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Abstract 

 

Band Anticrossing Effects in Highly Mismatched Semiconductor Alloys 

by 

Junqiao Wu 

Doctor of Philosophy in  
Applied Science and Technology 

 

University of California, Berkeley 

Professor Eugene E. Haller, Chair 

 

 The first five chapters of this thesis focus on studies of band anticrossing (BAC) 

effects in highly electronegativity-mismatched semiconductor alloys. The concept of 

bandgap bowing has been used to describe the deviation of the alloy bandgap from a 

linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero 

(for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin 

film deposition techniques have allowed the growth of semiconductor alloys composed of 

significantly different constituents with ever- improving crystalline quality (e.g.,     

GaAs1-xNx and GaP1-xNx with x < ~ 0.05). These alloys exhibit many novel and 

interesting properties including, in particular, a giant bandgap bowing (bowing 

parameters > 14 eV). A band anticrossing model has been developed to explain these 

properties. The model shows that the predominant bowing mechanism in these systems is 

driven by the anticrossing interaction between the localized level associated with the 

minority component and the band states of the host. In this thesis I discuss my studies of 
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the BAC effects in these highly mismatched semiconductors. It will be shown that the 

results of the physically intuitive BAC model can be derived from the Hamiltonian of the 

many-impurity Anderson model. The band restructuring caused by the BAC interaction is 

responsible for a series of experimental observations such as a large bandgap reduction, 

an enhancement of the electron effective mass, and a decrease in the pressure coefficient 

of the fundamental gap energy. Results of further experimental investigations of the 

optical properties of quantum wells based on these materials will be also presented. It 

will be shown that the BAC interaction occurs not only between localized states and 

conduction band states at the Brillouin zone center, but also exists over all of k-space. 

Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between 

localized states and the valence band states. Soft x-ray fluorescence experiments provide 

direct evidence of the BAC interaction in these systems. 

 In the final chapter of the thesis, I describe and summarize my studies of optical 

properties of wurtzite InN and related alloys. Early studies performed on InN films grown 

by sputtering techniques suggested a direct bandgap of ~1.9 eV for this semiconductor. 

Very recently, high-quality InN films with much higher mobility have become available 

by using the molecular beam epitaxy growth method. Optical experiments carried out on 

these samples reveal a narrow bandgap for InN of 0.77 eV, much lower than the 

previously accepted value. Optical properties of InGaN and InAlN ternaries on the In rich 

side have also been characterized and are found to be consistent with the narrow bandgap 

of InN. The bandgap bowing parameters in these alloys were determined. In the context 

of these findings, the bandgap energies of InGaN and InAlN were found to cover a wide 

spectral range from the infrared for InN to the ultraviolet for GaN and deep  ultraviolet 
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for AlN. The significance of this work is rooted in many important applications of nitride 

semiconductors in optoelectronics and solar energy conversion devices.  

 



 i 

 

Table of Contents 

 

 

1. Introduction to Semiconductor Alloys ……………………………………………. 1 

1.1. Virtual Crystal Approximation and Bandgap Bowing in Semiconductor Alloys. 1 

1.2. Unusual Properties of III-V1-x-Nx Alloys and Their Applications ……………… 5 

2. Isovalent Impurity States in Semiconductors  ……………………………………. 9 

2.1.  Formation of Isovalent Impurity States ………………………………………... 9 

2.2.  Experimental Observations …………………………………………………… 12 

3. Highly-mismatched Semiconductor Alloys: Group III-V Based ………………. 16 

3.1. Electronegativity Mismatch between the Constituents of Alloys ……………... 16 

3.2.  Experimental results for GaAs1-xNx and InyGa1-yAs1-xNx: Properties of HMAs. 19 

3.3.  Band Restructuring: Many-impurity Anderson Model in the Coherent Potential 

Approximation ………………………………………………………………… 21 

3.3.1. Background …………………………………………………………….. 21 

3.3.2. Hamiltonian and Green’s Function Approach …………………………. 25 

3.3.3. Coherent Potential Approximation …………………………………….. 29 

3.4. Discussion and Comparison Between Theory and Experiments ……………… 33 

3.4.1. Simplified Representation: Two-level Band Anticrossing Model …...… 33 

3.4.2. Comparison with Experimental Results: GaAs1-xNx, etc. ……………… 37 

3.4.3. GaAs1-xNx/GaAs Quantum Wells: Theory and Experiments ……….….. 47 

3.4.4. Variational Calculations of the Ground State of Shallow Donors, Neutral 

Impurities, and Excitons in GaAs1-xNx  ………………………….……….. 59 

3.4.5. State Broadening and Related Effects …………………………..……… 72 

3.4.6. Band Anticrossing in the Entire Brillouin Zone: GaP1-xNx ……..……… 79 

4. Highly-mismatched Semiconductor Alloys: Group II-VI Based …….….….….. 98 

4.1. Conduction Band Anticrossing (CBAC) in II-VI Alloys …………….…….…. 98 

4.2. The Entire Composition Range of ZnSeTe and ZnSTe ……………….….….. 114 

4.2.1. Experimental Observations …………………………………….….….. 114 

4.2.2. Valence Band Anticrossing (VBAC) in ZnSeTe and ZnSTe …….…... 117 



 ii 

4.2.3. Soft x-ray Fluorescence Studies of ZnSTe ………………..…….……. 123 

4.2.4. Hydrostatic Pressure Coefficients ……………………...………….….. 129 

5. Summary of the Band Anticrossing Effect in Highly Mismatched Semiconductor 

Alloys ……………………………………………………………..….….….…….. 133 

6. Additional Studies of InN and Related Alloys ………………..….…….………. 136 

6.1.  Studies of the Fundamental Bandgap of InN ……………..….……………… 136 

6.2.  In-rich InGaN and InAlN Alloys ………………………..…….…………….. 146 

 

Glossary …………………………………………………….………………………... 159 

 

Appendices …………………………………………………………………….…...… 160 

1. Photoluminescence Spectroscopy ………………………………………….…...….. 160 

2. Photo-modulated Reflectance Spectroscopy ……………………………….….….... 163 

3. Diamond Anvil Cell for Hydrostatic Pressure Studies ……………………..…...…. 166 

4. Soft X-ray Emission Spectroscopy …………………………………………….…... 168 

5. Mathematica Programs for Computations Used in This Research ………….....…... 170 

 

References ………………………………………………………………………….… 185 

 

 



 iii 

Acknowledgements 

 

 The research work that led to this thesis was conducted under the direct 

supervision of Professor Eugene Haller. I would like to thank Professor Haller for his 

solid advice, warm encouragement and continuous support throughout the years.  

 It has been a great privilege and pleasure for me to work with Dr. Wladek 

Walukiewicz. His profound knowledge and insightful thoughts in semiconductor physics 

have been a crucial resource from which I have benefited immeasurably in my studies. 

Without his constant guidance and the invaluable discussions I had with him, it would 

have been impossible for me to do this work.  

 I would like to thank Professor Alan Portis and Professor Kenneth Gustafson for 

having served on my Qualifying Examination committee two years ago, and for their 

recent help with my thesis. Along the way they have provided me with important advice 

and suggestions. 

 I am also indebted to Dr. Kin M. Yu, Dr. Wei Shan, Dr. Joel W. Ager III and Dr. 

Henning Feick for sharing with me their expertise in the laboratory. I thank Professor 

Oscar Dubon for his assistance in all areas of the graduate school experience. 

 I would like to acknowledge Professor C. W. Tu’s group at University of 

California, San Diego, Dr. W. J. Schaff’s group at Cornell University, Dr. J. F. Geisz’s 

group at National Renewable Energy Laboratory, Professor A. K. Ramdas’ group at 

Purdue University, and Professor I. K. Sou’s group at Hong Kong University of Science 

and Technology for providing high-quality samples. Their sample growth efforts made 

this research possible. 



 iv 

 The wonderful assistance of Ms. Pat Berumen has made my study at Berkeley an 

enjoyable experience. 

 I am grateful for the support of all my fellow graduate students and staff in the 

Haller group. In particular, I am indebted to Ben Cardozo for his help with the 

Mathematica software that I used to do my calculations. Hughes Silvestri has helped me 

greatly in performing the Hall Effect measurements and Fourier Transform Infrared 

Spectroscopy. I thank Jeff Beeman for his instruction in sample lapping and polishing. 

David Hom has also been an essential resource and I would like to thank him for his 

various assistances whenever I needed.  

Most importantly, I thank my parents for providing me with the opportunity of 

receiving this advanced education that they have missed in their own lives. Their 

unconditional support and encouragement are priceless.  

Finally I wish to gratefully acknowledge the multi-year Berkeley Fellowship from 

the University of California, Berkeley, and the effort that the Applied Science and 

Technology Graduate Group has taken to help me earn this fellowship. 

 



 1

1. Introduction to Semiconductor Alloys 

 

1.1 Virtual Crystal Approximation and Bandgap Bowing in Semiconductor Alloys 

 

The simplest possible prediction of the physical properties of a semiconductor 

alloy states that they scale linearly between the properties of the endpoint 

semiconductors. Indeed, this is the case for lattice constants, which, in the absence of 

phase transitions or other complications, do scale linearly with composition to a high 

level of precision. This effect is expressed as the Vegard’s law and has been applied 

widely to determine the alloy compositions in x-ray diffraction experiments.  

In contrast, it has been realized for over forty years that in most cases, the band 

gap of an alloy semiconductor does not follow a simple linear trend with composition, 

and that some degree of “bowing” away from the linear dependence is observed. From 

the very beginning, a quadratic relationship has been used to characterize this behavior, 

( ) ( ) ( )xxbExExxE B
g

A
g

AB
g −⋅⋅−⋅+⋅−= 11  (1.1) 

where A
gE and B

gE  are the band gaps of the endpoint materials and b is the optical bowing 

parameter. As an example, Figure 1.1 shows the bandgap bowing in ZnSe1-xTex alloys.  

Given its great importance to fundamental semiconductor physics and to 

technology, the phenomenon of bandgap bowing has been extensively studied.  In the 

early 1970’s, it was shown that the form of Eq. (1.1) could be derived by considering the 

effects of alloy disorder within the currently available theoretical models, and that the 

value of b could be estimated by considering the electronegativity mismatch of the 

elements in the alloy [1, 2]. 
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Fig. 1.1 Bandgap bowing in ZnSe1-xTex alloys. The bowing parameter b is 

approximately 1.2 eV. 

 

 In early studies of electronic structures of random alloys in the 1930’s, a linear 

dependence of the crystal potential on the alloy composition was adopted as the first-

order approximation [3]. In this approximation the composition disorder of the alloy is 

neglected, and the crystal potential of the alloy that the valence electrons feel is assumed 

to have perfect periodicity as in pure crystalline materials. The value of this periodic 
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crystal potential is linearly interpolated between that of the endpoint crystals; therefore, 

the alloy is approximated by a new, perfect crystal with this interpolated crystal potential. 

Not surprisingly, this approach is named the “Virtual Crystal Approximation” (VCA). In 

the framework of VCA the bowing parameter for the bandgap of a semiconductor alloy is 

expected to be small, because there is no strong non- linearity in the dependence of the 

energy gap on the crystal potential in band-structure calculations. It has been proposed 

that the total bowing parameter should be the sum of the intrinsic bowing bi found in the 

VCA and the “extrinsic” bowing be associated with disorder (non-periodicity) [1]. Table 

1.1 shows the bowing parameters for the direct bandgap of some ternary alloys.  

Potential fluctuations scatter electrons and mix band states, and hence modify the 

band structures. As a result, the composition disorder can also be responsible for the 

deviations from linear behavior of many other electronic properties, such as the free 

carrier effective mass and the spin-orbit splitting in semiconductor alloys. 
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Alloy bi (eV) be (eV) bcalc (eV) bexp (eV) 

GaAs-P 0.21 0.09 0.30 0.21 

InAs-P 0.15 0.08 0.23 0.20, 0.26 

Ga-InSb 0.12 0.24 0.36 0.43 

Ga-InAs 0.28 0.29 0.57 0.33, 0.56 

InAs-Sb 0.03 0.67 0.70 ≥ 0.58 

Ga-AlAs 0 0.03 0.03 ~ 0.20 

Ga-InP 0.39 0.31 0.70 0.88 

ZnS-Se 0.14 0.14 0.28 ~ 0 

ZnSe-Te -0.04 1.14 1.10 ~ 1.28 

ZnS-Te 0.28 2.12 2.40 ~ 2.40 

Ag-CuI 0.14 0.11 0.25 0.58 

CuI-Br -0.65 1.54 0.89 0.44 

InP-N    > 14 

GaAs-N    > 14 

Ga-InN    1.43 

Al-InN    3.0 

Al-GaN    1.40 

 

Table 1.1, the bandgap bowing parameter for some ternary alloys. All the 

data are from ref.[1], except for the nitrides, which are based on our own 

experimental results. The parameter bcalc is the calculated value obtained 

using a dielectric model [1]. 
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1.2 Unusual Properties of III-V1-x-Nx Alloys and Their Applications  

 

Very recently, advances in thin film growth have led to semiconductor alloys 

composed of elements with very large electronegativity mismatches; the zincblende 

GaAs1-xNx alloy is an example of such a system. Very large bandgap reductions have 

been observed in this system for a small percentage of As substituted with N (e.g., a 

reduction of 0.18 eV at x = 0.01). Direct application of Eq. (1.1) to the observed 

bandgaps of GaAs1-xNx with x up to about 0.05 would require a bowing parameter greater 

than 14 eV, and would predict a negative bandgap for a large range of compositions. The 

direct energy gap of GaAs1-xNx as a function of lattice constant is shown in Fig.1.2.  

It has not yet been technically feasible to investigate this system outside of 0 < x < 

0.05 due to the large immiscibility between GaAs and GaN. However, only 5% N 

incorporation in GaAs already forces the bandgap down to below 1 eV. InAs, on the 

other hand, when alloyed with GaAs, reduces the bandgap less drama tically. The 

bandgap of InxAs1-xN ternary does not deviate severely from the linear interpolation and 

the bowing is much smaller than that in GaAs1-xNx. Since the In atom is much larger than 

the Ga atom, the incorporation of InAs in GaAs increases the lattice constant and 

compensates the N-induced lattice contraction in GaAs1-xNx. The quaternary alloy system 

InyGa1-yAs1-xNx can, therefore, be grown lattice-matched on GaAs substrates by adjusting 

the In and N content [4]. From Fig.1.2 and Vegard’s law, it can be estimated that y ≈ 3x is 

the appropriate ratio for the lattice match with GaAs substrates. Adding In to GaAsN 

further reduces the bandgap, but still maintains the direct type of the energy gap of the 

system. Consequently, InGaAsN is considered a light-emitting material having bandgap 
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energies suitable for the application for 1.3 and 1.55 µm laser diodes for optical fiber 

communication [4]. By combining InGaAsN with GaAs or other wide-gap 

semiconductors that can be grown pseudomorphically on GaAs substrates, very deep 

quantum wells can be achieved in the active layers. This novel material is very promising 

for overcoming the poor temperature characteristics of conventional long-wavelength 

laser diodes. In these structures electron overflow from the wells to the barrier layers at 

high operation temperatures can be efficiently suppressed due to the strong confinement 

in the deep wells. Shown in Fig. 1.3 is a single quantum well laser diode structure based 

on this quaternary alloy proposed by Kondow, et. al. [4].  

 

Fig.1.2 The relationship between the bandgap and lattice constant for most 

III-V alloys  [4]. The curve for GaAs1-xNx that exhibits huge bowing is a fit 

to experimental bandgaps on the GaAs-rich side using Eq.(1.1).  
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Fig. 1.3 Schematic cross section of a InGaAsN/GaAs single quantum well 

laser diode [4]. 

 

The InGaAsN alloy has applications not only in the area of light emitting devices, 

but also in multijunction solar cells. Figure 1.4 shows the solar spectrum and materials 

used in the multijunction solar cells that can covert the solar energy into photovoltaic 

current at high efficiencies. The design of the multijunction solar cell takes advantages of 

the fact that the materials used in the multijunction are all lattice matched (to GaAs for 

example) and have gap energies covering the main portion of the solar spectrum when 

assembled in series. The InGaAsN alloy is promising in this device because of its large 

band-gap tunability (0.8-1.4 eV) while lattice-matched with GaAs.  
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Fig. 1.4 Materials basis for multijunction solar cells. The layer in the box 

“New 1.0 eV” could possibly be InGaAsN lattice-matched to Ge and 

GaAs. 

Comparably large bandgap reductions have also been observed in other N-

containing alloys such as GaPN [5, 6], InPN [7], and AlGaAsN [8], which will be 

discussed in this thesis. The strong dependence of the bandgap on the N content has made 

dilute III-V nitrides important materials for a large variety of applications. The materials 

physics behind the huge bandgap bowing in these dilute nitrides also needs to be 

understood from the basic research point of view.  
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2. Isovalent Impurity States in Semiconductors 

 

2.1 Formation of Isovalent Impurity States 

 

 When a substitutional impurity atom has the same valence as the host atom it 

replaces, it is referred to as an isovalent or isoelectronic center. Although they have the 

same valence, the impurity atom may differ from the host atom in many other aspects, 

such as a different atom size and different electronegativity. When these differences are 

significant, they may result in local defect potential associated with the isovalent 

impurities. However, isovalent centers appear electrically neutral to the host crystal 

except within the immediate vicinity of the impurities. Their potentials are thus short-

range, rather than long-range as in the case of the Coulomb potential of hydrogenic 

defects. The highly localized nature of these potentials causes the isovalent states to 

behave like deep centers in spite of the fact that their binding energies are very small. In 

general, therefore, the definition of the term “deep level” is extended to including these 

defect states that have shallow energy levels but cannot be described by the effective 

mass theory of hydrogenic impurities [9]. Unlike hydrogenic states, deep states have 

localized wavefunctions in real space which may involve Bloch functions from several 

bands over a large region of k-space. Their energy levels, therefore, do not follow one 

specific band minimum (as the hydrogenic states do) when the band structure is gradually 

changed by external causes such as applying pressure, changing temperature, and 

alloying with other materials. 
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 To calculate the energy positions of these deep levels, one needs to know the 

defect potential and then solve the corresponding Schrödinger equation. In many cases 

the exact functional form of the localized potential is not very crucial; the deep center 

wavefunction is predominantly determined by the host crystal rather than by the deep 

impurity. The main difficulty of the problem lies in the second step, i.e., finding the 

solution to the Schrödinger equation.  

 In 1980, Hjalmarson et. al. made the first systematic theoretical investigation of 

this problem [10]. Employing a Koster-Slater model for the localized potential, they 

established the eigenvalue equation in a tight-binding-function basis. For A1-symmetry 

deep states, the strength of the defect potential was assumed to be equal to the difference 

between the s atomic orbital energies of the impurity and the host atom it substitutes. The 

energy levels for various substitutional impurities in common host semiconductors were 

calculated by solving this eigen-value equation [10]. The results reproduce reasonably 

well the chemical trend of the deep levels observed in experiments and are shown in 

Fig.2.1.  
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Fig. 2.1 Calculated energies of the A1-symmetry deep levels in various 

diamond and zinc-blende semiconductors [10]. The relevant impurities are 

listed above the upper horizontal axis in the order of decreasing defect 

potentials. The energy on the vertical axis is referenced to the conduction 

band minimum. 

 

 As an example of isovalent impurities which are particularly relevant to this 

thesis, we can see from Fig. 2.1 that nitrogen substituting group V element in GaP 

produces a deep level in the bandgap with energy close to the conduction band minimum. 

In GaAs, in contrast, N substituting group V element forms a level above the conduction 

band edge, i.e., it becomes a resonant state in the conduction band.  
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2.2 Experimental Observations 

 

When the ternary alloy GaAs1-xPx is formed between GaAs and GaP, the location 

of the lowest conduction band minimum in reciprocal space switches from the zone 

center (Γ point) to the zone edge (X point) at x ~ 0.45. As a result, the slope of the 

conduction band minimum versus x (hence the slope of the energy levels of hydrogenic 

donors, which always follow the conduction band minimum) changes abruptly at x~0.45. 

On the other hand, the energy level of deep states, such as O and N in GaAs1-xPx, varies 

continuously with x. This is because the energy of a deep state is determined by the entire 

band, rather than by the lowest band minimum only, as in the case of hydrogenic states. 

The energy levels discussed here are shown as a function of x in Fig.2.2. The calculations 

show reasonably good agreement with experimental data; especially in the case of N in 

GaAs1-xPx, the theory predicts a single slope for EN as a function of x, a “shallow” bound 

state in GaP and a resonant state in GaAs, which are all experimentally confirmed. 
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Fig.2.2 Comparison of predictions with experimental data for the N and O 

A1-symmetry deep levels as a function of the GaAs1-xPx alloy composition. 

 

The resonant nature of the N level in GaAs can be seen from the EN versus x plot 

in Fig. 2.2. The extrapolation of this line to x=0 yields an energy level of EN ~ 1.7 eV in 

GaAs (at low temperature), which is above the conduction band minimum. This resonant 

level does not bind electrons or excitons, but the impurity will behave as an efficient 

scattering center for free electrons in transport process.  

 Another verification of this N resonant level in GaAs has been obtained by 

Wolford et. al. [11] using hydrostatic pressure. The pressure coefficient of the Γ 

conduction band minimum in GaAs is as large as 10 meV/kbar. The N level is much less 
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sensitive to applied pressure, because its wavefunction contains the Bloch states over a 

large region in the Brillouin zone. The pressure coefficient of EN takes the average of the 

coeffic ients of all band states in k-space, much like the behavior of the composition 

dependence. As the pressure increases, the N resonant level therefore gradually moves 

into the energy gap and becomes a bound state. The energy position of this bound state 

can be determined from the emission line of excitons that are bound to this N level. The 

results are shown in Fig. 2.3. Similar to the energy versus composition plot, the 

extrapolation of the pressure dependence to ambient pressure shows a resonant energy for 

the N level at ~1.7 eV.  

 

Fig. 2.3 The energies of L and X band minima, shallow-donor-bound 

excitons, and N localized states and its phonon replica as a function of 

applied hydrostatic pressure in GaAs [9, 11].  
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 GaP is an indirect-gap semiconductor. However, it has been realized for a long 

time that GaP becomes an efficient light emitter with the introduction of small amounts 

of N. Light emitting diodes based on GaAs1-xPx : N have been commercially 

manufactured with wavelength covering the spectral range from the  red to the green. The 

N impurities were believed to break the translational invariance in the crystal and relax 

the momentum conservation in the light emission process. Recent progress in epitaxial 

growth techniques provides the availability of GaAs and GaP films incorporated with N 

at alloy concentration (~ several percent). These alloys exhibit new, interesting optical 

properties that cannot be understood by the simple theory that has been used to explain 

the properties of GaP : N at doping concentrations.  
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3. Highly-mismatched Semiconductor Alloys: Group III-V Based 

 

3.1 Electronegativity Mismatch of the Constituents of Semiconductor Alloys 

 

Electronegativity of the elements is an important property, which Pauling has 

described in qualitative terms as “the power of an atom in a molecule to attract electrons 

to itself.” [12]. A widely-used quantitative definition of the electronegativity has been 

proposed by Mulliken [13]. He uses the arithmetic mean value of the first ionization 

energy and the electron affinity of the element. The values of the electronegativity are 

plotted in Fig.3.1 for most of the group II, III, VI, V and VI elements starting from the 

second period [14].  
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Fig.3.1 Electronegativity of the elements as a function of atomic number 

[14].  
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 It can be seen that, except for group II, the electronegativity of the elements in the 

second period is much larger than that of the rest of the same group. Therefore, as the 

atoms in a semiconductor are substituted with elements in the same  group, the resultant 

isovalent alloy can be classified into three categories based on the difference in the 

electronegativities of the elements involved. Some examples of ternary alloys are listed in 

Tab.3.1. 

 

category alloys Electronegativity difference (eV) 

III-N-As 1.0 

III-N-Sb 1.2 

III-N-P 0.9 

II-O-Te 1.4 

II-O-Se 1.1 

Highly mismatched 

II-O-S 1.0 

II-S-Te 0.4 
Moderately mismatched 

II-Se-Te 0.3 

III-P-As 0.1 
Lightly mismatched 

II-S-Se 0.1 

 

Tab.3.1 classification of semiconductor alloys based on the 

electronegativity difference. 

 

The classification based on the difference in the electronegativities of constituent 

elements can be justified by the electronic behavior of the alloy. For example, GaAsP 
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belongs to lightly mismatched alloys because the electronegativity difference between P 

and As is only 0.1 eV. The bandgap of GaAsP shows a nearly linear dependence on 

composition as predicted by the VCA theory. In Fig.3.2, the minimum bandgap of GaAsP 

is shown as a function of GaP fraction [15]. 
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Fig.3.2 The minimum bandgap of GaAsP as a function of GaP fraction 

[15]. 

