the dispersion relations of the valence bands.
Calculations show that the restructured valence bands become largely non-parabolic, as
in the case of the conduction band anticrossing in 111-V-N alloys. The dispersion relatiorns

for x=0.1 is compared with that of pure ZnSe in Fig. 4.14. The hole effective mass at the
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top of the valence bands is enhanced from that of pure ZnSe. The enhancement of the
hole effective mass as a result of the valence band restructuring may also have

advantageous effects in hole- mediated ferromagnetic semiconductors [100].
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Fig. 4.14 Dispersion relations for pure ZnSe (dashed lines) and
ZnSep 9 Teps (solid lines) in (100) direction. Note that the horizontal axisis

scaled in k2.
4.2.3. Soft x-ray Fluorescence Studies of ZnSTe

It is important to note that according to the BAC model, the main contribution to
the bandgap bowing originates from the downward shift of the conduction band edge on
the Te-rich side and an upward shift of the valence band on the Se-rich side. In order to
obtain an independent confirmation for this assertion, one needs to determine the

conduction and the valence band offsets as a function of composition. In this context, we
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have used soft xray emission (SXE) spectroscopy to measure the valence band shift in
ZnS; «Tey. A large shift of the valence band is expected in this alloy system, as it has been
known for a long time that the localized Te level is separated by as much as 1.2 eV from
the VBE of ZnS[101].

Figure 4.15 shows a typical SXE spectrum of a ZnS;.«Tey film excited at S2p
level. The SXE and absorption spectra near the energy gap for a range of Te fraction are
shown in Fig. 4.16(a). In this experiment, the excitation xray energy was first scanned
across the S-2p core levels, and the partial fluorescence yield was recorded as the xray
absorption spectrum. The threshold energies of the excitation determine the energy of the
conduction band minimum with respect to the core level for a number of compositions.
They are shown on the right part of the curves in Fig. 4.16(a). The doublet structure due
to the S-2ps, and S-2pip splitting (~ 1.6 €V) [102] is clearly resolved for Te-rich
samples. The excitation energy was then tuned to the edge of the conduction band so that
only the S-2pg, core level was ionized. The xray emission due to electronic transitions
from the upper valence band region to this core level was monitored with an energy-
dispersive detector. The emission spectra are shown in Fig. 4.16(a) as the left part of the
SXE curves. In this way the relative shifts of the conduction band minimum
(schematically shown by the dashed arrow in Fig. 4.16(a)) and the valence band
maximum (solid arrow in Fig. 4.16(a)) as a function of composition are directly
measured. The results are summarized in Fig. 4.16(b). It is evident that, in agreement
with the VBAC model, the top of the valence band exhibits a strong nonlinear

composition dependence on the S-rich side. This upward shift is caused by the transition
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in the nature of the highest VBE from that of extended states of pure ZnSto localized Te-

like states, hybridized with the extended valence band states of the ZnS matrix.
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Fig. 4.15 Typica soft xray emission spectrum of ZnSTe alloys excited at
the threshold of the S-2p levdl.
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Fig. 4.16 (a) Soft xray emission and absorption spectra for a range of Te
concentration. (b) The conduction and valence band edges as determined
in (a) plotted as a function of Te concentration.

Figure 4.17 summarizes the transition energies measured by different techniques
over the entire composition range of the ZnS;.xTex aloy. The data points from PR and
absorption experiments that measure the large density of extended states show a strong
bandgap bowing. On the other hand, the PL peak is shifted to lower energies as it is
associated with optical transitions to deep states. The energy gap measured by SXE in

Fig. 4.16 is also plotted in Fig. 4.17. Within experimental error, these gap energies agree
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with the bandgaps measured by absorption and PR. This agreement confirms that the
band edges measured by SXE in Fig. 4.16 are indeed the ones involved in the inter-band

transitions observed in absorption and PR experiments.

E (eV)

Fig. 4.17 PL peak energy and bandgap measured by SXE, PR and
absorption experiments (abs) plotted as a function of x. The solid lines
show the calculated energy difference between E. and Ereike, Ennvlike, a0d
Es-iike, respectively. The dashed line is an empirica interpolation between
Ec - Emiike ad Ec - Emike fitted to the composition dependence of the

measured bandgaps.
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Calculations based on the CBAC and VBAC models applied to ZnS; xTe, are
shown as curves in Fig. 4.17. On the Te-rich side, as shown in Ref.[20], an anticrossing
interaction between the ZnTe conduction band minimum and the S level located at ~ 0.36
eV above the minimum was assumed. A valence band anticrossing on the S-rich side was
calculated and an interpolation as expressed in Eq.(4.6) was carried out over the complete

composition range. The best fit is obtained by setting the Te level at 1.2 €V above the
valence band maximum of ZnS and a coupling constant of C, . = 0.5 ¢eV. It can be

seen that the PL peak energy agrees well with the calculated transition energy from the
conduction band minimum to the highest, Te-like VBE. The dashed linein Fig. 4.17 isan
empirically weighted interpolation between the calculated E; - Eteike @d E¢ - Epp-like. The
measured bandgap of ZnS;.xTey deviatesfrom E¢ - Epn-like S @ result of the hybridization.
But unlike in ZnSe; xTey, it does not immediately follow Ec - Etelike because of the much
larger energy separation between the Te level and the valence band maximum of ZnS.
Consequently, the fraction of extended states at the top of the restructured valence band
(i.e., Etelike) s too small to contribute to the absorption or PR transitions. Such transitions
are observable only when the anticrossing interaction becomes strong enough at

relatively high Te concentrations.
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4.2.4. Hydrostatic Pressure Coefficients

As has been shown in Fig. 3.8 for Te-rich ZnSe;.xTey aloys [20], alloying of
ZnSe with ZnTe results in a large reduction in the hydrostatic pressure dependence of the
bandgap. This pressure behavior has also been fully accounted for by the anticrossing
interaction between the localized Se state, which is insensitive to pressure, and the
extended states of the ZnTe conduction band, which rapidly shifts upwards with pressure.

To understand more about the electronic structure of ZnSe;.xTe,, we have
measured the optical absorption edge at different pressures for the alloys over the entire
composition range. Typical absorption curves are shown in the inset of Fig. 4.18. The
energy gap as a function of pressure is extracted from the absorption curves.
Representative pressure dependencies of the bandgap for the Te- and Se-rich aloys are
shown in Fig. 4.18. Unlike in the Te-rich alloys, alloying with the minority component on
the Se-rich side does not change the pressure dependence considerably from that of the
magjority component. This phenomenon can be understood by the fact that the largest
contribution to the blue-shift of bandgap under pressure comes from the upward shift of
the CBE with pressure. Because the conduction band is not perturbed on the Se-rich side
except for the weak, linear VCA effect, the pressure coefficient is not significantly

affected.
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Fig. 4.18 Pressure dependence of the fundamental bandgap determined
from optical absorption measurements. The solid curves are quadratic fits
to the experimental data. Inset, absorption curve of a 10 nm-thick

ZnSep o1 Tep oo sample evolving with pressure. All the data were taken at

room temperature.

The linear (a;) and second-order (a;) pressure coefficients are defined as,

(x)° 1,(xP) ; a,(x)° lxﬂzEg—(x’P)

4.7
P |, 2 qp? (4.7

a

P=0

In Fig. 4.19, they are shown as a function of the Te concentration. The curves are the
calculated results following a similar interpolation scheme as expressed in K).(4.6). In
the pressure coefficients interpolation, the term to be weighted on the Se-rich side is fixed

a the pressure coefficients of ZnSe. On the Te-rich side, the CBAC-calculated CBE is
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expanded in Taylor series in terms of pressure, and the linear and second-order

coefficients are extracted and numerically calculated. A linear pressure coefficient of

1.5" 10" *eV/kbar is assumed for the Se localized level in the calculations [20]. For the
ZnTe conduction band, a;=10.9" 10° eV/kbar and a,=-4.25" 10° eV/kbar’ are used as
determined by previous experiments [20]. As can be seen from Fig. 4.19, this smple
interpolation predicts the linear pressure coefficient quite well. The second-order
coefficient deviates from this ssimple interpolation, especially on the Te-rich side. Thisis
mostly due to the fact that the pressure dependence of the bandgap predicted by the

CBAC model contains considerable higher-order coefficients beyond the linear and

guadratic dependencies [20].
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Fig. 4.19 Linear and second-order pressure coefficients as a function of Te
concentration. The curves show the calculated dependencies of the
coefficients.
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The calculations and their comparison with experimental results support the
fundamentally different origins of the bandgap bowing in Se (or S) -rich and Te-rich
ZnSe;xTey (or ZnS;.xTey). The results are important for the understanding of the doping
behavior of these aloys as well. As has been shown recently [37], the N-induced
modification of the conduction band structure of GaAs greatly increases the upper limit
of the free electron concentration in GaAs;-xNx aloys. In view of the findings in these I1-
VI aloys, we also expect that the downward shift of the conduction band edge in Te-rich,
and the upward shift in Se (or S) -rich aloys, should lead to improvements in the
activation efficiency of donors in the former, and acceptors in the latter. These
predictions are indeed in agreement with recent experimental observations, which have
shown that aloying of ZnSe with small amounts of ZnTe greatly improves the activation

efficiency of nitrogen acceptors [103].
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5. Summary of the Band Anticrossing Effect in Highly Mismatched

Semiconductor Alloys

The band anticrossing model successfully explains the strong bandgap bowing of
al highly electronegativity-mismatched semiconductor alloys. Chapter 3 and 4 present
the theoretical origin and resultant effects of band anticrossing between localized
impurity states and the extended band states of the host in these HMAS. Some important
experimental results have been discussed in the context of the band anticrossing model.
The band anticrossing interaction does not only exist between the localized states and the
conduction band near the Brillouin zone center, but also extends to states at the Brillouin
zone edge. As examples for the generality of the application of the band anticrossing
model, it has been shown in section 3.4.2 that the large bowing parameters observed in
group I11-Sb alloys with As or P substituting the Sb can also be explained by the
interaction between localized As or P levels and the extended conduction band states of
the semiconductor matrix.

