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This dissertation introduces a physically-informed, abstract synthesis method that applies

loopback frequency modulation (FM) to real-time parametric synthesis of percussive sounds.

Loopback FM is a variant of FM whereby the output “loops back” to modulate its frequency by

an amount determined by a feedback coefficient which, when made time-varying, results in pitch

glides. Here, loopback FM is used to parametrically synthesize this effect in struck percussion

instruments, known to exhibit this characteristic due to nonlinearities in modal coupling. Inspired

by the sonic potential of physics-based nonlinear percussion synthesis models, the loopback

FM synthesis method uses an abstract synthesis approach in order to create a wide variety of

percussive sounds in real-time. A linear, modal synthesis percussion model is modified to use
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loopback FM oscillators, which allows the model to create unique, eclectic, and experimental

sounding percussive hits in real-time. Musically intuitive parameters are emphasized resulting in

a usable percussion sound synthesis method.
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Chapter 1

Introduction

1.1 Introduction

This work documents my journey to create a real-time percussion synthesis method that

is capable of producing a wide variety of sounds with musically intuitive controls. As a beat-

based music creator, my dissatisfaction with available tools and my interest in studying synthesis

systems brought me to study many different types of percussion synthesis models and to figure

out how to incorporate the parts of those sounds that I enjoy into my own percussion synthesis

method. This document situates my percussion synthesis technique, largely based on the work

described in [31], in the context of the current state of percussion synthesis methods, and how

my focus shifted from a physical modeling-based synthesis algorithm to an abstract synthesis

domain. Synthesis examples and applications are shown following an explanation of the novel

percussion synthesis method.
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1.2 Research Goals and Objectives

As a music producer, much of the time, I tend to work with drum samples. In my music, I

like to use slightly different versions of the same percussion sample to break up the monotony. I

frequently turn to modify the volume and pitch or filtering the sound through some audio effect.

The issue with drum samples is that time-warping, pitch shifting, and adding audio effects can

change the sound in undesirable ways. Sometimes these procedures create artifacts, and other

times, the essence of the sound is lost. Through this process, I started to feel unsatisfied because,

with samples, I simply do not have enough control of the sound.

I began synthesizing drums using additive and frequency modulation (FM) synthesis

instruments but found it difficult to know which oscillator frequencies to use and how to modify

the parameters to create the sound that I would like. These sounds were also a bit too artificial-

sounding for my style of music. Physical modeling-based percussive synthesizers, like Ableton’s

Collision and Applied Acoustic System’s Chromaphone, create high-quality percussive sounds.

My issue with these instruments is that, although some people may prefer physical measurement-

based parameters, such as mallet hardness and hit position, I want to control parameters that

directly describe changes to the sound rather than physical measurements. These parameters

might be described with words such as brightness, overall decay, sounding frequency, etc.

When I studied percussion synthesis models in the sound synthesis literature, I found that

with the exception of the impact synthesizer presented in [4], most percussion models focus on

accurately synthesizing the sound of a specific plate or membrane rather than synthesizing a wide

variety of percussive sounds. Instead of striving for realistic simulation, as previous research

has done, I am interested in assembling a percussion synthesizer that creates a variety of novel

sounds. One of the sample libraries that strongly motivated my idea to work on a percussion

sound synthesizer is Soundiron’s Antidrum collection that features eclectic and experimental

percussive samples including metallic hits, zips, and noisy, machine-like sounds. It is a goal of
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this research to create those types of unique percussive timbres.

The work presented in this document is inspired by the desire to have a percussion

synthesizer that can create a wide variety of sounds with intuitive musical parameters. The sound

palette of this synthesizer is inspired by the dynamic and nonlinear phenomena in percussion

instruments, which give rise to eclectic and experimental percussive sounds. To summarize, I

would like the percussion synthesis method to

1. have the ability to synthesize a variety of percussive sounds including those that sound

unique and experimental

2. give the user parametric control over musical dimensions including note duration, sounding

frequency, and timbre

3. synthesize sounds in real-time.

In the next section, we discuss the behaviors and sound effects observed in nonlinear

percussion instruments. I am interested in nonlinear percussion instruments because complex

effects result when such instruments are hit with a strong excitation. When a theoretically

linear instrument is struck strongly, the sound that emerges is simply a louder version of the

same instrument struck softly. However, when a nonlinear instrument is strongly hit, the sound

that emerges is louder but also includes extra spectral components and pitch glides that are

not usually present in the softly hit version. Because a single nonlinear plate, membrane, or

instrument can express such a wide array of sonic timbres based on input excitation amplitude,

a study of nonlinear percussive instruments can point us towards ideas for how to create a

variety of percussive sounds. Following the summary of nonlinear effects observed in percussion

instruments, we briefly review various percussion synthesis models and discuss parametric control,

real-time synthesis capabilities, and whether it is possible to create a diverse set of sounds with

each model.
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1.3 Nonlinear Percussion Analysis

With linear systems, the only difference between striking an instrument softly or strongly

is the amplitude of the frequency components. This is not common in real physical systems,

which exhibit amplitude-dependent nonlinearities. For example, when a Chinese opera gong is hit

lightly, it generates a sinusoidal-like tone, but when the gong is struck very strongly, pitch glides

can be perceived [24]. The following section discusses the amplitude-dependent nonlinearities

that are most frequently mentioned in percussion analysis research: pitch glides, the cascade

of low to high frequency components, and chaotic behavior (wave turbulence). Some of these

nonlinear effects have been implemented in models described in Section 1.4 and Chapter 2.

1.3.1 Pitch Glides

In some gongs, like those of the Chinese opera, and membrane-based instruments, a

pronounced pitch glide can be observed where the frequency either increases or decreases over

time when the instrument is struck with a large enough excitation. The pitch glide behavior of

gongs is explored in [50] where it is explained that the geometry of the gong greatly influences

the type of pitch glide. Flat plates have an increasing pitch glide, conical and spherical shells

have a decreasing pitch glide, and curved plates can produce increasing or decreasing pitch glides

depending on their shape. The frequency can change by as much as 20%.

Pitch glides also occur in membrane-based instruments due to tension modulation. In

[23], a frequency analysis of bass drum recordings was performed. When the bass drum is struck

harder, the starting frequency increases and then drops over time as amplitude decreases, creating

a decreasing pitch glide. It was reported that the pitch glide rates did not change due to hit position

or strength. The decrease in pitch glide may be a prominent feature of bass drums, and something

that listeners have grown to expect, as it is discussed in Werner’s circuit analysis and simulation

of the popular Roland TR-808 drum machine bass synthesizer as a “pitch sigh” [62]. Another
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membrane-based instrument that experiences a pitch glide due to tension modulation is the tom

tom. In [58], the researchers observe that at low amplitude strikes, the frequency components

of the tom tom only decrease in amplitude. At moderate and high velocity hits, the frequency

components begin at a higher frequency and amplitude and then decrease in both dimensions over

time.

1.3.2 Low Frequency to High Frequency Energy Cascade

One of the most prominent nonlinearities observed in both cymbals and gongs is that when

they are excited with a high amplitude, low frequency energy is converted into high frequency

energy shortly after the cymbal is struck [49, 25, 50]. About a second after a cymbal is hit, there

is a characteristic “shimmer” that can be observed in the 3 to 5 kHz range [49]. Without the

“shimmer” nonlinearity, the sound is more reminiscent of a bell than a cymbal. For gongs, the

transfer of energy from low frequencies to high frequencies usually occurs at a much slower scale

than for cymbals [50]. This nonlinear phenomenon can be seen in Figure 2.1, which displays

spectrograms of modeled plates under linear and nonlinear conditions.

1.3.3 Chaotic Behavior

Another nonlinear effect in percussion instruments is that when a cymbal is excited with

a high amplitude sinusoid, chaotic behavior can be observed. For a low amplitude sinusoidal

excitation, a few harmonics are generated. Then, as the amplitude of the excitation increases,

subharmonics begin to appear. As the amplitude increases further, chaotic behavior is observed

where the harmonics that are generated can be double, triple, or more times the frequency of

the driving sinusoid [49, 50, 24]. Figure 1.1 displays a plot of harmonic generation at different

amplitude levels. It has been noted that cymbals display chaotic behavior even at normal operating

amplitudes [25].
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Figure 1.1: Phase plots of velocity vs. displacement from [49]. Right: phase plots of velocity
vs. displacement. Left: the associated velocity spectra for a cymbal driven by a sinusoid at
320 Hz. (a) harmonics generated from a low amplitude excitation; (b) subharmonics generated
from a medium amplitude excitation; (c) chaotic behavior from a large amplitude excitation.

1.4 Overview of Percussion Synthesis Methods

Synthesis of percussion instruments and the parts of which they are composed, such

as membranes and plates, have been realized using several different techniques including FM

Synthesis [15], modal synthesis (MS) [18], the Functional Transformation Method (FTM) [5],

finite difference methods (FDM) [9], and the digital waveguide mesh (DWM) [20]. In this section,

we examine physics-based methods for percussion synthesis and evaluate these models based

on the three desired characteristics for my percussion synthesis system. We look at the types of

sounds that are possible using each model, the musical parameters available from each model,

and the real-time synthesis capabilities.

1.4.1 FM Synthesis

A single FM oscillator, in which the frequency of an oscillator is affected by another

sinusoid, is capable of creating a percussive sound, as discussed in Chowning’s paper on FM

synthesis [15]. In this work, Chowning describes a number of sounds that can be synthesized with

FM and introduces FM parameters to produce bell-like percussive sounds and wooden drums. He

mentions that the amplitude envelope used contributes greatly to the difference in timbre for the
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percussive sounds. Although FM synthesis is suitable for real-time, synthesis, the modulating

frequency and index parameters are not intuitive and it is difficult to tune a sound to one’s liking.

FM synthesis is used to create extra spectral information to emulate the sounds of nonlinear

percussion instruments in [6] and [4], the latter of which will be further explained in Chapter 2.

FM-like effects are also used in the percussion synthesis system presented in this dissertation to

create sounds similar to those made by nonlinear percussion instruments.

1.4.2 Digital Waveguide Mesh (DWM)

The 2D DWM is a physics-based model that simulates wave propagation in two dimen-

sions [20]. The basic 2D DWM is rectilinear in shape, although other topologies (e.g. triangular,

hexagonal) have been explored. Triangular DWMs have been used extensively for their computa-

tional efficiency and accuracy [26, 27, 28, 41].

One of the issues with DWMs is dispersion. In an ideal membrane, the velocity of the

propagating waves is equal for all spatial frequencies, but in a sampled DWM, dispersion error

exists because the velocity of the waves is dependent on both spatial frequency and direction

of travel. The resonant modes of a DWM are different from the expected modes of an ideal

membrane. Many DWM methods make topology decisions and calculations with dispersion error

in mind [26, 27, 28, 41].

Synthesizing a Variety of Sounds with the DWM

The 2D DWM has been used to model plates [20], membranes [20, 26, 27, 28], and even

entire drum instruments [3]. To change the output of the 2D DWM from a membrane to a plate,

one can simply switch the sign of the reflection at the boundaries of the 2D DWM [20]. Though

the DWM is capable of creating many different types of sounds, synthesizing a wide variety

of percussive timbres has not been the main focus of the work. Rather, most research seeks to

accurately simulate a single circular membrane or plate [26, 27, 28, 41].
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Parametric Control Over Musical Dimensions with the DWM

The decay time of a signal simulated with a DWM depends on the filters at the boundaries.

In [3], IIR lowpass filters are used at the boundaries to model energy loss. In [28], a method is

shared for specifying the decay time of the signal by accounting for a loss at every junction of the

mesh.

In [3], one of the parameters is drum radius, which is related to the sounding frequency.

Perhaps because the output of the 2D DWM, and possibly those of higher dimensions, is inhar-

monic, there has not been much work to specify the sounding frequency of the 2D DWM and

its relationship to mesh size. In a general percussion synthesis instrument, though, being able to

specify the sounding frequency (or closest sounding frequency) is desirable.

A relatively large amount of research has been given to transforming the timbre of the

2D DWM. By using frequency-dependent filters at the boundary of the DWM, the timbre can be

modified. Van Duyne and Smith use 1st-order allpass filters at the boundaries of a 2D DWM to

retune the modes of a plate model so that the mode frequencies are “stretched.”[21]. The higher

partials are more spread apart than lower partials, as shown in Figure 1.2, modeling a stiff plate

and adding inharmonicity to the timbre. Similarly, [28] implement mode shifting by inserting

filters within the 2D DWM.

Figure 1.2: Magnitude response of a stretched 2D DWM stiff plate from [21]. The mode
stretching changes as the allpass coefficient a0 is changed from 0 to −0.875. The plots have
been scaled to vertically align the fundamental mode.

Striking the 2D DWM at different positions and listening to the output from different
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positions also affect the timbre as the level of different spectral components changes as strike and

listening position are modified. Striking the DWM in the corner excites all the modes [36]. Any

input excitation, such as that from the hammer model in [28], can be moved around to strike the

DWM in various positions.

Timbre can also be changed by modeling different materials for the excitation model, as

was done for the hammer model in [28], or extending the DWM with material parameters such as

density and membrane tension as described in [2].

The DWM and Real-time Synthesis

The 2D DWM is an extension of the 1D digital waveguide, which models a traveling

wave efficiently as a digital delay line [33]. When extended to two dimensions though, as done

so for percussive instruments here, the digital waveguide loses the efficiency gains from the

one-dimensional model and is unable to run in real-time [32]. When DWMs are small, they can

be run in real-time, as shown in [46], however, as they grow larger, computational times increase

[53]. Explorations to represent the digital waveguide mesh as a transfer function, as discussed

in [53], and expressing the transfer function as a set of 2nd-order filters so that it can be run in

real-time is explained in Chapter 2.

1.4.3 Finite Difference Methods (FDMs)

Finite difference methods (FDMs) are numerical methods that solve partial differential

equations (PDE) which describe a physical system. With finite difference schemes, the derivatives

in PDEs are replaced by forward, backward, and/or center differences, essentially discretizing

the time and space dimensions. Finite difference models for percussion synthesis commonly use

PDEs for plates and membranes, which include the von Kárman and Berger equations. Each PDE

typically describes the transverse displacement of a point on a membrane or plate. The transverse

displacement over time for a single point is the signal that is used for audio synthesis.
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Synthesizing a Variety of Sounds with FDMs

Linear FDMs have been used to synthesis rectangular plates. An undamped numerical

simulation of a linear plate based on the Kirchhoff model is presented in [52]. This model was

then extended to a damped plate model in [14, 42]. Another FDM based on the Kirchhoff plate

model was used in [12] to synthesize the sound of a vibrating linear plate. In this work, it is noted

that the relationship between the stiffness parameter and a tension parameter determines whether

a plate or membrane is simulated.

A nonlinear von Kárman plate was modeled in [7] and extended in [9] and [11]. This

method is capable of creating the sounds of a linear and nonlinear plate and greatly inspired my

research with percussion synthesis. Further details about this model are covered in Chapter 2. A

more realistic model of a cymbal or gong based on a nonlinear curved shell model is presented in

[10]. Nonlinear shell models are capable of creating pitch glides and crashes.

Parametric Control Over Musical Dimensions with FDMs

Decay time parameters are seen in a few of the FDMs. The linear plate model in [12]

includes two damping parameters to allow for decay control. An even more musically intuitive

parameter is the decay mechanism in [10], which is presented as a T60 parameter for each

frequency component, specifying the time at which the frequency component should decrease

by 60 dB. The mechanism allows for increased damping of high frequencies. This frequency-

dependent decay is crucial for nonlinear effects as the pitch glide trajectory is influenced by the

damping, and the cascade of high frequency energy that occurs in crashes must be attenuated in a

natural way.

The FDM parameters that affect timbre are typically physical measurements such as plate

size, thickness, and Poisson’s ratio [14, 42, 12, 10]. Many of these physical measurements have

to do with the material of the plate and determine the output timbre. In [14, 42], a number of

materials were created by changing the physical parameters of this model: aluminum, glass,

10



carbon, carbon-epoxy, and wood. The shell model in [10] includes a parameter that accounts for

curvature, which modifies the timbre by adding more modes to the mid-range frequency spectrum,

resulting in a more dissonant sound that is characteristic of a cymbal.

FDMs and Real-time Synthesis

Because plates and membranes are 2D systems, and the transverse displacement of each

point depends on the displacement of every other point on the 2D system, large models can

become computationally complex. Furthermore, for accurate simulations, the time and step sizes

must be small, so increases in accuracy equate to increased computational expenses. Depending

on the model, linear models, such as the one presented in [12], may have computational costs

similar to those of modal synthesis and operate in real-time as described in Section 1.4.4. Incor-

porating nonlinear and computationally heavy calculations can further increase the complexity

and computational expense of the entire system [7, 9, 10, 11].

1.4.4 Modal Synthesis (MS)

Modal Synthesis (MS) is a physical modeling technique that simulates the sound of

an acoustic object using its acoustic modes or vibrational patterns. The sinusoidal motion of

an acoustic object’s modes gives rise to the resonant frequencies of the object. A resonating

object’s vibrational motions can be decomposed into a set of modes–each oscillating at a complex

frequency. In traditional MS, each mode is characterized by a frequency, damping factor, and

modal shape [1].

With modal synthesis, an input force signal is applied to a bank of damped harmonic

oscillators. The oscillator outputs are added up together to form the sounding output. Modal

information can be recorded from objects, analytically derived from theoretical equations or

extracted from recorded audio signals.
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Synthesizing a Variety of Sounds with MS

MS is useful for synthesizing a variety of sounds because unlike other physical-modeling

methods, there are no underlying functions that need to be solved. In order to synthesize a

different type of sound, all that needs to change are the modal frequencies, decays, and initial

amplitudes. In [17], the MS system can create the sounds of bars, membranes, and plates. The

work in [19] can synthesize struck wood and metallic timbres. In [61], the sounds of a rigid bar,

rectangular membrane, circular membrane, circular plate, and L shaped membrane are simulated.

The models used in [17] and [19] as well as available synthesis parameters are elaborated upon in

Chapter 2.

Some MS systems are linear, but model nonlinearities through interactions or coupled

modes. Modalys [22], previously known as MOSAIC [45], is a modal synthesis environment

with built-in functions that can analytically compute modal data for simple objects. Methods for

simulating the vibrations of rectangular and circular membranes and plates are included. Though

the resonating structures themselves are linear, the structures may be connected in nonlinear

ways, including interactions such as bowing and plucking. [13] present an efficient method for

synthesizing the sound of struck thin shells experiencing small, nonlinear vibrations. The method

is capable of producing “crashing” and “rumbling” sounds for objects such as trash cans, water

bottles, recycling bins, and bell-like cymbals. This method uses a linear modal model where

the modes are nonlinearly coupled. Similarly, the work in [18] uses a modal approach with

nonlinearly coupled oscillators to synthesize vibrations in a plate and apply this to the sound

synthesis of gongs and cymbals. The aim of this research was to resynthesize pitch glides and the

low to high frequency energy cascade that contributes to the bright and shimmery timbre that is

associated with gongs and cymbals.
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Parametric Control Over Musical Dimensions with MS

Most MS models use parameters that control physical measurements as opposed to

musical dimensions. For example, the parameters such as impact location, impact force, and

object material are used in the MS system from [61]. The nonlinear cymbal and gong synthesis

system from [18] uses physical parameters such as plate size, plate height, material density,

input/output location, and input force pressure. The Modalys system also uses parameters for

physical measurements such as radius, density, and strike position for a circular plate [22]. These

physical measurements tend to affect many musical dimensions at the same time. An exception

to these physical measurement parameters is the Coupled Mode Synthesis model introduced in

[19], in which a single parameter affects the decay of the individual components and is capable of

changing the timbre from wood to metal.