 

 In contrast to the behavior of GaAsP, the composition dependence of highly 

mismatched alloys is expected to be very different. GaAsN is an example of such highly 

mismatched alloy. Some experimental results for these materials will be presented in the 

next section. 
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3.2 Experimental results of GaAs1-xNx and InyGa1-yAs1-xNx: Properties of HMA’s 

 

Most of the experimental studies of semiconductor alloy systems have been 

restricted to the cases where there are only small electronegativity differences between 

the end-point semiconductor materials. Properties of such lightly-mismatched alloys are 

close to the VCA predictions. In contrast, the properties of “highly mismatched” alloys 

(HMA’s) deviate drastically from the linear predictions of the VCA. The most prominent 

class of HMA’s comprises the III-V1-x-Nx alloys, in which electronegative nitrogen 

substitutes group V anions in standard group III-V compounds. The electronegativity 

difference between N and As is as large as 1.0 eV. 

One of the striking effects of nitrogen incorporation into III-V semiconductors is a 

dramatic reduction in the fundamental band gap. A band gap reduction of more than 180 

meV has been observed in GaAs1-xNx alloys with only 1% N [16, 17]. Similar effects 

have been also observed in GaP1-xNx [5], InP1-xNx [7], GaSbyAs1-x-yNx [18] and InSb1-xNx 

[19] alloys. The large band gap bowing and the lower-than-usual band gap pressure 

dependence have been found also in group II-VI HMA’s such as ZnS1-xTex and ZnSe1-

xTex [20], where electronegative S or Se substitutes metallic Te atoms.  

The composition dependence of the bandgap of GaAsN is shown in Fig.3.3 [21-

24]. In stark contrast to Fig.3.2, the dependence deviates significantly from the VCA 

prediction. Even the trend of the change in the bandgap is reversed from the VCA 

dependence on the As-rich side. While the VCA predicts a slight increase in the bandgap, 

it is observed the bandgap energy dropping rapidly as a function of N concentration. If 

the dependence is expressed with the band bowing equation Eq.(1.1), a huge bowing 
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parameter of more than 14 eV is required to accommodate this strong composition 

dependence on the As-rich side. 
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Fig.3.3 Measured bandgap of GaAsN as a function of GaN fraction [21-

24]. 
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3.3 Band Restructuring: Many-impurity Anderson Model in the Coherent Potential 

Approximation 

 

3.3.1 Background 

 

Over the past several decades, the physics of randomly disordered crystals has 

been studied extensively. An especially intense effort has been directed towards 

understanding of the electronic structure of random semiconductor alloys. The simplest 

treatments of such alloys is based on the Virtual Crystal Approximation [1, 2]. As stated 

earlier, in this approximation the electronic properties of the alloys are given by the linear 

interpolation between the properties of the end-point materials. The alloy disorder effects 

are typically included through a bowing parameter that describes the deviations from the 

VCA. The description of the composition dependence of the band gap in terms of the 

bowing parameter has been commonly used for a large variety of semiconductor alloys. It 

should be emphasized, however, that this approximation is expected to work reasonably 

well only for systems with bowing parameters much smaller than the energy gap. 

In contrast, the bowing parameter of HMA’s can be significantly larger than the 

bandgap energy, as exemplified in section 3.2. In this case the alloy disorder effects 

cannot account for the large deviation of the electronic properties from the VCA 

predictions. The first attempts to explain these unusual behaviors were based on a 

dielectric model that predicted highly nonlinear composition dependencies of the band 

gap for the alloys of semiconductor compounds with very different properties [25]. The 

model predicted a semiconductor to semi-metal transition in some of the alloys [26]. The 
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large band gap reduction in GaNxAs1-x alloys has also been explained by Wei and 

Zunger [27] in terms of a large composition dependent bowing parameter that could be 

decomposed into three different contributions: a volume deformation, a charge exchange 

and a structural relaxation. In the meantime, this approach has been abandoned, and 

several other theoretical explanations of the large band gap reduction in III-V-N alloys 

have been proposed [28-32].  

Alternatively, the energy band structure of HMA’s has been explained in terms of 

the two-level Band Anticrossing (BAC) model [20, 33, 34]. The model accurately 

describes the composition and pressure dependencies of the fundamental band gaps of 

HMA’s. Furthermore, it has been used to predict several new effects such as a N-

induced enhancement of the electron effective mass [35-36] and an increase in the donor 

activation efficiency [37] in InyGa1-yAs1-xNx alloys, and the change in the nature of the 

fundamental band gap from indirect to direct in GaP1-xNx [6]. All these predictions have 

now been experimentally confirmed.  

In the BAC model, the restructuring of the conduction band is a result of an 

anticrossing interaction between highly localized A1 states of the substitutional N atoms 

and the extended states of the host semiconductor matrix. The interaction between these 

two types of states has been treated in the simplest possible manner in analogy to the 

perturbation theory of a degenerate two-level system. More recently, it has been 

demonstrated that the BAC model can be derived from a firmer theoretical base [38]. It 

is the direct result of the many- impurity Anderson model, which has been widely used to 

treat the interaction between impurity states and band states [39].  
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The original Anderson model was developed to describe a single impurity atom of 

a transition metal or a rare-earth element in a non-magnetic metal. In Anderson’s s-d 

exchange model [39], the electron system is separated into a delocalized part of the 

matrix metal, which is described in terms of the band theory, and a localized level of the 

d shell electrons of the transition metal impurity atom. A dynamical mixing term is 

introduced into the Hamiltonian of the system to describe the hybridization between the 

band states and the localized impurity states. Solving the Anderson Hamiltonian, it has 

been found that, as a result of the hybridization, the impurity d state becomes a virtual 

energy state with an imaginary energy part proportional to the strength of the s-d 

hybridization. The imaginary part of the eigen-energy of the virtual state defines the 

width of the density distribution of the d state, and determines the lifetime of the state 

before the d electrons are delocalized into the band states through the exchange 

interaction. Self-consistent calculations were performed to find the conditions for the 

existence of localized magnetic moments.  

The single impurity Anderson model has been extended to explain the properties 

of cerium-based heavy-Fermion systems. A periodic coherent Anderson model has been 

developed and investigated over the years to accommodate both the spatial periodicity 

and the localization of the 4f orbitals in these systems [40, 41]. The energy dispersion of 

the system is restructured into two subbands, a result of the hybridization between the 

localized orbitals and the band states. The newly-created indirect gap between the 

subbands has profound effects on the electrical and thermodynamical properties of the 

system [42]. 
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A many-impurity Anderson model has been proposed to describe the electronic 

properties of semiconductor crystals with low concentrations of deep- level transition-

metal impurities [43, 44]. Unlike ordinary hydrogenic impurity states in semiconductors, 

these impurity states are characterized by two independent parameters: the spatial extent 

of their wave function and their energy level with respect to the nearest band edge of the 

host. The phase diagram for the electronic properties of crystals with such impurities is 

much richer than for the simple hydrogenic impurities. For example, as the impurity 

concentration increases, in addition to the trend of the conductivity increasing as a result 

of the Mott transition [45], hybridization between the impurity states and the band states 

of the host can suppress considerably the conductivity of the system in the form of inter-

state electron scattering. Therefore, transport properties of the crystal are diversified by 

the competition between these two opposing processes. 

In the following sections, we use the many- impurity Anderson model to evaluate 

the interaction between the randomly distributed localized states and the extended states 

in HMA’s. We solve this problem within the single-site coherent potential approximation 

(CPA). The calculations reproduce the BAC model results for the restructuring of the 

conduction band. The imaginary part of the Green’s function also yields new info rmation 

on the electronic level broadening that is used to determine the broadening of the optical 

transitions and to calculate the free electron mobility.  
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3.3.2 Hamiltonian and Green’s Function Approach 

 

 We describe the electronic structure of HMA’s (e.g., GaAs1-xNx) by considering 

an interaction between the localized and extended states within the many- impurity 

Anderson model. The total Hamiltonian of the system is the sum of three terms [43, 44], 
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 (3.1) 

where the first term is the Hamiltonian of the electrons in the band states with energy 

dispersion Ek
c. In the case of GaAs1-xNx, this is the G1 conduction band near the Brillouin 

zone center. The second term corresponds to the energy of the electron localized on the 

jth impurity site with energy Ej
d. To simplify the expressions, we use a vector j to denote 

the 3-dimentional coordinates of the jth site. The third term describes the change in the 

single electron energy due to the dynamical mixing between the band states and the 

localized states. N is the number of primitive cells in the crystal. It is assumed that only 

one band and one impurity level are involved in the process. Following Anderson’s 

scheme, the hybridization strength is characterized by the parameter Vkj defined by the 

following equation [39], 
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where a(r-j) and ϕd(r-j) are the Wannier func tions belonging to the band and the localized 

wavefunction of the impurity on the jth site, respectively. ( )rHFH  is the single electron 

energy described in the Hartree-Fock approximation [39]. 

The retarded double-time Green’s function for band electrons is defined as  

( ) ( ) ( ) ( ) ( ) ( )[ ] ,0,0| ><−>>=≡<< +
++ ctct

i
ctctG θ

h
    (3.3) 

where θ(t) is the step function, ( ) iHtiHt AeetA −≡ , [ ] BAABBA +=+,  is the Fermi 

anticommutator, and ( ) ( )kTHkTH eTrAeTrA // / −−>=<  represents the ensemble 

average.  

 The Fourier transfo rm of Eq.(3.3) is 

( ) ( ) ( )∫
∞

∞−

++ +

>>=≡<< ,| /0 dtetGccEG tiEi h      (3.4a) 

and 

( ) ( ) ( )∫
∞

∞−

+− +

= .
2

1 /0 dEeEGtG tiEi h

hπ
      (3.4b) 

From the Heisenberg equation 

( ) ( )[ ] ( ) ( ),, tHAHtAHtAtA
dt
d

i −==h      (3.5) 

the equation of motion of the Green’s function G(t) can be written, 

( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) .0|,0,0| >><<+><>>=<< +
+

++ cHtcctctctc
dt
d

i δh  (3.6) 

The corresponding equation of motion of G(E) is obtained from the Fourier transform of 

Eq.(3.6) [46-47],  

[ ] [ ] .|,,| >><<+>>>=<<< +
+

++
k'kk'kk'k cHcccccE   (3.7) 



 27

Because of the commutation relation [ ] k'kk'k ,, δ=+
+ cc , Eq.(3.7) leads to 

,
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i FeVG
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GG jk'
kj

kjkkkkkk'kk' δ     (3.8) 

where the coupling Green’s function is defined as >>≡<< +
k'jjk' cdF |  and has the 

following equation of motion, 
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      (3.9) 

In Eq.(3.8) and (3.9), the unperturbed retarded Green’s functions are 

( ) ( ) .0,0 1)0(1)0( −+−+ +−=+−= iEEHiEEG dc
jjj'jj'kkk'kk' δδ  (3.10) 

The Green’s function for the impurity atoms is defined by >>≡<< +
j'jjj' ddH | . 

 Eq.(3.8) and (3.9) yield an integral equation for Gkk’ of the form 
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where the renormalized interaction parameter is given by 

( ) ( ),~ 2 dd EEVEEVVV jjjk"kj −≈−⋅=     (3.12) 

In Eq.(3.12), V is the average value of Vkj, assuming weak dependencies on k and j.  

For the single impurity case, we can set j=0. The equation chain represented by 

Eq.(3.11) is closed and has the following solution, 
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Meanwhile,  
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where ( )ερ0  is the density of states (DOS) of Ek
c per unit cell. ∫P represents the 

principal value of the integral and is usually very small if ( )ερ0  does not change rapidly 

near Ed. R is the real part of the integration and is small, so that it will be neglected in the 

following discussions. Even if R is not negligible, it can be taken into account by 

including a shift to Ed, and the main conclusion of this theory is not affected. Since ( )ερ0  

depends only weakly on energy, we can assume that it is constant in first order 

approximation of the imaginary part calculation, with an effective value equal to the 

unperturbed DOS evaluated at Ed and multiplied by a prefactor β . 

The poles of Eq.(3.13) give the dispersion relations for the system, 
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  (3.15) 

This is the original Anderson localization model for magnetic impurities in metals. It 

shows that the band state energy is unaffected, but the energy of the localized state gains 

an imaginary part, implying that the DOS of the localized state is broadened by the 

dynamical mixing. 

In the case of x = 1, there is one localized state in each unit cell. The model then 

becomes a “periodic Anderson model”, which applies to heavy fermion system [40, 41]. 

In this case the equation chain given by Eq. (3.11) is also closed and takes a form, 
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Combined with Eq.(3.10) and (3.12), the Green’s function given by Eq.(3.16) has poles 

given by,  

( ) ( ) ,2VEEEE dc =−⋅− k       (3.17) 

 which shows a spectrum restructuring [40,41]. The dispersion relations Ek
c and Ed 

anticross each other and result in two new dispersions, i.e., the algebraic solutions of 

Eq.(3.17).  

 

3.3.3 Coherent Potential Approximation 

 

For concentrations between 0 and 1, 0<x<1, the summation in Eq. (3.1) extends 

over x⋅N sites that are occupied by impurities. This situation corresponds to the so-called 

“many-impurity Anderson model”. The equation chain Eq.(3.11) is not closed and 

approximation is needed for a solution. 

We perform the Fourier transform of Eq.(3.11), and obtain the equation of the 

Green’s function in real space representation,  
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In matrix form, Eq.(3.18) is written as the Dyson equation, 
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where ( ) ll'lll' δVpv
~~ =  is the effective perturbation matrix. pl = 1 if the l-th site is 

occupied by an impurity atom, and pl = 0 otherwise.  

  In the dilute limit, 0<x<<1, we assume that the impurities are distributed 

randomly and homogeneously in space. A configurational averaging can be carried out, 

neglecting correlations between positions of the impurities. In this case, the single-site 

coherent-potential-approximation (CPA) is adequate for the many- impurity system. In the 

CPA, consecutive multiple scattering from a single impurity atom is fully taken into 

account, but correlations between scattering from different impurity atoms are neglected 

due to the lack of coherence between the randomly distributed impurity sites. This 

approximation is illustrated by the following Feynman diagrams in Fig.3.4. We retain 

diagrams like (a), (b), (c), etc., but ignore (d), (e), (f), etc.. 
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 (d)    (e)    (f) 

Fig.3.4 Feynman diagrams of the CPA. Each solid segment represents an 

unperturbed Green’s function, and each dashed segment represents a 

scattering interaction. 

 

The CPA treatment leads to the result that [43, 48, 49], after the configurational 

averaging, the average Green’s function partially restores the space translational 

invariance, and k resumes its well-defined properties as a good quantum number. In 

momentum space, the diagonal Green’s function in CPA can be written as [43, 48, 49] 
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where the average self-energy is proportional to the impurity concentration, 
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The average Green’s function in real space, G(E), is determined by the self-consistency 

equation, 
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     (3.22) 

 

The poles of the average Green’s function determine the eigen-energies of the system. In 

the next section, the approximate solutions of Eq.(3.22) will be discussed. 
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3.4 Discussion and Comparison between Theory and Experiments 

 

3.4.1 Simplified Representation: Two-level Band Anticrossing Model  

 

In general, G(E) can have an imaginary part, and the DOS for the conduction 

band in the entire Brillouin zone is rather complicated. Therefore, numerical calculations 

are needed to find the solution to the transcendental Eq.(3.22). Considering that, similar 

to the case of Eq.(3.14), the imaginary part of the denominator of the integrand in 

Eq.(3.22) is very small (proportional to a small number x), we can replace Eq.(3.22) by 

Eq.(3.14) as the lowest order approximation, 
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Equation (3.20) is then  
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The new dispersion relations are determined by the poles of Gkk(E), and the solutions are 

given by an equivalent two-state- like eigen-value problem, 
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where ( )d
d EV 0

2ρπβ=Γ  is the broadening of Ed in the single- impurity Anderson Model. 

If Γd=0, Eq.(3.25) is reduced to the BAC model [20, 33, 34] with two restructured 

dispersions for the upper and lower conduction subbands, 
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1 22
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If the broadening Γd is nonzero but small, so that ( )dEVxV 0
22 ρπβ>>  and 

( ),0
2 ddc EVEE ρπβ>>−k  we obtain an approximate analytical solution for Eq.(3.25), 
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where ( )k±E  has been defined in Eq.(3.26). The imaginary part of the dispersion 

relations defines the hybridization- induced uncertainty of the energy. We note that the 

imaginary part in Eq.(3.27) is proportional to the admixture of the localized states to the 

restructured wavefunctions in the two-state- like-perturbation picture described by 

Eq.(3.25), 

( ) ( ) .
2

dEd Γ⋅=Γ ±± kk        (3.28) 

As an example, Fig.3.5(a) shows the dispersion relations given by Eq.(3.27) for 

GaAs0.995N0.005 near the Brillouin zone center. The broadening of the dispersion relations 

is given by the imaginary part of Eq.(3.28). In the calculation, the hybridization 

parameter 7.2=V eV is taken to be an experimentally-determined constant [20]. The 

density of states for the GaAs conduction band edge is assumed to have a parabolic form 

following the effective-mass theory, 

( ) ,/4 2/3
00 B
cE εεπερ −=        (3.29) 
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where ( ) ( )*22 2/2 mbB πε h=  is of the order of the conduction band width. The lattice 

constant of the unit cell is b=5.65 Å, and m*=0.067m0 is the electron effective mass of 

GaAs. The prefactor β  is taken to be equal to 0.22, as will be estimated in a later section. 

 This anticrossing interaction between the localized states and the G1 conduction 

band states which all have the same A1 symmetry, is similar to the band anticrossing 

effect frequently seen in intrinsic semiconductors. Shown in Fig.3.5(b) is the band 

structure of pure GaAs on a large energy scale over the whole Brillouin zone. A band 

anticrossing between two ?5-symmetry bands in intrinsic GaAs along the ? line is 

shown. 
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Fig.3.5 (a) Conduction band restructuring according to Eq.(3.27) for 

GaAs0.995N0.005. The broadening of the dispersion curves of the newly-

formed subbands illustrates the energy uncertainties defined in Eq.(3.27). 

All the energies are referenced to the top of the valence band of GaAs. (b) 

The band structure of GaAs and the localized N level at Ed (dashed line) 

over the whole Brillouin zone.  
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3.4.2 Comparison with Experimental Results: GaAs1-xNx, etc. 

 

 In this section the predictions of the BAC model are compared with some 

fundamental experimental results. The bandgap reduction in GaAs1-xNx alloys is 

accounted for by the downward shift of the conduction band edge caused by the 

anticrossing interaction. Fig.3.6 shows the fundamental bandgap as a function of N 

concentration from various reports [21-24] together with the dependence calculated from 

Eq.(3.26). The best fit is obtained with an interaction constant of V=2.7eV. 
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Fig.3.6 Energy gap of GaAs1-xNx as a function of the N concentration from 

various reports [21-24]. The solid curve is a fit based on the BAC model. 
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The additional E+ transition at energies blue-shifted from the previously observed 

N resonant level [31] suggests a strong interaction between the N states and the host 

GaAs. Fig.3.7(a) shows the photo-modulated reflectance (PR) spectra for GaAs1-xNx for a 

range of N concentrations [50]. The critical energies are plotted as a function of x in 

Fig.3.7(b). In Fig.3.7(b) it can be seen that the spin-orbit transition energy 0∆+−E  

follows −E , indicating that the top of the valence band of GaAs is not affected by the N 

incorporation. The symmetric shift of +E  and −E  is a typical behavior for interacting 

two-level systems. On the other hand, the 1E  energy that corresponds to the inter-band 

transition along the ?  line in the Brillouin zone shows a much weaker composition 

dependence. This implies that the effect of N on the band structure of GaAs away from 

the Brillouin zone center is much weaker.  
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Fig.3.7(a) Photomodulated reflectance spectra showing the critical 

transitions [50]. (b) The critical energies obtained from (a) plotted as a 

function of x.  

 

(a) 

(b) 
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 The anticrossing character of  +E  and −E  is not only reflected in the composition 

dependence, but can also be seen in their pressure dependencies. Fig.3.8 shows the 

energy positions of the +E  and −E  transition for GaAs0.985N0.015 as a function of 

hydrostatic pressure [50]. The solid curves represent the pressure dependencies calculated 

from Eq.(3.26), using previously-known pressure coefficients 8.10/ =dPdE C meV/kbar 

for the GaAs conduction band edge and 5.1/ =dPdE d  meV/kbar for the N localized 

states.  
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Fig.3.8 Energies of the E+ and E- transitions obtained from PR 

experiments as a function of hydrostatic pressure for GaAs0.985N0.015 [50]. 

 

At present, growth of III-V-N alloys is considered challenging; bulk material has 

not been reported and most studies use epitaxial techniques such as gas-source molecular 
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beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD) to grow thin 

films. Because only a small concentration of N (~1%) can lead to a large modification in 

the energy band gap of III-V-N materials, ion implantation is an attractive and feasible 

alternative approach to synthesize these alloys. We have synthesized a series of III-V-N 

alloys [51] using ion implantation technique and their optical properties have been 

subsequently characterized. In the following text, the quaternary alloy AlyGa1-yAs1-xNx is 

discussed as an example.  

As in the case of GaAs1-xNx, N incorporation in AlyGa1-yAs has also been 

observed to have similar effects. We have observed a significant N-induced reduction of 

the band gap in N-implanted AlyGa1-yAs thin films. For the implantation, N+ ions were 

implanted into 0.3-0.5 µm AlyGa1-yAs epitaxial films MOCVD-grown on GaAs substrates 

with y up to 0.61. Multiple N implants with energies in the range of 33 - 160 keV were 

used to create ~ 200-350 nm thick layers with a uniform N atomic fraction. Rapid thermal 

annealing was performed on the implanted samples in a flowing N2 ambient over the 

temperature range of 560-950oC for 5-120s. The samples were then optically investigated 

by PR spectroscopy. Positions of both the lower E- and upper E+ subbands for AlyGa1-

yAs1-xNx determined from the PR measurements are shown in Fig.3.9 as a function of 

AlAs mole fraction y. Note that the optical transitions to the indirect band gaps at L or X 

minima are not observed in the PR spectra. The known dependencies of the Γ, X, and L 

conduction-band minima on y are also shown in the figure. The dependence of the 

localized nitrogen level EN on y has been determined from published results on N-related 

photoluminescence lines in AlyGa1-yAs alloys doped with N at low concentrations [11, 

52]: EN=1.65+0.58 y (eV) for the N level at room temperature. This dependence is shown 
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by the dotted line in Fig.3.9. It is worth noting that the change of EN by about 0.58 eV for 

y changing from 0 to 1 is very close to the valence band offset between GaAs and AlAs, 

0.55 eV. This indicates that the energy EN is practically constant independent of the 

AlGaAs alloy composition when referenced to an absolute energy scale, a characteristic 

feature of highly localized leve ls that has also been previously observed for the N level in 

GaAsP alloys [10], as has been discussed in Ch.2. 

 

 

Fig.3.9 The E+ and E- transition energies measured with ion beam 

synthesized AlyGa1-yAs1-xNx samples. The variation of EN and the Γ, X, 

and L conduction band edges as a function of AlAs mole fraction in 

AlyGa1-yAs alloys are also shown.  

 

Results in Fig.3.9 show the evolution of the E- and E+ energies as functions of the 

composition. The composition dependence of the relative locations of the interacting EN 

and Γ levels leads to a change in the nature of the E- and E+ subbands. At larger y the Γ 
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edge moves to higher energies and the E- subband acquires more Γ band- like character. 

This composition- induced evolution of the anticrossing interaction closely resembles a 

change in the nature of E- and E+ states with hydrostatic pressure. The symmetric shift of 

+E  and −E  from the positions of EΓ and EN with increasing AlAs composition is another 

manifestation of the two-level anticrossing interaction in the system. 

Similar band anticrossing effects have also been observed in several other N-

containing III-V alloys, such as GaP1-xNx [5], InP1-xNx [7], GaSbyAs1-x-yNx [18] and 

InSb1-xNx [19]. Shown in Fig.3.10 is the bandgap bowing of InP1-xNx grown by gas-

source molecular beam epitaxy with small N concentrations [53]. The energy of the 

localized N level Ed=2.0 eV above the valence band edge of InP was estimated from the 

valence band offset of 0.35 eV between InP and GaAs. A BAC fitting leads to a 

coupling constant of V=3.5 eV in InP1-xNx.  
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Fig.3.10 Energy gap of InP1-xNx as a function of x. The solid line is a fit 

based on the BAC model. 

 

The strong bandgap bowing is a characteristic of the localized-extended 

anticrossing effect in the system. This effect is frequently observed in III-V-N alloys 

because of the large electronegativity mismatch between N and the group V element it 

substitutes.  