Valence band anticrossing has been demonstrated in Se-rich ZnSeTe and Srich
ZnSTe dloys. The interaction between the localized states of the minority component and
the degenerate valence bands of the host has been formulated in a k»p matrix form. The
eigenenergies have been calculated and compared with experimental results. The
valence band anticrossing effect is further confirmed by the direct measurements of the
band edge energies in soft xray emission experiments. The bandgap bowing effect over
the complete composition range is interpreted by a linear interpolation between the

conduction band anticrossing and the valence band anticrossing. Similar to the

133



conduction band anticrossing, valence band anticrossing also occurs in both group 11-VI
and I111-V aloys. Shown in Fig. 5.1 is the band gap and spin-orbit splitting of GaAs;-xShx
as a function of x measured by photomodulated reflectance. The bowing effect can be
well explained by an anticrossing interaction between the valence bands of GaAs and the
Sb level lying at 1 eV below the top of the valence band with an interaction parameter of
Coans $=0.6 €V. Unlike in ZnSeTe and ZnSTe, the bowing in GaAs;-xSbx shown in Fig.
5.1 isrelatively small. This is attributed to the fact that the Sb localized level lies below

the valence band edge in resonance with the valence bands.
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Fig. 5.1 The composition dependence of the band gap and spin-orbit
splitting in As-rich GaAsSh.
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Experimentally, it has been observed that in anion alloys the larger the
electronegativity difference between the anion elements is, the stronger is the bandgap
bowing. This implies a direct influence of the electronegativity on the BAC coupling
parameter in these aloys. This is not unexpected, though, because when the host atom is
substituted by an isovalent impurity atom with larger electronegativity, a stronger loca
potential is formed in the space surrounding the atom site. In Fig. 5.2 the relationship in
conduction band anticrossing is summarized for all the alloys discussed in this thesis. It

can be seen that the coupling parameter is practically proportional to the electronegativity

difference.
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Fig. 5.2 The coupling constant of the conduction band anticrossing in I1-
VI and I11-V anion aloys plotted as a function of the electronegativity
difference of anion elements. For I1-Te-O alloys the value of the coupling
parameter has not yet been experimentally determined due to the lack of
information about the oxygen concentration that is electrically active in

our samples.
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6. Additional Studiesof InN and Related Alloys

6.1 Studies of the fundamental bandgap of InN

In previous chapters, strong bandgap bowing has been demonstrated to occur in
highly mismatched semiconductor aloys as a result of anticrossing interaction between
localized states and extended states. There is another situation in which large bandgap
bowing exists due to large dfferences between the bandgaps of end-points materials.
Group I11-nitride alloys belong to such a system. Group I11-nitrides have become a widely
studied class of semiconductor materials. Both GaN and InGa;-xN with small x are very
efficient light emitters, even in samples with relatively high densities of structural
defects, and are used as component layers in a wide range of opto-electronic devices [1].
In contrast, INN has been observed to date to be a very poor light emitter. Early studies of
the interband optical absorption performed on InN thin films deposited by sputtering
techniques [2,3] and metalorganic vapor phase epitaxy [4] were interpreted as being
consistent with a fundamental energy gap of about 2 eV. The electron concentration in
those films was usually over 10%° cm® and the room-temperature mobility was below 100
cn?/Vs. This value of the bandgap has been widely accepted and frequently used as the
end point value for the extrapolation of the bandgap in InGa;-xN aloys [5]. It should be
emphasized that despite extensive efforts, no light emission associated with the energy
gap near 2 eV has ever been reported in these early studies of InN. Only most recently,
very weak photoluminescence peaks with energies ranging from 1.81 eV to 2.16 €V were

observed on InN grown on Si substrates [6].
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Recent improvements in epitaxial growth techniques have led to the availability
of InN films with considerably lower electron concentrations and much higher electron
mobilities. Electron concentrations in mid 10'® cm® with room temperature electron
mobilities well in excess of 1000 cn?/V's were achieved by these methods [7-9]. It has
been reported most recently that these improved InN films show a strong
photoluminescence at energies around 1 eV [9]. Since it has been aso found that the
position of the photoluminescence energy correlates with an onset of strong absorption, it
has been argued that the optical transition at about 1 eV corresponds to the fundamental
bandgap of InN [9].

Interestingly, a number of firg-principles theoretical calculations predict an
energy gap for InN much smaller than 2 eV. As expected, the calculations based on the
local density approximation (LDA) severely underestimate the energy gap; these
calculations predict that InN is metallic with a negative energy gap of -0.4 eV [10]. A
recently developed self-interaction and relaxation-corrected pseudopotential approach
predicts a larger gap (1.55 eV); this is still significantly smaller than 2 eV [11]. These
low values of theoretical energy gaps cannot be entirely attributed to the limitations of the
LDA. Indeed, a quas-particle corrected LDA calculation that gives accurate values of
the energy gaps in GaN and AIN predicts a gap of only 1.39 eV in wurtzite InN [12].

In this section, results of comprehensive studies of the optical and electrical
properties of INN samples grown in two laboratories are summarized. Our optical
absorption, photomodulated reflection, and hydrostatic pressure and temperature

dependent photoluminescence results are consistent with an intrinsic fundamental
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bandgap of InN of about 0.8 V. We have also found that the low energy gap exhibits
unusual temperature and pressure dependencies.

INnN films were grown on (0001) sapphire with an AIN buffer layer by molecular-
beam epitaxy [13]. The thickness of the buffer layer ranges from 70 nm to 200 nm. The
INN layer thickness is between 120 nm and 1000 nm. The details of the growth process
have been published elsewhere [13]. Xray diffraction studies have shown that high
quality wurtzite-structured InN epitaxial layers form with their c-axis perpendicular to the
substrate surface. To confirm the experimental results we have obtained from this series
of samples, we have also measured the photoluminescence signal from an InN sample
grown in another laboratory by radio-frequency plasma-excited molecular-beam epitaxy

[14]. This particular sample will be referred as the Ritsumeikan sample in the text

following.
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Fig. 6.1 (a) Optica absorption, PL, and PR spectra of a typical InN
sample. (b) Mobility, PL peak energy, and the critical energy determined
by PR (77 K) as afunction of free electron concentration. The sample with

n=1x10"cm (indicated by a broken arrow) is the Ritsumeikan sample.
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Figure 6.1 (@) shows the optical characteristics of atypical InN sample. The free
electron concentration in this sample was measured by Hall Effect to be 5° 10" cmi®. The
optical absorption curve shows an onset at ~0.78 €V. The absorption coefficient increases
gradually with increasing photon energy and reaches a value of more than 10* cm* at the
photon energy of 1 eV. This high value of the absorption coefficient is typical for an
interband absorption in direct-gap semiconductors [15]. It is important to emphasize that
there is no noticeable change in the absorption in the 1.9 to 2.0 eV region, i. e, in the
energy range of previously reported bandgapsin InN [3-5].

Also, as shown in Fig. 6.1 (a), the samples exhibit intense room temperature
luminescence at energies close to the optical absorption edge. Findly, the 77 K PR
spectrum exhibits a transition feature at 0.8 €V with a shape that is characteristic of direct
gap interband transitions. As with the absorption spectrum, there is no discernible change
in the PR signal near 2 eV. The simultaneous observations of the absorption edge and PL
and PR features at essentidly the same energy indicate that this energy position
corresponds to the transition across the fundamental bandgap of InN.

Fig. 6.1 (b) shows the roomtemperature electron mobility, the peak energy of PL
and the transition energy determined by PR as functions of electron concentration. The
sample with the highest free electron concentration n = 2" 10%%cm® is silicon-doped. All
the other samples are not intentionaly doped. The samples with the lowest electron
concentrations have mobilities mgreater than 1000 cnf/Vs. It is seen in Fig. 6.1 (b) that
the transition energies increase with increasing free electron concentration. This indicates
that the transitions from higher-energy occupied states in the conduction band contribute

significantly to the PL spectrum.
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The temperature dependence of the PL peak energy can be seen in Fig.6.1 (b).
The PL peak energy decreases from 300 K to 12 K. The shift is smaller for samples with
higher free electron concentration, ranging from 0.03 to 0.2 meV/K for the samples
investigated. This behavior is in a stark contrast to the temperature dependence of the
direct bandgap in most semiconductors, where typically a significant reduction of the
bandgap is observed with increasing temperature [16].