MS and Real-time Synthesis

MS systems are typically capable of real-time synthesis when the number of modes is

small. Many of the models that have been described in this section are computable in real-time

including [17] and [19]. Modalys [22] was later adapted to run in real-time [37].

For systems with a large number of modes, stored samples may be used instead of run-

time synthesis as described in [61]. For the complex, struck thin shell model in [13], multiple

optimizations along with large memory storage capabilities are necessary in order for the system

to run in real-time. The sound simulations of the nonlinear cymbal and gong presented in [18],

although complex, compelling, and rich in timbre, do not run in real-time.

1.4.5 Functional Transformation Method (FTM)

The Functional Transformation Method (FTM) is related to modal techniques in that it

describes a linear system as a set of modes. Beginning with a partial differential equation (PDE),

13



initial conditions, and boundary conditions, the FTM uses the Laplace transform to remove

the temporal partial derivative and the Sturm-Liouville transform to remove the spatial partial

derivative. This results in a multidimensional transfer function which can be implemented with

digital filters. Because this technique does not discretize the spatial dimension, it results in

accurate modal frequencies. One of the issues with the FTM is that it is mostly used on simple

shapes because irregular and complex shapes cause the mathematics to become unwieldy [59].

Synthesizing a Variety of Sounds with the FTM

For linear percussion instruments, the FTM has been used to simulate a rectangular

reverberation plate and a circular, kettledrum membrane [59]. A nonlinear, rectangular membrane,

capable of simulating membrane tension modulation as a pitch glide, is presented in [48]. This

nonlinear membrane is based on a 2D extension of a nonlinear, tension-modulated string model.

A nonlinear, circular membrane that is also capable of pitch glides is presented in [5]. This model

is reviewed in detail in Chapter 2. While the FTM is capable of creating many different types of

percussive sounds, a single model is only able to create variations of its own sound, depending on

the physical parameters available for each model. Changing plate or membrane shapes would

require changing (and solving) the underlying PDE.

Parametric Control Over Musical Dimensions with the FTM

Because FTM models are directly derived from physical equations, parameters in FTM

models are usually physical measurements such as plate or membrane thickness, radius, and

density. These physical measurements affect multiple dimensions at the same time. For example,

timbre and decay could both be affected by a plate density parameter. An exception to this is

shown in [59], where a pitch frequency value can be modified for a plate and membrane model.
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The FTM and Real-time Synthesis

Though most linear models are capable of real-time synthesis, the linear plate and circular

membrane FTM models in [59] were unsuitable for real-time use for the full set of modes at the

time of publication. It is possible that if those models were recreated today, the models could be

run in real-time.

Although many nonlinear percussion synthesis models are unsuitable for real-time use

due to computational complexity and stability issues, an exception to this rule is presented in [48].

By including the nonlinear tension modulation as a force input to the system and approximating

computationally heavy calculations, the nonlinear membrane model is able to simulate up to

1000 modes in real-time at a sampling rate of 44.1 kHz. The nonlinear, circular membrane model

from [5] requires a computationally heavy nonlinear calculation that prevents the model from

synthesizing sounds in real-time. In [44], that calculation is replaced by an approximation that

allows for efficient sound synthesis.

1.5 Dissertation Organization

In Chapter 2, we discuss the most relevant percussion synthesis systems and the motivation

for moving from the physical modeling domain to an abstract synthesis domain. Chapter 3

introduces loopback FM, a nonlinear FM-based oscillator in which the output “loops back” to

modulate its own frequency. In Chapter 4, loopback FM is applied to percussion synthesis

to create sounds similar to the ones exhibited by nonlinear percussive systems. Synthesis

examples and a step-by-step guide of how to synthesize a desired percussive sound are covered in

Chapter 5. Chapter 6 presents an ongoing software implementation, musical implications, and

future directions for the loopback FM percussion synthesis method.
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Chapter 2

Percussion Synthesis Models

2.1 Introduction

In this chapter, the most relevant percussion synthesis models are covered in detail. We

first look at three MS models that show how MS is capable of creating a wide variety of struck

sounds in real-time. Then we review two physics-based percussion synthesis systems, [7] and [5],

and discuss how incorporating nonlinearities is computationally expensive in both systems. We

also examine the 2D DWM and its modal representation as a bank of parallel, resonating filters.

This inspired the change in direction from physics-based synthesis to abstract sound synthesis for

a percussion synthesis model.

2.2 Timbre Variety with the Physically Informed Control of

MS (PhISM) System

In [17], Perry Cook introduces his Physically Informed Control of Modal Synthesis

(PhISM) system that is capable of synthesizing the sound of objects with a few decaying resonating

modes. The system is general in that the modes can be retrieved from solving theoretical equations,
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sinusoidal analysis of recorded sound, or any other means. An excitation can be found by inverse

filtering a recording of an impact hit. Different excitations and collections of modal frequencies

can be gathered to create a wide variety of sounds with this method.

With PhISM, one can develop simple rules to create a strike position parameter that

modifies the level of different modes, thereby changing the timbre for each strike. Additionally,

the user of the system is able to control performance style, which takes into account previous

notes plated, previous strike position, and performer experience when making parametric choices

for the current note.

2.3 Decay Time and Timbre Variety with Coupled Mode Syn-

thesis

Coupled Mode Synthesis, as presented in [19] is capable of creating percussive sounds that

are similar to those of struck wood and metal. Coupled Mode Synthesis reformulates traditional

MS to allow for simple decay control and mode coupling effects [19]. In traditional MS, each

mode is represented by a decaying, 2nd-order resonating filter, and the output of these filters are

summed and added for the synthesis output. These filters are realized according to

Hms,i(z) =
1

1−2ri cos(2π fr,iT )z−1 + r2
i z−2

, (2.1)

where i indicates the mode number/index, fr,i is the frequency of mode i, ri is the decay associated

with mode i, T is the sampling period, and z is a complex number in the form z = e jω. In Coupled

Mode Synthesis, these filters are modified to

Hcms,i(z) =
z−1HAP1(z)

1+ z−1HAP1(z)
(2.2)

17



where

HAP1(z) =
ai + z−1

1+aiz−1 (2.3)

which is a 1st-order allpass filter with ai = −cos(2π fr,iT ). This is a non-decaying resonating

filter. To couple these resonators, all Hcms(z) resonators are arranged in a parallel filter bank, the

outputs are summed together, the sum is filtered by a coupling filter, and finally fed back to sum

with the resonator inputs. The coupling filter controls the decay and setting it to a lowpass filter

creates natural sounding decays. This model is capable of creating percussive sounds that are

similar to those of struck wood and metal.

2.4 A MS Impact Synthesizer

Aramaki et al. present a real-time synthesizer that emulates the sound of struck objects

made of different materials in [4]. Using a human participant listening experiment, the researchers

found that normalized decay time distinguishes wood from metal and glass sounds and that rough-

ness distinguishes between metal and glass timbres. Additive synthesis was used to implement

the synthesizer and modeled as

s(t) = Θ(t)
M

∑
m=1

Am sin(ωmt +Φm)e−αmt (2.4)

where Θ(t) is the Heaviside function and m specifies the sinusoidal component out of a total of M

components. For each mth component, Am is the amplitude, ωm is the frequency, Φm is the phase,

and αm is the damping coefficient.

For damping, a frequency-dependent “damping law” of the form

α(ω) = e(αG+αRω) (2.5)
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was developed where ω represents the frequency, αG is a global damping coefficient, and αR is

a relative damping coefficient, tuned for a material such as metal, glass or wood. The damping

coefficient per mode in (2.4) is set according to αm = α(ωm). αG gives the user control over the

global decay time while αR gives control over the frequency-dependent decay based on material.

The model allows for spectral dilation, a timbre-based parameter that allows one to stretch

(or contract) the distance between spectral components using a parameter for global SG or relative

SR dilation. The spectral dilation operation moves ωm in (2.4) to another frequency location ω̄m.

Spectral dilation was used to transition from metal to glass as that was found to decrease the

roughness in the synthesized signal.

Another timbral control introduces more frequency components into the signal using

amplitude and frequency modulation. This produces more perceptual roughness and is perceived

as a transition from glass to metal. The researchers found that setting the modulation frequencies

to the same value for each component sounded unnatural, so they designed the modulation

frequency to be represented as a percent of the critical bandwidth associated with each spectral

component. This percentage of critical bandwidth is a user-friendly parameter that could be used

to greatly change the timbre of the resulting synthesis. The resulting synthesizer is a sum of

frequency- (or amplitude-) modulated oscillators. While this is called “additive synthesis” in the

text, here, we refer to it as MS because the oscillators are not pure sinusoids, as one would expect

for additive synthesis.

The strategy of adding together the output of FM oscillators, as shown with the amplitude

and frequency modulation in [4] is a technique used in the current work. In [6], frequency-

and amplitude- modulated oscillators were summer to synthesize the sound of a Javanese gong.

Similarly, in [38], the pitch glide capabilities of a Duffing oscillator are explored for application

to the sound synthesis of a Chinese opera gong. This method is attractive for the purposes of this

research because it is capable of creating a variety of percussive sounds, including those that are

similar to nonlinear percussion instruments, and runs in real-time.
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2.5 A FDM for the Sound Synthesis of Nonlinear Plates

In [7], Bilbao uses a finite difference scheme to synthesize the sound of a nonlinear plate

based on the moderately nonlinear von Kárman thin plate equation

ẅ =−κ
2
∇

2
∇

2w+ c2
∇

2w−2σẇ+b1∇
2ẇ+

1
ρ

L[F,w] (2.6)

where w(x,y, t) is the displacement at position (x,y) and time t, ∇2 is the Laplacian, ∇2∇2 is the

biharmonic operator, κ is the stiffness, ρ is Poisson’s ratio, c is a parameter related to tension,

and F is related to the Airy stress function. σ controls the overall decay rate of the signal and

b1 defines the decay rate by allowing the higher frequencies to die out more quickly. L[·, ·] is a

nonlinear operator. (2.6) without the 1
ρ

L[F,w] term on the left, is a linear Kirchhoff plate model

with damping, similar to the plate models used in [52, 14, 42, 12] and described in Chapter 1.

A grid function wn
i, j is defined to approximate the continuous displacement variable

w(x,y, t) at spatial coordinates x = i∆ and y = i∆ at time step n for grid spacing ∆. By using

centered and backward differences, Bilbao develops a nonlinear finite difference scheme that

updates wi, j for the next time step n+1 as a function of previous values of wi, j and L[F,w]n:

wn+1
i, j =η ∑

|k|+|l|≤2
β|k|,|l|w

n
i+k, j+l (2.7)

+η ∑
|k|+|l|≤1

γ|k|,|l|w
n−1
i+k, j+l +

T 2

ρ
L[F,w]n.

The values for β and γ are given by the von Kárman equation parameters and the grid spacing ∆,

and |k| and |l| vary between 0 and 2. The final term in (2.7), T 2

ρ
L[F,w]n, is the nonlinear portion.

Calculating Fb
i, j requires a matrix inversion, which is the most computationally heavy calculation

in the model. Without the nonlinear calculating, the linear part of the model is explicit and can be

calculated efficiently.

A comparison of the audio output from a linear and nonlinear model reveals the reason one

20



would like to include nonlinear calculations even though they may be computationally expensive.

One of the biggest differences between a linear plate and a nonlinear plate is the generation of

high frequency components in response to an excitation. The spectral results of Bilbao’s synthesis

can be observed in Figure 2.1. This figure compares the spectral response for a linear plate, a

nonlinear plate with a low amplitude excitation, and a nonlinear plate with a higher amplitude

excitation. The generation of high frequency components can be clearly seen in the bottom graph.

Note that the linear plate is not shown under low and high amplitude excitations as the spectral

response would be similar; there would not be a generation of high frequency components no

matter how large the amplitude of the excitation.

Figure 2.1: Linear and nonlinear thin plate synthesis spectrograms from [7]. Top: linear
conditions; middle: nonlinear plate excited with a low amplitude; bottom: nonlinear plate
excited with a high amplitude.

Perceptually, the linear model produces a sound similar to a lightly struck bell, while the

nonlinear model produces a sound more like a gong with a slight crash and pitch glide. Though

nonlinearities may involve more computation, the sonic results are interesting and add a dynamic
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dimension to the sound. An extension of this research is presented in [9], which focuses on using

an energy-conservation method to preserve numerical stability in the nonlinear plate model. The

inclusion of longitudinal inertia effects in the plate is covered in [11].

2.6 A Circular, Tension-modulated Nonlinear Membrane us-

ing the FTM

The sound synthesis of a circular, tension-modulated nonlinear membrane using the FTM

is presented in [5]. The PDE used to model a vibrating circular membrane is

D∇
4z(r,ϕ, t)+σ

∂2z(r,ϕ, t)
∂t2 −T0∇

2z(r,ϕ, t)+d1
∂z(r,ϕ, t)

∂t
+d3

∂∇2z(r,ϕ, t)
∂t

= f (ext)(r,ϕ, t).

(2.8)

z(r,ϕ, t) denotes the transverse displacement of polar coordinate point (r,ϕ) at time t. T0 is

the surface tension of the membrane, σ is the surface density, d1 is a frequency-independent

dissipation term, d3 is a frequency-dependent dissipation term, ∇2 is the Laplacian operator, ∇4 is

the biharmonic operator, and f (ext)(r,ϕ, t) is the driving force density that models a hammer hit.

In order to simulate the pitch glides that occur due to nonlinear tension modulation, (2.8)

is modified to use the Berger approximation. The Berger model for nonlinear plates is a simplified

version of the nonlinear von Kárman model used in [7, 9, 11]. The Berger model can create pitch

glides for membranes but is unable to capture the highly nonlinear behaviors of cymbals and

gongs. (2.8) is modified to include a nonlinear tension TNL(z):

D∇
4z+σ

∂2z
∂t2 − [T0 +TNL(z)]∇2z+d1

∂z
∂t

+d3
∂∇2z

∂t
= f (ext) (2.9)

where the spatial and temporal terms have been left out for brevity. The nonlinear tension term
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has the form

TNL(z) =
Eh

2πR2(1−ν2)
·
∫ R

0

∫ 2π

0

[(
∂z
∂r

)2

+
1
r2

(
∂z
∂ϕ

)2
]

dϕdr (2.10)

where h is the height of the membrane, E is Young’s modulus, ν is Poisson’s ratio, and R is

the radius of the circular membrane. The nonlinear tension term is an integral over the state of

the membrane. The double integral can be interpreted as surface area, which means that, in a

way, this Berger model is the 2D extension of a nonlinear tension-modulated string model. The

real-time membrane model in [48] is also an extension of the same nonlinear tension-modulated

string model but rectangular, not circular, in shape.

The nonlinear tension term in (2.9) is moved to the right-hand side of the equation and

grouped with the driving force f (ext)(z). Both f (ext)(z) and TNL(z) are nonlinear and require

feedback from the output of the system. In this view, the system is comprised of a linear membrane

model under constant tension with two driving forces that require feedback from the state of

the membrane, with the nonlinearity captured by the TNL(z) driving force. From this modified

formulation of (2.9), the modal frequencies, decays, and shapes of the membrane are found using

the FTM and implemented as a parallel bank of resonating filters.

The modal filters are second-order resonating filters of the form

Hn,m(s) =
σ−1

s2 +2αn,ms+ω2
n,m

(2.11)

where, for normal mode (n,m), αn,m is a loss factor and ωn,m is the center frequency of the filter.

The values for αn,m and ωn,m can be found using material properties of the membrane. The driving

force f (ext) is used as input for these modal filters. In this state, the membrane model is essentially

a traditional MS model where the sound can be computed using the modal frequencies, decays,

and some type of force input. However, in this example, both f (ext)(z) and TNL(z) are used as

input to the modal filters Hn,m(s) and they require feedback from the output of Hn,m(s), which
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represents the membrane displacement z. An example of the signal output by this model can be

seen in Figure 2.2, where the downward pitch glide can be clearly seen in the first 0.2 seconds of

the signal. Similar to the nonlinear plate FDM described in Section 2.5, the linear portion of this

model can run efficiently and the nonlinear portion is more computationally expensive.

Figure 2.2: Spectrogram showing the synthesized pitch glide of a nonlinear, tension-modulated
membrane from [5]. The membrane was struck with a high velocity excitation, and the pitch
glides can be clearly seen immediately following the initial impact.

In a following paper [44], the nonlinear feedback calculation is replaced with an efficient

approximation that can be calculated with a computational expense similar to that of the linear

membrane model. To arrive at that approximation, we begin with the modal formulation of the

nonlinear tension (2.10):

TNL(z) =
Eh

2πR4(1−ν2) ∑
n,m

µ2
n,mz̄n,m

||Kn,m||22
(2.12)

where µn,m is a zero of a Bessel function of the first kind and relates to Kn,m which are the

spatial eigenfunctions of the circular tension. z̄n,m are the modal amplitudes that are related to the

membrane displacement z(r,ϕ, t) according to

z̄n,m =
∫

r

∫
ϕ

z(r,ϕ, t)Kn,m(r,ϕ)r dr dϕ . (2.13)

The nonlinear tension dependence on z̄n,m for every audio sample greatly slows down the model.
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In [44], an energy-based approximation for TNL(z) is found and takes the form

Tqs(z) = 2
Eh

2πR4(1−ν2)
e−2t/τm,n ∑

n,m

µ2
n,mA2

n,m

||Kn,m||22
. (2.14)

Here, A2
n,m replaces z̄n,m in (2.14) and an exponentially decaying function e−2t/τm,n multiplied

with the signal. A2
n,m is the initial amplitude of the decaying modal filters of the system and

τm,n is the decay of the modes. Both A2
n,m and τm,n can be found using initial conditions, and

Tqs(z) eliminates the need for feedback from the membrane displacement for every audio sample.

The researchers report that, with this approximation, the nonlinear model can be computed with

computational complexity similar to that of the linear model.

2.7 Experiments with using a DWM for Percussion Synthesis

In this section, we review the DWM in detail and then cover research that moved towards

finding an analytical solution for the 2D DWM in order to reduce computational expenses that

arise when moving from a 1D digital waveguide to a multidimensional mesh. Through this

research, it was discovered that moving from a physics-based representation to an abstract one

was more appropriate for my percussion synthesis goals.