It is well known that large band gap bowings also exist in all group III-Sb alloys 

in which metallic Sb is replaced by either P or As. Given the moderate electronegativity 

difference between Sb and P or As, an interesting question arises: could the strong 

bowings also be explained by the band anticrossing interaction? Fig.3.11(a) shows the 

composition dependence of the energy of the conduction band edge in GaAsxSb1-x [54] 



 45

and InAsySb1-y [55] along with the results of calculations based on the BAC model. The 

calculations account well for the conduction band shifts assuming that the energy of the 

localized As level lies at 1.6 eV above the valence band of GaSb and the coupling 

constant is 0.95 eV. The band anticrossing effects in these materials are significantly 

weaker compared with III-N-V alloys because of the smaller electronegativity difference 

of 0.2 eV between Sb and As. 

Somewhat larger anticrossing effects are expected for III-V alloys in which Sb 

with an electronegativity of 1.8 eV is partially replaced by P with an electronegativity of 

2.1 eV. Such alloys containing P and Sb are difficult to grow because of a large 

immiscibility between the components. A successful synthesis of GaPxSb1-x has shown 

that this alloy system exhibits a large band gap bowing [56]. The energy of the 

conduction band edge as a function of the P content is shown in Fig.3.11(b). As expected, 

the anticrossing effects are more pronounced in this case than in the case of GaAsxSb1-x or 

InAsySb1-y alloys. Note that there is quite a large deviation of the conduction band energy 

from the prediction of the VCA represented by EM. Again, calculations based on the BAC 

model account very well for the downward shift of the conduction band edge.  

 



 46

0.0

0.2

0.4

0.6

0.8

1.0

0 0.05 0.1 0.15 0.2 0.25 0.3

Composition, x or y

E
M

(x)

E
M

(y)

GaAs
x
Sb

1-x

InAs
y
Sb

1-y

E
As

=1.6 eV

C
AsM

=0.95 eV

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

Composition, x 

GaP
x
Sb

1-x

C
PM

=1.25 eV

E
P
=1.5 eV

E
M

 
Fig.3.11(a) Energy of the conduction band edge in GaAsxSb1-x and 

InAsySb1-y. The energies are relative to the valence band maximum of 

GaSb [54, 55]. (b) Conduction band minimum as a function of 

composition in GaPxSb1-x. The solid line shows the results of BAC 

calculations with EM representing the conduction band edge obtained 

within the VCA [56]. 
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3.4.3 GaAs1-xNx/GaAs Quantum Wells: Theory and Experiments 

 

 When semiconductor alloys form quantum wells (QW), the optical and the 

electronic transport properties can be changed significantly. The potential for important 

practical applications in high-efficiency optoelectronic devices clearly necessitates a 

good understanding of the electronic structure of the III-V-N based QW’s. In this section, 

the results of studies of GaAs1-xNx/GaAs quantum superlattices will be shown. The 

Interband transitions in GaAs1-xNx/GaAs multiple QWs were studied at room temperature 

by PR spectroscopy as a function of well width, the nitrogen concentration, and 

hydrostatic pressure. It will be shown that all the experimental data can be explained 

quantitatively using the dispersion relationship obtained from the BAC model to calculate 

electron confinement effects in a finite depth quantum well.   

A series of GaAs1-xNx/GaAs multiple QWs with different GaAs1-xNx well 

thickness from 3 to 9 nm,  N concentrations 0.012 < x < 0.028, and 20 nm GaAs barriers  

were grown by gas-source molecular beam epitaxy on a semi- insulating GaAs substrate 

and capped by a 50 nm GaAs layer [57]. The QW structure is shown in Fig.3.12. 

The PR spectra for GaAsN/GaAs QW’s with 7 nm well width and four different 

N concentrations are shown in Fig.3.13(a). 
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Fig.3.12 Structure of GaAsN/GaAs multiple QWs used in this study. 
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Fig. 3.13(a) Raw PR spectra taken at room temperature for GaAs1-xNx / 

GaAs QW’s with 7 nm well width and different N concentrations. (b) First 

and second transition energies E1 and E2 as a function of N concentration 

for the PR spectra shown in (a). Solid curves: calculated values using the 

band anticrossing (BAC) model and finite-depth single well confinement 

with GaAs1-xNx electron effective mass given by Eq. (3.30); Short dashed 

curves: calculated values assuming GaAs1-xNx electron effective mass 

equal to m*
GaAs. Long dashed curve: band gap of bulk GaAs1-xNx given by 

the BAC model. 

 

The feature at 1.42 eV arises from the GaAs cap layer and barriers. Two 

transitions at lower energies are also clearly identified. We assign them to transitions 

from the GaAsN valence band to the two confined levels of the conduction band and 

denote them E1 and E2. These assignments are illustrated in Fig. 3.14. As shown in Fig. 

3.13(b), the features corresponding to both transitions shift to lower energy with 

increasing x. The shifts can be attributed to the bandgap reduction observed in bulk 
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GaAs1-xNx [34]. It should be noted that the data in Fig.3.13 and in Fig. 3.18 in the 

following text agree, within experimental error, with similar data presented in Ref. [58].  

 

 

Fig.3.14 Band alignment and optical transitions in the QW.  

 

In first order perturbation theory, the BAC model predicts a hybridized lowest 

conduction band given by Eq.(3.26). The GaAs conduction band near the Γ point can be 

represented well by a parabolic dispersion function with effective electron mass 

m*
GaAs=0.067 m0. The band gap of bulk GaAs1-xNx given by Eq. (3.26) is also plotted in 

Fig.3.13(b). It can be seen that the transitions in the QW’s are blue shifted from the bulk 

energy gap due to quantum confinement.  

To evaluate the confinement quantitatively, we applied a finite-depth square well 

confinement model with depth and width of the well and the effective mass inside (min) 

and outside (mout) the well as input parameters. Since the barrier layer is much thicker 

than the active layer, we neglect the coupling between neighboring QW’s and simplify 

GaAs GaAs GaAs1-xNx 
CB

VB 

E1 E2 
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the system into a single QW problem. Furthermore, the electron dispersion given by Eq. 

(3.26) is non-parabolic; hence the electron effective mass in the conduction band is 

dependent on the k vector, resulting in an inseparable Schrödinger equation. To simplify 

the calculation, we have assumed that the effective mass of the electrons in the quantum 

well can be approximated by an energy-independent density-of-state mass at the bottom 

of the lowest conduction band [33, 59],  

( )
( )

( )( )
.

40

0
12

/ 22

*

0

2*















+−

−
−=≈

=− xVEE

EE
m

dkkdE
k

m
dc

dc

GaAs
k

h   (3.30) 

This is a good approximation, because as can be seen in Fig. 3.13, the confinement 

energies are below 0.2 eV, such that a change of the effective mass of less than 5% is 

estimated for the energy corresponding to the ground state confinement. Shown in Fig. 

3.15 are the dispersion curves of E-(k) and the parabolic approximation assuming an 

electron effective mass given by Eq.(3.30). It can be seen that within the energy range of 

0.2 eV from the E- bottom, the parabolic approximation mimics E-(k) quite well. 
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Fig.3.15 The dispersion relation of E-(k) for x=0.016, and the parabolic 

approximations to it near the band edge assuming different electron 

effective masses. Eq.(3.30) gives an effective mass of m* = 0.102 for this 

N concentration. 

 

Photoluminescence [60] and x-ray photoelectron spectroscopy [61] studies of 

GaAs1-xNx/GaAs heterostructures indicate a slightly type-II band lineup with a very small 

negative valence-band offset of |∆Ev| < 20meV/%N. For this type-II band lineup, the 

transition energies are not sensitive to the value of the valence band offset, because the 

holes are not confined in the active well layer. Consequently, the lower states of the 

optical transitions in the well are always located at the top of the valence band, and the 

energies of the two observed transitions are given by the locations of the ground and first 

excited states of the confined conduction band electrons [60].  

In the following discussion, we neglect the strain effect induced by the lattice 

mismatch between the GaAs1-xNx layer and the GaAs layer. For x<0.03, the lattice 

constant of GaAs1-xNx is changed from that of GaAs by less than 0.5% [62]. The biaxial 

GaAs0.984N0.016 

Ed 

E- (k) 

m*=m*
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tensile strain introduced by this small mismatch may raise the valence band of GaAs1-xNx 

by 40 meV at most [63]. The quantum confinement of the holes by this shallow well has 

been estimated to decrease the transition energies by less than 20 meV for all the QW’s 

studied here. It is important to note that the small energy shifts resulting from the biaxial 

strain- induced hole confinement do not depend on the external hydrostatic pressure and 

are the same for all the optical transitions observed. Also, the maximum energy shift is 

equivalent to the shift produced by a change of the N content of less than 0.2 %, which is 

below the accuracy of our determination of the alloy composition. It can therefore be 

argued that the conclusions of this study are not affected by the omission of the strain 

effects on the valence band offsets.   

 

 

Fig.3.16 A schematic of the ground state and the first excited state 

wavefunctions in the QW. 

 

The one-dimensional time- independent Schrödinger equation is written as 
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where U(z) is the square potential shown in Fig.3.16. The boundary conditions are [64] 
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The equation and these boundary conditions lead to a number of transcendental 

equations, from which the bound-state eigen-energies of the system can be determined. 

For example, the even-parity states (ground state, second excited state, etc.) have the 

following equation set: 
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The numerical solutions for the set have been found and the transition energies 

have been calculated. The energies of E1 and E2 calculated using the QW effective mass 

obtained from Eq.(3.30) are shown as solid curves in Fig. 3.13(b). The calculations are in 

good agreement with the experimental results. The agreement is even more remarkable 

considering the fact that no adjustable parameters have been used in the calculations. We 

have used all the parameters (i.e., Ed and V) that were previously determined from the 

studies of composition and pressure dependence of the optical properties of bulk GaAsN 

alloys [33, 34]. For all the four samples shown in Fig. 3.13, the effective mass calculated 

from Eq.(3.30) is equal to about 0.11m0, which is over 60% larger than the electron 
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effective mass of GaAs. To demonstrate the effect of the heavier electron mass, we have 

also calculated the optical transition energies assuming that the electron effective mass of 

GaAsN alloys is the same as that of GaAs. The results are shown as dashed curves in Fig. 

3.13(b). Clearly, much better agreement with the experiment is reached when the N-

induced enhancement of the electron effective mass is incorporated in the model. Similar 

values of the effective mass have also been theoretically predicted [65] and 

experimentally observed. Jones and co-workers measured via three different techniques 

an effective mass of ~0.13m0 for In0.07Ga0.93As0.98N0.02 [66]. Hetterich et. al. observed an 

effective mass increased by ~0.03m0 in an InGaAsN alloy with 1.5% N [35]. All these 

independent results agree reasonably well with the values predicted by Eq.(3.30). 
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Fig.3.17 The electron effective mass given by Eq.(3.30) as a function of N 

concentration x and hydrostatic pressure P. 

 



 56

Figure 3.18 shows the optical transition energies as a function of the well width 

for a fixed N concentration, x=0.016. The data clearly show increasing quantum 

confinement with decreasing well width. Again, the theoretical calculations agree well 

with the measured data if the heavier effective mass given by Eq.(3.30) is used in the 

calculations as opposed to a fixed value of 0.067m0. The effect of the heavier effective 

mass is especially pronounced for the optical transitions to the first excited state in the 

well (E2). 
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Fig. 3.18 E1 (circles) and E2 (squares) transition energies as a function of 

well width for x=0.016.  The meaning of the curves is identical to those in 

Fig. 3.13(b). 
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The hydrostatic pressure dependence of the E1 transition is shown in Fig. 3.19, 

along with the predicted pressure dependence of the bulk GaAsN conduction band edge 

Ebulk. It can be seen that the confinement energy, E1-Ebulk, decreases with increasing 

pressure. This effect is a result of the pressure- induced increase of the electron effective 

mass predicted by the BAC model [33]. Because of the much different pressure 

coefficients of the extended states and the localized N states [33, 34], the conduction 

band edge shifts towards Ed under hydrostatic pressures. According to Eqs.(3.26) and 

(3.30), this shift results in a flattening of the dispersion relation and an increase of the 

electron effective mass in the lowest conduction band. For the sample in Fig. 3.19, the 

effective mass increases from 0.11m0 at ambient pressure to 0.28m0 at 70 kbar, four times 

larger than the effective mass of the GaAs host. The calculated effective mass as a 

function of pressure is shown in Fig. 3.17. It is also evident from Fig. 3.19 that, as shown 

by the dashed curve, the calculations assuming a pressure- independent effective mass 

deviate from the experimental results at high pressures. The increase of electron effective 

mass with pressure has also been reported in Ref [66].  
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Fig.3.19 The first transition energy E1 as a function of hydrostatic pressure 

for x=0.016 and well width=7nm. Solid curve, calculated values with 

GaAs1-xNx electron effective mass given by Eq.(3.30); Long dashed curve, 

calculated values assuming GaAs1-xNx electron effective mass equal to 

m*
GaAs. The pressure dependence of the band edge in bulk GaAs1-xNx 

expected from the BAC model is shown as a short dashed line. 
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3.4.4 Variational Calculations of the Ground State of Shallow Donors, Neutral 

Impurities, and Excitons in GaAs1-xNx 

 

In this section, the ground state binding energies of hydrogenic donors, neutral 

impurities, and excitons in GaAs1-xNx alloys are calculated based on the new dispersion 

relation in the context of the BAC model. It will be shown that due to the N-induced 

nonparabolicity of the dispersion and the downward shift of the conduction band, the 

Bohr radius and binding energy of shallow donors exhibit strong dependencies on the N 

concentration.  

According to the BAC model, the interaction of the N resonant state with the 

conduction band of the GaAs matrix gives rise to the formation of two conduction sub-

bands, E- and E+, with non-parabolic dispersion relations given by Eq.(3.26). For lightly 

doped GaAs, the conduction band of the matrix can be well described by a parabolic 

dispersion function with a constant effective mass, emm 067.0* = .  

 We consider the hydrogen atom problem for a band with a dispersion relation 

given by Eq.(3.26). For convenience, we define atomic units in which the unit of length is 

( )2*2 / emrεh  (≈10.4 nm for GaAs, the Bohr radius of a hydrogenic donor), the 

wavevector unit is the reciprocal of the length unit, and the energy unit is 2* /6.132 rm ε×  

(≈ 10.46 meV for GaAs, twice the Rydberg of the hydrogenic donor). In atomic units, the 

free-carrier-screened Coulomb potential for a hydrogenic donor is written as 

( ) rerV rb /⋅−−= , where 1/b is the screening length measured in atomic units. 

It is well known that the static dielectric constant that affects the binding energy 

of the hydrogenic impurities depends on the electronic band structure. The dielectric 
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function consists of the contributions from lattice vibrations and valence band electrons. 

The total static dielectric constant of GaAs is ( ) ( ) ( ) 2.130010 ≈++= elr χχε . The lattice 

contribution to the static susceptibility, ( ) 20 ≈lχ , is the difference between the high-

frequency rε  and the static ( )0rε  [9]. ( )0lχ  is assumed to be less sensitive than ( )0eχ  to 

the few percent incorporation of N. To estimate the effect of the modified band structure 

on the dielectric constant, we adopt an empirical equation proposed by Chadi and Cohen 

that correlates the static electronic susceptibility to the fundamental band gap, Eg, for a 

wide variety of materials with zincblende structure[67], 

( ) ,0
2/3

0 g
e

Ea
β

χ =         (3.34) 

in which β  equal to 159.0 (eV Å3/2) is a universal constant, and a0 is the lattice parameter. 

Since the fundamental band gap is reduced by alloying with GaN according to Eq.(3.26), 

the total static dielectric constant can be calculated and is shown in Fig. 3.20. In our 

calculations, we have neglected the variation in a0. It can be seen that Eq.(3.34) predicts 

that the N-induced modification in the conduction band structure raises the total static 

dielectric constant. It has been observed experimentally that the refractive index of 

InyGa1-yAs1-xNx, which is directly related to the dielectric constant, indeed increases upon 

the incorporation of N [61]. However, no systematic experimental data of rε  are 

available for a quantitative test of the applicability of Eq.(3.34) in GaAs1-xNx. 
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Fig.3.20 Minimum band gap predicted by the BAC model and total static 

dielectric constant calculated from Eq.(3.34) as functions of x.  

 

Considering the complications introduced by the non-parabolic dispersion relation 

in Eq.(3.26), we seek solutions of the Schrödinger equation in momentum space. With an 

eigen-energy W, one writes the Schrödinger equation as [64]  

( ) ,)()()()( ∫ Φ−−=Φ− qdqqkVkWkE vvvvv
     (3.35) 

where E(k) is the kinetic energy associated with the dispersion relation. The screened 

Coulomb potential in momentum space is obtained with a Fourier transform,  
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For a central force potential, the Schrödinger equation is separable, and the 

wavefunction can be factorized as ( ) ),(
1

)( φθlmll Ykg
k

k ∝Φ
v

. For the ground state (1s) of 

the shallow donor, the radial part of Eq.(3.35) is given by 

[ ] ( ) ),(,
1

)()( 00 00 qgqkQdqkgWkE ∫
∞

=⋅−
π

     (3.37) 

where the integral kernel is  
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++

=        (3.38) 

This integral equation can be numerically solved using the variational principle. For a 

hydrogenic donor in nitrogen-free GaAs, the dispersion is parabolic, 

( ) ( ) 2/2kkEkE c ==  (in atomic units). Assuming no free-carrier screening, b=0, 

Eq.(3.37) has an analytical solution with an eigen-energy 
2
1

−=W  (≈ -5.23meV), and a 

wavefunction 
( )

.
1

1)(
22

0

kk
kg

+
∝  This is the Fourier transform to momentum space of the 

ground-state wave function of a normal hydrogenic atom, re− . 

For the variational calculation of the non-parabolic conduction band in GaAs1-xNx, 

we choose  

22
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0 )(
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ttkg
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=
π

       (3.39) 

as a trial function. This function is already normalized, .1
),(

0

2
2

0∫
∞

=dkk
k

tkg
 When the 

parameter t=1, g0(k,t) returns to the original exact solution, g0(k), for normal hydrogenic 
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donors with parabolic dispersion relation. The corresponding wave function in real space 

is the original one, rescaled by a factor t : 

.
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r
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     (3.40) 

The total energy is the sum of the kinetic energy and potential energy, 
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The minimum point of the W(t) dependence gives the best approximation for the ground 

state energy for this trial wave function. The integration should be performed within the 

first Brillouin zone, but due to the strong localization of the wavefunctions in momentum 

space, one can extend the upper limit of the integration to infinity as a good 

approximation. 

Choosing the dispersion relation ( ) ( )kEkE −= , the lower sub-band of GaAs1-xNx 

in Eq.(3.26), we can approximate the ground-state energy numerically. At the minimum 

point t=tm, the binding energy is given by the difference between the ground-state energy 

and the bottom of the conduction sub-band, )0()( −−= EtWE m . The extent of the 

wavefunction in real space (Bohr radius) is given by mB ta /1=  in atomic units.  

As an example, Fig.3.21 shows the curve of W(t) for the unscreened Coulomb 

potential. The minimum point of the curve gives the values of tm and W(tm). From these 

values the Bohr radius and the binding energy of the system can be calculated. It can be 

seen that as x increase from 0 to 0.02, the minimum point of the curve shifts downward 

and rightward, corresponding to a lower eigen-energy and a smaller Bohr radius, 

respectively. 



 64

 

Fig.3.21 The total energy as a function of the variational parameter t for 

unscreened Coulomb potential (b=0) for x=0 and 0.02. The change in er 

shown in Fig.3.20 is not included in the calculation. The energy is always 

measured in atomic units from the bottom of the GaAs conduction band. 
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Fig.3.22 Calculated shallow donor binding energy (a), and Bohr radius (b), 

as functions of x for a Coulomb potential without free-carrier screening. 

Two cases are shown: the effect of an increasing dielectric constant in 

Fig.3.20 is excluded or included.  
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The binding energy and the Bohr radius of the ground state of a hydrogenic donor 

as functions of x calculated for the case of negligible free-carrier screening of Coulomb 

potential (b=0) are shown in Fig.3.22(a). The initial rapid increase of the binding energy 

shown in Fig. 3.22(a) is attributed to the N-induced increase of the effective mass. The 

gradual decrease of the binding energy for x > 1% is associated with the increase of the 

dielectric constant. If the change of the dielectric constant predicted by Eq.(3.34) is 

neglected and a composition- independent εr=13.2 is adopted, the binding energy 

increases monotonically, reflecting the increase of the electron effective mass with 

increasing N composition. These two situations should correspond to the upper and lower 

limits for the composition dependence of the binding energy. The effects of the 

composition dependencies of the effective mass and the dielectric constant are also 

clearly visible in the dependence of the Bohr radius on the N content shown in Fig. 

3.22(b). 
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Fig.3.23 Calculated donor binding energy and Bohr radius as functions of 

N concentration for a free-carrier screened Coulomb potential with 

screening factor b=1.  
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Figure 3.23 shows the binding energy and the Bohr radius as a function of the N 

concentration for a Coulomb potential screened by free carriers with screening factor 

b=1, i.e., a screening length = ( ) 4.10
2.13

/ 2*2 ×= r
r em

ε
εh (nm). The binding energy 

increases dramatically as x increases from 0 to 0.02. The Bohr radius decreases rapidly 

for x increasing from 0 to 0.01. At x=0.01, the predicted two-fold reduction of the 

effective Bohr radius should cause a large, eight- fold increase of the critical 

concentration for a metal- insulator transition for shallow donors in GaAs0.99N0.01. 

 Due to the lack of Coulomb attraction, the potential of a neutral impurity is 

usually much weaker and shorter-ranged than that of the hydrogenic defect. Several 

functional forms have been proposed to model the potential of neutral impurities [69]. 

Among them, the simplest ones are probably the “square” potential and the exponential 

potential, rbeb 2
1

−− . These potentials are shown in Fig. 3.24 for comparison. 

 

 

Fig.3.24 Comparison between different functional forms of potentials. 
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Similar variational calculations can be performed for these neutral impurity 

potentials. For example, for the exponential functional form, the integral kernel in 

Eq.(3.37) should be replaced by 
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The calculated binding energy and Bohr radius for exponential potential with b1=b2=1 are 

shown in Fig. 3.25 in comparison with the previously-shown results of the Coulomb 

potential. It can be seen from Fig. 3.25 that, due to the much weaker attraction of the 

neutral impurity potential, the binding of electrons is much weaker. Nevertheless, its 

dependence on the N composition is similar to that of the hydrogenic donor. 
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Fig.3.25 The binding energy and Bohr radius of a shallow donor (-1/r) and 

a neutral impurity potential (-e-r). The change in er shown in Fig. 3.20 is 

not considered in the calculation. 
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The ground-state energy of excitons can be calculated in a similar way. Assuming 

a single parabolic dispersion for the hole with effective mass mh
* (approximately 0.45m0 

for heavy holes in GaAs), the total kinetic energy of the system can be written as  

.
2

)_()()_()(
2

*

* k
m
m

kEkEkEkE
h

h +=+=      (3.43) 

This energy is also sensitive to external pressure P, linked by the pressure dependencies 

of Ed and Ec(k) through E-(k). Shown in Fig.3.26 is E(k) calculated at ambient pressure 

and for P=100kbar. 
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Fig.3.26 The kinetic energy of the direct exciton system for x=0.01 at 

ambient pressure and P=100kbar. The energy is measured in atomic units 

referenced to the bottom of the conduction band of GaAs, Ec(0). 

 

Assuming an unscreened Coulomb interaction between the electron and the hole, 

substitution of Eq.(3.42) into Eq.(3.41) for the variational calculation gives the Bohr 

radius and binding energy as a function of pressure and N concentration. The results for 

x=0.01 are shown in Fig. 3.27. The Bohr radius is reduced to ~1/4 of the ambient-
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pressure value at 120 kbar. This is due to the effect that the pressure- induced flattening of 

the dispersion encourages the wavefunction to expand in k space, corresponding to a 

shrinkage of the wavefunction in real space. The increase in the binding energy is also 

considerable. At ambient pressure, the hole mass is much larger than the electron “mass”, 

therefore the exciton is “hole-centered”, and the binding energy is close to the binding 

energy of a hydrogenic donor (~5meV). At high pressures, the conduction dispersion is 

flattened; hence the electron effective “mass” is greatly enhanced (see Fig. 3.17). 

Therefore, the exciton becomes “electron-centered”. As a result, the binding energy of 

the exciton approaches the binding energy of hydrogenic acceptors in GaAs (~35meV).  
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Fig.3.27 The calculated Bohr radius and binding energy for x=0.01 as a 

function of pressure. The change in er shown in Fig.3.20 is not included in 

the calculation. 
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The variational calculations found the approximate binding energy and Bohr 

radius of various binding systems in GaAs1-xNx with this special non-parabolic 

conduction dispersion. The results not only provide a possible way to understand some 

interesting observations made with this alloy, such as the behavior of the linewidth of 

exciton-related optical transitions [70], but it can be also used to analyze and predict new 

properties of this alloy, such as the threshold of a Mott transition and transport properties 

under pressure. 
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3.4.5. State Broadening and Related Effects 

 

In preceding sections, the N-induced modification of the conduction band 

dispersion and some related effects are discussed in detail. In addition to the changes in 

the dispersion relation, the band restructuring caused by the BAC effect also includes a 

significant broadening of the conduction band as illustrated in Fig. 3.5(a). In this section 

the band broadening effect will be discussed. 

