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so dramatically in recent decades, scientists can now gener-
ate these scores based on data from millions of people who 
participate in genome-wide association studies (GWAS), 
including the multitiudes who send their DNA samples 
to large direct-to-consumer genomics companies such as 
23andMe, and large medical studies. Such large datasets 
allow for the precise detection of very small genetic effects. 
However, they also suffer from several limitations in their 
design and interpretation that reduce their value, particu-
larly in the realm of behavioral genetics.

In this essay, we call attention to multiple concerns with 
the increasing use of PGS in behavioral genetics. We argue 
that since these scores are derived from statistical correla-
tions, they carry no directly causal genetic information and 
require no understanding of the biological role of under-
lying genes in contributing to any trait or disease. Thus, 
although the scores may have statistical significance, they 
may entirely lack biological meaning and their therapeutic 
or research potential may be empiric rather than targeted. 
Moreover, these scores depend on the diversity of the refer-
ence populations and the genomic panels from which they 
were derived, which often do not fit well with the popula-
tions to which they are applied. We further highlight social 
and ethical limitations that should be considered when using 
PGS, particularly for social and behavioral traits.

Introduction

Developing polygenic scores (PGS) is a rapidly growing 
approach in biomedical and behavioral sciences. PGS (aka 
polygenic risk scores, PRS, or risk scores), compile infor-
mation across hundreds to thousands of genetic variants into 
a single score to estimate an individual’s genetic risk for a 
complex trait. These are typically calculated as a sum of all 
genetic risk alleles that associate with a particular trait in a 
reference population, weighted by the effect size estimate 
(Choi et al. 2020). Because costs of sequencing have fallen 
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Abstract
Polygenic scores (PGS) are increasingly being used for prediction of social and behavioral traits, but suffer from many 
methodological, theoretical, and ethical concerns that profoundly limit their value. Primarily, these scores are derived 
from statistical correlations, carrying no inherent biological meaning, and thus may capture indirect effects. Further, the 
performance of these scores depends upon the diversity of the reference populations and the genomic panels from which 
they were derived, which consistently underrepresent minoritized populations, leading to poor fit when applied to diverse 
groups. There is also inherent danger of eugenic applications for the information gained from these scores, and general 
risk of misunderstandings that could lead to stigmatization for underrepresented groups. We urge extreme caution in use 
of PGS particularly for social/behavioral outcomes fraught for misinterpretation, with potential harm for the minoritized 
groups least likely to benefit from their use.
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PGS in Behavioral Genetics

Since its first development in 2009, use of PGS has become 
increasingly widespread to estimate risk of complex dis-
eases, and has especially exploded in the realm of predicting 
social and behavioral traits. In a literature search of Web of 
Science conducted by Plomin and von Strumm 2021, they 
identified over 1000 publications using the terms ‘poly-
genic score’ OR ‘polygenic risk score’ OR ‘polygenic risk,’ 
by early 2021. In an update to this search using the same 
terms identified in the abstracts but extending just to the end 
of 2022, we identified over 5,516 publications since 2009, 
with over 78,993 citing articles (Fig. 1). The bulk of these 
papers were classified in Web of Science Categories for 
Psychiatry/Psychology/Behavioral traits (32.1%) followed 
by Genetics-Heredity (18.4%), with the remaining under 
various medical subfields, highlighting the intense focus on 
PGS for social, behavioral, and psychological traits.

Social scientists as diverse as economists, sociologists, 
and behavioral psychologists alongside geneticists have 
been developing PGS for traits as wide-ranging as loneli-
ness (Day et al. 2018), smoking behaviors (Belsky et al. 
2013; Chen et al. 2018), subjective well-being (Patel et al. 
2021), parental caregiving (Wertz et al. 2019), cognitive 
measures of verbal and spatial reasoning (Liu et al. 2020), 
and most commonly in recent years, educational attainment 
(EA) (Rietveld et al. 2013; Lee et al. 2018; Okbay et al. 
2022a). Although it may seem counter-intuitive to imagine 
how a genetic score can predict variables so obviously social 
as “loneliness,” a person’s genome indeed influences many 

relevant factors that contribute to these social traits. These 
include subtle personality characteristics (e.g., diligence, 
patience), health factors (e.g., chronic illnesses), and behav-
iors (e.g., sleeping patterns, addictive drug use). Thus, PGS 
capture many of these indirect traits, which associate with 
dozens of different outcomes, rather than strictly the one 
under study. In fact, the genetic predictors of educational 
attainment, one of the most well-studied behavioral traits, 
has shown to correlate with many other outcomes including 
height, parenting, antisocial behavior (i.e., criminality), and 
healthy aging, to name a few (Kong et al. 2018; Wertz et al. 
2018, 2019; Wu et al. 2020; Schork et al. 2022). Moreover, 
the majority of PGS only estimate very small contributions 
of the total variance in these traits (e.g., 11-13% of edu-
cational outcomes (Okbay et al. 2022b), leaving the vast 
majority (87–89%) unexplained. Although these levels of 
genetic prediction may be most useful at the extremes of the 
PGS distribution (e.g., 75% of those in the highest decile of 
polygenic risk score for education go to college (Plomin and 
von Stumm 2022), the majority of people fall in between, 
where the predictive ability is less powerful.