2.7.1 DWM for Percussion Synthesis

The basic DWM is composed of bidirectional delay lines interconnected by 4-port scatter-

ing junctions. Figure 2.3 is an image of the basic rectilinear 2D DWM. Each scattering junction,

labeled with S, has 4 input and 4 output ports. The scattering junctions determine the way in

which waves reflect and transmit across the membrane. At the edges of the mesh are reflection

filters that dictate how a wave is reflected at the boundary. To apply an excitation, one selects

a junction and divides the excitation signal among the junction’s input ports. The mesh output
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signal is the velocity (or pressure) at a specific junction and is calculated as a function of the

neighboring junctions’ output ports for each time step.

Figure 2.3: 3x3 2D DWM structure from [20]. Each encircled S indicates a 4-port scattering
junction and the arrows between them are bidirectional delay lines.

With the most basic 2D DWM present in [20], the sounding frequency is related to the

size of the DWM, although not much research has been made to map mesh size to a sounding

frequency in Hz. The input and output junction points affect the timbre of the DWM output

by changing the amplitude levels of the resonant frequencies. Striking the rectangular mesh

along the edges, and especially the corners, excites the most resonant frequencies and creates

the noisiest, harshest sounds. Decay time and timbre are affected by reflection coefficients or

filters at the boundaries of the mesh. Setting all reflection coefficients to −1 creates a perfect,

inverting reflection, simulating a membrane, and setting them to 1 creates a perfect, non-inverting

reflection, simulating a plate. When the reflection coefficients are set to 1 or−1, there is no decay,

and values in between cause the output signal to decay with values closer to 0 creating a quicker

decay. The reflection coefficients can be replaced with frequency-dependent loss filters to create

more natural decays as the sound dies away. The loss filters are typically implemented using

lowpass filters in which higher frequencies decay more quickly.

As noted in Chapter 1, the 2D DWM loses the efficiency gains of the 1D digital waveguide
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and is computationally inefficient. In efforts to build a real-time percussion synthesis instrument,

I, along with my advisor Tamara Smyth and colleague, Ryan Done, set out to find a transfer

function that describes the behavior of the 2D DWM. The goal was an efficient implementation of

the mesh that allowed it to run in real-time. What we found, however, is that the transfer function

that describes the 2D mesh could be decomposed into a sum of resonating filters, which greatly

resembles MS. This sparked the decision to move from physics-based percussion synthesis to an

abstract modeling synthesis system.

2.7.2 Towards a Real-Time 2D DWM

In an effort to create a real-time digital waveguide mesh implementation, a method for

analytically expressing a square, 2D DWM in the frequency domain as a parametric transfer

function is presented in [53]. In this work, the input and output points are the center junction,

and although this creates a fraction of the total number of modes that the square membrane is

capable of creating, it allows us to take advantage of the symmetry and reduces the computational

complexity of the system. Instead of computing the transfer function for the entire DWM, one

only needs to compute for a half quadrant, requiring 1
8 of the computation required for the entire

DWM.

The transfer function expresses the output of the system in terms of its input and has the

following form

H(z) =
Y (z)
X(z)

=
b0 +b1z−1 + · · ·+bMz−M

a0 +a1z−1 + · · ·+aNz−N (2.15)

for input X(z), output Y (z), and filter coefficients bi and ai. By expressing the 2D DWM in this

form, not only are the computation times greatly improved, as shown in [53], but the transfer

function can be broken down into a bank of 1st- or 2nd-order filters connected in either a parallel

or series configuration. When the transfer function is implemented with these lower order filters,

it is easier to control time-varying parameters, such as the reflection coefficients.
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2.7.3 The 2D DWM as a Parallel Bank of 2nd-Order Sections

The 2D DWM transfer function can be decomposed into 2nd order filters. These filters

can be arranged in a series or parallel configuration, and for completeness, we cover both

configurations in this section. A parallel bank of filters is similar to MS and sparked the move

from a physics-based percussion synthesis model to an abstract-based model.

Filters in Series

The numerator and denominator of the filter transform function (2.15) can each be factored

into a product of 1st-order filters. This is shown in (2.16) where qi are the roots of the numerator,

which we call the zeros and pi are poles or the roots of the denominator [35].

H(z) =
(1−q1z−1)(1−q2z−1)+ · · ·+(1−qMz−1)

(1− p1z−1)(1− p2z−1)+ · · ·+(1− pNz−1)
(2.16)

(2.16) can be rearranged as a product of 1st-order sections of the form

Hs,i(z) =
1−qiz−1

1− piz−1 , (2.17)

which would be multiplied together as

H(z) =
N−1

∏
i=0

Hs,i(z) = Hs,0(z)Hs,1(z) · · ·Hs,N(z). (2.18)

If the M and N differ, then the filter section Hs,i(z) would be a one-pole or one-zero filter.

Furthermore, these 1st-order sections could be combined into the commonly used 2nd-order filters,

sometimes called a biquad. These would be multiplied together as shown in (2.18). If the filter

coefficients are real, then the poles appear in complex conjugate pairs, providing a simple way to

combine the 1st-order sections.
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Parallel Bank of Filters

The transfer function of the 2D DWM can also be decomposed into a sum of 1st- or 2nd-

order filters through a partial fraction expansion [35]. (2.15) can be represented as a sum of

one-pole filters

H(z) =
N

∑
i=1

Hp,i(z) =
N

∑
i=1

ri

1− piz−1 (2.19)

where the poles of the transfer function are represented as pi and the residues of each pole are

noted by ri. This equivalence is true if M < N, which is the case for the square 2D DWM

discussed in [35]. The poles can be found by factoring the denominator, A(z) and the residues

can be found using

ri = (1− piz−1)Hp,i(z)|z=pi. (2.20)

If the coefficients for the filter are real, as in the case for the 2D DWM transfer function,

then the one-pole filters appear as complex conjugate pairs where every (r, p) for any one-pole

filter in (2.19) can be paired with a (r̄, p̄). The complex conjugate pairs can be combined into

second-order sections

H ′p,i(z) =
(r+ r̄)− (r p̄− r̄p)z−1

1− (p+ p̄)z−1 + pp̄z−2 . (2.21)

Note that in some cases, like the 3 by 3 mesh example in the next section, there will be a few real

poles which do not have complex conjugates. These can be combined as pairs into their own

2nd-order filters or left as 1st-order filters. This implies that the transfer function that describes

the output of a single point on the 2D DWM can be expressed as a parallel bank of second-order

resonating filters, which is equivalent to a MS representation of the membrane or plate.
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Example

For a square, 3 by 3 mesh, the transfer function, using the method given in [35], is

H(z) =
2z−1 +az−3−a2z−7

1+(1+a)/2z−2− (a+a2)/2z−6−a2z−8 (2.22)

where a is the reflection coefficient at the boundaries of the mesh and is a value between [−1,1].

8 poles pi and residues ri can be found through a partial fraction expansion by factoring the

denominator and finding the residues using (2.20). There are three complex conjugate pairs that

can be combined and two real poles with angles 0 and π that can be combined together to form 4

second-order sections. The poles and their pairings for a =−0.999 are shown in Figure 2.4. The

corresponding impulse response for the filters formed by the paired poles and residues of that

same mesh is presented in Figure 2.6.
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Poles for the 3x3 DWM on the unit circle

Figure 2.4: Poles plotted for the 3 by 3 DWM on the unit circle. The poles occur in conjugate
pairs as indicated by the red outlines and correspond to the resonant frequencies in Figure 2.5.

Moving from the Physical to the Abstract Realm

This section showed that it is possible to express the 2D DWM as a transfer function and

that the transfer function can be represented as a bank of parallel second-order sections. This
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Figure 2.5: Magnitude spectrum for the 3 by 3 DWM. The reflection coefficient is set according
to a =−0.999. The resonant frequencies correspond to the poles in Figure 2.4.

parallel bank of second-order filters looks quite similar to the filter configuration used in MS.

When comparing 2D DWMs with MS, it becomes obvious that for the purposes of this work,

MS is much more suitable. First of all the DWM suffers from dispersion error–the modes in the

output do not match that of an ideal membrane or plate. With MS, one can take the theoretical

modes of a plate or membrane and easily simulate the sound. Furthermore, even if we do not

want to create the sound of an ideal plate or membrane, with MS, there is more control over every

single spectral component. Access to individual spectral components is not available in a 2D

DWM. With MS, we can synthesize a variety of percussive sounds as is shown in [17, 19, 4]. MS

is also capable of real-time synthesis, provided that the number of modes is not too large (on the

order of thousands), whereas the DWM can only run in real-time on personal computers up to a

size of 51 by 51.

A caveat, however, is that traditional MS is not capable of creating the types of sounds

that nonlinear percussion instruments create. In order to add spectral richness and pitch glides,

we introduce loopback FM oscillators in Chapter 3. Loopback FM oscillators are used in the

percussion synthesis MS method described in Chapter 4.
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Figure 2.6: Magnitude spectrums for second-order sections add up to 3 by 3 DWM magnitude
spectrum. The reflection coefficient is set according to a =−0.999. Each second-order section
magnitude spectrum figure on the left corresponds to a pair of poles in Figure 2.4.
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Chapter 3

Loopback FM

3.1 Introduction

Loopback FM is a self-modulated form of FM where the oscillator loops back and

modulates its own carrier frequency according to a feedback coefficient. This differs from

Feedback FM [57], in which the output is used to modulate its own initial phase. Loopback FM

with a static feedback coefficient, B, and feedback FM both create peaks in the spectrum at integer

multiples of a sounding frequency. As described in [54], the difference between the two synthesis

methods is that with loopback FM, the feedback coefficient B can be varied over time to create

both predictable pitch and spectral changes. Conversely, feedback FM preserves pitch (in some

contexts a desirable feature) and only introduces spectral changes. Loopback FM is also similar

to feedback AM as described in [39] and coefficient-modulated allpass filter synthesis in [40].

As shown in [55], loopback FM and its closed-form infinite impulse response (IIR)

approximation, an expression that resembles the transfer function of a “stretched” allpass filter

[60] but for which only the real part is used as a time-domain signal, can be used to create complex

frequency spectra and pitch contours. Here, we begin by presenting the sample-by-sample rotation

representation of an oscillator with constant frequency. This same representation is modified to
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express an oscillator with time-varying frequency, more commonly known as an FM synthesis

oscillator. This is extended to feedback FM and then finally, we show how the FM expression can

be adjusted to form the loopback FM sample-by-sample rotation formulation. The closed-form

loopback FM representation is then introduced. We cover loopback FM representations with

static pitch and number of harmonics followed by their time-varying formulations, which can be

used to modulate the number of harmonics in the spectrum and sounding frequency.

3.2 An Oscillator with Constant Frequency

An oscillator with constant frequency can be thought of as a point that rotates about the

complex plane. Consider a complex point with magnitude A and initial phase φ

Ae jφ = cos(φ)+ j sin(φ). (3.1)

We can multiply this point by e jωT to rotate the point about the complex plane by an angle ωT .

Repeatedly multiplying Ae jφ by e jωT n times produces a complex oscillator

z(n) = (e jωT )nAe jφ = Ae jωnT+φ. (3.2)

z(n) has angular frequency ω and initial phase φ. n is the time sample and T = 1/ fs is the

sampling period for sampling rate fs. z(n) can be equivalently expressed by its sample-by-sample

rotation representation

z(n) = e jωT z(n−1) (3.3)

where the value of the oscillator at the previous time step, z(n−1), is rotated by e jωT .
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3.3 FM Formulation and Frequency Component Analysis

For an oscillator with time-varying frequency, (3.3) is modified so that the instantaneous

frequency, ω, is now a function of time sample n:

z(n) = e jω(n)T z(n−1). (3.4)

With frequency modulation synthesis, as introduced in [15], ω(n) is expressed as

ω(n) = ωc +d cos(ωmnT ) (3.5)

where ωc = 2π fc is the carrier frequency, d is the peak frequency deviation, and ωm = 2π fm is

the modulating frequency. ωc and ωm are both angular frequencies, and fc and fm are those same

frequencies in Hz. FM can then be expressed in its sample-by-sample rotation form as

zfm(n) = e j(ωc+d cos(ωmnT ))T zfm(n−1). (3.6)

For implementation purposes, the initial value of zfm(n) should be set to 1.

Note that FM synthesis is typically implemented in its phase modulation (PM) form

xfm(n) = cos(ωcnT + I sin(ωmnT )), (3.7)

where I is the index of modulation, and (3.5) is merely a different representation of this familiar

FM synthesis equation. The instantaneous phase of xfm(n) is the expression within the cos(·)

function:

θ(n) = ωcnT + I sin(ωmnT ). (3.8)

The instantaneous frequency is the time derivative of θ(n) and computes to (3.5) with d = ωmI.
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The frequency components for a signal created using FM synthesis appear at fc± i fm for

integer values of i. The amplitude level of the frequency components can be expressed using

Bessel functions of the first kind. As I, the index of modulation increases, the bandwidth of the

sidebands increases, and aliased frequency components will appear in the spectrum. A plot of

the magnitude spectrum for an FM signal created using fc = 200, fm = 150, and I = 1 is shown

in Figure 3.1. A large peak can be found along the dashed red line, which indicates the carrier

frequency fc = 200. The other peaks appear at fc± i fm which, for the given variable values, are

50, 350, 500, and 650.
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Figure 3.1: Magnitude spectrum of FM synthesis. fc = 200, fm = 150, and I = 1. Frequency
components appear at fc± i fm.

3.4 Feedback FM Formulation and Frequency Component

Analysis

Feedback FM was presented in [57] as an extension of FM where the output of the

oscillator is used to modulate the phase. Like FM, feedback FM uses a carrier frequency ωc but

unlike FM, feedback FM does not make use of a modulating frequency, as the modulation occurs

through the feedback. In [30], the discrete form of feedback FM is given as

xfb(n) = sin(ωcnT +Bxfb(n−1)) (3.9)
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where B specifies the amount of feedback. B is typically kept between values of −1 and 1 so that

the spectral components decay monotonically as a function of frequency.

In complex exponential form, feedback FM can be expressed as

zfb(n) = e j(ωcnT+Bℑ{zfb(n−1)}) (3.10)

where xfb(n) = ℑ{zfb(n)}. The phase of (3.10) is

θ(n) = ωcnT +Bxfb(n−1). (3.11)

The time derivative of this is the instantaneous frequency and can be expressed in discrete form as

ω(n) = ωc +
B
T

ℑ{zfb(n−1)− zfb(n−2)} (3.12)

where within the ℑ{·} part of the equation, we use a difference to approximate the derivative.

(3.12) can be used in (3.4) to form the sample-by-sample rotation representation for feedback FM

to obtain

zfb(n) = e j(ωc+
B
T ℑ{zfb(n−1)−zfb(n−2)})T zfb(n−1). (3.13)

When implementing this, if the first sample begins at n = 0, then zfb(−1) should be set to 1 and

zfb(−2) should be initialized to 0.

There are strong resemblances between the FM (3.6) and Feedback FM (3.13) equations.

With feedback FM in (3.13), however, the second term in the complex exponential is a function

of the oscillator itself, which contributes to the feedback. Contrarily, with the FM form in (3.6),

the second term in the complex exponential is the modulating oscillator and there is no feedback.

The spectral components of feedback FM are centered at integer multiples of the carrier

frequency, i fc for integer i, and, similar to FM, the amplitude of those components are proportional

to Bessel functions of the first kind [57]. Figure 3.2 graphs an example of feedback FM synthesis
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output. The red line indicates the carrier frequency fc = 200. Frequency components can be

seen at fc = 200 and at integer multiples of fc. The amplitude level of the spectral components

decreases monotonically after the tallest peak at fc.
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Figure 3.2: Magnitude spectrum of feedback FM synthesis. fc = 200 and B = 0.9. Frequency
components appear at integer multiples of the carrier frequency: i fc.

3.5 Loopback FM Formulation

In this section, we examine loopback FM, in which the output is fed back to modulate

the instantaneous frequency of an oscillator. The equations take on a similar form as the sample-

by-sample rotation equations for FM (3.6) and feedback FM (3.13). The loopback FM equation

involves carrier frequency ωc = 2π fc and a feedback parameter B, which controls the fundamental

frequency and the number of harmonics in the spectrum of the output, the latter of which greatly

influences the timbre of the output.

The sample-by-sample loopback FM equation for time sample n with static B is

zc(n) = e j(ωc+ωcBℜ{zc(n−1)})T zc(n−1), (3.14)

For implementation, the initial condition zc(0) = 1 causes oscillation. The output that we listen

to is the real part of zc(n). The fundamental frequency of this oscillator is not ωc but rather

ω0 = 2π f0, where f0 is the sounding frequency in Hz. The relationship between ω0 and ωc is
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described by

ω0 = ωc

√
1−B2, −1≤ B≤ 1, (3.15)

which shows that for ω0 to remain real, the value of B must be within the interval (−1,1).

The equation for loopback FM (3.14) is closely related to that of FM (3.6) and feedback

FM (3.13), but there are key differences in the instantaneous frequencies. The instantaneous

frequency for loopback FM is

ω(n) = ωc +ωcBℜ{zc(n−1)}. (3.16)

When compared to FM (3.5), loopback FM replaces the modulating oscillator with the real

part of the output at the previous time sample. This is the “loopback” portion of loopback FM.

Comparing feedback FM with loopback FM, the second term of (3.12) involves a difference of

the oscillator value at previous time samples while the second term of (3.16) only considers the

last output sample. These differences make it easy to control pitch glides when the loopback FM

equation is made time-varying as will be shown in Sections 3.8 and 3.9.

(3.6), (3.13), and (3.14) are the sample-by-sample rotation formulations for FM, feedback

FM, and loopback FM, respectively. They are numerical approximations and suffer from numeri-

cal error due to the sample-by-sample rotation. For this reason, FM is typically implemented using

its PM form (3.7). The loopback FM sample-by-sample rotation expression tends to experience

even more error due to the unit delay in the feedback loop. In the next section, a more numerically

accurate representation of loopback FM is presented.
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3.6 The Closed-Form Representation of the Loopback FM

Oscillator

The loopback FM oscillator zc(n) given in (3.14) with static pitch and number of harmonics

may also be represented by the closed-form representation

z0(n) =
b0 + e jω0nT

1+b0e jω0nT , (3.17)

which is similar to the transfer function of a “stretched” allpass filter used in [60]. In this synthesis

context, (3.17) is used as a time-domain signal that is a function of time sample n, where b0

influences spectrum, ω0 specifies the sounding frequency, and the output sound is the real signal

given by ℜ{z0(n)}. Parameters b0 and ω0 are related to the loopback FM feedback coefficient B.

With (3.17), the number of harmonics and pitch can be independently controlled, but this is not

possible with parameters ωc and B given in (3.14). Coefficient b0 in z0(n) is related to B through

b0 =

√
1−B2−1

B
. (3.18)

Note the singularity in (3.18) for B = 0. The relationship between ω0 and ωc is shown in (3.15).