As the expression of the Green’s function is obtained, the density of states of free 

electrons can be calculated from the imaginary part of the Green’s function [71], 

( ) ( ) ( ) ( )[ ]∫∑ == .Im
1

Im
1

0
cc dEEGEEGE kkkk

k
kk ρ

ππ
ρ    (3.44) 

The integration converges rapidly with cEk  in a small range that is in proportion to x. The 

calculated perturbed DOS for GaAs1-xNx with several small values of x is shown in Fig. 

3.28. Note that the anticrossing interaction leads to a dramatic redistribution of the 

electronic states in the conduction band. The most striking feature of the DOS curves is 

the clearly seen gap between E+ and E- that evolves with increasing N content. 
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Fig.3.28 Density of states of GaAs1-xNx alloys for a range of values of x as 

compared with the unperturbed DOS. The two black dots in each curve 

indicate the energy positions of the E- and E+ subband edges. 

 

In order to illustrate the effect of the state broadening on the optical properties, we 

consider the spectral dependence of the interband absorption in InyGa1-yAs1-xNx alloys.  

The optical absorption coefficient due to the transitions from the valence bands to the 

restructured conduction bands can be written in the form of the joint density of states as  

( ) ( ) ( )[ ]∑∫ +∝
v

cvc dEEEGE
E

E .Im
1

0 kkkkkρα      (3.45) 

In this expression, the sum over v represents the sum of the contributions from the heavy-

hole, the light-hole, and the spin-orbit split-off valence bands. Assuming parabolic forms 
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for the dispersion of the valence bands vEk  near the Brillouin zone center, the optical 

absorption is calculated for In0.04Ga0.96As0.99N0.01 for which experimental results are 

available [72]. The comparison between the calculation and the experimental data is 

shown in Fig.3.29. In the calculation, the only parameter that has been adjusted is the 

prefactor β  used to scale the energy broadening. The best fit with the experimental data is 

obtained with β=0.22. The calculation clearly reproduces the two edges in the absorption, 

one starting at ~1.8 eV due to the onset of the transitions from the heavy-hole and light-

hole valence bands to E+, and one starting at ~1.5 eV attributed to the transition from the 

split-off valence band to E-. The more rapid rise of the experimental data at the 

fundamental absorption edge near 1.2 eV is most likely due to the continuum exciton 

absorption effect, which has not been included in the calculation [9].  
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Fig.3.29 Calculated optical absorption coefficient in comparison with 

room-temperature experimental data for free-standing 

In0.04Ga0.96As0.99N0.01. The oscillations below the absorption edge are due 

to Fabry-Perot interference. 

 

According to the band anticrossing Eq.(3.26), the hybridization results in an 

energy gap near Ed with a magnitude depending on x,  
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22

0 cd
cdcdd

EE
xV

EExVEEEE
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The broadening of ( )kE±
~

 near the edge of the small gap is approximately 

( )d
d EV 0

2ρπβ=Γ . To have a well-defined band restructuring, the gap between the two 
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subbands should be larger than the energy uncertainty, i.e., dΓ>∆ . This condition 

defines a lower limit of x for the band restructuring,  

( ) ./4
2/3

0
2

B
cd

c EExx εβπ −⋅≡>       (3.47) 

For N in GaAs, this concentration limit is xc ~ 0.0016.  

The band broadening function in Eq.(3.27) defines the lifetime of the free 

electrons through the uncertainty principle. The mean free path of the electrons is the 

distance that a free electron on the Fermi surface travels within its lifetime. The upper 

limit of x for the applicability of CPA treatment can be set as the concentration for which 

the average distance between impurity atoms is equal to this mean free path. The upper 

limit of x is thus inversely proportional to the free electron concentration, linked by the 

Fermi velocity. 

 For n-type GaAs1-xNx, the electronic transport properties are also strongly affected 

by the BAC effect. The conductivity of the system is closely related to the imaginary part 

of the Green’s function [49, 71], 
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where ( ) ( ) ( )[ ]{ }TkEEEEf BFF −+= exp11,  is the Fermi distribution, and  
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= −

h
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        (3.49) 

is the group velocity of the free electrons. The Fermi energy is determined by the free 

carrier concentration with the following equation, 

( ) ( )∫
∞

=
0

, dEEEfEn Fρ .       (3.50) 

The mobility of the system is given by  
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From these equations it can be seen that the transport properties are more 

sensitive to the level broadening than the optical properties are. Indeed, the limit on the 

mobility imposed by the N-state scattering is completely dictated by the broadening 

function. Experimentally it has been observed that the incorporation of N into GaAs 

reduces drastically the mobility of the material. For n-type GaAs, the room-temperature 

Hall mobility can easily exceed 1000 cm2/Vs [73]. Hall mobilities of 190 cm2 /Vs for as-

grown In0.05Ga0.95As0.99N0.01 and 70 cm2/Vs and 140 cm2/Vs for as-grown and 650 oC 

post-growth-annealed In0.08Ga0.92As0.97N0.03 have been reported [74]. This effect can be at 

least qualitatively understood from the band state broadening mechanism. The emergence 

of the imaginary part in ( )kE±
~

 defines a broadening in the energy levels, along with a 

finite lifetime ±Γ/~ hτ . The mobility of the system, neglecting phonon scattering, is 

given by ( ) ./ ** >Γ⋅>=<≈< ±±mm hτµ Therefore, the mobility of the system is reduced 

because of two effects caused by the impurity scattering: the increase in the effective 

mass and more strongly, the finite energy broadening. Figure 3.30 shows typical transport 

properties of an InGaAsN sample. 
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Fig.3.30 Transport properties of an unintentionally doped sample 

measured by Hall effect. (a) electron concentration, (b) mobility and (c) 

resistivity as a function of temperature. The numbers in meV represent the 

activation energy calculated from the slope on the Arrhenius plot. 
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3.4.6 Band Anticrossing in the Entire Brillouin Zone: GaP1-xNx 

 

GaP is an indirect-gap semiconductor. It has been demonstrated that the 

incorporation of N into GaP changes the nature of the fundamental bandgap from indirect 

to direct [6]. Very recently, the transition of the lowest bandgap from indirect to direct 

has been shown to occur around at most x~0.5% by using time-resolved 

photoluminescence spectroscopy [75]. A new conduction band minimum is formed at the 

? point as a result of the anticrossing between the ? edge of the conduction band and the 

N level, which is located at 2.15eV above the top of the valence band (slightly below the 

X band edge). The interaction strength has been determined to be V=3.05 eV. Figure 3.31 

shows the energies of E- and E+ as a function of N concentration observed using PR 

spectroscopy, in comparison with the BAC calculations [6]. Since the modulated PR 

technique responds to direct transitions only, these observations confirm the direct nature 

of the fundamental bandgap of the GaP1-xNx alloy. The energy level of the localized N 

states in GaP has previously been directly observed by photoluminescence spectroscopy 

[11].  
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Fig.3.31 E+ and E- measured by PR as a function of x for GaP1-xNx. The 

point at x = 0 and E- = 2.18 eV is not measured but the predicted nitrogen 

level in dilute limit. The curves are the BAC calculations. 

 

On the other hand, since the wavefunction of the nitrogen state is highly localized 

in real space, its Fourier transform has significant contributions by off-zone-center 

components in the Brillouin zone. It is, therefore, expected to couple not only to the Γ 

conduction state, but also to other conduction states such as the L and X band minima.  

This section summarizes our low temperature investigations of the hydrostatic pressure 

dependence of the fundamental band gap of GaP1-xNx alloys with x varying from 0.7% to 

2.3%. It will be shown that at high pressures the fundamental band gap shifts to lower 

energy as a function of pressure, approaching the negative pressure dependence of the X 
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band minimum of GaP. This pressure dependence is explained by the interactions of the 

N localized state with the lowest conduction band of the host GaP. 

The GaP1-xNx samples are epitaxial layers grown on GaP substrates by gas-source 

molecular-beam epitaxy using an rf plasma nitrogen radical beam source. The layer 

thickness varies from 0.75 to 0.9 µm. Prior to the growth of the GaP1-xNx layer, a 0.2µm 

GaP buffer layer was deposited on the substrate. The nitrogen concentration of the 

samples was determined from high-resolution x-ray rocking-curve measurements and 

theoretical dynamical simulations. A detailed discussion of the sample preparation and x-

ray measurements has been published [76].  

Shown in Fig. 3.32 is the absorption curve of a GaPN film grown on a GaP 

substrate. The substrate has been thinned down to ~15 µm. As a comparison, the 

absorbance of a N-free GaP sample thinned to about the same thickness is also shown. 

The onset of the GaP X-band absorption is seen at ~ 2.3 eV. Compared with the GaP 

absorption curve, the GaPN film exhibits a strong absorption band below the GaP X-band 

edge. The bottom curve shows the difference between these two curves, corresponding to 

the absorption solely due to the GaPN film. 
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Fig.3.32 The absorbance (absorption coefficient multiplied by thickness) 

of two samples: GaP0.983N0.017(0.9µm)/GaP(15µm) and GaP(15µm). The 

bottom curve shows the difference between the absorbance of these two 

samples.  

 

The GaP1-xNx samples exhibit intense PL visible to the naked eye even at room 

temperature. Figure 3.33 Shows the PL signal obtained from a GaPN sample with a range 

of temperature. As the temperature increases, the PL intensity drops significantly.  
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Fig.3.33 PL signal (log scale) for x=0.017 at ambient pressure (~0kbar) for 

a wide range of temperature. The right panel shows the peak energy and 

the integrated intensity (log scale) of the PL signal as a function of 

temperature. 

 

As demonstrated earlier [6], the PL also decreases in intensity as the pressure is 

increased. The room-temperature PL becomes undetectable at high pressures (e.g., above 

~ 35 kbar for x = 1.3%). Shown in Fig. 3.34 is the PL of the same sample obtained at 69.4 

kbar and different temperatures. The PL intensity depends on temperature in a very 

similar way as at ambient pressure. However, at ambient pressure, the PL persists as 

temperature increases and is still strong enough to be detected at room temperature. 

Figure 3.34 shows that at 69.4 kbar, the PL intensity drops below the noise level (or 

buried by the diamond PL from the diamond anvil cell used for the application of the 

hydrostatic pressure) beyond ~ 150 K. Figure 3.35 shows the Arrhenius plot of the 
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integrated intensity as a function of inverse temperature. The numbers on the plots 

indicate the slope of the dependence measured in terms of the activation energy. These 

activation energies provide useful information for identifying the nature of the 

luminescence. It can be concluded that cooling down the sample greatly improves the 

luminescence efficiency. If the luminescence properties are to be studied at high pressure, 

the experiment has to be carried out at low temperature. 

 

1.6 1.8 2 2.2 2.4

GaP
0.983

N
0.017

 

69.4 kbar

P
L 

in
te

ns
ity

E (eV)

150K

30K

ruby

diamond

laser Raman

1.98

2.00

2.02

2.04

2.06

2.08

2.10

2.12

20 40 60 80 100 120 140 160

GaP
0.983

N
0.017

 

 69.4 kbar

pe
ak

 e
ne

rg
y 

(e
V

)

integrated intensity

T (K)

 

Fig.3.34 PL signal (log scale) for x=0.017 at 69.4K and different 

temperatures. The right panel shows the peak energy and the integrated 

intensity (log scale) of the PL signal as a function of temperature. 
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Fig.3.35 Arrhenius plot of the integrated intensity of the PL signal as a 

function of temperature at ambient pressure and 69.4kbar, respectively. 

 

Shown in Fig. 3.36(a) is the 30K PL spectrum of a GaP0.977N0.023 sample at 

different hydrostatic pressures. The PL signal decreases in intensity with increasing 

pressures, but remains detectable to pressures above 100 kbar. Figure 3.36(b) shows the 

peak energy and the integrated area of the PL as a function of pressure. The PL intensity 

starts to decrease abruptly at ~ 80±10 kbar, the pressure at which the peak energy reaches 

its maximum. This phenomenon implies a fundamental change in the nature of the lowest 

conduction band edge at this pressure.  
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Fig.3.36(a) Photoluminescence spectra of a GaP0.977N0.023 sample at a 

range of pressures. All the PL spectra were taken at T=30K. (b) Pressure 

dependencies of the peak energy and the integrated PL intensity of 

GaP0.977N0.023 at 30 K. Note the logarithmic scale of the integrated 

intensity. 

 

At low pressures, the PL signal from GaP1-xNx corresponds to the direct transition 

from the lowest conduction band to the top of the valence band. As a result of the 

anticrossing between the Γ conduction band minimum of GaP and the N localized level, 

the peak energy of the PL signal blueshifts at a small rate with increasing pressure [6]. 

The PL peak energy for GaP0.977N0.023 as a function of pressure is shown in Fig. 3.37, 

together with the results from two other samples with x=0.007 and 0.017. The full width 

at half maximum (FWHM) of the PL peak is about 0.12eV. It should be noted that N-free 
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GaP did not show a detectable PL signal under the same experimental conditions. A 

similar non-monotonic pressure behavior is observed for all three N-containing samples. 

Interestingly, the PL peak energies of all the three samples tend to approach the same 

asymptotic pressure dependence at high pressures. The difference between the peak 

energies for x=0.007 and 0.023 is reduced from 160meV at ambient pressure to 50meV at 

~110kbar. As is well known, in GaP the X band minimum (EX) is located at ~ 2.35eV 

above the valence band edge at ambient pressure at 30K [77], and has a negative pressure 

coefficient of about -0.0024eV/kbar [78]. The energy of this band minimum is also 

plotted in Fig. 3.37. It is evident that at high pressures the PL peak energies of all three 

alloys approach the indirect band gap (Xc-Γv) of the host GaP.  
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Fig.3.37 PL peak energy at 30K as a function of pressure for three samples 

with different N concentrations. The short-dashed lines indicate the 

pressure dependencies of the N localized state, the Γ band and the X band 

minima of GaP. The solid curves are the calculated lowest conduction 

band energies for the three N concentrations based on the band 

anticrossing model. The kinks in the calculated curves indicate the 

crossover of the nature of the lowest conduction band from N-G mixing to 

N-X mixing. The other subband edges at higher energy are also shown in 

dot-dashed lines.  

 

To explain the pressure behavior of these PL spectra, we describe the conduction 

band states by the BAC model represented by Eq.(3.26). The coupling between the N 

states and the band states of GaP is described by the adjustable parameter V and is 

assumed to be wavevector-dependent.  
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  The location of the Γ conduction band edge EΓ in GaP as function of the 

hydrostatic pressure is well known and has been shown to be described by 

( ) 25105.30097.09.2 PPPE −
Γ ×−+=  [78, 79], where EΓ(P) is measured in eV and P is 

the hydrostatic pressure in kbar. With the known pressure dependencies of EX(P) and 

EΓ(P), we fit the lowest edge of the E-(k) subband calculated from Eq.(3.26) to  the 

experimental points in Fig. 3.37. As is seen in Fig. 3.37, the pressure dependence of the 

PL peak energy can be divided into two regimes. At low pressures, the PL is attributed to 

the direct transitions from the lowest conduction band edge ENΓ-, which evolves from the 

EN level through a band anticrossing interaction with EΓ, to the top of the valence band. 

The pressure coefficient for this transition is small and positive, similar to that of the EN 

level. At higher pressures the EX edge shifts downwards, consequently the ENX- edge 

resulting from the anticrossing interaction between EX and EN becomes the lowest 

conduction band edge. The indirect transitions from ENX- to the top of the valence band 

are responsible for the PL signal in this pressure regime. The abrupt decrease of the PL 

intensity shown in Fig. 3.37(b) is consistent with this predicted change in the character of 

the fundamental band gap.  
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Fig.3.38 Typical time-resolved PL image of a GaPN sample. The curves 

plotted on the upper and right margin show schematically the time-

integrated PL as a function of wavelength and the wavelength- integrated 

PL as a function of time. The laser pulse excites at t ≈ 0.4 ns. 

 

For a better understanding of the nature of the luminescence at different pressures, 

the PL lifetime is an important characteristic quantity. Figure 3.38 shows the typical 

time-resolved PL of a GaPN sample at 79K. The spectrum can be integrated over time or 

wavelength and the spectral or temporal dependencies of the luminescence are thus 

obtained. The sharp PL peak at ~690nm is due to the ruby luminescence used for pressure 
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calibration. The broad emission band at shorter wavelengths is due to the inter-band 

transition from the GaPN sample. The lifetime can be determined from the decay kinetics 

of its wavelength- integrated PL intensity. Shown in the inset of Fig. 3.39 is the time-

resolved PL intensity of GaP0.977N0.023 at different pressures. It can be seen that the 

lifetime of the PL is much longer than the duration that can be measured with our 

equipment. However, although the PL does not show considerable decay within our 

measurement time window (~ 2 ns), the height of the step in the time-resolved PL curve 

generated by the excitation pulse shows a quite reproducible trend as a function of 

pressure. Considering the time interval of 13.2 ns between sequential excitation pulses, 

the step height can be used to estimate the lifetime of the PL assuming a single 

exponential temporal decay. The obtained lifetime is plotted in Fig. 3.39 as a function of 

pressure. Also shown is the pressure dependence of the PL intensity. Although the 

mechanisms of non-radiative recombination in these alloys have not been determined at 

this stage, it can be seen that both the lifetime and the PL intensity change abruptly at ~ 

80 kbar, i.e., the pressure where the peak energy of the PL reaches its maximum. This 

phenomenon further confirms the change in the nature of the lowest conduction band 

edge at this pressure.  
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Fig.3.39 The lifetime of the PL of GaP0.977N0.023 as a function of pressure 

at 79K. The pressure dependence of the PL integrated intensity at 30K is 

also shown. Inset, the time-resolved PL curve evolving with pressure. 

 

Although considerably weaker, the emission due to ind irect transitions is still 

possible, because the localized N centers partially break the translational invariance of 

the crystal and relax the wavevector conservation requirement. Green’s function 

calculations have shown an energy broadening of ~10 meV due to the N-atom scattering 

at the edge of the lower subband for GaAs0.95N0.05 [38]. The N-induced relaxation of the 

k-vector conservation also allows intraband scattering within the lowest conduction 

subband. As is seen in Fig. 3.37, the measured PL peak energy makes a smooth transition 

between the low and high pressure regimes, rather than showing a kink as on the 

calculated curves. This fact suggests a strong mixing between the ENΓ- and ENX- 

conduction band minima when they are degenerate in energy. The best agreement with 

the data, as denoted by solid lines, was obtained by using the previously determined [6] 
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coupling constant VNΓ=3.05eV at the Γ point and setting VNX=0.90eV for the coupling 

constant at the Brillouin zone edge. The energy of the N localized state was set to be at 

EN ~ 2.15eV with a small pressure dependence of 1.2 meV/kbar. This energy location and 

pressure dependence are consistent with the average values for the variety of bound 

exciton lines in dilute N-doped GaP observed in previous reports [5, 80].  Although X 

states could be expected to be more concentrated than Γ states on the group V sites 

(where N substitutes), the X-N coupling is much weaker than the Γ-N coupling. As 

pointed out in Ref.[81], this is partly because X states are essentially antibonding p- like, 

while Γ states are s-like with the same A1 symmetry as the N localized state. 

Evidence of similar off-zone-center coupling in GaAs1-xNx alloy has been 

observed by Seong et.al. using resonant Raman scattering [82] and by Perkins et.al. using 

the electroreflectance technique [83]. In these ambient-pressure experiments, a coupling 

between EN and the conduction band edge EL at the L point of the Brillouin zone was 

observed. This is because in GaAs, the EN level is closer to the L band minima (EL-

EN=0.12 eV) than to the X minima (EX – EN = 0.27 eV), whereas in GaP EN is located 

much closer to the X band minima than to the L minima, EX - EN = 0.17 eV and EL -  EN 

= 0.46 eV. In GaAs, the negative pressure derivative resulting from the coupling between 

EN levels and EX minima can be observed only at very large pressures when the X band 

minimum shifts down to the band edge. In fact, the onset of this effect has been observed 

in GaAs1-xNx at a pressure of about 120 kbar [50] (see Fig. 3.8). 

In order to calculate the BAC effect over the entire Brillouin zone, the interaction 

constant V has to be known as a function of wavevector. The hybridization parameter is 

essentially the Fourier transform of the interaction matrix element between the localized 
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impurity state and the Wannier function of the band [39]. In the Green’s function 

calculation in section 3.3, the k dependence of Vkj is assumed to be weak on the 

momentum scale we are interested in. In Eq.(3.12), the parameter Vkj is averaged over the 

impurity sites and in k space. In the simplest case, all the impurity atoms are of the same 

type, so that the j dependence of Vkj is removed. The k dependence of Vkj can be 

estimated from Eq.(3.2). Assuming that the Hartree-Fock energy varies slowly in space 

and can be replaced by a constant HFε , we have 

( ) ( ) .*∫∑ −⋅= ⋅ rrlrlk daeV d
l

i
HFk ϕε      (3.52) 

Due to the localized character of both a(r) and ( )rdϕ , the overlap integral in Eq.(3.52) is 

essentially zero when a(r) and ( )rdϕ  are located on two sites far apart from each other. 

In an attempt to model the k-dependence of Vk, we replace the integral in Eq.(3.52) by an 

exponentially decaying function ( )dll /exp~ − , and obtain 

( ) .
1

222

0/

kl

V
eeV

d

lli
HFk

d

+
== ∑ −⋅

l

lkε      (3.53) 

Experimental evidence indicates that the values of Vk at the L point in GaAs1-xNx 

[83] and at the X point in GaP1-xNx [84] are about 3 ~ 4 times smaller than the Vk at the Γ  

point. This ratio corresponds to a wavefunction decay length (ld) of the order of the lattice 

constant, which is consistent with the strongly localized nature of the N states. This result 

also demonstrates that the off-zone-center conduction band minima are affected by the 

anticrossing interaction only when their energies are close to the localized level.  

Shown in Fig.3.40 is a schematic diagram of the conduction band of GaP0.977N0.023 

at ambient pressure. The energy minima restructured from the Γ-N and X-N anticrossing 
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interactions at 100 kbar are also shown in symbols. The fundamental bandgap of the 

material changes from direct at ambient pressure to indirect at high pressures. In this 

BAC calculation, the dispersion relations are obtained by substituting the wavevector-

dependent interaction constant into Eq.(3.26).  
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Fig.3.40 BAC-caused restructuring of the conduction band of GaP1-xNx. 

The curves show the lower E-(k) and the upper E+(k) band edges at 

ambient pressure. The symbols show the energy minima at 100kbar: open 

triangles, EN; open circles, EM (including EΓ and EX); solid triangles, E- 

(including ENΓ- and ENX-); solid circles, E+ (including ENΓ+ and ENX+). 

Note the change in the nature of the lowest conduction band edge, from 

direct at ambient pressure to indirect, mostly X-like at 100 kbar.  
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Figure 3.41 shows the ambient-pressure bandgap energy of four samples with 

different N concentrations measured using PL at 30K. The lowest solid line represents the 

N-like conduction band minimum of GaP1-xNx restructured through the interaction 

between N  and Γ  as calculated from Eq.(3.26). Also shown in solid lines are the 

predicted energy of the other minimum restructured from the interaction between N and 

the X band, and two higher energies corresponding to the X-like and Γ-like edges of the 

upper subbands calculated from Eq.(3.26). These higher critical energies may be 

observed by modulation spectroscopy. 
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Fig.3.41 PL peak energy at 30K and ambient pressure of four GaPN 

samples as a function of N concentration. The dashed lines mark the 

energy locations of the N state, the Γ band, and the X band minima of 

GaP. The solid lines are the energies of the subbands edges as a result of 

the band anticrossing repulsion.  
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Summarizing this section, photoluminescence measurements have been 

performed on GaP1-xNx alloys at 30K. Based on the non-monotonic pressure dependence 

of the PL peak energy, it is demonstrated that the fundamental bandgap in GaP1-xNx 

changes its nature from direct to indirect at high pressures. The anticrossing repulsion 

between the N localized state and the X conduction minima of the host GaP explains the 

negative pressure dependence of the fundamental band gap at high pressures. The 

coupling between the N localized state and the Γ band states is more than three times 

stronger than the coupling between the N localized state and the X band states. This 

finding accounts for a number of previous observations indicating that the off-zone-

center minima are affected only when their energies lie close to the localized N-level 

energy. 
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4. Highly-mismatched Semiconductor Alloys: Group II-VI Based 

 

4.1 Conduction Band Anticrossing (CBAC) in II-VI Alloys 

 

The classification scheme of the semiconductor alloys based on the 

electronegativity mismatch applies not only to III-V compounds, but also to II-VI 

compounds. For example, according to Tab.3.1, ZnSeS belongs to lightly mismatched 

alloys because there is only a small electronegativity difference between S and Se (0.1 

eV). Figure 4.1 shows the composition dependence of the low-temperature band gap of 

ZnSeS alloys on the ZnSe rich side. The bowing parameter is ~ 0.3 eV, indicating a small 

deviation from the VCA prediction, similar to the case of GaAsP shown in Fig. 3.2. As a 

comparison and a typical example of more mismatched II-VI alloys, Fig.1.1 shows the 

large band gap bowing of ZnSe1-xTex. The bowing parameter is ~ 1.2 eV, much larger 

than that of the ZnSeS system. 