More detailed studies of the temperature dependence of the PL were carried out
on the sample with n=5.48x10'® cm® and =615 cnf/Vs. The results are shown in Fig.
6.2 (@) and Fig. 6.2 (b). As can be seen in Fig. 6.2 (b), in addition to the small blueshift
(nearly linear at ~ 0.1meV/K) in the peak energy of the PL, the integrated intensity of the
PL decreases by ~ 20 times as the temperature is increased from 11 K to room
temperature. The datain Fig. 6.2 (a) also show a considerable increase of the linewidth of
the PL spectra. The FWHM increases from 35 meV to 70 meV when the temperature
increases from 11 K to room temperature. It can be therefore concluded that there is no
significant shift of the PL spectra, as the temperature induced line broadening can easily

account for the observed small upward shift of the PL line maximum.
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Fig. 6.2 (a) PL spectra as a function of temperature for the sample shown
in Fig. 6.1 (a). The PL spectra are normalized to a constant peak height.
(b) The PL peak energy and the PL integrated intensity (log scale) as a
function of temperature. The line through the peak energy data is a guide
for the eye.

We have aso measured the excitation power dependence of the PL. As shown in
Fig. 6.3 (a), the integrated PL intensity depends linearly on the excitation power over
three orders of magnitude. The peak energy does not shift over this excitation energy
range. The simple linear dependence and the lack of any PL signal saturation effect again

suggest that the PL originates from fundamental interband transitionsin InN.
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To further elucidate the nature of the observed PL emission, we have studied its
hydrostatic pressure behavior. The PL peak energy as a function of applied pressure is
shown in Fig. 6.4 (b). The linear pressure coefficient is equal to 0.6 meV/kbar, which is
considerably smaller than the pressure coefficient previously observed n other 111-V
compounds. For example, the pressure coefficient of GaN is 4.3 meV/kbar [17], of
AlGayxN is 4.1 meV/kbar for 0.12 < x < 0.6 [18], and for GaAs it is 11 meV/kbar [19].
We are aware that the presence of the sapphire, which has a larger bulk nodulus than
InN, will reduce the degree to which the hydrostatic pressure is transmitted to the InN
film, if the film remains coherently strained to the substrate. Using experimental elastic
constants for sapphire and theoretical elastic constants for InN, we estimated the
correction factor for coherently strained InN on sapphire to be 1.45. Therefore, the
pressure dependence of the PL peak energy is between 0.6 meV/kbar and 0.9 meV/kbar.
This unusually low pressure coefficient of InN is not totally unexpected since, as it has
been shown previously, the pressure dependence of the energy gap of InGas-xN aloys

decreases rapidly with increasing In content [17, 20].
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Fig. 6.4 (a) PL signal of an InNN sample measured at different hydrostatic
pressures. (b) The PL peak energy as afunction of applied pressure.

The small pressure coefficient of the bandgap could, at least partiadly, explain the
weak temperature dependence of the bandgap. The temperature coefficient of
semiconductor bandgaps can be decomposed into two contributions, one from the change
in the lattice constant due to therma expansion, and the other one from the electron
phonon interaction [21]. The weak pressure dependence implies that there is only a very
small contribution of the lattice expansion to the temperature induced bandgap change.
Also, the small overall temperature coefficient further suggests that the electronphonon
coupling in this material may aso be extraordinarily small.

It should be noted that in addition to the absorption edge at about 2 eV, early
studies of the optical properties of INN have also reported an onset of strong absorption
below 1 eV [3, 4, 22]. This absorption has been attributed to transitions from deep mid-
gap defect or impurity levels to the conduction band [22]. Typical optical cross section

for deep levels is of the order of 10*® cm? [23]. Therefore, in order to explain the
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measured absorption coefficients of more than 10* cm* in our samples, it would require
the presence of nore than 10?° cm® mid-gap defects or impurities. Even if this were the
case, one should still be able to see the onset of the valence to the conduction band
transitions around the bandgap of 2 eV. However, both optical absorption and PR spectra
show no indication of any inter-band transition in this energy range in our samples,
indicating that the previously observed 2 eV absorption edge is most likely not an

intrinsic property of InN.
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6.2 In-rich InGaN and InAIN Alloys

The ImxGayN dloy system has been studied extensively in recent years. An
especially intensive effort has been directed towards studies of Ga-rich alloys which are
used as the active layer in blue and green light-emitting diodes and lasers [24-27].
Another attribute of this aloy system is that its energy gap can be varied over a wide
spectral range. For example, it has been shown that the bandgap can be decreased from
the GaN value, 3.4 eV, down to ~2.3 eV for I 4GagsN [28-31]. Studies of the optical
properties of these Garich alloys have shown a strong dependence of the fundamental
bandgap on the alloy composition. When a bandgap of ~ 1.9 eV for InN is assumed as the
end point value, large bowing parameters are required to fit the composition dependence
of the fundamental bandgap energy. For example, a bowing parameter of 2.5 eV was
obtained from optical absorption measurements and a value of 4.4 eV was obtained from
the location of the emission peaks [29].

This section shows the systematic study of the optical properties of Iny-xGaN
alloys on the Inrich side grown by molecular beam epitaxy. It was found that these
alloys show a strong infrared PL signal, as expected for an InN bandgap of ~ 0.8 eV. The
emission spectrum of the In.xGaiN system thus extends to the near infrared. The bowing
parameter over the entire composition range can be fitted with a small bowing parameter
of ~14eV.

The samples exhibit strong infrared PL signal even at room temperature. Figure
6.5(a) shows the PL signals for samples with a wide range of Ga compositions from 0O to

0.5. Both room temperature (295K) and low temperature (11K) results are shown. As
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expected, the PL peak energy shows a strong blueshift from the bandgap of InN (0.77 eV
at room temperature) with increasing Ga content. The linewidth of the PL peak is
significantly broadened as x increases. The temperature also has an interesting effect on

the PL signal, which will be discussed below.
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Fig. 6.5 (@) PL signals recorded at room temperature (solid line) and 11K
(dashed line) for samples with the Ga atomic fraction x ranging from O to
50%. All curves are normalized to equal height and offset vertically for
clarity. (b) Room-temperature absorption coefficient squared as a function

of photon energy.
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Figure 6.5(b) shows the absorption coefficient squared plotted as a function of the
photon energy. In al cases, the absorption coefficient reaches ~ 10° cmi* for a photon
energy of ~ 0.5eV above the absorption edge, which is typical for direct bandgap
semiconductors. The curves of the absorption coefficient squared are essentially linear in
the range of the photon energy investigated, which again implies a direct fundamental
bandgap. The observed dlight nonlinearity of the curves for small x can be attributed to

the non-parabolicity of the conduction band resulting from the k>p interaction between

the Gs-symmetry conduction band and the Gg-symmetry valence bands [32].
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Fig. 6.6 PL peak energy and bandgap determined by optical absorption as
a function of composition. Some previously reported data on the Ga-rich
side are aso shown. All data are taken at room temperature unless
otherwise noted. The solid curve shows the fit to the bandgap energies
(abs and PT) using a bowing parameter b = 1.43 eV. The dashed curve is
the fit to the bandgap energies on the Ga-rich side assuming a bandgap of
1.9 eV for InN. Inset: PL peak energy plotted against absorption edge
energy. The solid line is a least-square fit to experimental data on the Ga-
rich side adopted from O’ Donnell, et. al. The dashed straight line shows

the relation when the Stokes shift is zero.

The bandgaps determined from the absorption edges in Fig.6.5(b) are shown as a

function of Ga concentration in Fig. 6.6. The absorption edge shifts rapidly to higher
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energy as x increases. Numerous studies have been performed on the composition
dependence d the bandgap in Garich In.xGaN alloys [28-31]. In order to see the
composition dependence of the bandgap over the entire composition range, two sets of
previoudy reported data on the Ga-rich side are also shown in Fig. 6.6. These bandgaps
were measured by photomodulated transmission (PT) [30] and optical absorption [29],
respectively. It can be seen that our data on the Inrich side makes a smooth transition to
the data points on the Ga-rich side. This result further confirms that the absorption edge
of InN observed near 0.77 €V indeed corresponds to the intrinsic fundamental bandgap of
INN [9, 33]. As shown by the solid curve in Fig.6.6, the composition dependence of the
room-temperature bandgap over the entire composition range can be well fitted by the
following standard equation,

E.(x)=342x+0.77 (1- x)- 1.43x(1- x). (6.2)
with a constant bowing parameter of b = 1.43 eV. This value of b is much smaller than
previously reported bowing coefficients for which a bandgap of ~ 1.9 eV for InN was
used as the lower-energy end point [28,29], and is similar to that observed (1.4 €V) in the
AlGayxN alloy system [18]. For example, if an InN bandgap of 1.9 eV instead of 0.77
eV isassumed, the two sets of data points on the Garich side shown in Fig. 6.6 require a
bowing coefficient as large as 2.63 eV to accommodate the composition dependence on
the Garich side. This fit is shown as a dashed curve in Fig.6.6. This artificialy large
bowing effect has also been discussed in terms of a composition dependent bowing
parameter [20, 34]. It has been pointed out in Ref.[29] that the variety of experimental
bandgaps on the Garich sde can be better fit with a pseudo-linear composition

dependence. Our results show that this pseudo-linear composition dependence on the Ga
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rich side is ssimply a consequence of the small bowing over the entire composition range.
An additional significance of Fig. 6.6 is that it demonstrates that the fundamental
bandgap of this ternary alloy system covers a wide spectral region, ranging from near
infrared at ~ 1.6 mm to near ultra-violet at ~ 0.36 nm.