3.7 Parametric Control of Loopback FM with Static Pitch

and Number of Harmonics

The magnitude spectrum of a loopback FM signal generated using (3.14) is shown in

Figure 3.3. Here, the parameters are set to the same values as they are for the feedback FM

example in Figure 3.2 with fc = 200 and B = 0.9. The biggest difference between the two is

that the peaks do not appear at integer multiples of fc, as they do for feedback FM, rather, they
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occur at integer multiples of sounding frequency f0 = fc
√

1−B2. The sidebands also decay

logarithmically.
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Figure 3.3: Magnitude spectrum of loopback FM synthesis with B = 0.9. fc = 200 and
frequency components appear at integer multiples of a sounding frequency: f0 = fc

√
1−B2.

As B decreases toward 0 in Figures 3.4 to 3.5, two things begin to occur: 1) the number

of sidebands decreases and 2) the sounding frequency f0 approaches the carrier frequency fc. By

time-varying the feedback coefficient B, we are able to create pitch contours and spectral effects.

0 500 1000

Frequency (Hz)

-50

0

A
m

p
lit

u
d

e
 (

d
B

)

Magnitude spectrum of z
c
(n), B=0.5

z
c

f
c

f
0

Figure 3.4: Magnitude spectrum of loopback FM synthesis with B = 0.5. fc = 200 and
compared to Figure 3.3, there are fewer sidebands and f0 is closer to fc

With the closed-form loopback FM equation, sounding frequency and the number of

harmonics can be controlled independently of one another. ω0 = 2π f0 directly controls the

sounding frequency and b0 affects the number of harmonics. B and b0 affect the number of

harmonics in the same way: when they are close to 1 or −1, there are more high frequency

components and the timbre is brighter, and when they are close to 0, there are fewer frequency

components and the sound is darker and more muffled. When B and b0 are negated, there is no
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Figure 3.5: Magnitude spectrum of loopback FM synthesis with B = 0.0. fc = 200 and
compared to Figures 3.3 and 3.4, there is only a single frequency component centered at f0 = fc.

effect on the sounding frequency or spectral sidebands, so for a signal formed using B or b0 will

be equivalent to a signal formed using −B or −b0. The relationship between B and b0 is shown

in Figure 3.6 and given in (3.18).
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Figure 3.6: Relationship between B and b0. B and b0 both affect the number of harmonics in
similar ways and their relationship is given by (3.18).

When comparing the two loopback FM formulations, z0 and zc, results are identical when

ωc is small and B is farther from 1 (or −1). When B is closer to 1 and ωc is large, zc begins to

alias and experience spectral component foldover. This effect is shown in Figure 3.7 where the

graph of zc shows lower peaks in between taller peaks, where the taller peaks match those in

the graph of z0. If ωc is set to extremely large values, such as 12 kHz with a sampling rate of

44.1 kHz, zc begins to create noisy signals. If the sampling rate is increased, the output of zc

approaches that of z0 even for high values of ωc and B near 1. Like FM, both zc and z0 produce

signals that are not bandlimited. With loopback FM, a large ωc means a large feedback amount,

which can result in increased bandwidth and aliasing, similar to how a large index of modulation

42



corresponds to a wider bandwidth in traditional FM.
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Figure 3.7: Magnitude spectrum of loopback FM: zc vs. z0 for large ωc and B. The effects of
aliasing shows up on the zc graph as shorter peaks in between taller peaks.

3.8 Time-varying B: Modulation of Pitch and Number of Har-

monics with zc(n)

In (3.14), the feedback coefficient B can be varied over time between (−1,1) to create

pitch glides and changes to the number of harmonics over the length of the output signal. From

(3.14), B is replaced by B(n) to form

zc(n) = e jωcT (1+B(n)ℜ{zc(n−1)})zc(n−1) (3.19)

(3.15) reveals that when B is made to vary over time, ω0 also becomes time-varying. This creates

a pitch trajectory where the sounding frequency follows the equation

ω0(n) = ωc

√
1−B2(n). (3.20)
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3.9 Time-varying b0 and ω0: Modulation of Pitch and Num-

ber of Harmonics with z0(n)

Like (3.19), the parameters of z0 in (3.17) can be made to vary over time to create pitch

glides and spectral changes. Parameter b0 can be mapped to B(n) by

b0(n) =

√
1−B2(n)−1

B(n)
(3.21)

and used in (3.22) to create spectral variations.

A desired pitch contour can be created by setting ω0(n) to a pitch trajectory in the form

of (3.20). Directly using ω0(n) in place of ω0 in (3.17) will not result in the desired pitch glide,

and it is necessary to use a generalization of (3.17):

z0(n) =
b0(n)+ e jθ0(n)

1+b0(n)e jθ0(n)
. (3.22)

To understand θ0(n), the instantaneous phase of the complex exponential terms in (3.22), let

ω0(t) be the continuous counterpart of ω0(n) serving as the instantaneous frequency, and θ0(t),

its integral with respect to time:

θ0(t) =
∫ t

0
ω0(t)dt. (3.23)

Examples of the discrete-time form of (3.23) given by θ0(n) as used in (3.22), are shown in

Section 4.4.5.

If one is interested in varying the number of harmonics, but maintaining a static sounding

frequency ω0, an alternate form excluding θ0(n) may be used:

z0(n) =
b0(n)+ e jω0nT

1+b0(n)e jω0nT . (3.24)
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3.10 Parametric Control of Loopback FM with Time-varying

Pitch and Number of Harmonics

An example of a spectrogram for exponentially decreasing pitch and time-varying number

of harmonics for zc(n) and z0(n) is shown in Figure 3.8. The graph compares an exponentially

decreasing pitch glide from 200 Hz to 140 Hz for zc(n) and z0(n) where the pitch glide is indicated

by the red line on each plot. Because the pitch glide is specified using B(n) for zc(n), and the

number of harmonics is directly affected by B(n), this pitch glide will always be paired with

that spectral pattern for the top graph of zc(n). In the bottom graph, the number of harmonics is

controlled by setting b0(0) to linearly increase from 0.001 to 0.999 over the course of the signal

so that higher frequencies appear later on in the signal rather than right at the beginning. Control

of the pitch glides and the number of harmonics are fundamental to the percussion synthesis

method that is covered in Chapter 4.
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Spectrograms of loopback FM with exponentially decaying pitch glides

Figure 3.8: Spectrograms of zc vs. z0 with time-varying pitch and number of harmonics. The
red line indicates an exponentially decreasing pitch glide from 200 Hz to 140 Hz. The number
of harmonics in the spectrum can be controlled independently of pitch with b0 in the bottom plot
of z0, while the number of harmonics and pitch are both tied to B in the top plot displaying zc.

Pitch glides and time-varying harmonics created using B(n) and zc(n) oscillators are

constrained by B(n)2 ≤ 1. This can be seen in (3.20) which shows that in order for the sounding

frequency ω0(n) to remain real, B(n) must abide by the given constraint. Pitch glides formed
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using ω0(n) and z0(n) oscillators are not affected by the constraint. With the z0,i(n) oscillators,

the only constraint is that ω0(n) must be integrable so that θ0(n) can be obtained and used in

(3.22). Likewise, harmonic variations created with b0(n) and z0(n) oscillators can take on any

form and do not need to follow the constraint on B(n).

Here, we first introduce pitch glides formed using linear and exponential B(n) and zc(n)

oscillators. We demonstrate how to create an identical pitch glide using z0(n) oscillators. Then,

we discuss how linear, exponential, and square root pitch contours can be formed with ω0(n)

for z0(n) oscillators. The equivalent pitch glide (with constraints) is then described for zc(n)

oscillators. Last, controlling the number of harmonics over time is illustrated for b0(n) and

z0(n) oscillators. The equivalent time-varying harmonic variation is shown for B(n) with zc(n)

oscillators. Because B(n) changes both pitch and the number of harmonics for zc(n) oscillators,

control of the number of harmonics for zc(n) is not separately covered.

3.10.1 Pitch Glides with B(n)

Pitch Glides with Exponential B(n)

For the exponential case, B(n) = gn can be used directly in (3.19) to produce a pitch glide.

g is typically set to a number close to 1. When using (3.22) for a pitch glide, θ0(n) can be found

using B(n) = gn along with (3.20) and (3.23) which, as shown in [55], is given by

θ0(n) =
ωc

log(g)
(
√

1−g2n− tanh−1(
√

1−g2n))+C (3.25)

where C is the constant of integration.
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Pitch Glides with Linear B(n)

For the linear case, B(n) = l0 + l1n produces a pitch glide when used with (3.19). (3.22)

uses the instantaneous phase given by

θ0(n) =
ωcT
2l1

((l1n+ l0)
√

1− (l1n+ l0)2

+ sin−1(l1n+ l0))+C (3.26)

3.10.2 Pitch Glides with ω0(n)

Rather than making pitch glides by setting B(n), it may be more musically intuitive to

specify pitch glides that change linearly, exponentially, or by a square root function. For each of

these examples, the pitch trajectory, f0(n) will move from frequency fx to fy in Hz in td seconds,

and b0 is held constant at −0.3 so that the effects of varying the pitch without affecting the

number of harmonics can be observed for z0(n). Pitch trajectories other than the ones shown here

can be used with z0(n) as long as the continuous time pitch glide function ω0(t) is integrable.

Linear Pitch Glides

For a linearly increasing or decreasing pitch glide, as shown in Figure 3.9, the sounding

frequency will have the equation

f0(n) = l0 + l1nT (3.27)

where l1 is the slope and l0 is the y-intercept. Let td be the time it takes for the pitch glide to move

from fx to fy. Then l1 can be calculated as

l1 =
fx− fy

td
. (3.28)
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Figure 3.9: Linearly increasing pitch glide for z0(n) and zc(n). The upper spectrogram is formed
using the time-varying closed-form loopback FM oscillator z0(n). The pitch trajectory, as shown
by the overlain red line, begins at 140 Hz and increases linearly to 840 Hz. Although the pitch
trajectory in the bottom plot for the zc(n) oscillator is the same as the pitch glide in the upper
plot, the bottom plot shows more higher frequency content because with zc(n) oscillators, pitch
and number of harmonics are both affected by B.

l0 can be computed by rearranging (3.27) and solving for l0 using f0(0) = fx or f0(td) = fy and

the value for l1 given by (3.28). Using the values computed for l0 and l1, f0(n) can be calculated

for all values of n. Then, ω0(n) = 2π f0(n) can be used with either zc(n) or z0(n).

Linear Pitch Glides with z0(n): To set a pitch glide with z0(n), we must calculate θ0(n) and

use it in (3.22) as described in Section 3.9. In this case, θ0(n) can be computed using

θ0(n) = 2π

(
l1(nT )2

2
+ l0nT

)
. (3.29)

Linear Pitch Glides with zc(n): To set a pitch glide with B(n) and zc(n) given ω0(n), we

must calculate ωc. In order for B(n) to remain real, there is a constraint that ω0(n)≤ ωc for all

n. In many examples, it was found that setting ωc equal to the largest value of ω0(n) creates
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perceptually pleasing sonic results. After setting ωc, B(n) can be found using

B(n) =

√
1−
(

ω0(n)
ωc

)2

(3.30)

Then, B(n) and ωc can be used in the time-varying, sample-by-sample loopback FM equation,

(3.19), to create the desired pitch glide.

Exponentially Decreasing Pitch Glides
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Figure 3.10: Exponentially decreasing pitch glide for z0(n) and zc(n). The upper spectrogram
is formed using the z0(n) loopback FM formulation while the lower spectrogram is made using
the zc(n) formulation. The pitch glide is marked by the red line, begins at 840Hz, and decreases
exponentially to 140 Hz. The lower spectrogram has more energy in the higher frequencies
because B affects both pitch and number of harmonics with the zc(n) formulation.

For an exponentially decreasing pitch glide, a function that decays exponentially from 1 to

a value close to 0 is first created with a desired decay rate. That exponentially decaying function

is then scaled to match the pitch glide specifications. An example is shown in Figure 3.10. The

exponentially decaying function is set according to

h(n) = A0e−nT/τh. (3.31)
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A0 is the initial value at time sample n = 0 and τh is the decay constant. The value of this function

at n = 0 is h(0) = A0 = 1. Let A1 be the value that h(n) will decrease towards and nd = td fs be the

time (in samples) that it takes for h(n) to reach A1 from its initial value A0. A1 should be set close

to 0, and the examples in this document use 0.001, as this value is used when setting reverberation

decay times. Using h(0) = A0 = 1 and h(nd) = A1 = 0.001, (3.31) can be rearranged and τh can

be found using

τh =−
ndT

log(A1/A0)
. (3.32)

h(n) is computed using A0 and τh. Then h(n) can be scaled using fx and fy to obtain

f0(n) = ( fx− fy)h(n)+ fx. (3.33)

ω0(n) = 2π f0(n) can be used with loopback formulations zc(n) or z0(n) to create the desired

exponential decay.

Exponentially Decreasing Pitch Glides with z0(n): θ0(n) can be calculated according to

θ0(n) =−2π( fx− fy)τhA0e−nT/τh +2π fynT (3.34)

θ0(n) can then be used in (3.22) to produce the desired pitch glide.

Exponentially Decreasing Pitch Glides with zc(n): Following the constraint that ω0(n)≤ ωc

for all n, ωc can be set to the largest value of ω0(n) which is the first value, ω0(0). After setting

ωc, B(n) can be found using (3.30). Both of these parameters can be used in (3.19), to create the

desired pitch glide.
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Figure 3.11: Increasing pitch glide using a square root function for z0(n) and zc(n). The upper
spectrogram is formed using z0(n), and the lower spectrogram is made using zc(n). The pitch
glide, indicated by the red line in both spectrograms, begins at 140 Hz and increases according
to a square root function to 840Hz. As is the case with Figures 3.9 and 3.10, the bottom graph
has more higher frequency energy because B affects both number of harmonics and pitch with
the zc(n) oscillator.

Pitch Glides Increasing with a Square Root Function

An example of a pitch trajectory that increases according to a square root function is

shown in Figure 3.11. To create a pitch glide that increases from fx to fy according to a square

root function, the sounding frequency trajectory is modeled as

f0(n) = fxy
√

nT + fx, (3.35)

where

fxy =
fy− fx√

td
. (3.36)

As it is used in the exponential pitch glide equation, td is the time (in seconds) it will take for

f0(n) move from fx to fy. Setting ω0(n) = 2π f0(n) sets us up to create the pitch glide with zc(n)

or z0(n).
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Square Root Increasing Pitch Glides with z0(n): θ0(n) is calculated as

θ0(n) = 2π

(
2
3

fxy(nT )3/2 + fxnT
)
. (3.37)

(3.22) paired with θ0(n) can be used to create the specified pitch glide.

Square Root Increasing Pitch Glides with zc(n): ωc should first be set to the largest value of

ω0(n) or any value smaller than the largest value of ω0(n). After setting ωc, B(n) can be found

using ωc and ω0(n) along with (3.30). Both ωc and B(n) can then be used in (3.19) to create the

specified pitch glide.

3.10.3 Varying the Number of Harmonics with b0(n)

This section shows how varying b0(n) linearly and exponentially affects the number of

harmonics in the spectrum of the output of the closed-form loopback FM oscillator z0(n). How

to obtain the equivalent harmonic variation with a zc(n) oscillator is also explained. In these

examples bx is the starting value for b0(n), by is the ending value, and f0 is set to 1000Hz. As

used above in the pitch glide examples, nd = td fs is the time it takes for b0(n) to change from bx

to by.

Varying the Number of Harmonics with Linear b0(n)

A linear b0(n) can be modeled according to

b0(n) = l0 + l1n (3.38)

with slope l0 set as

l0 =
by−bx

nd
, (3.39)
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and y-intercept l0 = bx. Because the sounding frequency f0 is held constant, (3.24) can be used

with b0(n) to create the closed-form loopback FM signal with time-varying number of harmonics.

The B(n) function that corresponds to the linear b0(n) function can be found using

B(n) =− 2b0(n)
b0(n)2 +1

. (3.40)

B(n) can be directly used in (3.19) to create a loopback FM signal that varies in pitch and

number of harmonics over time. An example of z0(n) with a linearly increasing b0(n) and the

corresponding zc(n) is plotted in Figure 3.12. The linear b0(n) function and corresponding B(n)

function used to create Figure 3.12 is shown in Figure 3.13.
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Figure 3.12: Varying the number of harmonics with linearly increasing b0(n) for z0(n) and
zc(n). The upper plot is the output of a z0(n) oscillator while the lower plot is the output of a
zc(n) oscillator. The two plots show how the number of harmonics can be varied over time. As
b0(n) increases, more frequency components appear in the upper spectrogram. Pitch is affected
in the lower plot as B affects both number of harmonics and pitch with zc(n).

Varying the Number of Harmonics with Exponential b0(n)

Similar to the exponentially decaying pitch glide, an exponentially decreasing b0(n) can

be modeled by scaling and shifting the exponentially decaying function (3.31), which ranges

from a value close to 0 up to 1. As was explained in Section 3.10.2, h(0) = A0 = 1 and

h(nd) = A1 = 0.001. The decay constant τh can be found according to (3.32). h(n) can then be
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Figure 3.13: Linearly increasing b0(n) and corresponding B(n). The b0(n) and B(n) functions
plotted here were used to synthesize the signals plotted in Figure 3.12. As b0(n) increases
linearly, B(n) decreases according to (3.40).

scaled using bx and by to obtain

b0(n) = (bx−by)h(n)+by. (3.41)

b0(n) can be used with (3.24) to modify the number of harmonics using the closed-form loopback

FM oscillator.

The B(n) function that corresponds to the exponentially decreasing b0(n) function can be

found using (3.40). To create the time-varying loopback FM signal, B(n) can be directly used

with (3.19). This signal will vary in pitch and time. The varying of the number of harmonics

with an exponentially decreasing b0(n) with z0(n) oscillator along with the corresponding zc(n)

is shown in Figure 3.14. The exponentially decreasing b0(n) and corresponding B(n) functions

used to plot (3.14) are presented in Figure 3.15.
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Figure 3.14: Varying the number of harmonics with exponentially decreasing b0(n) for z0(n)
and zc(n). A variation of the number of harmonics is shown in the upper plot for z0(n) and in the
bottom plot for zc(n). As b0(n) decreases, the number of frequency components also decreases
in the spectrogram. A pitch glide can be seen in the lower plot as B changes both the number of
harmonics and pitch when using zc(n).

3.11 Loopback FM Application

This chapter includes material coauthored with Professor Tamara Smyth as it appears in

Jennifer Hsu and Tamara Smyth. Percussion synthesis using loopback frequency modulation

oscillators. In Proceedings of the Sound and Music Computing Conference, Málaga, Spain, May

2019.