Effects of the electronegativity mismatch are reflected not only in the bandgap 

bowing. Because states with different characters have different pressure behaviors, the 

pressure dependence of optical transition energies is widely used to study the nature of 

the states involved in the transition. Shown in Fig. 4.2 is the pressure dependence of the 

band gap of ZnSe0.95S0.05 measured by optical absorption at room temperature. The 

pressure dependence of the band gap of ZnSe is also shown as a comparison. These 

pressure curves are fitted to a second order polynomial of the pressure. It can be seen 

from the figure that the pressure dependencies of these two materials are very similar. For 

example, the linear pressure coefficient of ZnSe0.95S0.05 differs from that of ZnSe by 2% 
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only. For more highly mismatched alloys, this difference can be much larger. For 

example, 4% ZnSe alloyed with ZnTe results in a reduction as large as 10% in the linear 

pressure coefficient, as will be shown in the following text.  
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Fig. 4.1 Bandgap as a function of composition for ZnSeS alloys. The solid 

line represents the linear prediction.  
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Fig.4.2 Room-temperature energy gap as a function of pressure for 

ZnSe0.95S0.05 and ZnSe. 
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The large bandgap bowing has been attributed traditionally in part to the 

nonlinearity of the electronic band structure associated with the matrix elements of the 

VCA potential and in part to compositional and structural disorder [85]. The recently 

discovered BAC model offers a different approach to an understanding of the same 

effect. The BAC model has been used to explain successfully the electronic properties of 

III-V-N alloys where a very large bowing of the bandgap is observed [33,34]. In the 

context  of this work, it is of great interest to study the generality of the applicability of 

the BAC model, and inquire if the interaction is not an isolated effect but also occurs in 

other systems with large bandgap bowing parameters. The most important feature of the 

III-V-N alloys is that the highly electronegative N atoms introduce localized A1 levels 

close to the conduction band edges (CBE’s) of III-V compounds. The interaction of these 

levels with the extended states of the conduction band strongly affects the electronic 

states that determine the basic electrical and optical properties of the alloys. Most notably 

the interaction produces a downward shift of the lowest CBE, which leads to the large 

bowing of the fundamental bandgap. Unfortunately, the N content in currently available 

GaAs1-xNx as well as in other group III-V-N alloys is limited to several atomic percent, 

precluding the use of these alloys to study the large bandgap bowing effects over the 

whole composition range. To overcome this limitation, we have chosen to study the 

alloys ZnSe1-xTex and ZnS1-xTex. These alloys also exhibit large bandgap bowing effects 

and are readily available over the whole composition range. In Te-rich ZnSe1-xTex and 

ZnSe1-xTex (x close to 1), similar effects are expected as metallic Te atoms are partially 

replaced by much more electronegative S or Se atoms.  
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Shown in Fig.4.3 is the CBE of Te-rich ZnSTe and ZnSeTe measured by optical 

absorption as a function of hydrostatic pressure, reported by Walukiewicz et. al [20]. A 

remarkable feature of the data shown in Fig.4.3 is a strongly nonlinear shift of the 

absorption edge with increasing pressure that clearly resembles the pressure dependence 

of the fundamental band gap previously observed in GaAsN alloys [34,50].  

 

 

Fig.4.3 Dependence of the CBE in Te-rich ZnSTe and ZnSeTe on pressure 

[20]. The solid lines represent the dependencies calculated using the BAC 

model. The energies of the localized S and Se-derived A1 states are also 

shown. All the energies are relative to Ev(ZnTe) at ambient pressure. Note 

that in this graph the Te concentration is represented by 1-x (in ZnSTe) or 

1-y (in ZnSeTe), in different notation as in this thesis. 

 

Walukiewicz et. al. 
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It has been shown in the case of III-V-N alloys that the localized, N-derived A1 

states interact primarily with the conduction band [33,34,50]. The valence band states 

experience only a gradual shift expected from a linear interpolation between the end-

point compounds. Since the available III-V-N alloys are limited to very low N 

concentrations, it has been a good approximation to assume that N does not have any 

effect on the valence band structure [50]. However, since the II-VI alloys studied here 

cover a relatively wide range of S or Se contents, we need to decompose the total shifts of 

the conduction and the valence band edges (VBE’s) into their linear parts given 

approximately by the VCA, and the nonlinear parts associated with the large bowing. The 

linear contributions to the band edge (including the spin-orbit valence band edge) shifts 

are calculated from the known VBE offsets [86]. With the known locations of Ev
VCA as a 

function of composition, we can determine the composition dependent energy of the CBE 

from the measured energy gaps. 

The strongly nonlinear pressure dependence of the band gaps shown in Fig. 4.3 

indicates a strong interaction between the localized S or Se level with the band states of 

ZnTe matrix, similar to the situation in GaAsN alloys. We formulate the problem in the 

following mathematical way that is coherent with a later analysis of the alloy system on 

the other composition side. We first discuss ZnSe1-xTex as an example. For Te-rich 

ZnSeTe ( 1→x ), the BAC model predicts a new CBE formed by the anticrossing 

interaction between the Se localized states and the Γ conduction band of ZnTe [34]. The 

Hamiltonian matrix of the system can be written as, 

( )











−
−

=
−

−
−

SeSeZnTe

SeZnTe
richTe

c
c

ExC
xCxE

H
1

1
,      (4.1) 
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where ( ) ( )xxE richTe
c −−=− 13.024.2  is the VCA interpolated value of the CBE on the Te-

rich side, referenced to the top of the ZnTe valence bands. The conduction band and 

valence band offsets between ZnTe and ZnSe are assumed to be 0.7 and 0.3 eV, 

respectively [86]. SeE  is the energy of the Se localized level, and is determined by fitting 

the calculated results with the data. SeZnTeC −  is the coupling constant between richTe
cE −  and 

SeE . The restructured CBE is given by the lower eigen-values of cH , and has the 

functional form of the E- subband as given in Eq.(3.26). The fundamental bandgap on the 

Te-rich side, ( )xE richTe
g

− , is given by the energy separation between this restructured CBE 

and the top of the valence bands that is linearly interpolated between ZnTe and ZnSe 

VBEs based on their offsets.  

In good agreement with existing data [87], the pressure dependence of Ec in the 

ZnTe matrix shown in Fig. 4.3 can be well described by the relation 

( ) 253 1025.4109.1024.2 PPPEc
−− ×−×+= , where P is the pressure in kbar. The 

nonlinear term originates from the pressure dependence of the bulk modulus in ZnTe. It 

is quite evident from the data shown in Fig.4.3 that alloying of ZnTe with both ZnS or 

ZnSe considerably affects the pressure coefficients. The best fit to the experiment was 

obtained by assuming that the locations of both the S and the Se levels depend slightly on 

pressure and are given by PESe
3105.185.2 −×+=  and PES

3105.160.2 −×+= . It should 

be noted that this is about the same pressure dependence as the one found for the N level 

in III-V-N alloys [34, 50]. For both ZnSe1-xTex and ZnS1-xTex samples, good agreement 

between the calculations and the experiments is obtained by setting the coupling constant 

at 1≈≈ −− SZnTeSeZnTe CC  eV. The value of the coupling parameter is significantly smaller 
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than the coupling parameter V=2.7 eV used previously to describe the interaction 

between the N levels and the extended states in GaAs1-xNx alloys [33,50]. This is not 

surprising, however, since as can be seen in Tab.3.1, the electronegativity difference 

between N and As (1.0 eV) is more than 2 times larger than between Se and Te (0.3 eV).  

 

Fig.4.4 The energy gap of MgxZn1-xTe measured by PR as a function of x  

[88]. 

 

The perturbation of the Se and S localized states on the ZnTe conduction band 

described by the matrix in Eq.(4.1) thus accounts successfully for the hydrostatic pressure 

dependence of the fundamental bandgap on the Te-rich side. It also explains why the 

large bowing parameters are observed only in the alloys involving highly electronegative 

elements (anion alloys) and are much smaller when more metallic elements are 

exchanged (cation alloys). As can be seen in Fig.2.1, the localized A1 levels of more 

metallic atoms have higher energies and thus only very weakly interact with the CBE 

states. A good example of the later case is ZnMgTe where only a small bowing parameter 

is found [88] despite a significant  electronegativity difference between Zn (1.5 eV) and 

Mg (1.2 eV) [13]. The results are shown in Fig.4.4 [88]. 

Seong, et. al. 
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To further investigate the different effects of isovalent substitution in these anion 

and cation II-VI alloys, we extend our studies to MgyZn1-yTe and and MgyZn1-yTe1-xSex 

alloys to determine if band anticrossing effects are found in alloys with electronegativity-

mismatched cations (i.e. Mg and Zn). Also, as is seen from Eq.(4.1), the strength of the 

anticrossing interaction depends on the location of the localized level relative to the band 

edges of the host matrix. Quaternary alloy systems create the possibility to independently 

vary the band edge energies and thus the energy difference between the localized level 

and the conduction band minimum. It is important to determine the applicability of the 

BAC model to this system. The results show that, indeed, for the anion-mismatched 

systems the anticrossing interaction is entirely controlled by the location of the 

conduction band relative to the localized level. It was also found that alloys with 

significant electronegativity difference on the cation sites do not show nonlinear effects 

and are well described within the VCA.  

Figure 4.5 shows the optical absorption curves of Mg0.10Zn0.90Te0.92Se0.08 

measured for a range of hydrostatic pressures.  The dashed curve at the top represents a 

PR spectrum taken at room temperature and ambient pressure. The bandgap energy 

determined from the PR spectrum, 2.28eV, is in agreement with the gap energy defined 

by the crossing point of the steeply rising portion and the saturation line of the absorption 

curve. The apparent absorption below the band edge originates from the fact that the 

reflection of the beam from the surface of the sample has been neglected in the 

absorbance calculation.  
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Fig.4.5 Room-temperature optical absorption curves of 

Mg0.10Zn0.90Te0.92Se0.08 at different hydrostatic pressures. The dashed 

curve in the top portion of the figure is a PR spectrum obtained at ambient 

pressure. 

 

It is evident from Eq.(4.1) that an analysis of the experimental data in terms of the 

BAC model requires knowledge of the composition and pressure dependence of ESe and 

Ec
Te-rich. It has been shown previously that energies of highly localized levels remain 

constant on an absolute energy scale [89]. This means that their energy can be deduced 

from the known band offsets in a given alloy system [90]. 
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To determine the pressure dependence of the localized level, we have measured 

oxygen-related PL with unintentionally O-doped ZnTe0.99Se0.01. The PL spectra recorded 

at 30K at different hydrostatic pressures are shown in Fig. 4.6. The broad emission band 

at low energies (1.8-2.1eV) is associated with the oxygen impurity [91]. The band edge 

emission at higher energies with its phonon replicas is also clearly seen. The broad, 

smooth features at higher energies are due to impurity luminescence from the type-I 

diamonds in the diamond anvil cell. It is clear from Fig. 4.6 that the energy of the oxygen 

deep level shows a much weaker pressure dependence than the band edge. In Fig. 4.7, the  

peak energies of the O-related PL and the inter-band PL and their phonon replica are 

shown as a function of the number of phonons emitted. The linear dependence is clearly 

seen, and the slopes of the linear dependence that corresponds to the energy of the  

phonon emitted are essentially the same (~ 26 - 29 meV). This phonon energy is very 

close to the LO phonon energy of ZnTe listed in the literature (25.6 meV, or 6.2 THz at 

room temperature) [92]. A linear fit to the no-phonon line of the O-related PL yields the 

relation Eoxy = 2.0 + 1.3×10-3⋅P for the pressure dependence of the oxygen level. This 

pressure coefficient is quite close to the pressure coefficient of the Se localized level used 

in Fig.4.3, 1.5 meV/kbar [20]. We attribute the small positive pressure coefficient of the 

localized O level to the pressure- induced downward shift of the VBE.  
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Fig.4.6 Photoluminescence spectrum of an oxygen-containing 

ZnTe0.99Se0.01 sample at 30K. 
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Fig.4.7 The peak energies of the oxygen-related and inter-band PL of 

ZnTe0.99Se0.01 and their phonon replica. The straight lines are linear fits. 

The inset shows the no-phonon line energy as a function of pressure. 

 

The theoretically calculated [93] valence band offsets ∆Ev(ZnTe/MgTe)=0.73 eV 

and ∆Ev(ZnTe/ZnSe)=0.76 eV and the known bandgap energies of the end-point 

compounds were used to determine the location of the CBEs of the host semiconductor 

matrices. Using the determinations of the composition dependence of the VBEs, we plot 

in Fig. 4.8 the measured CBE energies relative to a common energy reference, i.e., the 
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VBE of ZnTe at ambient pressure. It is important to note that the CBE energy in 

Mg0.185Zn0.815Te has nearly the same pressure dependence as that of ZnTe, showing 

clearly that the replacement of Zn with less electronegative Mg does not strongly affect 

the pressure dependence of the resulting alloys. This is consistent with the results 

presented in Fig.4.4 that show no strong bowing in the composition dependence of the 

bandgap of MgyZn1-yTe alloys [88].  

It is also seen in Fig. 4.8 that the presence of Se in either ZnTe0.96Se0.04 or 

Mg0.1Zn0.9Te0.92Se0.08 considerably changes the pressure dependence of the CBE energies 

in these alloys. The observed tendency for the CBE energy to saturate at high pressures is 

a clear indication of an anticrossing effect between the localized Se level and the 

extended states of the conduction band. This is in contrast to the case of Mg replacing Zn 

cations where the same electronega tivity difference does not produce any unusual effects. 

The sudden reduction of the CBE energy in Mg0.1Zn0.9Te0.92Se0.08 at the pressure of 85 

kbar is attributed to the onset of a pressure-induced phase transition, which has been 

observed previously in MgyZn1-yTe alloys [94].  
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Fig.4.8 Pressure dependencies of the CBE of four compounds with respect 

to the VBE of ZnTe at ambient pressure. The energy of the Se localized 

level and the no-phonon- line energy of the oxygen impurity level 

determined from the PL spectrum in ZnTe0.99Se0.01 are also shown. The 

solid curves through the data points of the two Se-containing samples 

represent the dependencies calculated using the BAC model. The line 

through the data points of the ZnTe sample is a quadratic fit. All the data 

points were obtained at room temperature except for the oxygen deep level 

data, which were taken at 30K. 

 

The solid lines in Fig. 4.8 are BAC model-based calculations using the pressure 

and composition dependencies of the host band edge and the localized level discussed 

above. The best fit with the experiment is obtained with a coupling coefficient CMgZnTe-
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Se=1.1 eV and a Se localized level ESe=2.9 eV. These values are in quantitative agreement 

with the values determined in Fig. 4.3 for ZnTe1-xSex ternaries (CZnTe-Se=1 eV and 

ESe=2.85 eV) [20].  It is important to note that, as is exemplified by the case of the Eoxy, 

the energies of the localized levels do not depend on pressure in our present energy 

reference, i.e., with respect to the ambient-pressure VBE of ZnTe.  

The successful, simultaneous fitting of the BAC model to both the Mg-containing 

and Mg-free samples with nearly the same values of the parameters implies that, unlike 

alloying with ZnSe, the incorporation of MgTe into ZnTe results in a linear variation of 

the band edge energies that can be well described by the VCA. Thus, the change in the 

bandgap of the quaternary alloy MgyZn1-yTe1-xSex can be decomposed into a linear VCA 

alloying effect and a nonlinear BAC effect arising from the hybridization between the Se 

localized level and the VCA conduction band edge.  

An extreme case of electronegativity mismatch between the alloy constituents, is 

represented by group II-VI-O system in which highly electronegative oxygen 

(electronegativity=3.5 eV) [14] partially substitutes other group  VI elements. A large 

BAC effect is expected in this system as it is a direct analog of group III-V-N alloys. 

Indeed, it is now well established that substitutional oxygen introduces localized states 

close to the CBE in many II-VI compounds [91]. The epitaxial growth of O-containing 

II-VI alloys has turned out to be a difficult task. The achievable concentrations of O 

dopant are too low to clearly show any alloying effects. We have successfully 

synthesized Cd1-yMnyOxTe1-x quaternary alloys by using the ion implantation technique, 

followed by a rapid thermal annealing treatment to activate the implanted O atoms [95]. 
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The band gap of these alloys is shifted downward from that of the O-free ternaries, in 

agreement with the predictions of the BAC model. The results are summarized in Fig.4.9. 

 

 

Fig.4.9 Room temperature bandgap energies of un-implanted and O-

implanted Cd1-yMnyTe samples as a function of y for 0.1<y<0.64. The  

known dependencies of the conduction band minima on the MnTe mole  

fraction and the estimate of oxygen level on y are also shown. The solid 

lines are the  upper and lower subbands calculated by the BAC model 

using a C2 x value of 0.02. 
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4.2. The Entire composition Range of ZnSeTe and ZnSTe 

 

It has been shown in the last section that the bandgap reduction observed in these 

alloys on the Te-rich side (x > ~ 0.8) can be explained by the conduction band 

anticrossing (CBAC) model [20].  In this section, we show that the predominant bowing 

mechanism in these systems over the entire composition range is driven by the localized 

nature of the states of the minority alloy element, specifically the presence of a Te level 

above the VBE at low x and the presence of a Se or S level above the CBE at high values 

of x. By considering the interactions between these localized levels and the extended 

states using the BAC model, the behaviors of the bandgap, valence and conduction band 

shifts, and the spin-orbit splitting are accurately predicted.   

 

4.2.1. Experimental Observations 

 

Figure 4.10 shows typical PR spectra obtained from the ZnSe1-xTex alloys with 

several compositions. Two features can be clearly identified in these spectra. The one at 

lower energy ( gE ) corresponds to the critical transition from the top of the degenerate 

heavy-hole (hh) and light-hole (lh) valence bands to the CBE, and the one at higher 

energy ( 0∆+gE ) is attributed to the transition from the top of the spin-orbit (so) split 

valence band to the CBE. The fundamental bandgap and the spin-orbit splitting of ZnSe1-

xTex are shown as a function of composition in Fig. 4.11. The data shown in Fig. 4.11 are 

in quantitative agreement with previous measurements by electro-reflectance 

spectroscopy [96] and photoconductivity methods [97]. The energy gap shows a convex 
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dependence on the Te concentration with a significant deviation from the linear 

dependence as predicted by the VCA. The spin-orbit splitting, in contrast, shows a 

concave dependence on the alloy composition. 0∆  increases rapidly for small x until x ~ 

0.5. The different behavior of 0∆  on the Se-rich and the Te-rich side suggests different 

origins of the bandgap bowing in Se- and Te-rich ZnSe1-xTex alloys. The notion of a 

different origin of the bandgap bowing on the Te- and Se-rich side is further supported by 

the large asymmetry in the composition dependence of the PR linewidth shown in the 

inset of Fig. 4.10.   
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Fig. 4.10 Typical PR spectra of ZnSeTe alloys over the entire composition 

range. 

 

In Te-rich alloys ( 1→x ), the large reduction of the bandgap can be explained by 

the CBAC model. The model predicts a new CBE that forms by the anticrossing 
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interaction between the Se localized states and the Γ conduction band of ZnTe [20]. Due 

to the large energy separation between the Se localized level and the valence bands, the 

valence bands are not involved in this localized-extended anticrossing interaction; i.e., the 

energies of the VBE and the spin-orbit splitting follow the VCA interpolations between 

the values of ZnSe and ZnTe. The fundamental bandgap on the Te-rich side, ( )xE richTe
g

− , 

is given by the energy separation between the restructured CBE and the top of the 

valence bands. The perturbation of the  Se localized states on the ZnTe conduction band 

described in Eq.(4.1) explains successfully the composition and hydrostatic pressure 

dependencies of the fundamental bandgap on the Te-rich side [20]. 
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Fig. 4.11 Band gap and spin-orbit splitting as a function of composition as 

determined from Fig. 4.10. Inset, the composition dependence of the PR 

linewidth. The lines are fits based on the interpolation between the CBAC 

and VBAC model (see text).  
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4.2.2. Valence band Anticrossing (VBAC) in ZnSeTe and ZnSTe 

 

 For Se-rich alloys ( 0→x ), the rapid increase in 0∆  at small x implies that the 

incorporation of ZnTe in ZnSe perturbs the valence bands. It is known [98] that an 

isoelectronic Te impurity substituting Se in ZnSe forms a localized level above the VBE. 

At dilute concentrations, the Te level gives rise to a strong broad luminescence line 

below the bandgap [98]. In close analogy to the anticrossing effect between the Se 

localized level and the ZnTe conduction band on the Te-rich side [20], we consider the 

hybridization between the localized Te level and the valence bands of the host material. 

The original four Γ8 and two Γ7 valence bands are described by the conventional 6×6 

Kohn-Luttinger pk ⋅  matrix [99] with band-edge energies set at corresponding VCA 

values. An 8×8 Hamiltonian matrix is formed by augmenting the 6×6 matrix with two 

localized Te states with energy TeE  and opposite spins. The valence band restructuring is 

computed by diagonalizing this 8×8 matrix. Specifically, we choose as a basis the 

following six time-reversal symmetry- invariant wavefunctions [99] for the valence bands 

and the two Te states with opposite spins for the Te localized level, 
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In this basis the Hamiltonian matrix can be written as [99], 
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In this 8×8 matrix, the parameters involved are defined in the following, 
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    (4.4) 

where k is the wavevector, and the γ  vector and ∆0 are the the Kohn-Luttinger parameters 

and the spin-orbit splitting for the valence bands, respectively. V is the hybridization 

energy between the Te localized states and the three wavefunctions of the Γ4 

representation of the Td crystal group, 

xCZUTeYUTeXUTeV TeZnSe−===≡ .     (4.5) 

In Eq.(4.5), a similar square-root dependence on the impurity concentration is assumed as 

in the previously considered case of the conduction band hybridization [20]. TeZnSeC −  is a 

parameter that describes the coupling strength and is to be determined by fitting with 

experimental data. The energy levels are given by the four doubly-degenerate eigen-

values of vH .  In the Brillouin zone center, they can be labeled according to the nature of 

their wavefunctions as likeTeE − , likehhE − , likelhE − , and likesoE − in the order of descending 

eigen-energy. Since the energy level of the Te localized states is located above the top of 

the original va lence band, a new VBE is formed at energy likeTeE − . The fundamental 

bandgap in Se-rich ZnSe1-xTex, denoted as ( )xE richSe
g

− , is attributed to the transition 

between the VCA conduction band edge and this newly-formed VBE. The spin-orbit 
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splitting is given by the energy separation between likeTeE −  and likesoE − . We note that the 

orthogonality between opposite spin states leads to two zero-valued off-diagonal matrix 

elements in Eq.(4.3), i.e., 
2
3

,
2
3

↓Te , 
2
3,

2
3 −↑Te  and their Hermite conjugate elements. 

As a result, the heavy-hole band does not mix with the Te states at the Γ point, and the 

energy of the heavy-hole band edge remains unchanged. The light-hole and spin-orbit 

valence band edges, on the other hand, are pushed downward by the anticrossing 

repulsion from the up- lying Te level. The energy degeneracy between the heavy-hole and 

the light-hole bands at Γ point is thus removed. The band restructuring in the whole 

composition range is schematically shown in Fig. 4.12. 

 

Fig.4.12 The schematic band diagram showing the band restructuring of 

ZnSeTe over the entire composition range.  
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In order to fit the experimental data over the entire composition range (0 ≤ x ≤ 1), 

we adopt a linear interpolation scheme, similar in spirit to the original VCA interpolation, 

between these two effects, i.e., the conduction band anticrossing (CBAC) on the Te-rich 

side and the valence band anticrossing (VBAC) on the Se-rich side. For the composition 

dependence of the fundamental bandgap, it is written as 

( ) ( ) ( ) ( )xExxExxE richTe
g

richSe
gg

−− ⋅+⋅−= 1 .      (4.6) 

This linear interpolation weighs the importance of these two effects by the concentration 

of the majority component from each side. In the calculation, the band offset values 

between ZnTe and ZnSe are adopted from the literature and are shown in Fig. 4.13.  