The composition dependence of the peak energy of the PL signal isaso shownin
Fig. 6.6. At higher Ga concentrations, the PL peak energy shifts toward lower energy as
compared to the absorption edge. The observed Stokes shift increases with increasing Ga
content and is as large as 0.56 eV for x = 0.5. In the inset of Fig. 6.6, the PL peak energy
is plotted as a function of absorption edge energy. Also shown by the solid line is alinear
fit to experimertal data on the Garich side [31]. The deviation from the linear
interpolation (dashed line) represents the Stokes shift. It is clearly seen that the Stokes
shift tends to reach the maximum near the middle of the composition. This suggests the
inhomogeneous distribution of In and Ga atoms as the origin of the shift. The large
composition-dependent Stokes shift indicates that PL measurements are not reliable to
determine the bowing parameter. It aso explains the origin of the much large bowing
parameter of 2.5 eV determined in recent PL studies of 1n_xGaN aloys [35].

The emission spectrum measured by PL spectroscopy reflects the distribution of
localized states in smaller- gap regions that have larger-than-average In compositions [ 34,
36], while the absorption transition mainly reflects the onset of the density of delocalized
states. Therefore, the fact that the Stokes shift reaches its maximum around the middle of
the composition range implies that the largest degree of composition fluctuation and/or
structural disorder occurs near the middle. This is also consistent with the result that the

linewidth of the PL signal increases with increasing Ga concentration, as is seen in Fig.
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6.5(a). As discussed in Ref.[30], PL linewidths of over 50 meV in In.xGaiN cannot be
explained by a purely statistical randomness in the alloy composition without considering
carrier localization caused by significant compositional inhomogeneity.

This carrier localization effect can also be deduced from the temperature
dependence of the PL signals. Fig. 6.6 shows the PL peak energy measured at room
temperature and 11K. At low Ga concentrations, the low-temperature PL peak energy is
lower than that at room temperature (by ~60meV at x = 0). As the Ga fraction increases,
the differerce is reduced and finally the low-temperature PL signal peaks at higher
energy for large x. To understand the temperature behavior of these aloys, we have
measured the PL signal of two samples over a wide temperature range (11K to 295K).
The peak energy and the full width at half maximum (FWHM) are plotted as a function
of temperature in Fig. 6.7. Both samples exhibit an anomalous temperature behavior:
while the PL peak energy of InN monotonically increases as a function of temperature, a
so-caled inverted “S’ shaped dependence is observed for 1y ggGap11N. This inverted S
shaped phenomenon has been observed previously in alloys such as GalnP [37], AlInAs
[38], and Ga-rich InGaN [39], and in InGaN/GaN quantum wells [40], and is attributed to
carrier localization. The FWHM of the PL of 1nyggGap 11N shows a rapid increase below
the temperature (~75K) where the bandgap minimum occurs in the S-shaped curve.
Afterwards, the FWHM stays essentially constant. Below 75K, carrier recombination is
dominated by radiative processes, in which the carrier lifetime increases with increasing
temperature. The photo-generated carriers have greater probability to relax down to the
localized lower-energy states before recombining. The emission peak thus redshifts, and

also significantly broadens on the lower energy side (raw data not shown here). Above
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75K, non-radiative recombination becomes dominant. The carrier lifetime decreases as
temperature increases and, as a result, the carriers quickly recombine before relaxing
down to the lower-energy tail states. Therefore, the emission peak shifts to higher energy
until the trend is compensated by the temperature-induced bandgap shrinkage. It should
be emphasized that this is not the only possible explanation of the observed effect. The
temperature dependence of the emission rate from the localized states can also contribute

to the observed behavior of the photoluminescence.
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Fig. 6.7 Temperature dependencies of the PL peak energy and the FWHM
for InN and I'ny goGap11N.

We have also studied band gap bowing in INAIN aloys grown on sapphire
substrates using the MBE method at the same laboratory. In Fig. 6.8 the band gap energy
is plotted as a function of Al content. The dependence is very similar to that observed in

an InGaN alloy, and can be fitted using a bowing parameter of b=3.0eV.
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The discovery of the narrow band gap of InN and the small band gap bowing in
the related ternary alloys greatly expands the spectral range covered by the direct band
gaps of group Il11-Nitride ternaries. Their bandgap range now covers photon energies
from the near infrared (InN), to the deep ultraviolet (AIN). This suggests the possibility
of designing nitride-based solar cells that cover practically the full solar spectrum using
one single ternary alloy. Furthermore, the bowing parameter values are a'so much smaller
than the ones previoudy determined by fitting the composition dependence of the energy
gaps of samples with small In content using a gap energy of 1.9 €V for InN.

It is interesting to compare the values of bowing parameter of different group 11
nitride ternaries. We have found a bowing parameter of 1.43 eV for InGaN [33]. We have

also measured the composition dependence of the bandgap of wurtzite GaAIN alloys
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grown by the same method. Our results show that their bandgap energy as a function of
composition can be well fit with a bowing parameter of 1.4 eV. This value is in good
agreement with the value of 1.33 eV reported by Shan et. al. [41]. Considering the
bandgap difference between the end-point nitrides for each ternary, we note a
proportional relationship between the bowing parameter and the bandgap difference. To

illustrate this relationship, we define, for an aloy of the form AB, a normalized bowing

parameter b°b/|E§- EgB| and a dimensionless bandgap variation as

a(x,)° |E§fB (x,)- EQB|/|E9A - EgB| The standard bowing equation in the form of Eq.(6.1)
can be then rewritten as
a(x)=x- bxxxq1- x). (6.2)

In this equation, the dimensionless parameter b describes the degree of the bandgap
bowing relative to the bandgap difference of end-point materials. It is found that the
value of b is essentially the same for these three group 111-N aloys. It only varies from
0.50 for AlGaN to 0.55 for InAIN aloys. Shown in Fig. 6.9 is the data of a plotted as a
function of x for In-xAlkN measured in this work and from a previous report [42], for
Gay-xAlkN and In-xGaiN measured in this work, and for In-.xGaWN [29, 30, 43] adopted
from the literature. It can be seen that although these gap energies were measured on
different alloy systems and reported by dfferent groups, they all fall anto one single
curve when expressed in the reduced form of Eq. (6.2). A common normalized bowing
parameter of b = 0.54 well describes the universal composition dependence, as depicted
by the curve in Fig.6.9. This scaling relationship is not surprising, though, because the
main contribution to the bandgap bowing is due to the effects of composition disorder on

the conduction and valence band edges [44]. Given a similar degree of disorder in space,
155



for a larger bandgap difference between aloy constituents, the potential perturbation
caused by the composition fluctuations is larger; consequently the bandgap bowing effect

is expected to be proportionally stronger.

| T T T | T T T | T T T | T T T | T T T |
1L i
i © |nGaN, our work
i O |nGaN, Pereira €t. al.
0.8 - A InGaN, Shan et. al. N
- ® |nAlN, our work
- ¥ InAlN, Kim et. al.
L ¢ AlGaN, our work
0.6 + — fit, b=0.54 i
S
04 + -
0.2 i
0L _
| L L L | L L L | L L L | L L L | L L L |

0 0.2 0.4 0.6 0.8 1
X

Fig. 6.9 Normalized bandgap variations shown as a function of x for In.
xGaN, Il AN and GagxAlxN. The curve is afit based on Eq.(6.2) using
b =0.54.

The origin of the universal relationship describing the composition dependence of
the bandgaps of group I1I-nitride alloys strongly suggests that similar arguments may be
also used in the consideration of the composition dependence of band offsets. Since the

total change of the bandgap is a sum of shifts of the conduction and the valence band
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edges, it could be argued that the relationship given by Eq. (6.2) is aso a proper scaling
function for the band offsets. Namely, for any group IlI-nitride alloy system, the
composition dependence of the conduction or the valence band offset is given by the
band offsets of the end-point compounds multiplied by the universal scaling function in
Eq. (6.2). This formula provides a method to estimate the band edge offsets between
different group Ill-nitride aloys, which is an important issue in the design of
heterostructure devices. Figure 6.10 shows the dependence of the bandgaps on the in-
plane lattice constant obtained assuming a linear relationship between the lattice constant
and the composition according to Vegard's law. The inset in Fig. 6.10 shows the
conduction and valence band offsets calculated using the scaling function given by Eq.
(6.2) and the experimentally determined valence band offsets of 1.05 eV for InN/GaN,
and 0.70 eV for GaN/AIN [45].

The results shown in Fig. 6.10 suggest that a large gap difference is expected
between GaN and the lattice matched Iy 18Alpg2N. Also, it is important to note that most
of the bandgap difference is accommodated by alarge conduction band offset of amost 1
eV. This offers the interesting possibility of using Iy 1sAlp.s2N/GaN heterostructures to
confine the two-dimensional electron gas in lattice-matched GaN quantum wells. Such a
heterostructure design would eliminate strain-induced polarization effects that are known
to be partialy responsible for the transfer of electrons from surface defects into the GaN
quantum well in standard AlGaN/GaN high electron mobility transistors [46]. A
reduction of the piezoelectric fidd-induced charge transfer could provide a better control
of the heterostructure characteristics by enhancing the role of intentional doping of the

barrier.
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Glossary

Acronym Name Page Introduced
BAC Band anticrossing 22
CBAC Conduction band anticrossing 98
CBE Conduction band edge 100
CPA Coherent potential approximation 24
DAC Diamond anvil cell 166
DOS Density of states 28
FWHM Full width at half maximum 86
HMA Highly mismatched alloy 19
LDA Local density approximation 137
MBE Molecular bean epitaxy 41
MOCVD Metal-organic chemical vapor deposition | 41
PL Photoluminescence 82
PR Photo- modulated reflectance 38
PT Photo- modulated transmission 149
QW Quantum well 47
SXE Soft x-ray emission 124
VBAC Valence band anticrossing 116
VBE Vaence band edge 102
VCA Virtual crystal approximation 3
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Appendices
1. Photoluminescence Spectroscopy

The term “radiative recombination” refers to the process by which electrons
transit from high-energy states to low-energy states accompanied by photon emission of
specific energy. Photon emission processes in semiconductors are characterized by the
luminescence spectrum. These processes can only occur in a system in which electrons
decay from excited states to equilibrium states. When electrons are excited by using a
high-power photon flux with photon energies higher than the bandgap of the material, the
resulting light emission process is called photoluminescence (PL). Figure Al shows
schematically the basic setup of a PL experiment. The laser provides the excitation and
free carriers are generated in the sample. The photon emission of the sample as a result of
free carrier recombination is collected and detected after being dispersed by the
monochromator. The PL signa is amplified via a lock-in amplification circuit and
recorded by a computer.