The dissertation author was the primary researcher and author of this paper. Now that we

can specify pitch glides and vary the number of harmonics with loopback FM oscillators, we can

use these oscillators to synthesize more complex sounds. In Chapter 4, we detail how these oscil-

lators can be used to synthesize percussive sounds through a simple modification of traditional

MS.
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Figure 3.15: Exponentially decreasing b0(n) and corresponding B(n). b0(n) and B(n) as plotted
in this figure were used to synthesize the signals with spectrograms plotted in Figure 3.14. As
b0(n) decreases exponentially, B(n) increases according to (3.40).
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Chapter 4

Percussion Synthesis using Loopback FM

Oscillators

4.1 Introduction

This chapter describes a real-time percussion synthesis method that is capable of creating

sounds inspired by nonlinear percussion instruments. In this technique, traditional MS is modified

to use loopback FM oscillators so that pitch glides and higher frequency components are created

in the output sound. The basic configuration of this percussion method is shown in Figure 4.1.

When sonic enhancements are included, the diagram is modified to Figure 4.2. We first formalize

traditional MS and how it can be used to synthesize percussive sounds in Section 4.2. Section 4.3

explains how traditional MS can be modified with loopback FM oscillators to create a wider

variety of percussion sounds. Sonic enhancements that add more nonlinear effects and a sense of

space are presented in Sections 4.3.2 and 4.3.3.
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Modal Synthesis with Loopback FM

modal synthesis output

+
+

loopback FM oscillators amplitude envelopes

m(n)

w1(n)

w2(n)

w3(n)

zc,1(n)

zc,3(n)

zc,2(n)

Figure 4.1: The loopback FM percussion synthesis method. Loopback FM oscillators are
enveloped and summed together to form the synthesis output.

4.2 Percussion Synthesis using Traditional MS

As described in Chapter 1, MS is a technique that resynthesizes the sound of an acoustic

object according to its acoustic modes or vibrational patterns. The resonant frequencies of an

acoustic object arise through the sinusoidal motion of the object’s modes. With traditional MS,

each mode is synthesized using a 2nd-order resonating filter with a corresponding frequency,

initial amplitude, and decay [1].

To synthesize a percussive sound with MS, we begin with a list of Nf resonant, modal

frequencies fr,i, the values of which can be obtained from acoustic experiments, spectral analysis

of recorded or physically modeled sounds (e.g. DWMs, FDMs, etc), or calculated using theoretical

equations. The i in fr,i indicates the index of the modal frequency.
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*

Modal Synthesis with Loopback FM

modal synthesis output

Commuted Synthesis

+
+

loopback FM oscillators amplitude envelopes

e(n)

y(n)
output signal

excitation

*

acoustic resonator IR

m(n)

r(n)

w1(n)

w2(n)

w3(n)

p(n)

zc,1(n)

zc,3(n)

zc,2(n)

Time-varying  
Allpass Filters

AP1(n)

AP2(n)

AP3(n)

Figure 4.2: The loopback FM percussion synthesis method with sonic enhancements. The
“Time-varying Allpass Filters” and “Commuted Synthesis” blocks have been added to the basic
loopback FM percussion synthesis diagram from Figure 4.1.

Though MS traditionally models each frequency mode with a 2nd-order bandpass resonant

filter with center frequency fr,i, in this work the filters are replaced by sinusoidal oscillators of

frequency (or center frequency if frequency is time-varying) fr,i. This allows for a straightforward
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comparison with the loopback FM version (also implemented here with oscillators) than if

traditional MS bandpass filters had been used. A sinusoidal component with carrier frequency

ωc,i = 2π fr,i is expressed as si(n) = sin(ωc,inT ) for time sample n and period T = 1/ fs for

sampling rate fs. Each sinusoidal component is multiplied with an amplitude envelope wi(n). For

percussive sounds, wi(n) are typically exponentially decreasing envelopes with possibly different

initial amplitudes and decay constants for different modes. For example, for natural sounding

results, higher-frequency modes should be made to decay more rapidly. Enveloped sinusoidal

components are added together to form the MS output given by

ms(n) =
Nf−1

∑
i=0

wi(n)si(n), (4.1)

the spectrum of which is shown in Figure 4.3 for Nf = 3.
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Figure 4.3: Traditional MS for three modal frequencies. The spectral components are sinusoids
and the synthesis output is the sum of those spectral components.

MS is efficient and useful for recreating the sound of objects that consist of a small number

of resonant frequency modes. However, MS is a linear method and (4.1) is incapable of capturing

nonlinear effects. A simple modification to the sinusoidal components of the MS framework

allows the method to create complex and dynamic sounds reminiscent of nonlinear vibrations in

percussion instruments. This modification uses loopback FM, a synthesis technique described
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in Chapter 3, in which each sinusoidal component is looped back to modulate its own carrier

frequency.

4.3 Percussion Synthesis with Loopback FM Oscillators

The loopback FM percussion synthesis method consists of MS with loopback FM oscil-

lators and two optional sonic enhancements to add further nonlinearities and space. Figure 4.1

shows the basic loopback FM percussion synthesis method and Figure 4.2 shows the method

with the enhancements. The “Modal Synthesis with Loopback FM” block in Figures 4.1 and 4.2

consists of synthesizing the vibrations of an abstract, nonlinear surface using MS and either of the

two time-varying loopback FM equations ((3.19) or (3.22)) to produce output m(n). The loopback

FM oscillators can be processed with time-varying allpass filters to add more nonlinearities as

shown in the “Time-varying Allpass Filters” block in Figure 4.2. The “Commuted Synthesis”

block in Figure 4.2 completes the percussion model by convolving a parametric excitation func-

tion and acoustic resonator impulse response with m(n), adding a sense of space to the resulting

synthesis.

4.3.1 MS with Loopback FM

Like the percussion MS technique described in Section 4.2, the “Modal Synthesis with

Loopback FM” block begins with a list of modal frequencies fr,i of length Nf. Instead of sinusoidal

oscillators, Nf loopback FM oscillators are generated using the frequencies in fr,i. As described

in [55], the loopback FM oscillators can be expressed as resonating filters, though here, they are

implemented as oscillators. This is similar to implementing MS with sinusoidal oscillators as

opposed to resonating filters as described in Section 4.2. The loopback FM oscillator zc,i(n), given

in (3.14) and (3.19), has been synthesized with carrier frequency ωc,i = 2π fr,i, where subscript

i means that ωc,i is set using the ith frequency in fr,i. The other parameter used with zc,i(n) can
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also be indexed similarly as Bi.

The real part of each loopback FM oscillator is multiplied with an amplitude envelope

wi(n) and the enveloped loopback FM oscillators are summed to create the MS output

m(n) =
Nf−1

∑
i=0

wi(n)ℜ{zc,i(n)}. (4.2)

Alternatively, the closed-form loopback FM equation z0,i(n), given in (3.17) and (3.22), can be

used where subscript i means that ω0,i is set using the ith frequency in fi, and zc,i(n) in (4.2) is

replaced with z0,i(n) to form

m(n) =
Nf−1

∑
i=0

wi(n)ℜ{z0,i(n)}. (4.3)

Similarly, the number of harmonics parameter used with z0,i(n) can be notated as b0,i.

4.3.2 Sonic Enhancement 1: Adding Further Nonlinearities with Time-

Varying 2nd-Order Allpass Filter Processing

To create noisy and cymbal-like sounds, the loopback FM output can be filtered with

time-varying allpass filters before enveloping and summing. Coefficient-modulated allpass

filters have been used to distort the sound of electronic guitars [47] and to create rich spectra

in [36, 40, 39, 43]. Because varying the coefficients of a filter can result in an unstable system,

techniques to create stable, power-preserving, time-varying allpass filters have been presented in

[8] and [56]. The filter presented in [56] is stable, can be used to create phase distortion, and can

be parametrically controlled, making it especially appealing for our synthesis application here.

The work in [36] influenced the research described in this dissertation. In [36], Smith and

Michon introduce a formulation of a coefficient-modulated allpass filter of arbitrary order that

can be used to create complex, spectral components. In an application example, a 2D DWM is
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made nonlinear by attaching the time-varying allpass filters to the boundaries of the mesh. With

this architecture, the mesh is able to produce sounds similar to nonlinear percussive instruments.

Taking inspiration from [36], we apply the parametrically controllable 2nd-order time-varying

filters from [56] to our percussion synthesis model.

Time-Varying 2nd-Order Allpass Filter Formulation

The static 2nd-order allpass filter is formed using two parameters: fπ, which indicates the

frequency at which the filter phase response is −π, and fb, which controls the bandwidth of the

phase transition region. fπ and fb are used to set two intermediate parameters:

c =
tan(π fb/ fs)−1
tan(π fb/ fs)+1

and d =−cos
(

2π fπ

fs

)
. (4.4)

For an input signal x(n), the static 2nd-order allpass filter difference equation is

AP(n) =−cx(n)+d(1− c)x(n−1)+ x(n−2)− (4.5)

d(1− c)AP(n−1)+ cAP(n−2).

For the time-varying case, d becomes time-varying, and the 2nd-order allpass filter differ-

ence equation is

AP(n) =−cx(n)+d(n)(1− c)x(n−1)+ x(n−2)− (4.6)

d(n)(1− c)AP(n−1)+ cAP(n−2), (4.7)

where

d(n) =−cos
(

2π f̃π(n)
fs

)
(4.8)
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and f̃π(n) is a function that sinusoidally modulates fπ as

f̃π(n) = fπ +M cos
(

2π fmn
fs

)
. (4.9)

In our context of percussion synthesis, the input to the time-varying 2nd-order allpass

filter can be either a sinusoid or the output of a loopback FM oscillator. When the input is a pure

sinusoid, we would have traditional MS with the addition of time-varying 2nd-order allpass filters.

For ease of understanding, when the input to the 2nd-order allpass filter is a pure sinusoid, the

output is similar to FM, and so the parameters are similar. fπ acts as the carrier frequency, and

fm is the modulation frequency. In the output signal, frequency components appear at fπ± k fm

where k = 0,1,2, · · · . M is the index of modulation that controls the bandwidth of the sidebands.

fb is an additional parameter that affects the levels of the sidebands in the magnitude spectrum.

Time-Varying 2nd-Order Allpass Filters in Percussion Synthesis

The time-varying 2nd-order allpass filters can be incorporated in the percussion synthesis

model by filtering the real part of the loopback FM oscillators before they are windowed and

summed. Each loopback FM oscillator is filtered by a time-varying allpass filter according to

APi(n) =−ciℜ{z(n)}+di(n)(1− ci)ℜ{z(n−1)}+ℜ{z(n−2)}− (4.10)

di(n)(1− ci)APi(n−1)+ ciAPi(n−2) (4.11)

where the i in APi(n), ci, and di(n) indicates the time-varying allpass filter and its parameters

associated with the ith mode. Note that the parameters for the time-varying allpass filters can be

different for each oscillator. z(n) indicates any of the loopback FM forms given by (3.14), (3.17),

(3.19), or (3.22). Next, (4.2) and (4.3) can be modified to include the allpass filtered loopback
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FM oscillators

m(n) =
N f−1

∑
i=0

wi(n)APi(n). (4.12)

4.3.3 Sonic Enhancement 2: Sense of Space with Commuted Synthesis

In [34], Smith efficiently models stringed musical instruments using commuted synthesis.

This technique is adapted here for percussion synthesis.

To complete the percussion instrument model, m(n) must be excited by an excitation

function, e(n), and coupled to an acoustic resonator with impulse response r(n). The equation to

synthesize this relationship is

y(n) = e(n)∗m(n)∗ r(n) (4.13)

where ∗ indicates convolution. Because there is no dependence between m(n), e(n), and r(n),

m(n) can be commuted with r(n). The excitation and resonator impulse response can be convolved

to form an aggregate excitation a(n) = e(n)∗ r(n).

Aggregate excitations can be stored for several excitation and resonator combinations.

During run-time, a low-latency convolution method, such as the one described in [29], can be

used to convolve a(n) with m(n) to form the final percussion model output

y(n) = a(n)∗m(n). (4.14)

In our syntheses, we use a variety of resonator impulse responses as presented in Section 5.3

along with two different types of parametric excitations. Commuted synthesis can also be used to

process audio recordings to enhance the sound of the original recording with the loopback FM

percussion synthesis method. For this effect, the resonator impulse response is replaced by an

audio recording, such as that of a drum hit. Examples of using commuted synthesis to enhance

audio recordings are also shown in Section 5.3.
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Excitations

The “Excitation” block in Figure 4.2 involves p(n), a function that describes the vertical

position of a drumstick/mallet hitting a surface at time n. The excitation signal e(n) = p(n)−

p(n− 1), relates to the velocity of the drumstick/mallet and is convolved with the acoustic

resonator impulse response to form a(n). Here, we use raised cosine envelopes and filtered noise

bursts for p(n). These signals are parametric and affect the resulting output timbre. Examples of

each excitation type are shown in Figure 4.4.
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Figure 4.4: Excitation examples. Top: raised cosine envelope with a window length of 1024
samples. Bottom: noise burst with a length of 0.01 seconds and bandpass filtered from 200 Hz
to 2000 Hz.

Raised Cosine Envelopes: The raised cosine envelope has a single parameter: the window

length L. The equation for the excitation is

p(n) =


0.5
(

1− cos
(

2πn
L−1

))
, for 0≤ n < L

0, for n≥ L

(4.15)

Filtered Noise Bursts: The parameters for a filtered noise burst are noise burst duration td and

low and high frequency cutoffs for a bandpass filter flow and fhigh. Examples in this paper use
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white noise filtered by a 2nd-order Butterworth bandpass filter.

Acoustic Resonator Impulse Response

The resonator impulse response r(n) is not limited to drum shells or bodies. r(n) can

be the impulse response of any acoustic resonator, recorded or synthesized. Additionally, the

resonator impulse response can be replaced by an audio recording so that the loopback FM

percussion synthesis method effectively processes the audio recording, adding variations to the

timbre. Examples of possible resonator impulse responses and audio recordings are presented in

Section 5.3.

4.4 Musical Parameters for MS with Loopback FM

Musical parameters for the MS portion of the loopback FM percussion synthesis method

are presented here along with their corresponding variables and equations.

4.4.1 Static Number of Harmonics: Oscillators Created with zc,i(n) or

z0,i(n)

The MS oscillators can be synthesized using zc,i(n) or z0,i(n) as shown in (4.2) and (4.3).

While both forms produce almost identical results from fc,i = 0 Hz to around fc,i = 2500 Hz at

a sampling rate of 44.1 kHz, when fc,i > 2500 Hz, the version that uses zc,i(n) becomes much

noisier, due to aliasing. As explained in Section 3.7, if the sampling rate is increased, the output

is the same whether the oscillators are created using zc,i(n) or z0,i(n).

Figure 4.5 shows that the zc,i(n) and z0,i(n) MS oscillators produce similar spectrograms

when the lowest of 3 modal frequencies is set to a low carrier frequency of fc,0 = 2000 Hz. Vastly

different spectrograms are produced when the lowest of the 3 modal frequencies is set to a higher
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carrier frequency of fc,0 = 4000 Hz as shown in Figure 4.6. The MS using zc,i(n) synthesizes a

noisier output and can be used to create cymbal- and crash-like sounds as shown in Section 5.3.5.
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Figure 4.5: Loopback FM MS with zc,i and z0,i oscillators with low carrier frequencies create
almost identical results.
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Figure 4.6: Loopback FM creates noisier output than stretched allpass filter MS for high carrier
frequencies.
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4.4.2 Static Number of Harmonics: Bi and b0,i

As explained in Section 3.7, Bi controls the number of harmonics with zc,i(n) oscillators

given by (3.14) while b0,i affects the number of harmonics with z0,i(n) oscillators given by (3.17).

When Bi and b0,i are close to 1 or −1, more sidebands appear in the spectrum. With loopback

FM MS, the Bi or b0,i values can be different for each modal component. Figure 4.7 shows

two spectrograms of a loopback MS signal created using three z0,i(n) oscillators with sounding

frequencies of 100, 1000, and 4000 Hz. In the upper graph, the b0,i values are all set to 0.6. The

amount of sidebands about each of the three main modal frequency components is about the

same. IN the lower graph, the b0,i values are set to 0.6, 0.3, and 0. The lowest frequency modal

component at 100 Hz has the most sidebands, followed by the middle frequency component at

1000 Hz. The highest modal component does not have any sidebands at all because b0,i is set to 0.

Different values Bi and b0,i values can be given for individual modal components, and this results

in a change over the overall timbre of the loopback MS signal.
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Figure 4.7: The loopback FM magnitude spectrum. Frequency components occur at integer
multiples of the sounding frequency, 300 Hz, and the amplitude of the components decreases
logarithmically.
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4.4.3 Time-varying Number of Harmonics: Bi(n) and b0,i(n)

With zc,i(n) oscillators given by (3.19), Bi(n) affect the time-varying number of harmonics

and sounding frequency. When using the closed-form loopback FM oscillator z0,i(n), given by

(3.22), b0,i(n) controls the time-varying number of harmonics, independent of pitch. Methods

for controlling the time-varying number of harmonics by means of b0,i(n) are discussed in

Section 3.10.3.

In Figure 4.8, Bi(n) = gn where gi = 0.9999, b0,i(n) is obtained according to (3.21), and

amplitude envelopes are the same for all modal frequencies. The top and middle plots in Figure 4.8

compare spectrograms between the static and time-varying versions for the closed-form loopback

FM oscillators, z0,i(n). The top plot shows a static number of harmonics with b0,i = −0.6312

with oscillators formed using (3.17), and the middle plot shows the number of harmonics varying

over time where b0,i(n) is used with oscillators formed from (3.22). The sidebands in the top

plot are the same over the course of the signal, but the higher frequency sidebands die out over

time in the middle plot as b0,i(n) increases from −1 to 0. The middle and bottom plots can be

used to compare time-varying number of harmonics between zc,i oscillators using (3.19) and z0,i

oscillators using (3.22). In the bottom plot, it is clear that Bi(n) creates variations in both the

number of harmonics and pitch as n increases. In the middle plot, b0,i(n) changes the number of

harmonics without affecting the frequency trajectories.

Figure 4.9 shows how varying the number of harmonics can be used to delay the appear-

ance of higher frequency components, an effect known to occur with cymbals. Both graphs

use z0,i oscillators with loopback FM MS and linearly decreasing b0,i(n) functions to modulate

the number of harmonics. A cascade of frequency components can be seen in the first 50ms of

the bottom graph. To create this effect, the higher modal components have delayed amplitude

envelopes wi(n) and b0,i(n) functions where the delay increases linearly as modal frequency

increases. Although much work must be done in order to make this example sound like a cymbal,

this is a first step in creating those types of timbres.
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Figure 4.8: Static and time-varying number of harmonics for closed-form MS and time-varying
number of harmonics for loopback FM MS. Top: sideband levels are constant for static b0,i.
Middle: b0,i(n) modulates the number of harmonics independently of pitch. Bottom: Bi(n)
affects both the number of harmonics and pitch.