 

Fig. 4.13 The band offsets used in the calculation [93].  
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The calculated bandgap and the spin-orbit splitting are compared in Fig. 4.11 with 

the experimental results. The best agreement with the experimental data gives a coupling 

parameter TeZnSeC − =0.30 eV and the Te localized level at 0.10 eV above the top of the 

original ZnSe valence band. This energy location is close to the value reported in ref. 

[98].  

It is worthwhile to note the unusual composition dependence of the PR linewidth 

of the gE  transition shown in the inset of Fig. 4.11. An abrupt broadening of the 

linewidth is observed on the Se-rich side.  This composition dependence of the PR 

linewidth is quite similar to the behavior of the previously reported PL linewidth in 

ZnSe1-xTex alloys [97]. The asymmetry in the PR line broadening behavior is associated 

with a change in the nature of the band edge states. As indicated by Eq. (3.28) in the 

Green’s function calculations [38], the energy broadening of an eigen-state in the 

localized-extended hybridization system is proportional to the admixture of the localized 

states in its wavefunction. The curve in the inset is a fit to the linewidth data based on the 

percentage of localized states in the wavefunction of ETe-like. The large linewidth for small 

x values is associated with the localized nature of the Te- like states at the top of the 

valence band. For x close to 1, the delocalized nature of both the conduction and the 

valence band edges results in a narrow linewidth for the PR spectra. 

The valence anticrossing interaction does not only shift the band edges in the 

Brillouin zone center, but also affects the dispersion relations of the valence bands. 

Calculations show that the restructured valence bands become largely non-parabolic, as 

in the case of the conduction band anticrossing in III-V-N alloys. The dispersion relations 

for x=0.1 is compared with that of pure ZnSe in Fig. 4.14. The hole effective mass at the 
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top of the valence bands is enhanced from that of pure ZnSe. The enhancement of the 

hole effective mass as a result of the valence band restructuring may also have 

advantageous effects in hole-mediated ferromagnetic semiconductors [100]. 
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Fig. 4.14 Dispersion relations for pure ZnSe (dashed lines) and 

ZnSe0.9Te0.1 (solid lines) in (100) direction. Note that the horizontal axis is 

scaled in 2
xk . 

 

4.2.3. Soft x-ray Fluorescence Studies of ZnSTe 

 

It is important to note that according to the BAC model, the main contribution to 

the bandgap bowing originates from the downward shift of the conduction band edge on 

the Te-rich side and an upward shift of the valence band on the Se-rich side. In order to 

obtain an independent confirmation for this assertion, one needs to determine the 

conduction and the valence band offsets as a function of composition. In this context, we 
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have used soft x-ray emission (SXE) spectroscopy to measure the valence band shift in 

ZnS1-xTex. A large shift of the valence band is expected in this alloy system, as it has been 

known for a long time that the localized Te level is separated by as much as 1.2 eV from 

the VBE of ZnS [101].  

Figure 4.15 shows a typical SXE spectrum of a ZnS1-xTex film excited at S-2p 

level. The SXE and absorption spectra near the energy gap for a range of Te fraction are 

shown in Fig. 4.16(a). In this experiment, the excitation x-ray energy was first scanned 

across the S-2p core levels, and the partial fluorescence yield was recorded as the x-ray 

absorption spectrum. The threshold energies of the excitation determine the energy of the 

conduction band minimum with respect to the core level for a number of compositions. 

They are shown on the right part of the curves in Fig. 4.16(a). The doublet structure due 

to the S-2p3/2 and S-2p1/2  splitting (~ 1.6 eV) [102] is clearly resolved for Te-rich 

samples. The excitation energy was then tuned to the edge of the conduction band so that 

only the S-2p3/2  core level was ionized. The x-ray emission due to electronic transitions 

from the upper valence band region to this core level was monitored with an energy-

dispersive detector. The emission spectra are shown in Fig. 4.16(a) as the left part of the 

SXE curves. In this way the relative shifts of the conduction band minimum 

(schematically shown by the dashed arrow in Fig. 4.16(a)) and the valence band 

maximum (solid arrow in Fig. 4.16(a)) as a function of composition are directly 

measured. The results are summarized in Fig. 4.16(b). It is evident that, in agreement 

with the VBAC model, the top of the valence band exhibits a strong non-linear 

composition dependence on the S-rich side. This upward shift is caused by the transition 
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in the nature of the highest VBE from that of extended states of pure ZnS to localized Te-

like states, hybridized with the extended valence band states of the ZnS matrix. 

 

 

Fig. 4.15 Typical soft x-ray emission spectrum of ZnSTe alloys excited at 

the threshold of the S-2p level. 
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Fig. 4.16 (a) Soft x-ray emission and absorption spectra for a range of Te 

concentration. (b) The conduction and valence band edges as determined 

in (a) plotted as a function of Te concentration. 

 

Figure 4.17 summarizes the transition energies measured by different techniques 

over the entire composition range of the ZnS1-xTex alloy. The data points from PR and 

absorption experiments that measure the large density of extended states show a strong 

bandgap bowing. On the other hand, the PL peak is shifted to lower energies as it is 

associated with optical transitions to deep states. The energy gap measured by SXE in 

Fig. 4.16 is also plotted in Fig. 4.17. Within experimental error, these gap energies agree 
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with the bandgaps measured by absorption and PR. This agreement confirms that the 

band edges measured by SXE in Fig. 4.16 are indeed the ones involved in the inter-band 

transitions observed in absorption and PR experiments.  
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Fig. 4.17 PL peak energy and bandgap measured by SXE, PR and 

absorption experiments (abs) plotted as a function of x. The solid lines 

show the calculated energy difference between Ec and ETe-like, Ehh-like, and 

Eso-like, respectively. The dashed line is an empirical interpolation between 

Ec - ETe-like and Ec - Ehh-like fitted to the composition dependence of the 

measured bandgaps. 
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 Calculations based on the CBAC and VBAC models applied to ZnS1-xTex are 

shown as curves in Fig. 4.17. On the Te-rich side, as shown in Ref.[20], an anticrossing 

interaction between the ZnTe conduction band minimum and the S level located at ~ 0.36 

eV above the minimum was assumed. A valence band anticrossing on the S-rich side was 

calculated and an interpolation as expressed in Eq.(4.6) was carried out over the complete 

composition range. The best fit is obtained by setting the Te level at 1.2 eV above the 

valence band maximum of ZnS and a coupling constant of TeZnSC −  = 0.5 eV. It can be 

seen that the PL peak energy agrees well with the calculated transition energy from the 

conduction band minimum to the highest, Te-like VBE. The dashed line in Fig. 4.17 is an 

empirically weighted interpolation between the calculated Ec - ETe-like and Ec - Ehh-like. The 

measured bandgap of ZnS1-xTex deviates from Ec - Ehh-like as a result of the hybridization. 

But unlike in ZnSe1-xTex, it does not immediately follow Ec - ETe-like because of the much 

larger energy separation between the Te level and the valence band maximum of ZnS. 

Consequently, the fraction of extended states at the top of the restructured valence band 

(i.e., ETe-like) is too small to contribute to the absorption or PR transitions. Such transitions 

are observable only when the anticrossing interaction becomes strong enough at 

relatively high Te concentrations.  
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4.2.4. Hydrostatic Pressure Coefficients  

 

As has been shown in Fig. 3.8 for Te-rich ZnSe1-xTex alloys [20], alloying of 

ZnSe with ZnTe results in a large reduction in the hydrostatic pressure dependence of the 

bandgap. This pressure behavior has also been fully accounted for by the anticrossing 

interaction between the localized Se state, which is insensitive to pressure, and the 

extended states of the ZnTe conduction band, which rapidly shifts upwards with pressure.  

To understand more about the electronic structure of ZnSe1-xTex, we have 

measured the optical absorption edge at different pressures for the alloys over the entire 

composition range. Typical absorption curves are shown in the inset of Fig. 4.18. The 

energy gap as a function of pressure is extracted from the absorption curves. 

Representative pressure dependencies of the bandgap for the Te- and Se-rich alloys are 

shown in Fig. 4.18. Unlike in the Te-rich alloys, alloying with the minority component on 

the Se-rich side does not change the pressure dependence considerably from that of the 

majority component. This phenomenon can be understood by the fact that the largest 

contribution to the blue-shift of bandgap under pressure comes from the upward shift of 

the CBE with pressure. Because the conduction band is not perturbed on the Se-rich side 

except for the weak, linear VCA effect, the pressure coefficient is not significantly 

affected. 
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Fig. 4.18 Pressure dependence of the fundamental bandgap determined 

from optical absorption measurements. The solid curves are quadratic fits 

to the experimental data. Inset, absorption curve of a 10 µm-thick 

ZnSe0.91Te0.09 sample evolving with pressure. All the data were taken at 

room temperature. 
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In Fig. 4.19, they are shown as a function of the Te concentration. The curves are the 

calculated results following a similar interpolation scheme as expressed in Eq.(4.6). In 

the pressure coefficients interpolation, the term to be weighted on the Se-rich side is fixed 

at the pressure coefficients of ZnSe. On the Te-rich side, the CBAC-calculated CBE is 



 131

expanded in Taylor series in terms of pressure, and the linear and second-order 

coefficients are extracted and numerically calculated. A linear pressure coefficient of 

3105.1 −× eV/kbar is assumed for the Se localized level in the calculations [20]. For the 

ZnTe conduction band, a1=10.9×10-3 eV/kbar and a2=-4.25×10-5 eV/kbar2 are used as 

determined by previous experiments [20]. As can be seen from Fig. 4.19, this simple 

interpolation predicts the linear pressure coefficient quite well. The second-order 

coefficient deviates from this simple interpolation, especially on the Te-rich side. This is 

mostly due to the fact that the pressure dependence of the bandgap predicted by the 

CBAC model contains considerable higher-order coefficients beyond the linear and 

quadratic dependencies [20]. 
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Fig. 4.19 Linear and second-order pressure coefficients as a function of Te 

concentration. The curves show the calculated dependencies of the 

coefficients. 
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The calculations and their comparison with experimental results support the 

fundamentally different origins of the bandgap bowing in Se (or S) -rich and Te-rich 

ZnSe1-xTex (or ZnS1-xTex). The results are important for the understanding of the doping 

behavior of these alloys as well. As has been shown recently [37], the N-induced 

modification of the conduction band structure of GaAs greatly increases the upper limit 

of the free electron concentration in GaAs1-xNx alloys. In view of the findings in these II-

VI alloys, we also expect that the downward shift of the conduction band edge in Te-rich, 

and the upward shift in Se (or S) -rich alloys, should lead to improvements in the 

activation efficiency of donors in the former, and acceptors in the latter. These 

predictions are indeed in agreement with recent experimental observations, which have 

shown that alloying of ZnSe with small amounts of ZnTe greatly improves the activation 

efficiency of nitrogen acceptors [103].  
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5. Summary of the Band Anticrossing Effect in Highly Mismatched 

Semiconductor Alloys 

 

The band anticrossing model successfully explains the strong bandgap bowing of 

all highly electronegativity-mismatched semiconductor alloys. Chapter 3 and 4 present 

the theoretical origin and resultant effects of band anticrossing between localized 

impurity states and the extended band states of the host in these HMAs. Some important 

experimental results have been discussed in the context of the band anticrossing model. 

The band anticrossing interaction does not only exist between the localized states and the 

conduction band near the Brillouin zone center, but also extends to states at the Brillouin 

zone edge. As examples for the generality of the application of the band anticrossing 

model, it has been shown in section 3.4.2 that the large bowing parameters observed in 

group III-Sb alloys with As or P substituting the Sb can also be explained by the 

interaction between localized As or P levels and the extended conduction band states of 

the semiconductor matrix.  

Valence band anticrossing has been demonstrated in Se-rich ZnSeTe and S-rich 

ZnSTe alloys. The interaction between the localized states of the minority component and 

the degenerate valence bands of the host has been formulated in a k⋅p matrix form. The 

eigen-energies have been calculated and compared with experimental results. The 

valence band anticrossing effect is further confirmed by the direct measurements of the 

band edge energies in soft x-ray emission experiments. The bandgap bowing effect over 

the complete composition range is interpreted by a linear interpolation between the 

conduction band anticrossing and the valence band anticrossing. Similar to the 
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conduction band anticrossing, valence band anticrossing also occurs in both group II-VI 

and III-V alloys. Shown in Fig. 5.1 is the band gap and spin-orbit splitting of GaAs1-xSbx 

as a function of x measured by photomodulated reflectance. The bowing effect can be 

well explained by an anticrossing interaction between the valence bands of GaAs and the 

Sb level lying at 1 eV below the top of the valence band with an interaction parameter of 

SbGaAsC − =0.6 eV. Unlike in ZnSeTe and ZnSTe, the bowing in GaAs1-xSbx shown in Fig. 

5.1 is relatively small. This is attributed to the fact that the Sb localized level lies below 

the valence band edge in resonance with the valence bands.  
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Fig. 5.1 The composition dependence of the band gap and spin-orbit 

splitting in As-rich GaAsSb. 
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Experimentally, it has been observed that in anion alloys the larger the 

electronegativity difference between the anion elements is, the stronger is the bandgap 

bowing. This implies a direct influence of the electronegativity on the BAC coupling 

parameter in these alloys. This is not unexpected, though, because when the host atom is 

substituted by an isovalent impurity atom with larger electronegativity, a stronger local 

potential is formed in the space surrounding the atom site. In Fig. 5.2 the relationship in 

conduction band anticrossing is summarized for all the alloys discussed in this thesis. It 

can be seen that the coupling parameter is practically proportional to the electronegativity 

difference.  
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Fig. 5.2 The coupling constant of the conduction band anticrossing in II-

VI and III-V anion alloys plotted as a function of the electronegativity 

difference of anion elements. For II-Te-O alloys the value of the coupling 

parameter has not yet been experimentally determined due to the lack of 

information about the oxygen concentration that is electrically active in 

our samples. 
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6.  Additional Studies of InN and Related Alloys 

 

6.1  Studies of the fundamental bandgap of InN 

 

 In previous chapters, strong bandgap bowing has been demonstrated to occur in 

highly mismatched semiconductor alloys as a result of anticrossing interaction between 

localized states and extended states. There is another situation in which large bandgap 

bowing exists due to large differences between the bandgaps of end-points materials. 

Group III-nitride alloys belong to such a system. Group III-nitrides have become a widely 

studied class of semiconductor materials.  Both GaN and InxGa1-xN with small x are very 

efficient light emitters, even in samples with relatively high densities of structural 

defects, and are used as component layers in a wide range of opto-electronic devices [1].  

In contrast, InN has been observed to date to be a very poor light emitter. Early studies of 

the interband optical absorption performed on InN thin films deposited by sputtering 

techniques [2,3] and metalorganic vapor phase epitaxy [4] were interpreted as being 

consistent with a fundamental energy gap of about 2 eV. The electron concentration in 

those films was usually over 1020 cm-3 and the room-temperature mobility was below 100 

cm2/Vs. This value of the bandgap has been widely accepted and frequently used as the 

end point value for the extrapolation of the bandgap in InxGa1-xN alloys [5]. It should be 

emphasized that despite extensive efforts, no light emission associated with the energy 

gap near 2 eV has ever been reported in these early studies of InN. Only most recently, 

very weak photoluminescence peaks with energies ranging from 1.81 eV to 2.16 eV were 

observed on InN grown on Si substrates [6].  
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Recent improvements in epitaxial growth techniques have led to the availability 

of InN films with considerably lower electron concentrations and much higher electron 

mobilities. Electron concentrations in mid 1018 cm-3 with room temperature electron 

mobilities well in excess of 1000 cm2/Vs were achieved by these methods [7-9].  It has 

been reported most recently that these improved InN films show a strong 

photoluminescence at energies around 1 eV [9]. Since it has been also found that the 

position of the photoluminescence energy correlates with an onset of strong absorption, it 

has been argued that the optical transition at about 1 eV corresponds to the fundamental 

bandgap of InN [9].  

Interestingly, a number of first-principles theoretical calculations predict an 

energy gap for InN much smaller than 2 eV. As expected, the calculations based on the 

local density approximation (LDA) severely underestimate the energy gap; these 

calculations predict that InN is metallic with a negative energy gap of -0.4 eV [10].  A 

recently developed self- interaction and relaxation-corrected pseudopotential approach 

predicts a larger gap (1.55 eV); this is still significantly smaller than 2 eV [11].  These 

low values of theoretical energy gaps cannot be entirely attributed to the limitations of the 

LDA.  Indeed, a quasi-particle corrected LDA calculation that gives accurate values of 

the energy gaps in GaN and AlN predicts a gap of only 1.39 eV in wurtzite InN [12].   

In this section, results of comprehensive studies of the optical and electrical 

properties of InN samples grown in two laboratories are summarized. Our optical 

absorption, photomodulated reflection, and hydrostatic pressure and temperature 

dependent photoluminescence results are consistent with an intrinsic fundamental 
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bandgap of InN of about 0.8 eV. We have also found that the low energy gap exhibits 

unusual temperature and pressure dependencies.  

InN films were grown on (0001) sapphire with an AlN buffer layer by mo lecular-

beam epitaxy [13]. The thickness of the buffer layer ranges from 70 nm to 200 nm. The 

InN layer thickness is between 120 nm and 1000 nm. The details of the growth process 

have been published elsewhere [13]. X-ray diffraction studies have shown that high-

quality wurtzite-structured InN epitaxial layers form with their c-axis perpendicular to the 

substrate surface. To confirm the experimental results we have obtained from this series 

of samples, we have also measured the photoluminescence signal from an InN sample 

grown in another laboratory by radio-frequency plasma-excited molecular-beam epitaxy 

[14]. This particular sample will be referred as the Ritsumeikan sample in the text 

following. 

 

Fig. 6.1 (a) Optical absorption, PL, and PR spectra of a typical InN 

sample. (b) Mobility, PL peak energy, and the critical energy determined 

by PR (77 K) as a function of free electron concentration. The sample with 

n=1×1019cm-3 (indicated by a broken arrow) is the Ritsumeikan sample. 
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 Figure 6.1 (a) shows the optical characteristics of a typical InN sample. The free 

electron concentration in this sample was measured by Hall Effect to be 5×1018 cm-3. The 

optical absorption curve shows an onset at ~0.78 eV. The absorption coefficient increases 

gradually with increasing photon energy and reaches a value of more than 104 cm-1 at the 

photon energy of 1 eV. This high value of the absorption coefficient is typical for an 

interband absorption in direct-gap semiconductors [15]. It is important to emphasize that 

there is no noticeable change in the absorption in the 1.9 to 2.0 eV region, i. e., in the 

energy range of previously reported bandgaps in InN [3-5].  

Also, as shown in Fig. 6.1 (a), the samples exhibit intense room temperature 

luminescence at energies close to the optical absorption edge. Finally, the 77 K PR 

spectrum exhibits a transition feature at 0.8 eV with a shape that is characteristic of direct 

gap interband transitions. As with the absorption spectrum, there is no discernible change  

in the PR signal near 2 eV. The simultaneous observations of the absorption edge and PL 

and PR features at essentially the same energy indicate that this energy position 

corresponds to the transition across the fundamental bandgap of InN.  

Fig. 6.1 (b) shows the room-temperature electron mobility, the peak energy of PL 

and the transition energy determined by PR as functions of electron concentration. The 

sample with the highest free electron concentration n = 2×1020cm-3 is silicon-doped. All 

the other samples are not intentionally doped. The samples with the lowest electron 

concentrations have mobilities µ greater than 1000 cm2/Vs. It is seen in Fig. 6.1 (b) that 

the transition energies increase with increasing free electron concentration. This indicates 

that the transitions from higher-energy occupied states in the conduction band contribute 

significantly to the PL spectrum.  
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The temperature dependence of the PL peak energy can be seen in Fig.6.1 (b). 

The PL peak energy decreases from 300 K to 12 K. The shift is smaller for samples with 

higher free electron concentration, ranging from 0.03 to 0.2 meV/K for the samples 

investigated. This behavior is in a stark contrast to the temperature dependence of the 

direct bandgap in most semiconductors, where typically a significant reduction of the 

bandgap is observed with increasing temperature [16].  

More detailed studies of the temperature dependence of the PL were carried out 

on the sample with n=5.48×1018 cm-3 and µ=615 cm2/Vs. The results are shown in Fig. 

6.2 (a) and Fig. 6.2 (b). As can be seen in Fig. 6.2 (b), in addition to the small blueshift 

(nearly linear at ~ 0.1meV/K) in the peak energy of the PL, the integrated intensity of the 

PL decreases by ~ 20 times as the temperature is increased from 11 K to room 

temperature. The data in Fig. 6.2 (a) also show a considerable increase of the linewidth of 

the PL spectra. The FWHM increases from 35 meV to 70 meV when the temperature 

increases from 11 K to room temperature. It can be therefore concluded that there is no 

significant shift of the PL spectra, as the temperature induced line broadening can easily 

account for the observed small upward shift of the PL line maximum. 
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Fig. 6.2 (a) PL spectra as a function of temperature for the sample shown 

in Fig. 6.1 (a). The PL spectra are normalized to a constant peak height. 

(b) The PL peak energy and the PL integrated intensity (log scale) as a 

function of temperature. The line through the peak energy data is a guide 

for the eye. 

 

We have also measured the excitation power dependence of the PL. As shown in 

Fig. 6.3 (a), the integrated PL intensity depends linearly on the  excitation power over 

three orders of magnitude. The peak energy does not shift over this excitation energy 

range. The simple linear dependence and the lack of any PL signal saturation effect again 

suggest that the PL originates from fundamental interband transitions in InN. 
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Fig. 6.3 (a) PL signals excited with different laser power. (b) The 

integrated PL intensity as a function of the excitation power.  
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To further elucidate the nature of the observed PL emission, we have studied its 

hydrostatic pressure behavior. The PL peak energy as a function of applied pressure is 

shown in Fig. 6.4 (b). The linear pressure coefficient is equal to 0.6 meV/kbar, which is 

considerably smaller than the pressure coefficient previously observed in other III-V 

compounds. For example, the pressure coefficient of GaN is 4.3 meV/kbar [17], of 

AlxGa1-xN is 4.1 meV/kbar for 0.12 < x < 0.6 [18], and for GaAs it is 11 meV/kbar [19]. 

We are aware that the presence of the sapphire, which has a larger bulk modulus than 

InN, will reduce the degree to which the hydrostatic pressure is transmitted to the InN 

film, if the film remains coherently strained to the substrate. Using experimental elastic 

constants for sapphire and theoretical elastic constants for InN, we estimated the 

correction factor for coherently strained InN on sapphire to be 1.45. Therefore, the 

pressure dependence of the PL peak energy is between 0.6 meV/kbar and 0.9 meV/kbar. 

This unusually low pressure coefficient of InN is not totally unexpected since, as it has 

been shown previously, the pressure dependence of the energy gap of InxGa1-xN alloys 

decreases rapidly with increasing In content [17, 20]. 

 

 



 144

 

Fig. 6.4 (a) PL signal of an InN sample measured at different hydrostatic 

pressures. (b) The PL peak energy as a function of applied pressure. 

 

The small pressure coefficient of the bandgap could, at least partially, explain the 

weak temperature dependence of the bandgap. The temperature coefficient of 

semiconductor bandgaps can be decomposed into two contributions, one from the change 

in the lattice constant due to thermal expansion, and the other one from the electron-

phonon interaction [21]. The weak pressure dependence implies that there is only a very 

small contribution of the lattice expansion to the temperature induced bandgap change. 

Also, the small overall temperature coefficient further suggests that the electron-phonon 

coupling in this material may also be extraordinarily small.  

It should be noted that in addition to the absorption edge at about 2 eV, early 

studies of the optical properties of InN have also reported an onset of strong absorption 

below 1 eV [3, 4, 22].  This absorption has been attributed to transitions from deep mid-

gap defect or impurity leve ls to the conduction band [22].  Typical optical cross section 

for deep levels is of the order of 10-16 cm-2 [23].  Therefore, in order to explain the 
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measured absorption coefficients of more than 104 cm-1 in our samples, it would require 

the presence of more than 1020 cm-3 mid-gap defects or impurities.  Even if this were the 

case, one should still be able to see the onset of the valence to the conduction band 

transitions around the bandgap of 2 eV.  However, both optical absorption and PR spectra 

show no indication of any inter-band transition in this energy range in our samples, 

indicating that the previously observed 2 eV absorption edge is most likely not an 

intrinsic property of InN.   
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6.2 In-rich InGaN and InAlN Alloys 

 

The In1-xGaxN alloy system has been studied extensively in recent years. An 

especially intensive effort has been directed towards studies of Ga-rich alloys which are 

used as the active layer in blue and green light-emitting diodes and lasers [24-27]. 