Methodological Considerations

Many methodological considerations can bias PGS esti-
mates, particularly when examining traits in diverse popula-
tions. The first is that the predictive power of a particular 
PGS in a specific population depends on the appropriateness 
of the original single nucleotide polymorphism (SNP) panel 
used to develop the score. Importantly, ascertainment bias in 

Fig. 1  Publications (purple bars) and citations (blue line) demonstrating increasing references to polygenic scores in abstracts of articles in Web 
of Science between 2009 and 2022
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the SNP arrays used to generate the GWAS data from which 
these scores were originally derived leads to the underrep-
resentation of rare alleles, especially from the most diverse 
populations of Africa. Thus, it is important to move beyond 
commercial SNP arrays to much more expensive whole 
genome sequencing or improve the design of arrays to 
include many more diverse variants (De La Vega and Busta-
mante 2018). Additionally, the lack of diversity among most 
participants of GWAS – over 80% are of European descent 
(Sirugo et al. 2019) – means that the training populations 
used to identify relevant alleles to build these scores do not 
reflect the genetic variability of the global human popula-
tion. As a result, the predictive accuracy of the scores out-
side European groups is much lower. This is in part because 
allele frequencies differ across populations, such that more 
frequent alleles in the training set may be entirely lacking 
from the target population, and vice versa. Additionally, pat-
terns of linkage disequilibrium arising from different demo-
graphic histories vary across ancestry groups, which can 
alter the estimated effect size of alleles in different popula-
tions. Finally, the effect size of each allele may differ across 
populations if its effect on a phenotype depends on interac-
tion with variation in the surrounding genome (Mostafavi 
et al. 2020), or in interaction with different environments. 
Accordingly, the scores systematically perform best with 
target populations of European ancestry, and concerningly 
misestimate outcomes in unpredictable ways in other groups 
(Martin et al. 2017, 2019a; Kim et al. 2018). For example, 
the educational attainment PGS accounts for only 0.2–2.3% 
of the variance of education in those of African ancestry 
in the US or UK, relative to 13% for those of European 
ancestry (Duncan et al. 2019). Similarly in a PGS study of 
schizophrenia, the risk scores were decreased in Africans 
relative to all other populations, despite the fact that simi-
lar disease prevalence has been observed across populations 
(Martin et al. 2017). This bias is exacerbated by the use of 
direct-to-consumer genetic databases and opt-in biobanks as 
giant discovery datasets, as their members are not represen-
tative of the nation, being generally more highly educated, 
wealthier, and healthier than the population average (Fry et 
al. 2017; Uffelman et al. 2021).

This problem can be generalized beyond ancestry effects, 
as any factors that differ between the training and target 
samples, such as age, location, socioeconomic status, or 
cohort effects (e.g., birth year) can reduce the accuracy of 
the PGS (Choi et al. 2020). For example, in one study test-
ing the replicability of PGS on cardiometabolic traits, the 
effect of birth year was substantial, supporting the role of 
changing environmental and demographic factors over time 
(Loika et al. 2020). In another study, using over 300,000 
White British individuals in the UK Biobank, researchers 
demonstrated that even within the same ancestry group, the 

prediction accuracy of the PGS (measured by incremental 
R2) for diastolic blood pressure depended on the sex ratio of 
the training dataset; for BMI, it depended on the age range 
of the training set; and for years of education, it depended 
on the socioeconomic status (SES) of the training set (spe-
cifically 2-fold higher accuracy in the lowest SES quartile 
compared to highest, when GWAS was performed in those 
of lowest SES) (Mostafavi et al. 2020). This study con-
cluded that the environmental variance around these traits 
was not even the biggest problem for prediction accuracy, 
but rather more problems stemmed from the difference in 
magnitude of genetic effects among groups, indirect effects, 
and assortative mating. An important implication is that 
even after controlling for ancestry, PGS will not perform 
well across groups that differ largely in factors such as SES 
or other unknown confounders.