4.4.4 Static Sounding Frequency: ω0,i

For the static pitch loopback FM forms zc,i(n) in (3.14) and z0,i(n) in (3.17), the sounding

frequency can be controlled with ω0,i = 2π f0,i. For a desired ω0,i with zc,i, one would use (3.15)

and either 1) set Bi to a desired value and solve for ωc,i or 2) set ωc,i and solve for Bi.

Because the modal frequencies for percussive instruments are often inharmonic, the

sounding frequency for percussion synthesis is not clearly defined. With MS using z0,i(n)

oscillators, ω0,i = 2π fr,i is used to set the sounding frequencies of individual oscillators. For MS

using zc,i(n) oscillators, the carrier frequencies can be set to the modal frequencies: ωc,i = 2π fr,i

or the sounding frequencies can be set to the modal frequencies: ω0,i = 2π fr,i. According to

(3.15), when Bi = 0, ω0,i = ωc,i, and setting either ωc,i or ω0,i to the modal frequencies would

71



Loopback FM MS with linear b
0,i

100 200 300 400 500 600 700 800 900

Time (ms)

0

5

10

15

F
re

q
u

e
n

c
y
 (

k
H

z
)

Loopback FM MS with linear b
0,i

 and delayed higher frequencies

100 200 300 400 500 600 700 800 900

Time (ms)

0

5

10

15
F

re
q

u
e

n
c
y
 (

k
H

z
)

Figure 4.9: Number of harmonics varying linearly with and without delayed appearance of
higher frequencies. In both graphs, the number of harmonics is varying linearly for each of five
modal components. In the bottom graph, an additional delay is added to higher frequency modal
components to imitate effects that are frequently observed with cymbals.

create the same output. When Bi is large and close to 1 or −1, ω0,i will be a lower frequency

than ωc,i. This means that using ωc,i = 2π fr,i produces lower sounding frequencies while setting

ω0,i = 2π fr,i produces higher sounding frequencies, which will most likely produce aliasing

effects as described in Sections 3.7 and 4.4.1. Figure 4.10 demonstrates that when B is close to 1,

ωc,i = 2π fr,i creates an output where the individual spectral components can be clearly seen while

ω0,i = 2π fr,i creates a noisy output as higher frequencies contribute to extreme aliasing effects.

4.4.5 Pitch Glides: Bi(n) and ω0,i(n)

With a time-varying loopback FM oscillator zc,i(n) given by (3.19), a pitch glide can be

added by varying Bi(n) over time. This also produces timbral changes. A pitch glide can be

created with a closed form loopback FM oscillator, z0,i(n) in (3.22), by varying ω0,i(n) over time

as described in Section 3.9. To modify the pitch independently of the number of harmonics,

b0,i(n) should be held constant for all values of n. Examples of possible pitch glides are elaborated

in Sections 3.10.1 and 3.10.2. Note that each modal component is associated with its own pitch

glide, so different pitch glide functions can be combined in a single MS signal to create interesting
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Figure 4.10: Loopback FM spectrograms for ωc,i = 2π fr,i (top) and ω0,i = 2π fr,i (bottom). The
top and bottom signals are generated using the same three modal frequencies with B = 0.9.

timbres. The two spectrograms in Figure 4.11 are loopback FM MS signals with five modal

components. In the upper graph, all pitch glides are linear as described in 3.10.2. In the bottom

graph, the pitch glides alternate between linear and exponential. The combination of pitch glide

types contributes to a more complex timbre.
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Loopback FM MS with alternating linear/exponential pitch glides
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Figure 4.11: Loopback FM MS pitch glide with all linear pitch glides or alternating linear and
exponential pitch glides. The upper graph uses all linear pitch glides while the lower graph
alternates between linear and exponential pitch glides to create a more complex sound.

As described in Section 4.4.1, differences between using oscillators formed with zc,i(n) or
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z0,i(n) can be observed when ωc,i is high, and this effect occurs with pitch glides. Figure 4.12

shows the high carrier frequency difference for a pitch glide over three modal frequencies using

MS with zc,i(n) and z0,i(n). The pitch glide is created with Bi(n) = 0.9999n, so the number of

harmonics also changes. At higher carrier frequencies, MS with zc,i(n) creates noise-like output

for the first 100ms and more spectral components than MS with z0,i(n) from 100−250ms. From

300ms through the remainder of the signal, the frequency components are more similar.
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Figure 4.12: MS using zc,i(n) vs. z0,i(n) oscillators at high carrier frequencies with a pitch glide
produce different spectrograms for the first 250ms. The lowest oscillator has a carrier frequency
of 4000 Hz.

4.4.6 Decay Time: wi(n)

The decay time for the percussion signal can be controlled through the amplitude envelopes

wi(n). A natural sounding way to set these envelopes is to model them as exponentially decreasing

envelopes over time:

wi(n) = A0,ie−nT/τw,i, (4.16)

with different initial amplitude values A0,i, as shown in Figure 5.10, and/or different decay

constants τw,i.

We can specify the decay time in seconds for each modal component using a measurement,

frequently seen in reverberation studies, called the T60. This is defined as the time, in seconds,
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for the signal to decay by 60dB. For each modal component, we choose an initial amplitude value

A0,i so that wi(0) = A0,i and a T60,i value in seconds. Let n60,i = T60,i fs be the time in samples

that it takes for the signal to decay by 60dB. Then, we calculate the value that is 60dB down from

the initial amplitude as

A60,i =
A0,i

1060/20 . (4.17)

Using (4.16) and n = n60,i, we have

wi(n60,i) = A60,i = A0,ie−n60,iT/τw,i, (4.18)

and τw,i can be found using

τw,i =−
n60,iT

log(A60,i/A0,i)
. (4.19)

A set of amplitude envelopes wi(n) can now be calculated using (4.16). An example of a set of

envelopes for five modal components is shown in Figure 4.13. Each of the amplitude envelopes is

given a different T60,i value and initial amplitude value A0,i. For natural sounding results, the lower

frequency modal components should have longer T60,i times and larger initial amplitudes than the

higher frequency modal components. This means that the lower frequency modal components

should pair with the blue, red, and orange amplitude envelopes.

If one would like to specify an overall decay time, wg(n) can be used as the global

amplitude envelope. After loopback FM MS has created a signal m(n) and after any sonic

enhancements, we are left an output signal y(n). Multiplying y(n) with wg(n) applies a global

decay to the signal so that the signal lasts as long as the user desires. wg(n) can be calculated

with a T60 parameter and (4.16) using the same process that was covered previously for wi(n).
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Figure 4.13: Exponentially decaying amplitude envelopes for five modal components. Each
amplitude envelope has a different T60,i and initial amplitude value A0,i.

4.5 Musical Parameters for the Time-Varying 2nd-Order

Allpass Filters

This section covers parameters for the 2nd-order allpass filters and how they affect the

resulting percussion synthesis output. Setting the parameters for these allpass filters can be tricky,

so we begin by exploring how each of the parameters affects a single, sinusoidal oscillator input,

followed by how each of the parameters affects a single, loopback FM oscillator input. We build

up and explore how the parameters influence MS with sinusoidal oscillators and finally how the

parameters change the sound when MS is combined with loopback FM oscillators.

4.5.1 Time-Varying 2nd-Order Allpass Filter with a Single Sinusoidal

Oscillator Input

For a sinusoidal input, the time-varying 2nd-order allpass filter creates a magnitude

spectrum as shown in Figure 4.14. In that figure, fπ = 5500 Hz fm = 500 Hz, M = 1000, and

fb = 100. Peaks in the magnitude spectrum appear at fπ± k fm for k = 0,1,2, · · · . The largest
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peak in the spectrum in this figure is at fπ = 5500 Hz. Increasing M increases the bandwidth

of the sidebands, creating a brighter timbre. fb affects the amplitude of the peak at fπ and the

sideband amplitudes. How fb affects the peak levels is dependent on fπ. As fb increases from 0

to a value F , the amplitude of the peak at fπ decreases while the sidebands increase in amplitude.

This creates a brighter and more nasal-sounding timbre. As fb increases beyond F , the level of

the peak at fπ increases while the amplitudes of the sidebands decrease. The timbre darkens and

approaches a pure sinusoidal tone. F is dependent on fπ and the exact equation for this value is

left for future research.

Like FM, the 2nd-order allpass filter is not bandlimited, so aliasing will occur if fπ is

set extremely high or low with large M and fm values. This means that there will be additional

frequency components in the spectrum other than fπ ± k fm as shown in Figure 4.15. The

parameters for this figure are all the same as those in Figure 4.14 except that fπ = 300 Hz.
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Sinusoid filtered by a time-varying allpass mag spectrum

Figure 4.14: Time-varying allpass filter for a single oscillator. fπ = 5500 Hz fm = 500 Hz,
M = 1000, and fb = 100. Peaks occur at 5500± k500 for k = 0,1,2, · · · .
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Figure 4.15: Time-varying allpass filter for a single oscillator with aliasing. fπ = 300 Hz
fm = 500 Hz, M = 1000, and fb = 100. Peaks occur at 300± k500 for k = 0,1,2, · · · . Peaks
that do not follow that equation are due to aliasing/foldover across the x-axis.
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4.5.2 Time-Varying 2nd-Order Allpass Filter with a Single, Static

Loopback FM Oscillator Input

The top of Figure 4.16 displays the magnitude spectrum of a static loopback FM oscillator,

and the bottom shows that same static loopback FM oscillator output filtered by a time-varying

2nd-order allpass filter. The allpass parameter fπ is set equal to f0 so that sidebands are formed

around the main peak of the static loopback FM oscillator. The rest of the allpass parameters are

fm = 500 Hz, M = 1000, and fb = 100. B = 0.9 for the loopback FM oscillator so that a large

number of sidebands are created. The peaks that are output are those expected from the static

loopback FM input, indicated by the dotted red lines and occurring at frequencies f0± k f0 for

k = 0,1,2, · · · , as well as sidebands that are spaced apart according to the modulation frequency

fm. The peaks that appear follow the equation f0± k f0±q fm for q = 0,1,2, · · · . Considerable

aliasing will most likely occur across the x = 0 and/or x = fs/2 axis, depending on which axis f0

is closest to and how large fm is, and the spectrum will grow increasingly complex.
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Figure 4.16: Time-varying allpass filter with a static loopback FM oscillator. Top: static
loopback FM oscillator spectrogram with f0 = 700, B = 0.9. Bottom: time-varying allpass
filter with the static loopback FM oscillator from the top graph as input with fπ = f0 = 700 Hz
fm = 500 Hz, M = 1000, and fb = 100. Peaks occur at 700± k700± q500 for k = 0,1,2, · · ·
and q = 0,1,2, · · · . The dotted red lines indicate expected frequencies from the static loopback
FM oscillator. All other unmarked peaks are a result of filtering the loopback FM output with
the time-varying allpass filter.
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4.5.3 Time-Varying 2nd-Order Allpass Filter with a Single, Time-varying

Pitch and Number of Harmonics Loopback FM Oscillator Input

Figure 4.17 compares a time-varying loopback FM oscillator spectrogram with a time-

varying allpass filtered version of that same loopback FM oscillator. The pitch and the number of

harmonics of the loopback FM oscillator are being varied over time with B = 0.9999nT . The time-

varying allpass filter used to filter the loopback FM oscillator has parameters fπ = f0 = 700 Hz

fm = 500 Hz, M = 1000, and fb = 100. The allpass filtered version is clearly noisier than the

one that has not been filtered. The pitch glide also does not extend as high in frequency as the

non-filtered version.

4.5.4 Time-Varying 2nd-Order Allpass Filter with Multiple Sinusoidal

Oscillator Inputs (MS)

The nonlinear, time-varying allpass filters can be used with traditional MS to create richer

sounds with more nonlinearities. Analyzing the parameters for this simpler case is helpful for

understanding how the parameters affect more complex oscillators, like loopback FM oscillators.

Each sinusoid si(n) is filtered by a 2nd-order time-varying allpass filter APi(n) as

APi(n) =−cisi(n)+di(n)(1− ci)si(n−1)+ si(n−2)− (4.20)

di(n)(1− ci)APi(n−1)+ ciAPi(n−2) (4.21)

To simplify parameter setting for the time-varying allpass filter, fπ,i is set equal to each

modal frequency fr,i. This allows us to create and control the sidebands around each individual

modal frequency with the remaining parameters Mi, fm,i, and fb,i. The allpass filtered sinusoids

are then windowed and summed for the final output as shown in (4.12).

Figure 4.18 shows the time-varying allpass filtered MS spectrogram for 3 modal frequen-
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Figure 4.17: Time-varying allpass filter with a time-varying loopback FM oscillator. Top: time-
varying loopback FM oscillator spectrogram with f0 = 700, B = 0.9999n. Bottom: time-varying
allpass filter with the time-varying loopback FM oscillator from the top graph as input with
fπ = f0 = 700 Hz fm = 500 Hz, M = 1000, and fb = 100. The time-varying allpass filtered
version is noisier and the pitch glide does not extend as high in frequency as the non-allpass
filtered version.

cies. These modal frequencies are the same ones use to create Figure 4.3. Here, Mi = 1000,

fm,i = 500, and fb,i = 100. Compared to Figure 4.3, the allpass filtered one shows many more

sidebands around the modal frequencies. We can now examine how each of the allpass filter

parameters, Mi, fm,i, and fb,i, affect the output signal.
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Figure 4.18: Time-varying allpass filter with traditional modal synthesis. This example uses 3
modal frequencies with the lowest frequency set to 2000 Hz. Compared to Figure 4.3, sidebands
around the modal frequencies are evident in this graph as they result from the use of the nonlinear
allpass filters.

Timbre using Sideband Bandwidth Parameter: Mi

Figure 4.19 shows the spectrogram of sinusoidal MS with three components, where each

sinusoidal component has been filtered by its own time-varying allpass filter across different

values of Mi while other parameters are held constant. Mi is set to the same value for all three

modal components. As Mi increases, the bandwidth of the sidebands also increases, synthesizing

noisier and more complex signals.

Timbre using Sideband Spacing Parameter: fm,i

Figure 4.20 is a spectrogram of sinusoidal MS where each component is filtered with a

time-varying allpass filter for varying values of fm,i while other parameters are kept constant. As

fm,i increase in value for all three modal components, the spacing between the sidebands and

modal frequency peaks increases. When fm,i is small, beating frequencies are visible, as shown

in the top left figure, and the sound is buzzy and rough. As fm,i continues to increase from 100

to 3000, the sound becomes brighter and more piercing. As fm,i grow very large, the spacing

between the modal frequencies and the sidebands becomes large enough to fill the entire auditory

spectrum.
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Timbre Brightness/Darkness using Secondary Sideband Bandwidth Parameter: fb,i

Figure 4.21 shows how varying fb,i, and holding other parameters constant for the time-

varying allpass filters used with traditional sinusoidal MS affects the output. At first, when fb,i

increases, the bandwidth of the sidebands increases and the timbre becomes brighter. For the

modal frequencies used here, in between fb,i = 1000 and fb,i = 10000, the effect of increasing fb,i

begins to decrease the bandwidth of the sidebands. The value at which the effect of increasing fb,i

changes is different depending on the modal frequencies and is left as a topic for future research.

4.5.5 Time-Varying 2nd-Order Allpass Filter with Loopback FM MS

The analysis of how the time-varying allpass filter parameters affect the synthesis output

is extended here for loopback FM MS.

Loopback FM MS with Static Pitch and Number of Harmonics

The time-varying allpass filters can be applied to loopback FM MS. Figure 4.22 shows the

effect of using the time-varying allpass filters on static loopback FM oscillators. The top graph is

loopback FM MS without the time-varying allpass filters, and the bottom is that same loopback

FM MS but with the addition of time-varying allpass filters. In this example, fπ,i = fr,i = f0,i,

fb,i = 100, Mi = 2000, and fm,i = 1000. There is clearly more spectral information in the bottom

graph around 8 kHz and below. As in many of the time-varying allpass filter examples, the allpass

filtered loopback FM MS sounds noisier, more complex, and as if the sound has a fuller body.

Loopback FM MS with Pitch Glides and Time-Varying Number of Harmonics

In Figure 4.23, the time-varying allpass filters are applied to loopback FM MS when

the loopback FM oscillators are varying over time. The top graph is the time-varying loopback

FM MS without any filtering and the bottom is that same time-varying loopback FM MS with
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time-varying allpass filters applied to each oscillator. The parameters for the time-varying allpass

filters are set as they are in Section 4.5.5. The effect of the time-varying allpass filters can be seen

as more spectral energy below the 8 kHz mark, contributing to a noisier output.

4.6 Musical Parameters for Commuted Synthesis

4.6.1 Attack Sharpness: Raised Cosine Envelopes

With raised cosines envelopes, small values of L create sharper sounding attacks, while

longer values of L increase the presence of low frequencies in the output and result in bass-heavy

sounds. Intuitively, L is proportional to the mass of a hammer or mallet used to excite a drum

head: a longer L means a hammer/mallet with greater mass.

4.6.2 Attack Noisiness: Filtered Noise Bursts

For filtered noise burst excitations, a longer noise burst td and higher bandpass frequency

cutoff fhigh will create a noisier attack. flow and fhigh should be tuned to filter out undesired

frequencies. For example, for a high pitched percussion sound, the lower frequencies could be

filtered out from the noise burst by setting flow to a higher frequency.

4.6.3 Timbre: Acoustic Resonator Impulse Response r(n)

The acoustic resonator filters the synthesis output, so the timbre can be further shaped

by the frequencies present in r(n). For an expansive and large sound, a room impulse response

with a long T60 may work well while for a shorter, tuned sound, the impulse response of a small,

acoustic tube model could be used.
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4.7 Conclusions

This chapter includes material coauthored with Professor Tamara Smyth as it appears in

Jennifer Hsu and Tamara Smyth. Percussion synthesis using loopback frequency modulation

oscillators. In Proceedings of the Sound and Music Computing Conference, Málaga, Spain, May

2019.

The dissertation author was the primary researcher and author of this paper. This chapter

presented a real-time method to synthesize novel, abstract percussion sounds using MS with

loopback FM oscillators. Loopback FM creates complex spectra and pitch glides similar to the

nonlinear effects observed in existing percussion instruments. The synthesis technique allows for

parametric control of musical dimensions including sounding frequency, decay time, number of

harmonics, and pitch glide. Two methods to enhance the sound with more nonlinearities by use

of time-varying allpass filters and space through commuted synthesis were also examined. Next,

in Chapter 5, we walk through an example of how to synthesize the sound of a kick drum using

this percussion synthesis method and explore sound examples including those of a marimba, tom

tom, and circular plate.
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Figure 4.19: Spectrogram of various Mi values. When Mi is increased for the time-varying
allpass filtered traditional MS, the bandwidth of the output signal increases, creating a brighter
and more nasal-sounding output.
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Figure 4.20: Spectrogram of various fm,i values. Increasing fm,i for the time-varying allpass
filtered traditional MS increases the spacing between the sidebands and modal frequency peaks.
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Figure 4.21: Spectrogram of various fb,i values. The effect of changing the value of fb,i for the
time-varying allpass filtered traditional MS is shown through the spectrograms. Increasing fb,i
increases the bandwidth of the signal up until somewhere between fb,i = 1000 and fb,i = 10000,
at which point, the bandwidth begins to decrease as fb,i increases.
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Loopback FM MS spectrogram
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Figure 4.22: Time-varying allpass filter on static loopback FM MS. Top: Static loopback FM
MS. Bottom: Time-varying allpass filters with static loopback FM MS. The difference between
the two signals can be seen around 8 kHz and below where there is much more information in
the bottom graph.