Another attribute of this alloy system is that its energy gap can be varied over a wide 

spectral range. For example, it has been shown that the bandgap can be decreased from 

the GaN value, 3.4 eV,  down to ~2.3 eV for In0.4Ga0.6N [28-31].  Studies of the optical 

properties of these Ga-rich alloys have shown a strong dependence of the fundamental 

bandgap on the alloy composition. When a bandgap of ~ 1.9 eV for InN is assumed as the 

end point value, large bowing parameters are required to fit the composition dependence 

of the fundamental bandgap energy. For example, a bowing parameter of 2.5 eV was 

obtained from optical absorption measurements and a value of 4.4 eV was obtained from 

the location of the emission peaks [28].  

This section shows the systematic study of the optical properties of In1-xGaxN 

alloys on the In-rich side grown by molecular beam epitaxy. It was found that these 

alloys show a strong infrared PL signal, as expected for an InN bandgap of ~ 0.8 eV. The 

emission spectrum of the In1-xGaxN system thus extends to the near infrared. The bowing 

parameter over the entire composition range can be fitted with a small bowing parameter 

of ~ 1.4 eV.  

The samples exhibit strong infrared PL signal even at room temperature. Figure 

6.5(a) shows the PL signals for samples with a wide range of Ga compositions from 0 to 

0.5. Both room temperature (295K) and low temperature (11K) results are shown. As 
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expected, the PL peak energy shows a strong blueshift from the bandgap of InN (0.77 eV 

at room temperature) with increasing Ga content. The linewidth of the PL peak is 

significantly broadened as x increases. The temperature also has an interesting effect on 

the PL signal, which will be discussed below.  
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Fig. 6.5 (a) PL signals recorded at room temperature (solid line) and 11K 

(dashed line) for samples with the Ga atomic fraction x ranging from 0 to 

50%. All curves are normalized to equal height and offset vertically for 

clarity. (b) Room-temperature absorption coefficient squared as a function 

of photon energy. 
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 Figure 6.5(b) shows the absorption coefficient squared plotted as a function of the 

photon energy. In all cases, the absorption coefficient reaches ~ 105 cm-1 for a photon 

energy of ~ 0.5eV above the absorption edge, which is typical for direct bandgap 

semiconductors. The curves of the absorption coefficient squared are essentially linear in 

the range of the photon energy investigated, which again implies a direct fundamental 

bandgap. The observed slight non- linearity of the curves for small x can be attributed to 

the non-parabolicity of the conduction band resulting from the k⋅p interaction between 

the Γ6-symmetry conduction band and the Γ8-symmetry valence bands [32].  

 

 

 

 



 149

0.0

0.50

1.0

1.5

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8 1

abs
PL peak
PL peak (11K)
Shan et. al., PT
Pereira, et. al., abs

E
 (e

V
)

x

In
1-x

Ga
x
N

P
L 

pe
ak

 (e
V

)

absorption edge (ev)

1.0

1.5

2.0

2.5

3.0

3.5

1 1.5 2 2.5 3 3.5

O'Donnell
equal line
this work

 

Fig. 6.6 PL peak energy and bandgap determined by optical absorption as 

a function of composition. Some previously reported data on the Ga-rich 

side are also shown. All data are taken at room temperature unless 

otherwise noted. The solid curve shows the fit to the bandgap energies 

(abs and PT) using a bowing parameter b = 1.43 eV. The dashed curve is 

the fit to the bandgap energies on the Ga-rich side assuming a bandgap of 

1.9 eV for InN. Inset: PL peak energy plotted against absorption edge 

energy. The solid line is a least-square fit to experimental data on the Ga-

rich side adopted from O’Donnell, et. al. The dashed straight line shows 

the relation when the Stokes shift is zero.  

 

The bandgaps determined from the absorption edges in Fig.6.5(b) are shown as a 

function of Ga concentration in Fig. 6.6. The absorption edge shifts rapidly to higher 
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energy as x increases. Numerous studies have been performed on the composition 

dependence of the bandgap in Ga-rich In1-xGaxN alloys [28-31].  In order to see the 

composition dependence of the bandgap over the entire composition range, two sets of 

previously reported data on the Ga-rich side are also shown in Fig. 6.6. These bandgaps 

were measured by photomodulated transmission (PT) [30] and optical absorption [29], 

respectively. It can be seen that our data on the In-rich side makes a smooth transition to 

the data points on the Ga-rich side. This result further confirms that the absorption edge 

of InN observed near 0.77 eV indeed corresponds to the intrinsic fundamental bandgap of 

InN [9, 33]. As shown by the solid curve in Fig.6.6, the composition dependence of the 

room-temperature bandgap over the entire composition range can be well fitted by the 

following standard equation,  

( ) ( ) ( ).143.1177.042.3 xxxxxEG −−−+=      (6.1) 

with a constant bowing parameter of b = 1.43 eV.  This value of b is much smaller than 

previously reported bowing coefficients for which a bandgap of ~ 1.9 eV for InN was 

used as the lower-energy end point [28,29], and is similar to that observed (1.4 eV) in the 

AlxGa1-xN alloy system [18]. For example, if an InN bandgap of 1.9 eV instead of 0.77 

eV is assumed, the two sets of data points on the Ga-rich side shown in Fig. 6.6 require a 

bowing coefficient as large as 2.63 eV to accommodate the composition dependence on 

the Ga-rich side. This fit is shown as a dashed curve in Fig.6.6. This artificially large 

bowing effect has also been discussed in terms of a composition dependent bowing 

parameter [20, 34]. It has been pointed out in Ref.[29] that the variety of experimental 

bandgaps on the Ga-rich side can be better fit with a pseudo-linear composition 

dependence. Our results show that this pseudo-linear composition dependence on the Ga-
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rich side is simply a consequence of the small bowing over the entire composition range. 

An additional significance of Fig. 6.6 is that it demonstrates that the fundamental 

bandgap of this ternary alloy system covers a wide spectral region, ranging from near 

infrared at ~ 1.6 µm to near ultra-violet at ~ 0.36 µm. 

 The composition dependence of the peak energy of the PL signal is also shown in 

Fig. 6.6. At higher Ga concentrations, the PL peak energy shifts toward lower energy as 

compared to the absorption edge. The observed Stokes shift increases with increasing Ga 

content and is as large as 0.56 eV for x = 0.5. In the inset of Fig. 6.6, the PL peak energy 

is plotted as a function of absorption edge energy. Also shown by the solid line is a linear 

fit to experimental data on the Ga-rich side [31]. The deviation from the linear 

interpolation (dashed line) represents the Stokes shift.  It is clearly seen that the Stokes 

shift tends to reach the maximum near the middle of the composition. This suggests the 

inhomogeneous distribution of In and Ga atoms as the origin of the shift. The large 

composition-dependent Stokes shift indicates that PL measurements are not reliable to 

determine the bowing parameter. It also explains the origin of the much large bowing 

parameter of 2.5 eV determined in recent PL studies of In1-xGaxN alloys [35]. 

The emission spectrum measured by PL spectroscopy reflects the distribution of 

localized states in smaller-gap regions that have larger-than-average In compositions [34, 

36], while the absorption transition mainly reflects the onset of the density of delocalized 

states. Therefore, the fact that the Stokes shift reaches its maximum around the middle of 

the composition range implies that the largest degree of composition fluctuation and/or 

structural disorder occurs near the middle. This is also consistent with the result that the 

linewidth of the PL signal increases with increasing Ga concentration, as is seen in Fig. 
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6.5(a). As discussed in Ref.[30], PL linewidths of over 50 meV in In1-xGaxN cannot be 

explained by a purely statistical randomness in the alloy composition without considering 

carrier localization caused by significant compositional inhomogeneity.  

This carrier localization effect can also be deduced from the temperature 

dependence of the PL signals. Fig. 6.6 shows the PL peak energy measured at room 

temperature and 11K. At low Ga concentrations, the low-temperature PL peak energy is 

lower than that at room temperature (by ~60meV at x = 0). As the Ga fraction increases, 

the difference is reduced and finally the low-temperature PL signal peaks at higher 

energy for large x. To understand the temperature behavior of these alloys, we have 

measured the PL signal of two samples over a wide temperature range (11K to 295K). 

The peak energy and the full width at half maximum (FWHM) are plotted as a function 

of temperature in Fig. 6.7. Both samples exhibit an anomalous temperature behavior: 

while the PL peak energy of InN monotonically increases as a function of temperature, a 

so-called inverted “S” shaped dependence is observed for In0.89Ga0.11N. This inverted S-

shaped phenomenon has been observed previously in alloys such as GaInP [37], AlInAs 

[38], and Ga-rich InGaN [39], and in InGaN/GaN quantum wells [40], and is attributed to 

carrier localization. The FWHM of the PL of In0.89Ga0.11N shows a rapid increase below 

the temperature (~75K) where the bandgap minimum occurs in the S-shaped curve. 

Afterwards, the FWHM stays essentially constant. Below 75K, carrier recombination is 

dominated by radiative processes, in which the carrier lifetime increases with increasing 

temperature. The photo-generated carriers have greater probability to relax down to the 

localized lower-energy states before recombining. The emission peak thus redshifts, and 

also significantly broadens on the lower energy side (raw data not shown here). Above 
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75K, non-radiative recombination becomes dominant. The carrier lifetime decreases as 

temperature increases and, as a result, the carriers quickly recombine before relaxing 

down to the lower-energy tail states. Therefore, the emission peak shifts to higher energy 

until the trend is compensated by the temperature- induced bandgap shrinkage. It should 

be emphasized that this is not the only possible explanation of the observed effect. The 

temperature dependence of the emission rate from the localized states can also contribute 

to the observed behavior of the photoluminescence.  
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Fig. 6.7 Temperature dependencies of the PL peak energy and the FWHM 

for InN and In0.89Ga0.11N.  

 

  We have also studied band gap bowing in InAlN alloys grown on sapphire 

substrates using the MBE method at the same laboratory. In Fig. 6.8 the band gap energy 

is plotted as a function of Al content. The dependence is very similar to that observed in 

an InGaN alloy, and can be fitted using a bowing parameter of b=3.0eV. 
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Fig. 6.8 The band gap bowing in InAlN alloys. The solid curve has 

bowing parameter b=3.0eV. 

 

The discovery of the narrow band gap of InN and the small band gap bowing in 

the related ternary alloys greatly expands the spectral range covered by the direct band 

gaps of group III-Nitride ternaries. Their bandgap range  now covers photon energies 

from the near infrared (InN), to the deep ultraviolet (AlN). This suggests the possibility 

of designing nitride-based solar cells that cover practically the full solar spectrum using 

one single ternary alloy. Furthermore, the bowing parameter values are also much smaller 

than the ones previously determined by fitting the composition dependence of the energy 

gaps of samples with small In content using a gap energy of 1.9 eV for InN.  

It is interesting to compare the values of bowing parameter of different group III 

nitride ternaries. We have found a bowing parameter of 1.43 eV for InGaN [33]. We have 

also measured the composition dependence of the bandgap of wurtzite GaAlN alloys 



 155

grown by the same method. Our results show that their bandgap energy as a function of 

composition can be well fit with a bowing parameter of 1.4 eV. This value is in good 

agreement with the value of 1.33 eV reported by Shan et. al. [41]. Considering the 

bandgap difference between the end-point nitrides for each ternary, we note a 

proportional relationship between the bowing parameter and the bandgap difference. To 

illustrate this relationship, we define, for an alloy of the form AB, a normalized bowing 

parameter B
g

A
g EEb −≡β , and a dimensionless bandgap variation as 

( ) ( ) B
g

A
g

B
gA

AB
gA EEExEx −−≡α . The standard bowing equation in the form of Eq.(6.1) 

can be then rewritten as 

( ) ( )xxxx −⋅⋅−= 1βα .       (6.2) 

In this equation, the dimensionless parameter β  describes the degree of the bandgap 

bowing relative to the bandgap difference of end-point materials. It is found that the 

value of β  is essentially the same for these three group III-N alloys.  It only varies from 

0.50 for AlGaN to 0.55 for InAlN alloys. Shown in Fig. 6.9 is the data of α plotted as a 

function of x for In1-xAlxN measured in this work and from a previous report [42], for 

Ga1-xAlxN and In1-xGaxN measured in this work, and for In1-xGaxN [29, 30, 43] adopted 

from the literature. It can be seen that although these gap energies were measured on 

different alloy systems and reported by different groups, they all fall onto one single 

curve when expressed in the reduced form of Eq. (6.2). A common normalized bowing 

parameter of β  = 0.54 well describes the universal composition dependence, as depicted 

by the curve in Fig.6.9. This scaling relationship is not surprising, though, because the 

main contribution to the bandgap bowing is due to the effects of composition disorder on 

the conduction and valence band edges [44]. Given a similar degree of disorder in space, 
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for a larger bandgap difference between alloy constituents, the potential perturbation 

caused by the composition fluctuations is larger; consequently the bandgap bowing effect 

is expected to be proportionally stronger.  
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Fig. 6.9 Normalized bandgap variations shown as a function of x for In1-

xGaxN, In1-xAlxN and Ga1-xAlxN. The curve is a fit based on Eq.(6.2) using 

β  = 0.54. 

 

 The origin of the universal relationship describing the composition dependence of 

the bandgaps of group III-nitride alloys strongly suggests that similar arguments may be 

also used in the consideration of the composition dependence of band offsets.  Since the 

total change of the bandgap is a sum of shifts of the conduction and the valence band 
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edges, it could be argued that the relationship given by Eq. (6.2) is also a proper scaling 

function for the band offsets. Namely, for any group III-nitride alloy system, the 

composition dependence of the conduction or the valence band offset is given by the 

band offsets of the end-point compounds multiplied by the universal scaling function in 

Eq. (6.2). This formula provides a method to estimate the band edge offsets between 

different group III-nitride alloys, which is an important issue in the design of 

heterostructure devices. Figure 6.10 shows the dependence of the bandgaps on the in-

plane lattice constant obtained assuming a linear relationship between the lattice constant 

and the composition according to Vegard’s law. The inset in Fig. 6.10 shows the 

conduction and valence band offsets calculated using the scaling function given by Eq. 

(6.2) and the experimentally determined valence band offsets of 1.05 eV for InN/GaN, 

and 0.70 eV for GaN/AlN [45]. 

The results shown in Fig. 6.10 suggest that a large gap difference is expected 

between GaN and the lattice matched In0.18Al0.82N. Also, it is important to note that most 

of the bandgap difference is accommodated by a large conduction band offset of almost 1 

eV. This offers the interesting possibility of using In0.18Al0.82N/GaN heterostructures to 

confine the two-dimensional electron gas in lattice-matched GaN quantum wells. Such a 

heterostructure design would eliminate strain- induced polarization effects that are known 

to be partially responsible for the transfer of electrons from surface defects into the GaN 

quantum well in standard AlGaN/GaN high electron mobility transistors [46]. A 

reduction of the piezoelectric field- induced charge transfer could provide a better control 

of the heterostructure characteristics by enhancing the role of intentional doping of the 

barrier.  
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Fig. 6.10 Bandgaps of group III-nitride alloys as a function of in-plane 

lattice constant. Each curve between two end-points is the quadratic 

dependence of the bandgap of a corresponding ternary alloy described by 

the standard bowing equation. Inset, the calculated valence and conduction 

band edges of group III-N ternary alloys as a function of lattice constant. 

The points at lattice constants of 3.11, 3.19, and 3.54 Å represent AlN, 

GaN and InN respectively. All the band edge energies are referenced to 

the top of the valence band of InN. 
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Glossary 

Acronym Name Page Introduced 

BAC Band anticrossing 22 

CBAC Conduction band anticrossing 98 

CBE Conduction band edge 100 

CPA Coherent potential approximation 24 

DAC Diamond anvil cell 166 

DOS Density of states 28 

FWHM Full width at half maximum 86 

HMA Highly mismatched alloy 19 

LDA Local density approximation 137 

MBE Molecular bean epitaxy 41 

MOCVD Metal-organic chemical vapor deposition 41 

PL Photoluminescence 82 

PR Photo-modulated reflectance 38 

PT Photo-modulated transmission 149 

QW Quantum well 47 

SXE Soft x-ray emission 124 

VBAC Valence band anticrossing 116 

VBE Valence band edge 102 

VCA Virtual crystal approximation 3 
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Appendices 

 

1.  Photoluminescence Spectroscopy 

 

 The term “radiative recombination” refers to the process by which electrons 

transit from high-energy states to low-energy states accompanied by photon emission of 

specific energy. Photon emission processes in semiconductors are characterized by the 

luminescence spectrum. These processes can only occur in a system in which electrons 

decay from excited states to equilibrium states. When electrons are excited by using a 

high-power photon flux with photon energies higher than the bandgap of the material, the 

resulting light emission process is called photoluminescence (PL). Figure A1 shows 

schematically the basic setup of a PL experiment. The laser provides the excitation and 

free carriers are generated in the sample. The photon emission of the sample as a result of 

free carrier recombination is collected and detected after being dispersed by the 

monochromator. The PL signal is amplified via a lock- in amplification circuit and 

recorded by a computer.  

In the simplest description, the PL spectrum intensity of a direct-bandgap 

semiconductor is proportional to the production of the joint density of electronic states 

and the quasi-equilibrium Fermi distribution for the photo-excited electrons and holes [9], 

 ( ) ( ) ( )[ ]




 ≥−−−

∝
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 The PL line shape predicted by this equation is compared with experiments in Fig. 

A2 [104]. 

 

 

Fig. A1. Schematic diagram of a PL set-up. 

 

Set-up I: 

Laser: LEXEL-95, 8W Ar ion laser, 515 nm or 477 nm 

Lock- in: SR530 lock- in amplifier 

Detector: Liquid nitrogen cooled Ge detector  

Monochromator: SPEX 1680, 0.22m Double Spectrometer 

 

Set-up II: 

Laser: Melles Griot HeCd 3074R-M-A02, 325 nm 

Lock- in: SR530 lock- in amplifier 
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Detector: Hamamatsu GaAs detector 

Monochromator: SPEX 1404, 0.8m Double Spectrometer 

 

 

 

Fig. A2. PL spectrum (solid curve) for high-purity n-type InSb 

(n=5×1013cm-3) measured at 4.2 K. The calculated profile is shown as 

points [104]. The measured profile shows a tail on the low-energy side due 

to a band-tailing effect. 
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2. Photo-modulated Reflectance Spectroscopy 

  

 The dielectric function and consequently the optical properties of semiconductors 

(such as reflectance and transmission coefficients) have weak Van Hove singularities at 

interband critical points. However, their derivatives with respect to energy exhibit strong 

divergence at these critical points. Modulation spectroscopy directly measures the 

derivatives of the optical properties with respect to energy by using lock-in amplification 

techniques. In this way, the background can be largely suppressed and the critical-point 

transitions arise as sharp features in the modulation spectrum. The critical-point energies 

thus can be rather accurately determined.  

 

 

Fig. A3. Schematic of a PR set-up. 
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Figure A3 shows a Photo-modulated Reflectance (PR) experimental set-up. The 

chopped laser modulates the dielectric function of the sample; as a result, the reflectance 

of the sample in the laser- illuminated area is modulated at the chopping frequency (~ 

300Hz). This reflectance spectrum is measured by using a standard reflection optics. Due 

to the sensitive dependence of the dielectric function on the electronic structure of the 

sample [9], the reflectance exhibits a drastic change near the critical transition energies of 

the material. These changes are recorded as the PR spectrum typically in the form of 

relative change in the reflectance RR /∆ . 

For M0-type critical-point transitions, the transition energy can be determined by 

fitting the PR spectrum using the following equations [105].  
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where ( ) Γ−≡ /0EEx , and a, b and c are adjustable linear parameters in the fitting. The 

fit gives the critical energy E0 and the broadening factor Γ. 

As shown in Fig. A4, the reflectance spectrum shows weak features associated 

with the critical transitions at corresponding energy positions. With modulation 

spectroscopy, these critical transitions appear as a large, sharp, derivative-like line shape, 

which can be used to accurately determine the transition energy. 
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Fig. A4. (a) Room-temperature reflectance spectrum of GaAs. (b) 

Numerical differentiation of a reflectance curve of GaAs measured at 2K 

[9] showing various critical points. (c) Photo-modulated reflectance 

spectrum of a GaAs sample obtained at room temperature. The fit gives a 

bandgap energy of 1.422±0.007 eV. 
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3. Diamond Anvil Cell for Hydrostatic Pressure Studies  

 

The application of hydrostatic pressure is achieved by using a diamond anvil cell 

(DAC). A detailed description of a DAC and its application can be found in Dr. L. Hsu’s 

PhD thesis [106]. A magnified view of the essential parts of the DAC is shown in Fig. 

A5. The sample is usually thinned down to ~ 20 µm in thickness and cut into small chips 

of ~100×100 µm2 in size before being loaded into the DAC. In our studies, alcohol 

(methanol : ethanol = 4:1) which works up to 200 kbar [107] was used as the pressure 

medium. The hydrostatic pressure is transmitted to the sample via the pressure medium 

when the upper and lower diamonds are pressed toward each other by external forces. 

The pressure is calibrated by the standard method of monitoring the red shift of the ruby 

R1 luminescence line [108].  

 
Fig . A5. Essential parts of the diamond anvil cell 
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The experimental setup of optical absorption with the DAC is shown 

schematically in Fig. A6. The sample in the tiny pressurized volume is magnified (× ~ 

50) through a short- focus lens. Near the focal plane, an enlarged image of the sample and 

surrounding empty area in the pressurized volume is obtained. A small aperture is 

inserted into the image plane, through which the light intensity can be selectively 

detected. As shown in Fig. A6, when the aperture is placed in the shadow of the sample, 

the photon flux intensity is scanned and recorded as I; when the aperture is located in the 

empty area, I0 is recorded. The absorption coefficient α is then calculated as 

 ( ) ( )
( )ω
ω

ωα
I
I

d
0ln

1
=h , 

with d the sample thickness. 