Failure of PGS to transfer well across populations also 
stems from the general failure of the underlying GWAS 
findings to replicate (Ioannidis 2007). While GWAS repli-
cability has improved in recent years as study sample sizes 
have dramatically increased (Marigorta et al. 2018), they 
still typically underperform in sensitivity (ability to detect 
true positive results) for complex diseases and traits; e.g. 
the predictive power area under the ROC curve is < 0.7 
for most studied traits (So and Sham 2017). Sample sizes 
in the millions can improve the predictive power of PGS, 
but larger samples also introduce more heterogeneity in 
phenotypes and genotypes adding more challenges. Even 
if all true effects of causal variants could be identified, the 
degree of variance one can explain with a PGS will always 
be limited by the true heritability of the trait under study 
(Marigorta et al. 2018), which is likely smaller for complex 
social or behavioral traits than most diseases, as they have 
large environmental components. Another factor compli-
cating replication is sparse genotyping approaches, such as 
array-based designs, which are the most cost-effective but 
require genetic imputation to infer the full set of genotypes 
in a PGS estimate. One study found that imputation intro-
duces minor changes in PGS, but in some rare instances can 
result in a dramatic change to the score which can be very 
problematic at the individual level if PGS are used in health-
care settings (Chen et al. 2020). While PGS is not currently 
being used in clinical consultations, they have the potential 
to be used for clinical risk assessments, which is prone to all 
the problems of replicability and transferability previously 
noted. If the current scores were used in clinical application, 
they may perform well when stratifying by disease risk, but 
they would in fact underdiagnose the most vulnerable indi-
viduals coming from the populations least represented in the 
genetic studies.

Another major challenge in developing PGS—particu-
larly for complex social/behavioral traits—is the difficulty 
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GWAS of EA the effect of the PGS vanished after adjust-
ing for the PGSs of relatives (Okbay et al. 2022a; Schork 
et al. 2022). This suggests that the PGS is acting primarily 
through indirect pathways, either as a result of assortative 
mating (parents of high education seek each other), parental 
behaviors (also influenced by the genome), population strat-
ification, or health status—which together likely explain 
much of the heritability of EA.

Third, the conceptualization and operationalization of 
traits deployed in PGS often lack consistency. For instance, 
multiple studies assess “resilience” to complex social 
experiences including trauma, “victimization,” and bul-
lying. However, definitions of “resilience” may be absent 
(Armitage et al. 2022), elaborate (Hess et al. 2021), or refer 
to entirely different concepts ranging from the absence of 
pathology to an adolescent trait (Docherty et al. 2018). Clin-
ical terms like “susceptibility” may be used solely based on 
genetic estimates, promoting misunderstanding. Further, 
measures of the same environmental exposures vary widely. 
A systematic review including 17 studies of PGS for schizo-
phrenia in people with experiences of childhood adversity 
analyzed 18 different measures of childhood adversity, only 
a few of which included validated instruments in the origi-
nal studies (Woolway et al. 2022).

It seems reasonable to ask, does it matter if the alleles 
in the scores are directly causally relevant if the scores 
are generally predictive of the trait? We argue that much 
of the purported value of PGS, particularly for social traits 
such as EA, is invalidated if the alleles are not causally 
related. For example, if PGS for EA were used as a tool 
to generate specific hypotheses such as a list of cognitive-
related genes or pathways to examine in functional follow-
up studies (as suggested by Lee et al. 2018), they would 
be entirely inappropriate if the alleles are in fact related to 
parenting behavior or health rather than cognitive ability. 
Another potential use suggested by EA researchers (Lee et 
al. 2018; Okbay et al. 2022a) and others (Harden 2021) is 
to use the scores to target interventions, such as to enhance 
educational opportunities for those most likely to benefit, or 
alternatively for those most in need. However, when taking 
into account environmental context such as childhood SES, 
Belsky et al. (2018) discovered that the PGS for EA was 
much more predictive of social mobility (higher income 
in adulthood) for those with low relative to higher child-
hood SES. These findings suggest that PGS on their own 
have limited predictive power for social outcomes and may 
only be informative after taking relevant environmental fac-
tors into account. Interventions based on these scores could 
unfairly limit opportunities to those with the most support-
ive child environments, falsely assuming these children to 
have genomes most likely to benefit from attaining high 
educational achievement. Inversely, if interventions only 

in operationalizing these very complex multifactorial traits 
into a straightforward quantitative measure. Educational 
attainment has been an attractive outcome to model given 
how simple it is to sum years of education; however, this 
crude measure fails to address variation in the quality of 
study, degrees obtained, social status achieved, or dimin-
ishing returns of education gains for certain racial groups 
(Assari 2017). Likewise, loneliness can be influenced not 
just by a person’s frequency of contact with social con-
nections, but their perception and personality which influ-
ence how they report this measure. Similarly, psychiatric 
disorders such as depression and anxiety tend to present as 
more of a spectrum of phenotypes with enormous variation 
than an easily defined disease, often with overlapping traits 
across disorders, and overlapping symptoms even among 
cases and controls (Geschwind and Flint 2015). As such, 
the typical shortcut summary measures of very complex 
behavioral traits compound the imprecision inherent in PGS 
estimates.