Loopback FM MS with pitch glide spectrogram
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Figure 4.23: Time-varying allpass filter on time-varying loopback FM MS. Top: Time-varying
loopback FM MS. Bottom: Time-varying allpass filter for time-varying loopback FM MS.
Results are similar to the static example where the difference between the two output signals is
around 8 kHz and below where there is much more information in the bottom graph.
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Chapter 5

Loopback FM Percussion Synthesis

Examples

5.1 Introduction

Using the percussion synthesis method described in Chapter 4, a wide variety of percussive

sounds can be synthesized. In Section 5.2, we walk through an example of how to synthesize

the sound of a kick drum using this percussion synthesis method. Section 5.3 covers synthesis

examples of a snare drum, marimba, tom tom, and a circular plate. Audio examples are included

as supplementary material.

5.2 Synthesis Walkthrough Example: the Kick Drum

This section demonstrates how to synthesize a simple kick drum sound using the loopback

FM percussion synthesis method with a single z0(n) or zc(n) oscillator. This section gives the

reader an intuitive idea of how to set the parameters for the loopback FM MS percussion synthesis

method. We cover how to create the same pitch glide with both loopback equations and ways to
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drastically change the timbre so that exceeds beyond our physical expectations of the sound of a

kick drum.

5.2.1 A Simple Kick Drum with Static Pitch and Number of Harmonics

To synthesize a kick drum with static pitch and number of harmonics using loopback FM

MS with z0,i(n) oscillators, we must specify values for three parameters:

• f0,i = fr,i: sounding frequency set to the modal/resonant frequency

• b0,i: number of harmonics (timbre)

• wi(n): amplitude envelope

A kick drum can be synthesized using a single oscillator, so the number of modal components,

N f = 1, and we only need to give values for f0,0 and b0,0 and an amplitude envelope for w0(n). If

we had more than one modal component, we would need to decide on more values and amplitude

envelopes. For example, if N f = 3, then we would have values for f0,i and b0,i and amplitude

envelopes for wi(n) for i = 0,1, and 2. Even though this example only consists of a single modal

component, we use notation as if we have many modal components (i.e. f0,0 instead of f0) so that

the concepts can be extended to synthesis using multiple modal components.

For the modal frequency, we choose f0,0 = 100 Hz, because intuitively, a kick drum should

have a low frequency. The number of harmonics parameter b0,0 can be kept small and close to 0

so that not too many sidebands appear in the spectrum. b0,0 = 0.2 works well. An exponentially

decaying amplitude envelope is commonly used for percussive sounds and performs well with the

kick drum example. As described in Section 4.4.6, an exponentially decaying amplitude envelope

can be found with an initial amplitude A0,i and a T60,i value. Here, we let A0,0 = 1 and T60,0 = 0.8

seconds, solve for τw,0 and compute the exponentially decaying amplitude envelope w0(n). The

loopback FM signal using a z0,i(n) oscillator can now be found using (3.17). To create the simple

kick sound, z0,0(n) should be enveloped with w0(n) so that m(n) = z0,0(n)w0(n).
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To create a similar signal with a zc,i(n) oscillator, B0 can be computed from b0,0 = 0.2 by

rearranging (3.18) into

Bi =−
2b0,i

b2
0,i +1

. (5.1)

fc,0 can be found by rearranging (3.15) and using it with the newly calculated B0 and angular

frequencies, ω0,0 = 2π f0,0 and ωc,0 = 2π fc,0. zc,0(n) can be computed using (3.14) and multiplied

with w0(n) to create the output signal.

Figure 5.1 graphs the time-domain signal and the spectrogram of the kick drum with static

pitch and number of harmonics. An audio example is provided as the supplementary audio file

hsu kick staticPitchAndTimbre.wav
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Kick drum example: static pitch and timbre

Figure 5.1: Kick drum example with static pitch and number of harmonics. The sound is
synthesized using a single z0,i(n) oscillator with sounding frequency f0,0 = 100 Hz and number
of harmonics parameter b0,0 = 0.2.

5.2.2 Adding a Pitch Glide

In this section, we create a downwards pitch glide, similar to the “pitch sigh” of the Roland

TR-808 bass drum discussed in [62]. We begin by choosing our starting and ending frequencies

and the type of pitch glide that we want. In the previous section, the sounding frequency is set

according to f0,0 = 100 Hz. Let us create an exponentially decreasing pitch glide so that the
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ending frequency is 40 Hz. Using the variables and equations from Section 3.10.2, fx,0 = 100

and fy,0 = 100. The time at which we want to be close to fy,0 is td,0 = 0.6 seconds.

Using (3.31), we set h0(0) = 1 and h0(nd) = 0.001 to find that A0,0 = 1. The decay

constant can be found using (3.32), which, for fs = 44100 calculates as τh,0 = 0.0869. The

equation for h0(n) now looks like

h0(n) = e−nT/0.0869 (5.2)

From (3.33), h0(n) can be scaled between our starting and ending pitch glide frequencies, fx,0

and fy,0, so that f0,0(n) takes on the form

f0,0(n) = (100−40)∗h(n)+40. (5.3)

The pitch glide, f0,0(n), is plotted in Figure 5.2. To create the pitch glide with our z0,0(n) kick

drum oscillator, we must calculate θ0,0(n) with (3.34) and use it along with b0,0 in (3.22). Linear

and/or square root pitch trajectories can be made through a similar process with the equations and

instructions given in Section 3.10.2.
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Figure 5.2: Kick drum example pitch glide f0,0(n). The pitch glide exponentially decreases
from 100 Hz to 40 Hz and can be used with zc,i or z0,i oscillators.

To create this same pitch glide with the zc,0(n) oscillator, we first find ω0,i(n) = 2π f0,0(n),

then we set ωc,0 = ω0,0(1) = 2π fx = 2π100 so that ω0,0(n)≤ ωc,0 for all n. We then use (3.30)

to solve for B0(n), which is shown in Figure 5.3.
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Figure 5.3: Kick drum example: B(n) for exponentially decaying pitch glide. When using the
zc,i(n) oscillator to synthesize the kick drum, B(n) is used to create a pitch glide. This will create
changes in both pitch and number of harmonics.

A graph of the synthesized kick drum with a pitch glide using both kinds of loopback FM

oscillators is shown in Figure 5.4. With the zc,i(n) oscillator, Bi(n) controls pitch and number

of harmonics. The kick synthesized using the zc,i(n) oscillator sounds much brighter than the

kick synthesized using the z0,i(n) oscillator and this is also reflected in the spectrograms in

Figure 5.4. Audio examples of these two signals are provided as supplementary audio files

hsu kick pitchGlidez0.wav and hsu kick pitchGlidezc.wav
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Kick drum example: exponentially decreasing pitch glide

Figure 5.4: Kick drum example using z0,i(n) and zc,i(n) oscillators with a pitch glide. (Top)
z0,0(n) synthesized with an exponentially decreasing pitch glide from 100 Hz to 40 Hz with
b0 = 0.1 and (Bottom) zc,0(n). The red line is the exponentially decreasing pitch glide f0,0(n).
Because the pitch glide is controlled with B0 in the bottom plot, the number of harmonics is
affected and this can be seen as slightly more energy in the 500 Hz frequency range.
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5.2.3 Varying the Number of Harmonics Over Time

For the kick drum created using the z0,0(n) oscillator, we can control how the number of

harmonics varies over time by creating a function for b0,0(n). Section 3.10.3 shows how b0,0(n)

can be set to a linear or exponential function to vary the number of harmonics over time. For the

kick drum, we use a linearly decreasing function so that b0,0(n) decreases from 0.5 to 0 over the

course of the signal. This creates a signal that has more higher frequency content right around

the beginning of the signal, giving the attack a bit more impact. For a more realistic sounding

signal, one may like to decrease b0,0(n) exponentially rather than linearly. An example of this

signal is plotted in Figure 5.5 and an audio example is provided with the supplementary audio

files as hsu kick pitchAndTimbreVariation.wav.
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Figure 5.5: Kick drum example using a z0,0(n) oscillator with a pitch glide and linearly
decreasing b0(n). Compared to the upper plot of Figure 5.4, there is more high frequency energy
at the beginning of the signal. This is caused by the larger b0(n) value. That high frequency
energy falls away over time as b0(n) decreases to 0.

Note that the kick drum created using the zc,0(n) oscillator already has a time-varying

number of harmonics because the pitch and harmonics are both controlled by a single parameter,

B0(n).

5.2.4 Applying 2nd-Order Time-varying Allpass Filters for Further Non-

linearities

If we were synthesizing a realistic kick drum, we would most likely end our synthesis

at the previous step, but for the purposes of showing how the method fits together, in this
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section, we discuss how to further shape the timbre using the 2nd-order time-varying allpass

filters described in 4.3.2. In order to drastically change the sound, we add extra sidebands to the

signal by setting the time-varying allpass filter parameters according to fm,0 = 100, M0 = 120,

fb,0 = 2500, and fπ,0 = f0,0 = 100 . This changes the timbre to create an effect that sounds

similar to a flam, adding dimension and making the sound a bit more hollow. A spectrogram of

this synthesis is plotted in 5.6 and an audio example is provided with the supplementary files as

hsu kick timeVaryingAP.wav. If Mi and fm,i are set to much larger values, such as 1000 or 2000,

metallic timbres begin to emerge.
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Figure 5.6: Kick drum example: a 2nd-order time-varying allpass filter applied to the kick drum
synthesis using the z0,0(n) oscillator. Compared to Figure 5.5, there is more energy in this
spectrogram from around 300 to 700 Hz in the beginning part of the signal.

5.2.5 Applying Commuted Synthesis for a Sense of Space

Commuted synthesis can be applied to the signal to give the sound a sense of space

or to process an existing recording. Commuted synthesis can be applied whether or not the

time-varying allpass filters have been used. Parameters for commuted synthesis are presented in

Section 4.3.3. For the kick drum, any type of low frequency hit or thump could perform well as

the acoustic resonator. Here, we use the sound of a taiko hit retrieved from freesound.org, and

the taiko hit is processed using the loopback FM kick sound. We use a raised cosine excitation

because it is slightly softer sounding than the noise burst and gives a sound that is more commonly

associated with “membrane” timbres. To create a sharper attack, L is set to a small number of

samples. Here, L = 4 samples. Figure 5.7 is a spectrogram of commuted synthesis applied to
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the kick signal after the time-varying allpass filter has been used. Compared to Figure 5.6, the

spectrogram in Figure 5.7 looks more smeared and the signal takes longer to decay. Most signals

tend to look more smeared after commuted synthesis due to the convolution operation. The time

it will take for the signal to decay is the maximum over the length of the loopback FM MS signal

and the acoustic resonator impulse response. An audio example of the commuted synthesis kick

signal is included in the supplementary audio files as hsu kick commutedSynthesis.wav.
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Figure 5.7: Kick drum example: commuted synthesis applied to the kick drum signal. The
loopback FM kick drum signal is being used to process the sound of a taiko drum through
commuted synthesis. The acoustic resonator impulse response is a recording of a struck taiko
drum, and the excitation is a 4-sample long raised cosine function.

5.3 Synthesis Examples

While the loopback FM percussion synthesis method is capable of creating a variety of

percussive sounds, this section covers five sound synthesis examples: the snare drum, marimba,

wood block, tom tom, and circular plate. Although these modal frequencies are associated with

real, physical instruments, the aim of this synthesis is not to recreate the naturally occurring

sounds. Rather, we seek to synthesize many different types of sounds with nonlinearities similar

to those that occur in percussion instruments. Although the modal frequencies for these examples

are retrieved from other sources, the pitch trajectories have been carefully chosen by the author

to illustrate the capabilities of this synthesis method. For these examples, differences between

percussion synthesis using traditional and loopback FM MS are compared for the same modal
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frequencies, decaying amplitude envelopes, and commuted synthesis parameters. Time-varying

allpass filters are also applied to these examples. Sound examples are included as supplementary

material as noted within each synthesis example section.

5.3.1 Snare Drum

In this example, the sound of a snare is synthesized using two loopback FM oscillators

z0(n), which are set to modal frequencies retrieved from [16]. The modal frequencies are

[185,330], and they decrease exponentially to [140,280]. b0,i, which control the number of

harmonics, are both set to 0.5 and do not vary over time. For the amplitude envelopes, the

lowest modal frequency is given an initial amplitude of 1 and that decreases exponentially with

a T60,0 = 0.6 seconds. The other modal frequency is given an initial amplitude of 0.2 with

T60,1 = 0.5 seconds. The global amplitude envelope wg(n) is the same as the amplitude envelope

for the lowest modal frequency. For commuted synthesis, the input excitation is a noise burst

that lasts for 0.6 seconds and bandpass filtered between 120 and 8000 Hz, as snare drums are

frequently synthesized using additive synthesis with noise bursts. The acoustic resonator is simply

an impulse that has a value of 1 for the first sample and is 0 everywhere else. For the time-

varying allpass filter versions of the snare, the parameters were set according to fb,i = [100,200],

Mi = [1000,250] and fm = [300,2000].

Figure 5.8 shows the four variations for the snare drum synthesis and the sound examples

are included as supplementary files called hsu snare traditionalMS.wav,

hsu snare loopbackFM.wav, hsu snare traditionalMSTimeVaryingAP.wav, and

hsu snare loopbackFMTimeVaryingAP.wav. In the graphs, the loopback FM MS version appears

to have more energy than the traditional MS version from 0 to 1 kHz at the beginning of the

signal. The time-varying allpass filter versions have much more energy around the 2 kHz region

around the beginning of the signal. In comparing the sounds, the traditional MS without the pitch

glide sounds quite similar to an electronic snare drum. With the pitch glide, the synthesis takes
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on the characteristics of an electronic tom tom drum. The time-varying allpass filters cause the

timbre to sound much more metallic.

5.3.2 Marimba

Figure 5.9 compares the spectrograms of a marimba modeled as a bar with two free

ends using traditional and loopback FM MS. This example sets f0,i to seven modal frequencies,

retrieved from [51], and calculated as

f0,i =


440, for i = 0

440 (2i+3)2

3.0112 , otherwise
(5.4)

The marimba example is created using zc,i(n) oscillators and a pitch glide made by setting Bi(n) =

0.9999n. The amplitude envelopes are decaying exponentials where initial amplitudes decrease

exponentially from 1 for the first (lowest) modal frequency to 0.01 for the seventh (highest) modal

frequency. Figure 5.10 is a plot of the amplitude envelopes used. For commuted synthesis, the

excitation is an 8-sample long raised cosine excitation. The acoustic resonator is an ideal, open-

closed tube synthesized using traditional MS. The marimba examples created using traditional MS

and loopback FM MS with commuted synthesis are shown in the upper two graphs of Figure 5.9.

The pitch glide and the delay in higher frequency components during the attack in the loopback FM

MS version can be clearly seen. Examples of these syntheses are included in the supplementary

audio files as hsu marimba traditionalMS.wav and hsu marimba loopbackFM.wav.

The two lower figures of Figure 5.9 show the marimba synthesized using traditional MS

and loopback FM MS with time-varying allpass filters applied. These examples have not been

processed by commuted synthesis. Sorted by lowest frequency modal component to highest fre-

quency, the parameters for the allpass filters are: Mi = [1000,2000,1500,3000,2300,6000,2500],

fm,i = [78,31,42,83,100,400,300], and fb,i = 100[1,2, · · · ,N f ]. The time-varying allpass filters
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add modulation around the main frequency components in both the traditional MS and loopback

FM MS graphs. Perceptually, the examples have a “buzzy” timbre. Sound examples are included

as hsu marimba traditionalMSTimeVaryingAP.wav and

hsu marimba loopbackFMTimeVaryingAP.wav.

5.3.3 Wood Block

Figure 5.11 shows the spectrograms of traditional MS and loopback FM MS, with and

without commuted synthesis, for the sound synthesis of a wooden block. The modal frequencies

for the wood block are found through a peak analysis of a wood block recording retrieved from

freesound.org. The 10 most prominent frequencies from this analysis were used for synthesis:

fr,i = [321.7,467.0,1545,589.5,703.9,846.5,

1545,1711.9,1993.2,2162.7]. (5.5)

The amplitude envelopes are quickly decaying exponentials. The initial amplitude of each of

the amplitude envelopes decreases exponentially from 1 for the first modal frequency to 0.01 for

the tenth modal frequency. The loopback FM MS example is created using z0,i(n) oscillators

with linear pitch glides that decrease from f0,i to f0,i
4 . The synthesis versions without commuted

synthesis can be seen in the upper two graphs of Figure 5.11. The linearly decreasing pitch glide

and high frequency components can be observed in the loopback FM MS graph. Audio examples

are provided as supplementary material and called hsu woodBlock traditionalMS.wav and

hsu woodBlock loopbackFM.wav.

The lower two graphs of Figure 5.11 show how commuted synthesis affects the results.

For commuted synthesis, the excitation is a 0.2-second long noise burst that has been bandpass

filtered from 120 Hz to 12000 Hz. The acoustic resonator is a recording of a struck guitar

body retrieved from freesound.org. The two commuted synthesis graphs look strikingly similar.
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Sonically, they sound similar as well, though the traditional MS with commuted synthesis version

seems to have a lower sounding frequency than that of the loopback FM MS with commuted

synthesis version. Examples of these syntheses are included with the supplementary audio files

as hsu woodBlock traditionalMSCommutedSynthesis.wav and

hsu woodBlock loopbackFMCommutedSynthesis.wav.

5.3.4 Tom Tom

The spectrogram of a tom tom synthesized using traditional vs. loopback FM MS is

shown in Figure 5.12 with and without commuted synthesis. The modal frequencies used to

synthesize the tom tom are from [51] and are set to

fr,i = 142 · [1,2.15,3.17,3.42,4.09,4.80,4.94] (5.6)

The amplitude envelopes are the same as those used for the marimba as shown in Figure 5.10.

The loopback FM MS synthesis uses z0,i(n) oscillators, b0,i =−0.3, and the pitch glide decreases

linearly from f0,i to f0,i
1.3 . The traditional MS and loopback FM MS versions without commuted

synthesis are plotted in the two upper graphs of Figure 5.12. There is more spectral energy up

to about 5 kHz for the loopback FM MS version, and the linearly decreasing pitch glide can

also be seen. For audio examples, see supplementary files hsu tomtom traditionalMS.wav and

hsu tomtom loopbackFM.wav.