In the smplest description, the PL spectrum intensity of a direct-bandgap
semiconductor is proportional to the production of the joint density of electronic states
and the quas-equilibrium Fermi distribution for the photo-excited electrons and holes [9],

1 (aw) p I\/mexlo[ (aw - €,)/(k;T)) (hw? E,)

(otherwise)
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The PL line shape predicted by this equation is compared with experimentsin Fig.

A2[104].
detector cryostat
monochromator / R j>@2
floating sample
lens mirror lens mirror
lock-in A
amplifier compuiter
I
_ U o /éor
continuous-wave laser filter  chopper

Fig. ALl. Schematic diagram of a PL set-up.

Set-up I:

Laser: LEXEL-95, 8W Ar ion laser, 515 nm or 477 nm
Lock-in: SR530 lock-in amplifier

Detector: Liquid nitrogen cooled Ge detector

Monochromator: SPEX 1680, 0.22m Double Spectrometer

Set-up I1:
Laser: Méelles Griot HeCd 3074R-M-A02, 325 nm
Lock-in: SR530 lock-in amplifier
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Detector: Hamamatsu GaA s detector

Monochromator: SPEX 1404, 0.8m Double Spectrometer

Tz42°K

INTENSITY

RELATIVE

i_t 1 l 1 I

el
232 233 234 235 236 237 238
PHOTON ENERGY (eV X10™%)

Fig. A2. PL spectrum (solid curve) for highpurity ntype InSb
(n=5"10"3cm®) measured at 4.2 K. The calculated profile is shown as
points [104]. The measured profile shows atail on the low-energy side due
to a band-tailing effect.
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2. Photo- modul ated Reflectance Spectroscopy

The dielectric function and consequently the optical properties of semiconductors
(such as reflectance and transmission coefficients) have weak Van Hove singularities at
interband critical points. However, their derivatives with respect to energy exhibit strong
divergence at these critica points. Modulation spectroscopy directly measures the
derivatives of the optical properties with respect to energy by using lock-in amplification
techniques. In this way, the background can be largely suppressed and the critical-point
transitions arise as sharp features in the modulation spectrum. The critical-point energies

thus can be rather accurately determined.

monochromator sample
lens erture
lam ®
lock-in m computer detector
L 1
| peimemt /

continuous-wave laser filter  chopper

Fig. A3. Schematic of a PR set- up.
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Figure A3 shows a Photo-modulated Reflectance (PR) experimental set-up. The
chopped laser modulates the dielectric function of the sample; as a result, the reflectance
of the sample in the laser-illuminated area is modulated at the chopping frequency (~
300Hz). This reflectance spectrum is measured by using a standard reflection optics. Due
to the sensitive dependence of the dielectric function on the electronic structure of the
sample [9], the reflectance exhibits a drastic change near the critical transition energies of
the material. These changes are recorded as the PR spectrum typically in the form of
relative change in the reflectance DR/ R.

For Mo-type critical-point transitions, the transition energy can be determined by

fitting the PR spectrum using the following equations [105].

DR__ o6 1 0 ¢ 1 U
?—aXRee—__( -)5/29+b>4me(€—-)5/2 gtc
eX'| a X-1 a
. /5 AY r5 AY
in&arctan x4 cos&> arctan XY

82 P 82 H

=ax (1+X2)5/4 +D> (1+X2)5/4

+C,

where x° (E- E,)/ G, and a, b and ¢ are adjustable linear parameters in the fitting. The

fit givesthe critical energy Eo and the broadening factor G.

As shown in Fig. A4, the reflectance spectrum shows weak features associated
with the critical transitions at corresponding energy positions. With modulation
spectroscopy, these critical transitions appear as a large, sharp, derivative-like line shape,

which can be used to accurately determine the transition energy.
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0610 Gaas

R (300K)

dR/R

itting:
EO=1.422 qVv
G =D.007e
ol L E{R (2K) 1.34 1.36 1.38 14 1.42 144 146 148 1.5
& R dE E(eV)
2 4
E (eV)

Fig. A4. (@) Roomtemperature reflectance spectrum of GaAs. (b)
Numerical differentiation of a reflectance curve of GaAs measured at 2K
[9] showing various critical points. (c) Photo-modulated reflectance
spectrum of a GaAs sample obtained at room temperature. The fit gives a
bandgap energy of 1.422+0.007 eV.

Lamp: DRIEL-66181 Tungsten-Halogen lamp; DRIEL-66057 Xenon lamp
Laser: Omnichrome-100 HeCd laser, 442 nm or 325 nm

Detector: Si photodiode; Ge photodiode

Lock-in: SRS-SR850 DSP lock-in amplifier

Monochromator: Acton SpectroPro-500
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3. Diamond Anvil Cell for Hydrostatic Pressure Studies

The application of hydrostatic pressure is achieved by using a diamond anvil cell
(DAC). A detailed description of a DAC and its application can be found in Dr. L. Hsu's
PhD thesis [106]. A magnified view of the essential parts of the DAC is shown in Fig.
Ab5. The sample is usually thinned down to ~ 20 mm in thickness and cut into small chips
of ~100" 100 m¥ in size before being loaded into the DAC. In our studies, alcohol
(methanol : ethanol = 4:1) which works up to 200 kbar [107] was used as the pressure
medium. The hydrostatic pressure is transmitted to the sample via the pressure medium
when the upper and lower diamonds are pressed toward each other by external forces.
The pressure is calibrated by the standard method of monitoring the red shift of the ruby

R1 luminescence line [108].

upper

diamond pressure medium

(alcohoal)

Spring steel gasket

lower
diamond

Fig . A5. Essential parts of the diamond anvil cell
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The experimental setup of optica absorption with the DAC is shown
schematically in Fig. A6. The sample in the tiny pressurized volume is magnified ( ~
50) through a short-focus lens. Near the focal plane, an enlarged image of the sample and
surrounding empty area in the pressurized volume is obtained. A small aperture is
inserted into the image plane, through which the light intensity can be selectively
detected. As shown in Fig. A6, when the aperture is placed in the shadow of the sample,
the photon flux intensity is scanned and recorded as|; when the aperture is located in the

empty area, o is recorded. The absorption coefficient a isthen calculated as

a(nw)= %In Low)

withd the sample thickness.

erture
] DAC/sample ¥

aperture lens

lamp  monochromator lens detecJor

chopper lock-in
N\
]

image for
detection computer

detector aperture location

Fig. A6. Optics for absorption experiment with a DAC. The left lower part
shows the schematic image of the sample area n the detector aperture
plane.
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4. Soft X-ray Emission Spectroscopy

Conventional optical experiments measure the energy separation between
different states in semiconductors, such as the bandgap energy. However, it is sometimes
useful to know the absolute erergy locations of these states for different materials with
respect to a common energy reference €.g., the vacuum level). Soft X-ray Emission
(SXE) Spectroscopy is an important experimental tool that achieves this goal. The basic
SXE processisillustrated in Fig. A7. Monochromatic x-rays from a synchrotron radiation
source are incident on the sample and excite core electrons. The resultant core holes are
filled immediately by electrons making transitions from higher lying states. Some of
these transitions occur radiatively with the emission of x-ray photons at characteristic
energies. If the photons associated with the transitions from the top valence band to the
core levels are measured using a high-resolution spectrometer, the spectrum reflects the
partial density of states of the valence band [109]. Since offsets between core levels in
different elements are known from atomic physics, information on the relative energy

positions of band states in different materials is obtained.
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vacuum level

O conduction band
\
X-ray excitation + =4 = c = c—=v—=-- Fermi level
P valence band
@
o
=X X-ray emission
b=
< N y__core levels
\ 4

Fig. A7. Schematic illustration of soft x-ray emission spectroscopy.
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5. Mathematica Programs for Computations Used in This Research

(1) Bound-state energies in GaAs;xN,/GaAs single quantum well

"energy as a function of variable x"
Cl ear Al | [ Ega, Egb, mea, neb, La, Lb, Q DEv, DEc, kea, keb, Ee, Eel, Ee2, Ee3, wel, we2

,we3, plotl, plot2, plot3, plot, eexp, EgO] ;

ClearAll[En, x, Em Chm E1, E2, k, m mm{ ;

En=1. 65; Eg0=1. 42;

En{ k_]: =Eg0+1. 97372 k~2/(2 0.51 neb);