Theoretical Considerations

PGS also demonstrate considerable theoretical shortcom-
ings. First, because the scientific community is still learn-
ing the basic functions of the human genome, no driving 
hypotheses guide the models that test associations between 
SNPs and outcomes of interest. A telomere-to-telomere 
genomic sequence, including repeat DNA sequences, was 
only completed in 2022 and functional genomics stud-
ies have not kept pace with sequencing efforts (Nurk et al. 
2022). Due to linkage disequilibrium, correlations identified 
may or may not be ‘true’ as neighboring genetic variants 
tend to be inherited together through co-segregation during 
meiotic recombination. Phenotypes of interest may involve 
particular cell types, which differentiate through epigen-
etic processes that are not assessed in GWAS. Over 90% 
of genetic variants involve non-coding, regulatory elements, 
which may obfuscate their role in PGS (Cano-Gamez and 
Trynka 2020). Even though it is widely accepted that phe-
notypes frequently result from multiple loci that may them-
selves contain several genes (i.e., gene-gene interactions, 
or epistasis), PGS are not built from explanatory models to 
account for these relationships.

Second, purported genetic associations may be spurious, 
particularly for complex social and behavioral phenotypes. 
Most complex traits do not exhibit genetically determin-
istic patterns and instead vary considerably depending on 
environmental contexts, which are often not adequately 
measured or controlled in GWAS studies on which PGS are 
based (Martin et al. 2019b). This is particularly problematic 
when considering the lack of underlying socio-ecological 
diversity in most GWAS studies. For instance, in the latest 
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and Natarajan 2020; Klarin and Natarajan 2022). However, 
to date, most PGS have limited clinical utility. The ability of 
genomic scores to model disease risk is minimal, and requires 
consideration of other biomarker assessments and individual 
and environmental factors (Moorthie et al. 2022). Further, 
because many clinicians are not appropriately trained in high-
throughput genomic analyses, healthcare providers are not 
equipped to interpret PGS in routine evaluations. If PGS are 
ultimately used in clinical settings, they have the potential to 
exacerbate health disparities given how they consistently per-
form vastly better in European populations relative to all other 
groups, unlike most other clinical biomarkers or diagnostic 
tools (Martin et al. 2019a), and are more accessible to wealthier 
populations.

Suggestions for Future Research

Given the high enthusiasm and likely continued use of PGS 
for behavioral genetic traits, we provide a few suggestions for 
researchers to avoid these common pitfalls. First and foremost, 
we encourage thoughtful, theory-driven hypothesis testing and 
advise researchers to exercise extreme caution when determin-
ing PGS for traits that have predominantly environmental driv-
ers and thereby high risk for misinterpretation and unintended 
consequences. For instance, though data availability may make 
it possible to determine PGS for outcomes such as unemploy-
ment and receiving supplemental nutritional or economic 
assistance, these are prone to ableist and racist readings and we 
believe the significant risks of calculating PGS in these cases 
outweighs any potential benefit. Second, as we have explained 
elsewhere (Cerdeña et al. 2022a, b), we encourage increased 
attention to and measurement of structural environmental fac-
tors that impact the development of social and behavioral traits. 
Third, when PGS are used, we suggest researchers ensure they 
communicate within the text of their manuscripts the caveats 
and limitations of their PGS score (not just in supplemental 
documents) to avoid misinterpretations. This includes specify-
ing clearly to which populations these scores should and should 
not be applied, particularly if the samples used to derive them 
are not globally representative. Researchers should also ensure 
they clearly communicate the lack of evidence for causal rela-
tionships with genetic markers identified to ensure the scores 
are not prematurely used clinically or ever used for selecting 
embryos, or other eugenic uses. Finally, we recommend that 
PGS be validated in independent datasets, tested against vali-
dated biomarkers, and shown to be predictive of disease or dis-
ease progression before they are used clinically.