 

Fig. A6. Optics for absorption experiment with a DAC. The left lower part 

shows the schematic image of the sample area in the detector aperture 

plane.  
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4. Soft X-ray Emission Spectroscopy  

 

 Conventional optical experiments measure the energy separation between 

different states in semiconductors, such as the bandgap energy. However, it is sometimes 

useful to know the absolute energy locations of these states for different materials with 

respect to a common energy reference (e.g., the vacuum level). Soft X-ray Emission 

(SXE) Spectroscopy is an important experimental tool that achieves this goal. The basic 

SXE process is illustrated in Fig. A7. Monochromatic x-rays from a synchrotron radiation 

source are incident on the sample and excite core electrons. The resultant core holes are 

filled immediately by electrons making transitions from higher lying states. Some of 

these transitions occur radiatively with the emission of x-ray photons at characteristic 

energies. If the photons associated with the transitions from the top valence band to the 

core levels are measured using a high-resolution spectrometer, the spectrum reflects the 

partial density of states of the valence band [109]. Since offsets between core levels in 

different elements are known from atomic physics, information on the relative energy 

positions of band states in different materials is obtained. 
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Fig. A7. Schematic illustration of soft x-ray emission spectroscopy. 
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5. Mathematica Programs for Computations Used in This Research 

 

(1) Bound-state energies in GaAs1-xNx/GaAs single quantum well  

 

"energy as a function of variable x" 

ClearAll[Ega,Egb,mea,meb,La,Lb,Q,DEv,DEc,kea,keb,Ee,Ee1,Ee2,Ee3,we1,we2

,we3,plot1,plot2,plot3,plot,eexp,Eg0]; 

 

ClearAll[En,x,Em,Cnm,E1,E2,k,m,mm]; 

En=1.65;Eg0=1.42; 

Em[k_]:=Eg0+1.973^2 k^2/(2 0.51 meb); 

Cnm=2.7; 

E1[x_,k_]:=0.5 ((En+Em[k])-Sqrt[(En-Em[k])^2+4 Cnm^2 x]); 

m[x_,k_]=(1.973^2/0.51) (D[E1[x,k],{k,2}])^(-1); 

mm[x_,k_]=(1.973^2/0.51) (D[E1[x,k],{k,1}]/k)^(-1); 

 

Ega=E1[x,0]+0.0; Egb=Eg0;  

mea=m[x,0]+0 0.067; meb=0.067; 

Lb=202;La=70; 

Q=0.0; 

 

kea=Sqrt[2 (0.51/1.973^2) mea (Ee-Ega+DEv)]; 

we1=Ega-DEv+(Pi/La)^2/(2 0.51 mea/1.973^2); 

we2=Ega-DEv+(2 Pi/La)^2/(2 0.51 mea/1.973^2); 

we3=Ega-DEv+(3 Pi/La)^2/(2 0.51 mea/1.973^2); 

keb=Sqrt[2 (0.51/1.973^2) meb (Egb-Ee)]; 

DEv=Q (Egb-Ega); 
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Ee1[x_]:=DEv+Ee/.FindRoot[Tan[kea La/2]==(keb mea)/(kea meb), 

{Ee,Ega-DEv+0.001,Ega-DEv+0.0001,we1}]; 

Ee2[x_]:=DEv+Ee/.FindRoot[Tan[kea La/2]==-(kea meb)/(keb mea), 

{Ee,(we1+0.0001),we1,we2}]; 

Ee3[x_]:=DEv+Ee/.FindRoot[Tan[kea La/2]==(keb mea)/(kea meb), 

{Ee,(we2+0.0001),we2,we3}]; 

 

eexp={{0.012,1.3499},{0.016,1.3328},{0.020,1.3088},{0.028,1.27},{0.012,

1.2382}, 

{0.016,1.2152},{0.02,1.1735},{0.028,1.1297}, 

{0.045, 1.03},{0.045,1.18}}; 

 

plot1=ListPlot[eexp,Prolog->PointSize[0.05],Frame->True,GridLines-

>Automatic]; 

 

plot2=Plot[{Ee1[x],Ee2[x],Ee3[x]},{x,0.01,0.05},Frame->True,GridLines-

>Automatic]; 

 

plot3=Plot[E1[x,0],{x,0.01,0.05}]; 

 

Show[plot1,plot2,plot3]; 

 

(2) Variational calculations of the shallow donor ground state in GaAs1-xNx in the context 

of the BAC model 

 

ClearAll[g,g0,g00,k,ks,r,q,P,Q,R,Q0,Q1,E0,E1,E2,E12,E3,En,Cnm,x,Me,Mh,e

, 

a,b,b1,b2,t,s,W,PE,PE0,PE00,PE1,PE10,PE11,PE12,KE0,KE1,KE2,KE3,CC,pr,V, 
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Eg]; 

 

e=15.5075; 

Me=0.067;Mh=0.45;Eg0=1.52/(2 13.6 Me/e^2); 

Cnm=2.7/(2 13.6 Me/e^2); 

En:=Abs[(1.65-1.52+3 x+0.0015 pr-0.0108 pr)]/(2 13.6 Me/e^2); 

pr=20; 

 

x=0.01;b=0; 

 

DEg1[x_]:=(En/2) (Sqrt[1+4 Cnm^2 x/(En)^2]-1); 

Eg[x_]:=Eg0-Abs[DEg1[x]]-3 x/(2 13.6 Me/e^2); 

DEg2[x_]:=(En/2) (Sqrt[1+4 Cnm^2 x/(En)^2]+1); 

 

R[k_,q_,b_]:=-(1/(2 Pi)) Log[(b^2+(k+q)^2)/(b^2+(k-q)^2)]; 

Q1[k_,q_]:=-(b1 b2/Pi) (1/(b2^2+(k-q)^2)-1/(b2^2+(k+q)^2)); 

 

E0[k_]:=k^2/2; 

E1[k_]:=(1/2) (En+E0[k]-Sqrt[(En-E0[k])^2+4 Cnm^2 x]); 

E2[k_]:=(1/2) (En+E0[k]+Sqrt[(En-E0[k])^2+4 Cnm^2 x]); 

E3[k_]:=k^2 Me/(2 Mh) ; 

 

g00[k_,t_]:=k/(t+k^2)^2; 

CC=Sqrt[Integrate[(g00[k,t])^2,{k,0,Infinity}]]; 

g0[k_,t_]=g00[k,t]/CC; 

 

KE1[t_]:=Re[NIntegrate[g0[k,t] (E1[k]+DEg1[x]) g0[k,t], 

{k,0,Infinity}]]; 

KE3[t_]:=Re[NIntegrate[g0[k,t] E3[k] g0[k,t], {k,0,Infinity}]]; 
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PE00[t_]:=Re[Integrate[g0[k,t] R[k,q,b] g0[q,t],{q,0,Infinity}, 

{k,0,Infinity}]]; PE0[t_]:=N[PE00[t]]; 

 

W[t_]:=KE1[t]+ KE3[t]+PE0[t]; 

 

Plot[{En,E1[k],E2[k]},{k,0,40}]; 

 

Plot[W[t] (2 13.6 10^3 Me/e^2),{t,0.5,3},GridLines->Automatic, Frame-

>True]; 

 

N[0.053 e/Me] 

 

N[1.52-DEg1[x] (2 13.6 Me/e^2)-0.03] 

 

(3) State broadening and related effects of the BAC model based on Green’s function 

calculation 

 

"GF, JDOS" 

ClearAll[R0,V,x,Gm,ImG,G,EE,Ek,k,R,P1,P2,P3,P4,P5,P6, 

Rhh,Rlh,Rso,Rtotal,Eplus,Eminus]; 

 

Ed=0.23+Eg0; 

Eb=70.4; 

V=2.7; 

Eg0=1.42; 

Me=0.067; 

Mhh=0.51; 
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Mlh=0.082; 

Mso=0.154; 

Delta=0.34; 

 

x=0.01; 

 

Eplus=0.5 (Eg0+Ed+Sqrt[(Eg0-Ed)^2+4 V^2 x]); 

Eminus=0.5 (Eg0+Ed-Sqrt[(Eg0-Ed)^2+4 V^2 x]); 

R0[EE_]:=4 Pi Sqrt[EE-Eg0]/Eb^(3/2); 

Gm=Pi V^2 R0[Ed]; 

 

G[EE_, Ek_]:=(EE-(Ed+I Gm))/((EE-Ek+I 10^(-6)) (EE-(Ed+I Gm))-V^2 x); 

 

R[EE_]:=(1/Pi) Abs[NIntegrate[R0[Ek] Im[G[EE,Ek]],{Ek,Eg0,Eb}, 

MinRecursion->3,MaxRecursion->10,WorkingPrecision->16]]; 

 

Rhh[EE_]:=(1/Pi) Abs[NIntegrate[R0[Ek] Im[G[EE-(Me/Mhh) 

Ek,Ek]],{Ek,Eg0,Eb}, 

MinRecursion->3,MaxRecursion->10,WorkingPrecision->16]]; 

 

P1=Plot[R0[Ek],{Ek,Eg0,3},Frame->True,PlotStyle->{RGBColor[0,1,0]}]; 

 

P2=Plot[R[EE],{EE,0,3},Frame->True,PlotStyle->{RGBColor[1,0,0]}]; 

 

Show[P1,P2]; 

 

(4) BAC effect in the entire Brillouin zone for GaP1-xNx 
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ClearAll[x,y,Eg,Cnm,V0,k0,a,b,M,En,Em,Eml,Emx,k,Vnm,M0,q,kk, 

W1,W2,f11,f12,f21,f22,p0,p1,p2,p3,p4,p5,p6,n,EEm,EEn,WW1,WW2,i]; 

 

"30K, GaPN"; 

"GaP, Valance: X:-2.32eV; Gama: 0eV"; 

 

V0=3.05; 

h=6.63 10^(-34);Me=9.31 10^(-31); e=1.6 10^(-19); 

a=5.45 10^(-10); 

 

En[k_]:=2.15; 

 

Eml[k_]:=(2.6439+0.49415 (k/1.15)+ 46.922 (k/1.15)^2+(-23.368) 

(k/1.15)^3+(-1986.2) (k/1.15)^4+ 

(-9418.9) (k/1.15)^5+(-20899) (k/1.15)^6+(-25072) (k/1.15)^7+(-15715) 

(k/1.15)^8+ 

(-4043.9) (k/1.15)^9); 

Emx[k_]:=(2.6399+(-0.42652) (k/1.15)+22.452 (k/1.15)^2+390.93 

(k/1.15)^3+(-3313.2) (k/1.15)^4+ 

10326 (k/1.15)^5+(-16856) (k/1.15)^6+15419 (k/1.15)^7+(-7511.9) 

(k/1.15)^8+1522.8 (k/1.15)^9); 

Em[k_]:=(Which[k<=0,Eml[k],k>0,Emx[k]])+(2.90-Eml[0]) (1-k)+(2.35-

Emx[1]) k; 

 

p0=Plot[{Em[k],En[k]},{k,-0.87,1},Frame->True,GridLines->Automatic, 

PlotStyle->{{Dashing[{0.01,0.01}]}}];        

 

Vnm[x_,k_]:=V0 k0^4 Sqrt[x] /(k0^2+k^2)^2; 
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M0:={{En[k],Vnm[x,k]},{Vnm[x,k],Em[k]}}; 

MatrixForm[M0]; 

 

W1:=Eigenvalues[M0][[1]]; 

f11:=Eigenvectors[M0][[1]][[1]]; 

f12:=Eigenvectors[M0][[1]][[2]]; 

 

W2:=Eigenvalues[M0][[2]]; 

f22:=Eigenvectors[M0][[2]][[2]]; 

f21:=Eigenvectors[M0][[2]][[1]]; 

 

x=0.023;k0=1.09; 

 

P1=Plot[Vnm[x,k],{k,-0.87,1}]; 

 

p2=Plot[{W1,W2},{k,-0.87,1},Frame->True,GridLines->Automatic]; 

 

Show[p0,p2]; 

 

Array[kk,n];Array[EEm,n];Array[EEn,n];Array[WW1,n];Array[WW2,n];n=19 

5+1; 

For[i=1,i<n+1,i++; 

kk[i]={-0.9,-.88,-.86,-.84,-.82,-0.8,-.78,-.76,-.74,-.72, 

-0.7,-.68,-.66,-.64,-.62,-0.6,-.58,-.56,-.54,-.52, 

-0.5,-.48,-.46,-.44,-.42,-0.4,-.38,-.36,-.34,-.32, 

-0.3,-.28,-.26,-.24,-.22,-0.2,-.18,-.16,-.14,-.12, 

-0.1,-.08,-.06,-.04,-.02,0,0.02,0.04,0.06,0.08, 

.1,0.12,0.14,0.16,0.18,.2,0.22,0.24,0.26,0.28, 

.3,0.32,0.34,0.36,0.38,.4,0.42,0.44,0.46,0.48, 
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.5,0.52,0.54,0.56,0.58,.6,0.62,0.64,0.66,0.68, 

.7,0.72,0.74,0.76,0.78,.8,0.82,0.84,0.86,0.88, 

.9,0.92,0.94,0.96,0.98,1}[[i]]; 

EEm[i]=Em[kk[i]];EEn[i]=En[kk[i]];WW1[i]=W1[kk[i]];WW2[i]=W2[kk[i]];]; 

 

Transpose[{Array[EEm,n],Array[EEn,n],Array[WW1,n],Array[WW2,n]}] 

 

(5) Valence band anticrossing applied to ZnS1-xTex 

 

"ZnS(1-x)Tex, 0<=x<=1; Interpolation"; 

"referenced to ZnTe VB-top"; 

 

ClearAll[p,x,ES,ES0,EZT,EZT0,CmS,a1S,a1ZT,z2ZT,EZTminus,EZTplus,a1ZTS,a

2ZTS, 

a1ZST,a2ZST,n1,n2,a1,a2,P1,P2,P3,P4]; 

 

ES[p_]:=ES0+a1S p; 

EZT[p_,x_]:=EZT0+a1ZT p+a2ZT p^2-0.3 (1-x); 

ES0=2.6; 

a1S=1.5 10^(-3); 

EZT0=2.24; 

a1ZT=10.9 10^(-3); 

a2ZT=-4.25 10^(-5); 

CmS=1; 

 

EZTminus[p_,x_]:=0.5 ((ES[p]+EZT[p,x])-Sqrt[(ES[p]-EZT[p,x])^2+4 CmS^2 

(1-x)]); 
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EZTplus[p_,x_]:=0.5 ((ES[p]+EZT[p,x])+Sqrt[(ES[p]-EZT[p,x])^2+4 CmS^2 

(1-x)]); 

 

Series[EZTplus[p,x],{p,0,2}]; 

 

a1ZTS[x_]:=D[EZTminus[p,x],p] /. p->0; 

a2ZTS[x_]:=0.5 D[EZTminus[p,x],{p,2}] /. p->0; 

 

"Plot[a1ZTS[x],{x,0,1},Frame->True,PlotStyle->{RGBColor[1,0,0]}]; 

Plot[a2ZTS[x],{x,0,1},Frame->True,PlotStyle->{RGBColor[0,0,1]}];"; 

 

a1ZST[x_]:=6.35 10^(-3); 

a2ZST[x_]:=-1.31 10^(-5); 

a1[x_]:=x^n1 a1ZTS[x]+(1-x^n1) a1ZST[x];n1=1; 

a2[x_]:=x^n2 a2ZTS[x]+(1-x^n2) a2ZST[x];n2=2; 

 

P1=Plot[a1[x],{x,0,1},Frame->True,PlotStyle->{RGBColor[1,0,0]}]; 

P2=Plot[a2[x],{x,0,1},Frame->True,PlotStyle->{RGBColor[0,1,0]}]; 

 

a1Data={{0.0,0}}; 

a2Data={{0.0,0}}; 

 

P3=ListPlot[a1Data]; 

P4=ListPlot[a2Data]; 

 

Show[P1,P3]; 

Show[P2,P4]; 

 

"ZnSTex, 0<=x<1, 8X8, bowing"; 
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"referenced to ZnS VB_top"; 

 

ClearAll[r1,r2,r3,Delta0,Ctm,Et0,kx,ky,kz,k,k2,Hv,L,a,b,DD,S,V, 

Ehh0,Ehh1,Ehh2,Elh0,Elh,Elh1,Elh2,Mt,Mlh,Mhh,Mso, 

Eso0,Eso,Eso1,Eso2,Et,Et1,Et2,Eig,Ec,Dc,Dc2,Dv, 

E0Data,Delta0Data,EcData,EvData,E0PLData,E0absData,EsoData, 

P5,P6,P7,P8,P9,P10,P13,P14,offset]; 

 

hbar=1973; 

m0=0.511*10^6; 

r1=4.30; 

r2=0.59; 

r3=1.34; 

Delta0=0.07; 

 

offset=157.2;"x-ray energy offset, energy difference between S-2p core 

level and the ZnS VB_top"; 

Ctm=0.5; 

Et0=1.2; 

 

Dv=1.2; 

Dc=-0.20;Dc2=0; 

Dd=0.89; 

Ec[kx_,x_]=3.64+Dc x-Dc2 x^2; 

 

kx=.; 

ky=0; 

kz=0; 
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H[kx_,x_]=-hbar^2/m0 ((kx^2+ky^2) (r1+r2)+kz^2 (r1-2 r2))+Dv x; 

L[kx_,x_]=-hbar^2/m0 ((kx^2+ky^2) (r1-r2)+kz^2 (r1+2 r2))+Dv x; 

a[kx_]=Sqrt[3] hbar^2/m0 (kz (kx-I ky) r3); 

b[kx_]=Sqrt[3]/2 hbar^2/m0 ((kx^2-ky^2) r2-2 I kx ky r3); 

DD[kx_,x_]=L[kx,x]-H[kx,x]; 

S[kx_,x_]=1/2 (L[kx,x]+H[kx,x])-Delta0-Dd x; 

V[x_]=Ctm Sqrt[x]; 

 

Hv[kx_,x_]:={{H[kx,x],a[kx],b[kx],0,I a[kx]/Sqrt[2],-I Sqrt[2] b[kx], 

(1-I) V[x]/Sqrt[2], 0}, 

{Conjugate[a[kx]],L[kx,x],0,b[kx],I DD[kx,x]/Sqrt[2],I Sqrt[3/2] 

a[kx],I Sqrt[2/3] V[x], (-1-I) V[x]/Sqrt[6]}, 

{Conjugate[b[kx]],0,L[kx,x],-a[kx],-I Sqrt[3/2] Conjugate[a[kx]],I 

DD[kx,x]/Sqrt[2],(1+I)/Sqrt[6] V[x], Sqrt[2/3] V[x]}, 

{0,Conjugate[b[kx]],-Conjugate[a[kx]],H[kx,x],-I Sqrt[2] 

Conjugate[b[kx]],-I Conjugate[a[kx]]/Sqrt[2],0,(1-I)/Sqrt[2] V[x]}, 

{-I Conjugate[a[kx]]/Sqrt[2],-I DD[kx,x]/Sqrt[2],I Sqrt[3/2] a[kx], I 

Sqrt[2] b[kx], S[kx,x], 0, 1/Sqrt[3] V[x],(1-I) V[x]/Sqrt[3]}, 

{I Sqrt[2] Conjugate[b[kx]], -I Sqrt[3/2] Conjugate[a[kx]], -I 

DD[kx,x]/Sqrt[2], I a[kx] /Sqrt[2], 0, S[kx,x], (-1+I) V[x]/Sqrt[3],-I 

V[x]/Sqrt[3]}, 

{(1+I) V[x]/Sqrt[2], -I V[x] Sqrt[2/3], (1-I) V[x]/Sqrt[6],0, 

V[x]/Sqrt[3], (-1-I) V[x]/Sqrt[3], Et0,0}, 

{0,(-1+I) V[x]/Sqrt[6],V[x] Sqrt[2/3],(1+I) V[x]/Sqrt[2],(1+I) 

V[x]/Sqrt[3],I V[x]/Sqrt[3],0,Et0}}; 

 

Eig[kx_,x_]:=Sort[Chop[Re[Eigenvalues[Hv[kx,x]]]]]; 

 

{Eso1[kx_,x_],Eso2[kx_,x_],Elh1[kx_,x_],Elh2[kx_,x_], 
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Ehh1[kx_,x_],Ehh2[kx_,x_],Et1[kx_,x_],Et2[kx_,x_]}:={Eig[kx,x][[1]], 

Eig[kx,x][[2]], 

Eig[kx,x][[3]], 

Eig[kx,x][[4]], 

Eig[kx,x][[5]], 

Eig[kx,x][[6]], 

Eig[kx,x][[7]], 

Eig[kx,x][[8]]}; 

 

P10=Plot[{Ehh1[0,x]+offset,Elh1[0,x]+offset,Eso1[0,x]+offset,Et1[0,x]+o

ffset,Ec[0,x]+offset},{x,0,0.3}, 

PlotStyle-

>{RGBColor[1,1,0],RGBColor[0,1,0],RGBColor[0,1,1],RGBColor[1,0,0], 

RGBColor[0,0,1]},GridLines->Automatic, Frame->True]; 

 

E0Data={{0.0,3.4600},{0.00700,3.4700},{0.0250,3.2800},{0.1450,2.7700},{

0.2160,2.4100},{0.2840,2.2600}, 

{0.5350,2.3100},{0.580,2.1670},{0.677,2.0300},{0.798,2.2130},{0.90,2.17

00}}; 

E0absData={{0.0,3.6070},{0.2160,2.6380},{0.5800,2.1422},{0.6770,2.0542}

,{0.7980,2.0264},{0.900,2.1110}, 

{1.00,2.2500},{0.2160,2.61},{0.284,2.477}}; 

P5=ListPlot[E0Data,PlotStyle->{RGBColor[1,0,0],PointSize[0.02]}]; 

P13=ListPlot[E0absData,PlotStyle->{RGBColor[1,0,1],PointSize[0.02]}]; 

 

EsoData={{0.0,3.6770},{0.798,2.9300},{0.900,3.0210},{1.00,3.2000}}; 

P14=ListPlot[EsoData,PlotStyle->{RGBColor[0,1,1],PointSize[0.02]}]; 
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E0PLData={{0.00,3.6810},{0.00700,2.4000},{0.0250,2.3800},{0.1450,2.3060

},{0.2160,2.2540}, 

{0.2840,2.2460},{0.5350,2.1000},{0.5800,2.0840},{0.6770,2.0650},{0.7980

,2.0600},{0.9000,2.0940}, 

{1.000,2.2515}}; 

P9=ListPlot[E0PLData,PlotStyle->{RGBColor[0,0,1],PointSize[0.02]}]; 

 

EcData={{0.0,160.83},{0.007,160.80},{0.025,160.68},{0.145,160.64},{0.21

6,160.68},{0.284,160.56}, 

{0.535,160.44},{0.580,160.40},{0.677,160.36},{0.798,160.28},{0.90,160.2

1},{0.95,160.29}}; 

P6=ListPlot[EcData,PlotStyle->{PointSize[0.02]}]; 

 

EvData={{0.0,157.37},{0.0070,157.33},{0.0250,157.40},{0.1450,157.87},{0

.2160,158.27},{0.2840,158.30}, 

{0.5350,158.13},{0.5800,158.23},{0.6770,158.33},{0.7980,158.07},{0.9000

,158.04}}; 

P8=ListPlot[EvData,PlotStyle->{PointSize[0.02]}]; 

 

P7=Plot[{Ec[0,x]-Ehh1[0,x],Ec[0,x]-Elh1[0,x], 

Ec[0,x]-Et1[0,x],Ehh1[0,x]-Eso1[0,x]},{x,0,0.3},PlotStyle-

>{RGBColor[0,1,1], 

RGBColor[0,1,0],RGBColor[1,0,0],RGBColor[1,0,1]},  

GridLines->Automatic, Frame->True]; 

 

Show[P10,P8,P6]; 

Show[P7,P5,P9]; 
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ClearAll[E0,x,n3,n4,n5,n6,n7,P11,P12,EvZTS,EvZST,Ev,EcminusZTS,EcplusZT

S,EcminusZST,EcplusZST, 

Ecminus,Ecplus,Ehh,Elh,E0fit,Eso,Esofit]; 

 

EvZTS[x_]=offset+Dv x; 

EvZST[x_]:=Et1[0,x]+offset; 

Ev[x_]:=x^n3 EvZTS[x]+(1-x^n3) EvZST[x];n3=1; 

Ehh[x_]:=x^n3 EvZTS[x]+(1-x^n3) (Ehh1[0,x]+offset); 

Elh[x_]:=x^n3 EvZTS[x]+(1-x^n3) (Elh1[0,x]+offset); 

E0fit[x_]:=x^n6 (Ecminus[x]-Ev[x])+(1-x^n6) (Ecminus[x]-Ehh[x]);n6=1/3; 

Eso[x_]:=x^n7 (offset-Delta0+(Dv-Dd) x)+(1-x^n7) 

(Eso1[0,x]+offset);n7=1; 

Esofit[x_]:=Ecminus[x]-Eso[x]; 

 

EcminusZTS[x_]:=offset+Dv+EZTminus[0,x]; 

EcplusZTS[x_]:=offset+Dv+EZTplus[0,x]; 

EcminusZST[x_]:=offset+Ec[0,x]; 

EcplusZST[x_]:=offset+Ec[0,x]+1;"?"; 

Ecminus[x_]:=x^n4 EcminusZTS[x]+(1-x^n4) EcminusZST[x];n4=1; 

Ecplus[x_]:=x^n5 EcplusZTS[x]+(1-x^n5) EcplusZST[x];n5=0; 

P11=Plot[{Ev[x],Eso[x],Ecminus[x],Ehh[x],Elh[x]},{x,0,1},Frame->True, 

PlotStyle-

>{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1],RGBColor[1,0,1],RGBCo

lor[0,1,1]}]; 

P12=Plot[{Ecminus[x]-Ev[x],Ecminus[x]-

Ehh[x],E0fit[x],Esofit[x]},{x,0,1},Frame->True, 

GridLines->Automatic,PlotStyle-

>{RGBColor[0,0,1],RGBColor[0,1,0],RGBColor[1,0,0],RGBColor[1,0,1]}, 

PlotRange->{{0,1},{1.5,4}}]; 
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Show[P11,P8,P6]; 

Show[P12,P5,P9,P13,P14]; 

 

(6) Non- linear fitting for the determination of electron effective mass of InN by plasma 

reflection experiments  

 

"InN plasma edge";
ClearAll@data,er, ei,n, k, R, w, wp, wr, wp0, wr0, a, b,a0, b0,erinfinity, parameters,P1,P2D;
<<Statistics̀ NonlinearFit̀ ;

data= 881000,0.7<, 81500,0.6<, 82000,0.35<, 82500,0.15<, 83000,0.08<, 83500, 0.08<,84000,0.081<, 84500,0.082<<;
erinfinity= 5.2;

er@w_, wp_, wr_D = erinfinity*
ik1-

HwpêwL2
1+ Hwrê wL2 y{;

ei@w_, wp_, wr_D = erinfinity*
wrê w

1+Hwrê wL2;
n@w_, wp_, wr_D = & er@w, wp, wrD + èer@w, wp, wrD2+ ei@w, wp, wrD2

2
;

k@w_, wp_, wr_D =
ei@w, wp, wrD"

2er@w, wp, wrD + 2èer@w, wp, wrD2+ei@w, wp, wrD2 ;

R@w_, wp_, wr_, a_, b_D = a*
HHn@w, wp, wrD -1L2+ k@w, wp, wrD2LHHn@w, wp, wrD +1L2+ k@w, wp, wrD2L + b;

NonlinearFit@data, R@w, wp, wr, a,0D, 8w<, 8wp, wr<D;
parameters=
BestFitParametersê. NonlinearRegress@data, R@w, wp, wr,a,0D, 8w<,8wp, wr, a<,
RegressionReport® BestFitParametersD;8wp0, wr0,a0< = 8wp, wr,a< ê.parameters

P1= ListPlot@data,PlotStyle® 8PointSize@0.02D<D;
P2= Plot@R@w, wp0, wr0, a0,0D,8w, 500,5000<D;
Show@P1,P2D  
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