Cnme2. 7,

El[x_,k _]:=0.5 ((En+Enf k])-Sqrt[ (En-Enm k])"2+4 Cnn2 x]);
m x_, k_]1=(1.97372/0.51) (D[ E1[x, k], {k,2}])"(-1);

m x_, k_]=(1.9732/0.51) (D[EL[x, k], {k, 1}]/K)"(-1);

Ega=El[ x, 0] +0. 0; Egb=EgO0;
mea=n{ x, 0] +0 0. 067; meb=0. 067;
Lb=202; La=70;

Q=0. 0;

kea=Sqrt[2 (0.51/1.973"2) nea (Ee-Ega+DEv)];
wel=Ega- DEv+(Pi/La)"2/(2 0.51 neal/l1l.973"2);
we2=Ega- DEv+(2 Pi/La)"2/(2 0.51 neal/1.973"2);
we3=Ega- DEv+(3 Pi/La)”2/(2 0.51 nmeal/l.973"2);
keb=Sqrt[2 (0.51/1.973*2) nmeb (Egb-Ee)];

DEv=Q ( Egb- Ega) ;
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Eel[ x_]: =DEv+Ee/ . Fi ndRoot [ Tan[ kea La/ 2] ==(keb nea)/ (kea mneb),
{ Ee, Ega- DEv+0. 001, Ega- DEv+0. 0001, wel}];

Ee2[ x_]: =DEv+Ee/ . Fi ndRoot [ Tan[ kea La/ 2] ==-(kea neb)/(keb nea),
{Ee, (wel+0.0001), wel, we2}];

Ee3[ x_]: =DEv+Ee/ . Fi ndRoot [ Tan[ kea La/ 2] ==(keb nea)/ (kea mneb),

{Ee, (we2+0. 0001) , we2, we3}];

eexp={{0.012, 1. 3499}, {0. 016, 1. 3328}, {0. 020, 1. 3088}, {0. 028, 1. 27}, { 0. 012,
1. 2382},
{0.016, 1. 2152}, {0. 02, 1. 1735}, {0. 028, 1. 1297},

{0.045, 1.03},{0.045,1.18}};

pl ot 1=Li st Pl ot [ eexp, Prol og- >Poi nt Si ze[ 0. 05], Frame- >True, Gri dLi nes-

>Aut omatic];

pl ot 2=Pl ot [ { Ee1[ x] , Ee2[ x], Ee3[ x] }, {x, 0. 01, 0. 05}, Frame- >True, Gi dLi nes-

>Aut omatic];

pl ot 3=Pl ot [ E1[ X, O] , {x, 0. 01, 0. 05} ] ;

Show| pl ot 1, pl ot 2, pl ot 3] ;

(2) Variational calculations of the shallow donor ground state in GaAs;.xN in the context

of the BAC mode

ClearAll[g,g0,g00,k,ks, r,q,P, QR Q,Q1L, EO, E1, E2, E12, E3, En, Chm x, Me, Mh, e

a, b, b1, b2,t,s, WPE, PEO, PEOO, PE1, PE10, PE11, PE12, KEO, KE1, KE2, KE3, CC, pr, V,
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Egl;

e=15. 5075;

Me=0. 067; Mh=0. 45; Eg0=1. 52/ (2 13.6 Me/e"2);

Cnne2.7/ (2 13.6 Me/en2);

En: =Abs[ (1. 65- 1. 52+3 x+0. 0015 pr-0.0108 pr)]/(2 13.6 Me/e"2);

pr=20;

x=0. 01; b=0;

DEgl[x_]:=(En/2) (Sqgrt[1+4 Cnm2 x/(En)"2]-1);
Eg[ x_]: =Eg0- Abs[ DEg1[ x]]-3 x/ (2 13.6 Me/en2);

DEg2[x_]:=(En/2) (Sqrt[1+4 Cnmt2 x/(En)"2]+1);

Rk _,q_,b_]:=-(1/(2 Pi)) Log[(b"r2+(k+q)"2)/(b"2+(k-q)"2)];

QL[k_,q_]:=-(bl b2/Pi) (1/(b272+(k-q)~2)-1/(b2r2+(k+q)"2)):

EO[ k_]:=k"2/2;
El[k_]1:=(1/2) (En+EO[K]-Sqrt[ (En-EO[Kk])"2+4 Cnm\2 X]);
E2[ k_]1:=(1/2) (En+EO[Kk]+Sqrt[ (En-EO[Kk])"2+4 Cnm\2 X]);

E3[k_]:=k"2 Me/ (2 Mh) ;

g00[ k_,t_]:=Kk/(t+kr2)"2;
CC=Sqgrt[Integrate[(g00[k,t])"2,{k,0,Infinity}]];

gO[ k_,t _]=900[k,t]/CC,

KEL[t_]:=Re[NIntegrate[gO[k,t] (E1[K]+DEgl[x]) gO[k,t],
{k,0,Infinity}]];

KE3[t_]:=Re[Nintegrate[gO[k,t] E3[k] gO[k,t], {k,O,Infinity}]];
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PEOO[t _]:=Re[Integrate[gO[k,t] R k,q,b] gO0[qg,t],{q,0,Infinity},

{k,0,Infinity}]]; PEO[t_]:=NPEOO[t]];

Wt_]:=KEL[t]+ KE3[t]+PEO[t];

Plot[{En, EL[ K], E2[ K]}, {k, O, 40}];

Plot[Wt] (2 13.6 103 Me/e”2),{t,0.5,3}, GidLines->Autonatic, Frame-

>True] ;

N[ 0. 053 e/ Me]

N[ 1.52-DEg1[x] (2 13.6 Me/e”2)-0. 03]

(3) State broadening and related effects of the BAC model based on Green's function

caculation

"GF, JDOs"
ClearAlI[RO,V, x,Gn | nG G, EE, Ek, k, R P1, P2, P3, P4, P5, P6,

Rhh, Rl h, Rso, Rt ot al , Epl us, Em nus] ;

Ed=0. 23+EgQ0;
Eb=70. 4;
V=2.7;
Eg0=1. 42;
Me=0. 067,
Mhh=0. 51;
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M h=0. 082;
Ms0=0. 154,

Del t a=0. 34;

x=0. 01;

Epl us=0.5 (EgO+Ed+Sqrt[ (EgO- Ed)"2+4 Vr2 X]);
Em nus=0.5 (EgO+Ed-Sqrt[ (EgO- Ed) *2+4 V"2 X]);
RO[EE_]:=4 Pi Sqrt[EE-EQO0]/Eb~(3/2);

GrePi VA2 RO[ Ed];

G EE_, Ek_]:=(EE-(Ed+l GmM)/((EE-Ek+l 10°(-6)) (EE-(Ed+l Gm))-V 2 x):

R EE_]:=(1/Pi) Abs[N ntegrate[RO[EK] |Ini{{d EE, EK]], { Ek, EQO, Eb},

M nRecur si on- >3, MaxRecur si on- >10, Wor ki ngPr eci si on->16] ] ;

Rhh[EE_]:=(1/Pi) Abs[Ni ntegrate[ RO[Ek] In{d EE-(Me/ Mhh)

Ek, Ek] ], { Ek, EgO, Eb},

M nRecur si on- >3, MaxRecur si on- >10, Wor ki ngPr eci si on->16]];

P1=Pl ot [ RO[ EK], { EK, EgO, 3}, Frame->True, Pl ot Styl e->{R@Col or[ 0, 1, 0] }];

P2=Pl ot [ R[ EE], { EE, O, 3}, Franme->True, Pl ot Styl e->{ RGBCol or[ 1, 0,0]}];

Show P1, P2];

(4) BAC effect in the entire Brillouin zone for GaP.xNy
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ClearAll[x,y, Eg, Chm VO, kO, a, b, M En, Em EmM , Enx, k, Vhm M), q, kk

WL, W, f11,f12,f21,f22, p0, pl, p2, p3, p4, p5, p6, n, EEm EEn, WAL, WA2, i ] ;

" 30K, GaPN';

"GP, Val ance: X -2.32eV; Gama: 0OeV"

V0=3. 05;
h=6. 63 107(-34); Me=9.31 107(-31); e=1.6 107(-19);

a=5.45 10°(-10);

En[ k_]:=2.15;

Em [k_]: =(2.6439+0. 49415 (k/1.15)+ 46.922 (k/1.15)2+(-23. 368)
(k/1.15)73+(-1986.2) (k/1.15)"4+

(-9418.9) (k/1.15)"5+(-20899) (k/1.15)76+(-25072) (k/1.15)"7+(-15715)
(k/1.15) "8+

(-4043.9) (k/1.15)79);

Emx[ k_]:=(2.6399+(-0.42652) (k/1.15)+22.452 (k/1.15)"2+390.93
(k/1.15)73+(-3313.2) (k/1.15)"4+

10326 (k/1.15)~5+(-16856) (k/1.15)"6+15419 (k/1.15) 7+(-7511.9)
(k/1.15)78+1522.8 (k/1.15)"9);

Enf k_]: =(Whi ch[ k<=0, Enl [ K], k>0, Enx[ k]]) +(2. 90- Em [0]) (1-K)+(2. 35-

Emx[1]) k;

pO=Pl ot [ {EM k], En[ k] },{k,-0.87, 1}, Frane->True, Gi dLi nes- >Aut omati c,

Pl ot Styl e->{{Dashi ng[ {0. 01, 0.01}]}}1;

vnni x_, k_]:=V0 k074 Sqrt[x] /(k0"2+k"2)~2
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MD: ={{En[ k], Vnn] x, K]}, {Vvnnx, k], EnfKk]}};