The two bottom graphs of Figure 5.12 show the effects of commuted synthesis. The

excitation is a 0.02-second long noise burst filtered by a 2nd-order Butterworth bandpass filter

with frequency cutoffs at 120 Hz and 4000 Hz. The acoustic resonator is a recording of a

taiko drum retrieved from freesound.org, so the loopback FM MS tom tom signal is being

used to process the recording of the taiko drum. In Figure 5.12, there is more high frequency

energy for the loopback FM MS than for the traditional MS, especially in the beginning of the
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signal. In the “Loopback FM MS with CS” graph has some more frequency spreading around

the 1.5 to 3 kHz range. Perceptually, a strong pitch glide can be heard in the loopback FM

MS with commuted synthesis version. Audio examples for these two syntheses are included

with the supplementary audio files as hsu tomtom traditionalMSCommutedSynthesis.wav and

hsu tomtom loopbackFMCommutedSynthesis.wav.

5.3.5 Circular Plate

In Figure 5.13, loopback FM MS of a simply-supported circular plate is compared to

traditional MS of the same circular plate. Audio examples are provided as supplementary

files hsu circularPlate traditionalMS.wav and hsu circularPlate loopbackFM.wav. The modal

frequencies, retrieved from [51], are

fr,i = f0·[1,2.80,5.15,5.98,9.75,14.09, (5.7)

14.91,20.66,26.99]

where f0 = 0.2287cL(h/a2) for plate thickness h = 0.005m, plate radius a = 0.09m, and longi-

tudinal wave speed cL =
√

E/ρ(1−ν2) with Young’s modulus E = 2 ·1011N/m2, plate density

ρ = 7860kg/m3, and Poisson ratio ν = 0.3. The amplitude envelopes are decaying exponentials

over time. The initial amplitude of these envelopes decreases exponentially as frequency increases

from 1 for the lowest modal frequency to 0.5 for the highest modal frequency. By using zc,i(n)

oscillators and setting Bi = 0.99 for all oscillators, this loopback FM MS synthesis creates drastic

aliasing effects that result in an extremely “noisy” signal. Perceptually, the traditional MS output

sounds like a clean bell sound, while the loopback FM MS sounds more like a noisy, struck

cymbal. This difference can be clearly seen between the spectrograms plotted in Figure 5.13.

In Figure 5.14, commuted synthesis has been applied to the traditional MS and loopback

FM MS signals to add a sense of space. The excitation is a 16-sample long raised cosine envelope
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and the acoustic resonator is a room impulse response retrieved from echothief.com. Sound exam-

ples are included as supplementary files hsu circularPlate traditionalMSCommutedSynthesis.wav

and hsu circularPlate loopbackFMCommutedSynthesis.wav.

Figure 5.15 adds time-varying allpass filters to the signals from Figure 5.14. For all modal

components, the allpass filter parameters are Mi = 11500, fm,i = 1000, and fb,i = 2750. This

adds extra spectral components into the signal and gives both the traditional MS and loopback

FM MS signals an inharmonic, dissonant sound. The loopback FM MS version also sounds like

it is set a bit lower in frequency. The supplementary audio files include examples of these signals,

and they are named hsu circularPlate traditionalMSTimeVaryingAPCommutedSynthesis.wav and

hsu circularPlate loopbackFMTimeVaryingAPCommutedSynthesis.wav.

5.4 Conclusions

This chapter includes material coauthored with Professor Tamara Smyth as it appears in

Jennifer Hsu and Tamara Smyth. Percussion synthesis using loopback frequency modulation

oscillators. In Proceedings of the Sound and Music Computing Conference, Málaga, Spain, May

2019.

The dissertation author was the primary researcher and author of this paper. This chapter

has given a step-by-step explanation of how to synthesize the sound of a kick drum using the

loopback FM percussion synthesis method. Synthesis examples using the modal frequencies of

a snare, marimba, wood block, tom tom, and circular plate have been presented. In Chapter 6,

we introduce a real-time software application of this synthesis method. We also compare this

technique to previous percussion synthesis models, review the musical implications of such an

instrument, and consider future research directions.
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Snare drum synthesis example

Figure 5.8: Traditional vs Loopback FM MS with and without time-varying allpass filters for
the snare drum synthesis.
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Marimba synthesis example

Figure 5.9: Traditional vs Loopback FM MS with and without time-varying allpass filters for
the marimba synthesis. The marimba synthesis uses the modal frequencies of an ideal bar with
two open ends. The excitation is a raised cosine and the acoustic resonator is an ideal tube
synthesized using traditional MS. Commuted synthesis has been applied to the top two signals,
and time-varying allpass filters have been applied to the bottom two graphs.
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Figure 5.10: Amplitude envelopes for marimba synthesis. The marimba synthesis ampli-
tude envelopes are decaying exponentials. The initial amplitude of the envelopes is inversely
proportional to the modal frequency of the oscillator that is paired with the envelope.
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Wood block synthesis example

Figure 5.11: Traditional (top) vs. Loopback FM MS (bottom) using prominent frequencies
picked out from a recording of a wood block. For the two commuted synthesis examples (the
two lower graphs), the excitation is a filtered noise burst and the acoustic resonator impulse
response a recording of a struck guitar body.

106



Traditional MS

0 0.5 1 1.5 2

Time (secs)

0

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

Loopback FM MS

0 0.5 1 1.5 2

Time (secs)

0

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

Traditional MS with CS

0 0.5 1 1.5 2

Time (secs)

0

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

Loopback FM MS with CS

0 0.5 1 1.5 2

Time (secs)

0

5

F
re

q
u
e
n
c
y
 (

k
H

z
)

Tom tom drum synthesis example

Figure 5.12: Traditional vs Loopback FM MS for a tom tom with and without commuted
synthesis. Traditional (top) vs. Loopback FM MS (second from the top) using the modal
frequencies of a tom tom. Commuted synthesis has been applied to the signals in the two bottom
graphs so that the loopback FM MS signal is being used to process a recording of a taiko drum.
The excitation is filtered noise.
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Circular plate synthesis example

Figure 5.13: Traditional vs Loopback FM MS for a circular plate. Traditional (top) vs. Loopback
FM MS (bottom) using the modal frequencies of a simply-supported circular plate. The loopback
FM MS version sounds like a struck piece of sheet metal, possibly due to aliasing, while the
traditional MS version sounds like a bell.
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Circular plate synthesis example with CS

Figure 5.14: Traditional vs Loopback FM MS for a circular plate with commuted synthesis.
Commuted synthesis is applied to the signals from Figure 5.13. The excitation is a raised cosine
and the resonator is a room impulse response.
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Circular plate synthesis w/ time-varying APFs and CS

Figure 5.15: Traditional vs Loopback FM MS for a circular plate with commuted synthesis and
time-varying allpass filters. Time-varying allpass filters have been applied to the signals from
Figure 5.14. The result is a more inharmonic sounding signal from the traditional MS and a
lower pitched signal from the loopback FM MS version.
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Chapter 6

Applications and Conclusion

6.1 Introduction

This work began by briefly reviewing existing percussion synthesis techniques including

MS, FDMs, and DWMs along with nonlinear effects that occur in percussion instruments. We

then took an in-depth look at percussion synthesis models that inspired the research covered in

this document. One of the key ideas is that incorporating nonlinearities in percussion synthesis

models is more computationally expensive than a synthesis model without nonlinearities [7, 5].

Another important notion is how previous research that sought to derive an analytical solution

to the 2D DWM paved the pathway for moving from a physics-based approach to an abstract

synthesis method. We found that the transfer function for a 2D DWM with a single input and

output point could be decomposed into a sum of resonating filters. This configuration reflects

modal synthesis in both theory and implementation, and so we moved from the physical to the

abstract domain.

By moving to a modal approach and replacing the resonating filters (or sinusoids) with

nonlinear, loopback FM oscillators, we are able to synthesize novel, abstract percussion sounds

using the loopback FM percussion synthesis method. Loopback FM creates complex spectra
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and pitch glides similar to the nonlinear effects observed in existing percussion instruments.

Enhancements for creating noisy and metallic sounds and adding a sense of space to the syntheses

were covered. The synthesis technique allows for parametric control of musical dimensions

including sounding frequency, decay time, timbre, and pitch glide. Synthesis examples of a kick

drum, snare, marimba, wood block, tom tom, and circular plate were examined.

In this chapter, we begin by qualitatively examining this percussion synthesis method.

Then we introduce a real-time implementation of the loopback FM percussion synthesis technique

and conceptualize a software synthesizer that uses this synthesis method. Finally, the musical

implications and future research directions are considered.

6.2 Qualitative Evaluation

In reviewing the current state of the loopback FM percussion synthesis method, there are

parts about it that I am pleased with and other parts that I feel could be improved. This method

is great in that it is capable of making sounds that are eclectic, experimental, and unique, and it

can synthesize signals in real-time. Changes to the musical parameters reflect straightforward

changes to the sonic qualities in the resulting synthesis. Pitch glides are easy to specify, decay

times directly affect the synthesis, and timbre controls darkness and brightness in an intuitive

way.

When comparing this model to high-quality physics-based, nonlinear percussion models,

such as the nonlinear plate model presented in [7], the loopback FM percussion synthesis

technique does not create signals that sound as natural, because it is not based on physical

calculations. From preliminary experimentation, it seems that although the loopback FM system

is capable of synthesizing pitch glides and the cascade from low to high frequency energy as

shown in Figure 4.9, the method cannot create the same type of gong-like sounds that the nonlinear

plate model from [7] is capable of synthesizing. In my experiments, I used the modal components
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from the linear plate model and attempted to create the sound of the nonlinear plate model by

setting values for the loopback FM percussion synthesis parameters. Setting all of the individual

parameters by hand is difficult and time-consuming, and the resulting synthesis sounded more

like a bell with a pitch glide than a nonlinear plate. It is possible that the nonlinear plate synthesis

could be recreated with the loopback FM percussion synthesis technique if more time is spent

tuning the parameters.

Of all the synthesis examples shown in the previous chapter, the circular plate example

presented in Section 5.3.5 is the most similar in timbre to the sound created by the nonlinear

plate model. That circular plate example uses zc,i(n) oscillators and exploits the aliasing that

occurs due to numerical error in order to create the striking crash-like timbres. The nonlinear

plate model has a clearly decreasing pitch glide, and to recreate this decreasing pitch glide with

zc,i(n) oscillators, Bi(n) would need to increase over time. Bi is already set to 0.99 in the circular

plate example and when Bi are increased too far towards 1, the loopback FM output signal begins

to break down due to numerical error.

Although it seems like it may make more sense to recreate the sound of the nonlinear

plate using z0,i(n) oscillators since pitch and the number of harmonics can be independently

controlled, we run into another issue. If the zc,i(n) oscillators are replaced with z0,i(n) oscillators,

the resulting sound output is not similar at all. The z0,i(n) oscillator synthesis sounds like an

inharmonic, buzzy bell sound and nothing like the crashing, noisy timbre created by the numerical

errors of the zc,i(n) oscillators. Perhaps the next step is to take a look at how to recreate the

aliasing of zc(n) oscillators with z0(n) oscillators so that we can have full control over the pitch,

number of harmonics, and perceptually pleasing aliasing effects.
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6.3 A Real-time Loopback FM Percussion Synthesis Imple-

mentation

The loopback FM MS percussion synthesis technique has been implemented as a Pure

Data (Pd) external in the C programming language. Efforts to include the time-varying allpass

filters and commuted synthesis enhancements are in progress. A screenshot of a Pd patch using

the external is shown in Figure 6.1. The inputs to the system are given in Table 6.1.

Table 6.1: A table of the inputs for the Max/MSP implementation of the loopback FM percussion
synthesis method.

Input type Description
bang triggers a hit
list of floats modal (sounding) frequencies
list of floats ending sounding frequencies for pitch glide
list of floats initial amplitudes for each mode
list of floats amplitude envelope T60 decay times for each mode
string ‘linear’ or ‘exp’ : pitch glide function type
list of floats initial b0 values (if z0(n) oscillators are used)
list of floats end b0 values (if z0(n) oscillators are used)
string ‘linear’ or ‘exp’ : b0(n) trajectory function type
string ‘z0’ or ‘zc’ : indicates which loopback FM oscillator to use

6.4 Ideas for a Software Synthesizer

While the Pd loopback FM MS percussion synthesis implementation may be useful for

musicians that are more proficient with graphical programming languages and the synthesis

algorithm, I would like to create a software synthesizer in the form of an audio plugin for use in

popular digital audio workstations (DAWs). This format would be more accessible for electronic

musicians that may not have a background in computer music and engineering. The loopback

FM MS percussion method has many parameters for each mode in addition to parameters for
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Figure 6.1: The loopback FM MS percussion synthesis implementation in Pd. Loopback FM
MS is implemented as an external object in Pd called loopbackFMMS0 . Messages setting the
synthesis parameters are first fed into the loopbackFMMS0 object, and the bang object at the
upper left corner triggers the synthesis.

commuted synthesis and the time-varying allpass filters. Because it is a complicated system, there

would be a basic layout that is more suitable for new users and a deeper, more detailed layout

for experienced users. With the basic layout, parameters are grouped into macro parameters that

control multiple, algorithm parameters at once. For the detailed layout, users would be able to

access individual modal frequencies, decay times, loopback FM parameters, etc.

Such a system would have presets for major types of percussive sounds where all the

synthesis parameters are already set to create a default sound. These presets would include many

of the sounds presented in Chapter 5 such as kick, snare, marimba, wood block, and circular

plate. Additional categories could be membrane or bell. The number of modes used for each

preset is set. For the basic layout, the macro parameters for each of these sounds would include

fundamental (or sounding) frequency, decay time, and a timbre knob that changes between a

brighter or darker sound. These three parameters would change multiple modal frequencies,
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amplitude envelopes, and loopback FM parameters simultaneously. The detailed layout would

allow a user to modify modal frequencies, decay envelopes, loopback FM feedback parameters,

and the option to include more modes in the model.

For the basic layout, there would be an option to include time-varying allpass filters. One

or two macro parameters that encompass multiple time-varying allpass filter parameters could be

used to add nonlinearities and noisiness to the output. The detailed layer would allow access to the

time-varying allpass filter parameters associated with each loopback FM oscillator. Commuted

synthesis would also be an option in the basic layout, and the user could choose between different

excitation types and their parameters as well as importing their own resonator impulse responses.

By separating the synthesizer into basic and detailed layouts, a user would be able to make

sounds right away and have some parameters to change the sound to their liking. As the user

becomes more familiar with the system and the types of sounds that are possible, he or she may

feel more comfortable digging into the detailed layout and controlling finer aspects of the sound.

6.5 Musical Implications

As the creator of this method, I envision the experimental and eclectic sounds from the

loopback FM percussion synthesis technique being used in popular and experimental electronic

music. The more traditional percussive sounds, such as the kick and snare examples presented

in Chapter 5 could definitely be used as the main percussive instrument of a rhythmic beat in

pop and electronic music. The unique and unconventional percussive sounds could be used to

accent a rhythmic beat pattern created using samples or other drum synthesizers/machines. The

circular plate-type sounds are great for impactful sections in music, such as right before a moment

of silence or right after a build. The sounds with whimsical pitch glides, such as the marimba

example shown in Chapter 5, could fare well as accents to rhythmic beats, similar to the way

bongos are used in contemporary electronic music. The system could also be used to create
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risers right before an impactful section within a song by reversing the amplitude envelopes in

time. One could make even more dramatic risers by reversing the resonator impulse response

for a reverse reverb effect. An example of a riser is included in the supplementary files as

hsu reverseCircularPlate loopbackFMTimeVaryingAPCommutedSynthesis.wav.

Furthermore, although this method is presented for percussion synthesis, the technique

can be used in other ways. If the modal frequencies used are programmed to be harmonically

related, then the synthesis will have a clear fundamental, sounding frequency. This can be used to

create melodic instruments with a percussive quality.

One of the motivating ideas for this research was a sample library of metallic hits. My

biggest issue with using those percussion samples is that the sound is static and changing the

sound can create undesirable artifacts. The advantage of this percussion synthesis method is that

pitch glide, timbre, and note length can all be modified to create variations in the sound, resulting

in dynamic timbres and textures. Because the technique uses abstract synthesis techniques, the

loopback FM percussion synthesis method gives the user the ability to create sounds that do not

exist in the physical world. This adds a unique sonic identity to syntheses made with this system

and inspires music creators to look beyond their understanding of music, encouraging them to

experiment with novel, unusual sounds.

6.6 Future Work and Conclusion

As explained in 6.2, a future research direction involves investigating the aliasing that

occurs with large carrier frequencies and large B values for the sample-by-sample rotation

loopback FM equation and recreating those aliasing effects using the closed form representation.

This will be a step towards imitating the sounds that other physics-based nonlinear percussion

synthesis systems are capable of making, but this method would be able to do so in real-time.

Another topic for future research is the coupling of oscillators and investigating how the
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results of coupled oscillators could improve percussion synthesis. Loopback FM is currently

self-coupled. As a first step, we could take a look at the behavior of two loopback FM oscillators

coupled to one another. The analysis would look at how the individual carrier/sounding frequency

of each oscillator affects the resulting, coupled oscillator sounding frequency and what kind of

timbral changes to expect. Then, we could examine coupled loopback FM oscillators in a MS

method and explore the sound synthesis possibilities.

Other research interests involve the musical parameters. In the existing implementation,

it is difficult to control the current parameters without knowing what each parameter actually

does, and it is difficult to input exact numbers for various parameters. It would be much easier

if intuitive parameter names were included. For example, a parameter name like “Brighter”

could modify b0 values. A more informed method to set the amplitude envelope for each modal

component could be helpful. This would involve analyzing the amplitude envelopes of real

percussion instrument recordings and applying them to the loopback FM MS synthesis. It is also

necessary to look into ways to combine the synthesis parameters into macro parameters so that

the method can be used in the proposed software synthesizer described in Section 6.4.

The loopback FM MS percussion synthesis method is a real-time method that allows for

a music creator to synthesize unique, eclectic and experimental percussive sounds. With this

technique, one can create a wide variety of percussive sounds using musical parameters that

control sounding frequency, pitch glide, timbre, and note duration. Future work could improve

on this percussion synthesis method by improving the parametric control, adding in coupled

oscillators, and improving the sound synthesis so that it is capable of creating an even wider

variety of percussive sounds.
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[11] Stefan Bilbao, Olivier Thomas, Cyril Touzé, and Michele Ducceschi. Conservative numeri-
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oscillator using the formalism of port-hamiltonian systems. In Proceedings of the 20th
International Conference on Digital Audio Effects (DAFx’17), Edinburgh, UK, Sept. 2017.

[39] Jari Kleimola, Victor Lazzarini, Vesa Vlimki, and Joseph Timoney. Feedback amplitude
modulation synthesis. EURASIP Journal on Advances in Signal Processing, 2011(1), Dec.
2010.

[40] Jari Kleimola, Jussi Pekonen, Henri Penttinen, and Vesa Välimäki. Sound synthesis using
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