We believe PGS can be used responsibly for certain pur-
poses. Assuming improvements are made in diversity of popu-
lations used to develop the scores, and that accurate scores can 
be developed with direct causal relevance to disease outcomes, 
we see potential value in PGS for revealing genetic variants 

target those most at risk based on the PGS score, they may 
fail if they do not account for the effects of an adverse child 
environment. In the end, child environments are likely more 
important than the genetic score in determining educational 
success, and do not require an expensive GWAS to measure.

Social and Ethical Considerations

Perhaps most concerningly, PGS perpetrate ethical and 
social harms. Interpretations of PGS are often overhyped or 
misunderstood, promoting eugenicist beliefs. For instance, 
a 2022 study that tested associations between 33 PGS and 
fertility among 409,629 British participants of European 
descent across two generations found that scores predict-
ing higher earnings, education, and health also predicted 
lower fertility (Hugh-Jones and Abdellaoui 2022), which 
very closely matched the language of late 19th-century 
British eugenicists. The authors applied a natural selec-
tion argument to these findings without presenting empiri-
cal evidence that the many genes involved in these scores 
exhibited selective pressures. These findings translated into 
a headline in The Telegraph suggesting, “Britons are evolv-
ing to be poorer and less well-educated,” demonstrating 
how reverse application of evolutionary theory to findings 
and oversimplified results can advance misunderstanding 
among lay audiences (Knapton 2022). PGS can also harden 
notions of racial essentialism, or the false belief in inherent 
(i.e., genetic) differences between people socially and politi-
cally organized into different racial groups. White suprema-
cists have deployed PGS to make claims about the genetic 
superiority of White Europeans with respect to intelligence, 
brain volume, and educational potential on online forums 
(Stormfront.org 2023). Sociologist of science Aaron Panof-
sky identified especially problematic dialogue around PGS 
in the Pseudoscience journal group OpenPsych, which fea-
tures contributing authors without professional credentials 
with eugenicist bents, including claims that PGS among 
Jewish people conferred advantages in cognitive ability and 
educational achievement (Panofsky et al. 2021). Beyond the 
potential misuse of PGS data for eugenicist rhetoric, PGS 
are currently being used in embryo selection, according to 
recent reports (Turley et al. 2021). This is an exceedingly 
dangerous trend, given the inherent problems with racial/
environmental bias in PGS training sets discussed above, in 
addition to the risk that PGS may be capturing unmeasured 
confounders, rather than the outcomes of interest. We urge 
regulation and oversight to prevent PGS from being used in 
this harmful eugenics context.

We acknowledge that some PGS may be valuable for 
informing clinical interventions for the cumulative impact of 
variants that together confer large deleterious effects in health, 
as with certain determinants of cardiovascular disease (Aragam 
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and pathways of interest for diseases that can be validated in 
functional studies. For example, the American Heart Associ-
ation has offered provisional guidance on the use of PGS in 
clinical practice, suggesting incremental predictive capability 
only for atrial fibrillation in individuals requiring close sur-
veillance (O’Sullivan et al. 2022). PGS may also be valuable 
for identifying relevant variants to test in studies of gene-by-
environment interactions. Clinically, they could have value in 
the behavioral realm in early screening for psychiatric diseases 
risks such as schizophrenia, for which PGS have one of the 
highest predictive powers relative to a range of diverse diseases 
(So and Sham 2017), in concert with repeated symptomatic 
screening and comprehensive family history data.

Conclusion

In the realm of behavioral and social traits that are surely 
determined primarily by social forces, like educational attain-
ment, PGS are of uncertain utility with serious concern about 
whether they could ever be ethically applied. How it would 
benefit anyone to know their educational attainment PGS is 
unclear, and contrary to some claims (e.g. Harden 2021), in our 
view, such scores are more likely to be used to create institu-
tions that harden social stratifications than to soften them. For 
example, if we imagine separate schools for children with dif-
ferent PGS scores, it is more likely that more resources will 
flow to the schools with high educational attainment PGS than 
to the schools of those with low PGS scores. If certain ado-
lescents are considered at high genetic risk for “externalizing 
behaviors”—including people of “African ancestry”—how 
soon will it be before these children are cast apart from peers 
and even more harmfully stereotyped? Given all of these inher-
ent methodological, theoretical, and ethical concerns, we urge 
extreme caution in use of polygenic scores, particularly for 
social/behavioral outcomes fraught for misinterpretation and 
at risk of stigmatizing effects. In sum, if these scores are sim-
ply predictive but not necessarily etiologically relevant, often 
fail to replicate, and can be less predictive than simply ask-
ing a patient to report lifestyle or behavioral factors, we ques-
tion if the value gained by these genetic scores is greater than 
the potential cost, both financially and in risk of misuse and 
misinterpretation.
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