Mat ri xFor n{ MD] ;

WL: =Ei genval ues[ M0][[1]];
f11: =Ei genvectors[M][[2]1]1[[1]1;

f12: =Ei genvectors[M][[2]1]1[[2]];

W2: =Ei genval ues[ M0] [ [ 2] ];
f22: =Ei genvectors[M][[2]]1[[2]];

f21: =Ei genvectors[M][[2]1]1[[1]1];

x=0. 023; k0=1. 09;

P1=Pl ot [ Vnn] x, k], {k, -0.87, 1} ];

p2=Pl ot [ {W, W}, {k, -0. 87, 1}, Frane->True, Gi dLi nes- >Aut omati c] ;

Show po, p2];

Array[ kk, n]; Array[ EEm n] ; Array[ EEn, n] ; Array[ WM, n] ; Array[ WA2, n] ; n=19
5+1;

For[i=1,i<n+1,i++;
kk[i]={-0.9,-.88,-.86,-.84,-.82,-0.8,-.78,-.76,-.74,-.72,
-0.7,-.68,-.66,-.64,-.62,-0.6,-.58,-.56,-.54,-.52,
-0.5,-.48,-.46,-.44,-.42,-0.4,-.38,-.36,-.34,-.32,
-0.3,-.28,-.26,-.24,-.22,-0.2,-.18,-.16,-.14,-.12,
-0.1,-.08,-.06,-.04,-.02,0,0.02,0.04,0.06, 0. 08,
.1,0.12,0.14,0.16,0.18,.2,0.22,0. 24, 0. 26, 0. 28,

.3,0.32,0.34,0.36,0.38,.4,0.42,0. 44, 0. 46, 0. 48,
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.5,0.52,0.54,0.56,0.58,.6,0.62,0.64, 0. 66, 0. 68,
.7,0.72,0.74,0.76,0.78,.8,0.82,0.84, 0. 86, 0. 88,
.9,0.92,0.94,0.96,0.98, 1}[[i]]:

EEn{i]=Enfkk[i]];EEn[i]=En[KKk[i]];WM[i]=WL[KK[i]];WARe[i]=VR[Kk[i]];];

Transpose[ { Array[ EEm n], Array[ EEn, n], Array[ WAL, n], Array[ WA2, n] }]

(5) Valence band anticrossing applied to ZnS;.Tex

"ZnS(1-x) Tex, 0<=x<=1; Interpolation";

"referenced to ZnTe VB-top";

Cl ear Al |l [p, x, ES, ESO, EZT, EZTO, CnS, alS, alZT, z2ZT, EZTmi nus, EZTpl us, alZTS, a
27TS,

alZST, a2ZST, nl1, n2, al, a2, P1, P2, P3, P4] ;

ES[ p_]: =ESO+alsS p;

EZT[ p_, x_]: =EZT0+alZT p+a2ZT p"2-0.3 (1-x);
ES0=2. 6;

als=1.5 10"(-3);

EZT0=2. 24;

alZT=10.9 107(-3);

a2zZT=-4.25 107(-5);

CnS=1;

EZTm nus[p_,x_]:=0.5 ((ES[p] +EZT[ p, X])-Sqrt [ (EY[ p] - EZT[ p, x] ) *2+4 CntS"2

(1-x)1);
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EZTplus[p_,x_]:=0.5 ((ES[p] +EZT[ p, x] ) +Sqrt[ (ES[ p] - EZT[ p, X] ) *2+4 Cnf5"2

(1-x)1);

Series[EZTplus[p, x],{p,0, 2}];

alZTS[ x_]:=D[ EZTmi nus[p, x],p] /. p->0;

a2ZTS[x_]:=0.5 DO EZTm nus[p, x],{p,2}] /. p->0;

"Plot[alZTS[ x], {x, 0, 1}, Frane->True, Pl ot Styl e->{ RGBCol or[1,0,0]}];

Pl ot [ @a2ZTS[ x], {x, 0, 1}, Frame- >True, Pl ot Styl e->{RG&Col or[ 0, 0, 1] }];";

alZST[x_]:=6.35 10"(-3);
a2ZST[x_]:=-1.31 107(-5);
al[x_]:=x"nl alzZTS[ x] +(1-x"nl) alZST[x];nl=1

az2[ x_]:=x"n2 a2ZTS[ x] +(1-x"n2) a2ZST[X]; n2=2;

P1=Pl ot[ al[ x], {x, 0, 1}, Frame- >True, Pl ot Styl e->{R@Col or[ 1, 0, 0] }];

P2=Pl ot [ a2[ x], {x, 0, 1}, Frame- >True, Pl ot Styl e->{R@&Col or[ 0, 1, 0] }];

alDat a={{0.0, 0}};

az2Dat a={{0.0, 0}};

P3=Li st Pl ot [ alDat a] ;

P4=Li st Pl ot [ a2Dat a] ;

Show P1, P3];

Show P2, P4] ;

"ZnSTex, 0<=x<1, 8X8, bow ng";
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"referenced to ZnS VB top";

ClearAll[r1,r2,r3,Delta0, CtmEtO, kx, ky, kz, k, k2, Hv, L, a, b,DD, S, V,

EhhO, Ehh1, Ehh2, El hO, El h, El h1, El h2, M, M h, Mhh, Mso,

EsoO, Eso, Esol, Eso2, Et, Et 1, Et 2, Ei g, Ec, Dc, Dc2, Dv,

EODat a, Del t aODat a, EcDat a, EvDat a, EOPLDat a, EOabsDat a, EsoDat a,

P5, P6, P7, P8, P9, P10, P13, P14, of fset];

hbar =1973;
m0=0. 511* 10" 6;
ri=4. 30;
r2=0.59;

r3=1. 34;

Del t a0=0. 07;

of fset =157. 2; "x-ray energy offset,
| evel and the ZnS VB top";
Ct m=0. 5;

Et 0=1. 2;

Dv=1. 2;
Dc=-0. 20; Dc2=0;
Dd=0. 89;

Ec[ kx_, x_]=3. 64+Dc x-Dc2 x"2;

kx=.;
ky=0;

kz=0;

energy difference between S-2p core
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H kx_, x_] =-hbar”2/ mD ((kx"2+ky~2) (rl+r2)+kz"2 (r1-2 r2))+Dv Xx;
L[ kx_, x_] =-hbar”2/ nD ((kx"2+ky”2) (rl-r2)+kz"2 (r1+2 r2))+Dv X;
alkx_]1=Sqgrt[3] hbar~2/nD (kz (kx-1 ky) r3);

b[ kx_]=Sqrt[3]/2 hbar”2/mD ((kx~2-ky”"2) r2-2 | kx ky r3);

DD[ kx_, x_]=L[ kx, x]-H[ kx, x];

S[kx_,x_]=1/2 (L[ kx, x] +H[ kx, x]) - Del ta0-Dd x;

V[ x_]=Ctm Sgrt|[Xx];

Hv[kx_, x_]:={{H kx, x], a[ kx], b[kx], 0,1 a[kx]/Sqrt[2],-1 Sqrt[2] b[kx],
(1-1) VIx]/Sart[2], O},

{ Conj ugat e[ a[ kx]], L[ kx, x], 0, b[kx], | DD[kx,x]/Sqrt[2],1 Sqrt[3/2]
a[kx], | Sqrt[2/3] V[x], (-1-1) V[x]/Sqrt[6]},

{Conj ugat e[ b[kx]], 0, L[ kx, x],-a[kx],-1 Sqrt[3/2] Conjugate[a[kx]],

DD[ kx, x]/ Sqrt[2], (1+)/Sqrt[6] V[x], Sqrt[2/3] V[x]},

{0, Conj ugat e[ b[ kx] ], - Conj ugat e[ a[ kx] ], H kx, x], -1 Sqrt[2]

Conj ugat e[ b[ kx]], -1 Conj ugate[a[kx]]/Sqrt[2],0,(1-1)/Sqrt[2] V[x]},
{-1 Conjugate[a[kx]]/Sqrt[2],-1 DD kx,x]/Sqrt[2],1 Sqrt[3/2] a[kx], |
Sqrt[2] b[kx], S[kx,x], 0, 1/Sqrt[3] V[x],(1-1) V[x]/Sqrt[3]},

{I Sqrt[2] Conjugate[b[kx]], -1 Sqrt[3/2] Conjugate[a[kx]], -I

DD kx, x]/Sqrt[2], | a[kx] /Sqrt[2], 0, S[kx,x], (-1+l) V[x]/Sqrt[3],-I
VIx]/Sart[3]},

{(1+1) V[x]/Sqrt[2], -1 V[x] Sqrt[2/3], (1-1) V[x]/Sqrt[6],0,
V[x]/Sqrt[3], (-1-1) V[x]/Sqrt[3], EtO,0},

{0, (-1+1) V[x]/Sqrt[6],V[x] Sqrt[2/3],(1+) V[x]/Sqrt[2], (1+l)

VIx]/Sqgrt[3],1 V[x]/Sqrt[3],0, Et0}};

Ei g[ kx_, x_]:=Sort[ Chop[ Re[ Ei genval ues[ Hv[ kx, x]1111;

{Esol[ kx_, x_],Eso2[ kx_,x_],E h1[ kx_,x_], El h2[ kx_, x_],
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Ehhi[ kx_, x_], Enh2[ kx_, x_], Et 1[ kx_, x_], Et 2[ kx_, x_]}: ={ Ei g[ kx, x] [[1]],
Eiglkx,x][[2]],
Eiglkx,x][[3]],
Eiglkx,x][[4]],
Eiglkx,x][[5]],
Eiglkx,x][[6]],
Eiglkx,x][[7]],

Eiglkx,x][[8]]};

P10=PI ot [ { Ehh1[ O, x] +of f set, El h1[ O, x] +of f set, Esol[ 0, x] +of f set, Et 1[ O, x] +0
ffset, Ec[ 0, x] +of fset}, {x, 0, 0. 3},

Pl ot Styl e-

>{RG@Col or[ 1, 1, 0], RGBCol or[0,1,0],RG&Col or[0, 1, 1], RGBCol or[ 1, 0, 0],

RGBCol or[ 0, 0, 1]}, Gri dLi nes->Automati c, Frane->True];

EODat a={{ 0. 0, 3. 4600}, { 0. 00700, 3. 4700}, { 0. 0250, 3. 2800}, { 0. 1450, 2. 7700}, {
0. 2160, 2. 4100}, { 0. 2840, 2. 2600},

{0. 5350, 2. 3100}, {0. 580, 2. 1670}, {0. 677, 2. 0300}, { 0. 798, 2. 2130}, { 0. 90, 2. 17
00} };

EOabsDat a={{0. 0, 3. 6070}, { 0. 2160, 2. 6380}, { 0. 5800, 2. 1422}, {0. 6770, 2. 0542}
,{0.7980, 2. 0264}, {0. 900, 2. 1110},

{1. 00, 2. 2500}, { 0. 2160, 2. 61}, {0. 284, 2. 477} };

P5=Li st Pl ot [ EODat a, Pl ot St yl e- >{ R@&Col or[ 1, 0, 0], Poi nt Si ze[ 0. 02] } ] ;

P13=Li st Pl ot [ EOabsDat a, Pl ot St yl e- >{ RGBCol or[ 1, 0, 1], Poi nt Si ze[ 0. 02] }];

EsoDat a={{0. 0, 3. 6770}, {0. 798, 2. 9300}, { 0. 900, 3. 0210}, { 1. 00, 3. 2000} } ;

P14=Li st Pl ot [ EsoDat a, Pl ot Styl e- >{ RG&Col or[ 0, 1, 1], Poi nt Si ze[ 0. 02] }];
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EOPLDat a={{ 0. 00, 3. 6810}, { 0. 00700, 2. 4000}, { 0. 0250, 2. 3800}, { 0. 1450, 2. 3060
},{0.2160, 2. 2540},

{0. 2840, 2. 2460}, { 0. 5350, 2. 1000}, { 0. 5800, 2. 0840}, { 0. 6770, 2. 0650}, { 0. 7980
, 2. 0600}, {0. 9000, 2. 0940},

{1.000, 2. 2515} };

P9=Li st Pl ot [ EOPLDat a, Pl ot St yl e- >{ RG&Col or [0, 0, 1], Poi nt Si ze[ 0. 02] }];

EcDat a={{0. 0, 160. 83}, { 0. 007, 160. 80}, {0. 025, 160. 68}, { 0. 145, 160. 64}, { 0. 21
6, 160. 68}, { 0. 284, 160. 56},

{0.535, 160. 44}, { 0. 580, 160. 40}, { 0. 677, 160. 36}, { 0. 798, 160. 28}, { 0. 90, 160. 2
1},{0. 95, 160. 29} } ;

P6=Li st Pl ot [ EcDat a, Pl ot St yl e- >{ Poi nt Si ze[ 0. 02] } ] ;

EvDat a={{0. 0, 157. 37}, {0. 0070, 157. 33}, { 0. 0250, 157. 40}, { 0. 1450, 157. 87}, {0
. 2160, 158. 27}, { 0. 2840, 158. 30},

{0. 5350, 158. 13}, {0. 5800, 158. 23}, {0. 6770, 158. 33}, {0. 7980, 158. 07}, { 0. 9000
, 158. 04} };

P8=Li st Pl ot [ EvDat a, Pl ot Styl e- >{ Poi nt Si ze[ 0. 02] } ] ;

P7=Pl ot [ { Ec[ 0, x] - Ehh1[ 0, x] , Ec[ 0, x] - El h1[ 0, X] ,
Ec[ 0, x]-Et 1[0, x], Ehh1[ 0, x] - Es01[ 0, x] },{x, 0, 0. 3}, Pl ot St yl e-
>{ RGBCol or [0, 1, 1],

RGBCol or [ 0, 1, 0], RGBCol or [ 1, 0, 0], RGBCol or [ 1, 0, 1]},

G i dLi nes->Aut omati c, Frame->True];

Show P10, P8, P6] ;

Show P7, P5, P9] ;
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Cl ear Al | [ EO, X, n3, n4, n5, n6, n7, P11, P12, EVZTS, EvZST, Ev, Ecm nusZTS, Ecpl usZT
S, Ecmi nusZST, Ecpl usZST,

Ecm nus, Ecpl us, Ehh, El h, EOfi t, Eso, Esofit];

EvZTS[ x_] =of f set +Dv x;

EvZST[ x_]: =Et 1] 0, x] +of f set ;

Ev[x_]:=x"n3 EvVZTS[ x] +(1-x*n3) EVZST[ x] ; n3=1;

Ehh[ x_]:=x*n3 EVZTS[ x] +(1-x*n3) (Ehh1[O0, x] +of fset);

El h[ x_]:=x*n3 EVZTS[ x] +(1-x*n3) (El hl[O0, x] +of fset);

EOfit[x_]:=x"n6 (Ecm nus[x]-Ev[x])+(1-x*n6) (Ecm nus[x]-Ehh[x]);n6=1/3;
Eso[ x_]:=x"n7 (offset-DeltaO+(Dv-Dd) x)+(1-x"n7)

(Esol[ 0, x] +of fset); n7=1;

Esof i t[x_]:=Ecm nus[ x] - Eso[ X];

Ecm nusZTS[ x_] : =of f set +Dv+EZTm nus[ 0, X] ;

Ecpl usZTS[ x_] : =of f set +Dv+EZTpl us[ 0, X] ;

Ecm nusZST[ x_]: =of f set +Ec[ O, X] ;

Ecpl usZST[ x_] : =of f set +Ec[ 0, x] +1; " ?";

Ecm nus[ x_]:=x"n4 Ecm nusZTS[ x] +(1-x*n4) Ecm nusZST[ x]; n4=1;

Ecpl us[ x_]:=x*n5 Ecpl usZTS[ x] +( 1- x*n5) Ecpl usZST[ x] ; n5=0;

P11=Pl ot [ { Ev[ X] , Eso[ x] , Ecmi nus[ x], Ehh[ x], El h[ x] }, {x, O, 1}, Frane- >Tr ue,
Pl ot Styl e-

>{ RGBCol or[ 1, 0, 0] , RGBCol or [ 0, 1, 0] , RGBCol or[ 0, 0, 1], RGBCol or[ 1, 0, 1] , RGBCo
lor[O,1,1]}];

P12=Pl ot [ { Ecmi nus[ x] - Ev[ x], Ecm nus|[ X] -

Ehh[ x], EOfi t[x], Esofit[x]}, {x, O, 1}, Frane->Tr ue,

Gri dLi nes->Aut omati c, Pl ot Styl e-

>{ RGBCol or [ 0, 0, 1], RGBCol or [ 0, 1, 0] , RGBCol or[ 1, 0, 0], RGBCol or[ 1, 0, 1] },

Pl ot Range- >{{0, 1}, {1.5,4}}];
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Show{ P11, P8, P6] ;

Show P12, P5, P9, P13, P14] ;

(6) Non-linear fitting for the determination of electron effective mass of InN by plasma

reflection experiments

"I'nN pl asna edge”;
QearAl@data, er, ei, n, kK, R w, wp, w, w0, wO, a b, a0, b0, erinfinity, paraneters, Pl, P2D;
<<SatisticsNonlinearAt";

dat a= 881000, 0. 7<, 81500, 0.6<, 82000, 0.35<, 82500, 0.15<, 83000, 0. 08<, 83500, 0. 08<,
84000, 0.081<, 84500, 0.082<<;
erinfinity=5.2;

Hwp & w2
1+Hwew2{
. P W eéw
el ow, , W D=erinfinity* ———;
OvL, P v Y T ewz

erew, wp_, w_D=erinfini ty*‘i(l—

D& er@w, wp, V\rD+éer@w, wWp, WD2+ei @w, wp, wD2
| 5 ;
el @w wp, wD

- )

2er@w, wp, WD+Zeer@w, wWp, wDZ+ei @w, wp, W D2
HHN@W, Wp, WD -1L2+k@w, wp, WD
HHN@wW, wp, W D+1L2+k@aw, wp, w D2

na@w, wp_, w

k@w, wp_, w_D=

Rw, wp_, w_, &, bb=a* +b;

Nonl i near F t @data, Raw, wp, w, a, 0D, 8wk, 8wp, W <D;
par anet er s =
Best FH t Paranet ersé. Nonl i near Regr ess@dat a, Raw, wp, w, a, OD, 8wk, 8wp, W, a<,
Regr essi onReport ® Best H t Par anet er sD;
8wp0, w0, a0<=8wp, w, a<é. paraneters

Pl= ListP ot@data, P otSyle® 8PointS ze@0. 02D<D;
P2=R ot@Raw wpO, w0, a0, 0D, 8w, 500, 5000<D;
Show@P1, P2D
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