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ABSTRACT OF THE DISSERTATION 

 

 

Exempted: Spatial Clustering of Intentionally Unvaccinated Children in California and its 

Potential Consequences for Measles Transmission 

 

by 

 

Ashley Renee Gromis 

Doctor of Philosophy in Sociology 

University of California, Los Angeles, 2017 

Professor Ka Yuet Liu, Chair 

 

Rates of non-medical vaccine exemptions have been increasing in the U.S. since the early 

1990s. These exemptions tend to be spatially clustered rather than randomly occurring in the 

population. In contrast to long-standing public health findings, under-vaccination due to non-

medical exemptions tends to be found among children with educated, affluent, non-Hispanic 

white parents rather than those with relatively disadvantaged backgrounds. This dissertation uses 

data on Personal Beliefs Exemptions (PBEs) in schools in California from 1998-2014 and an 

empirically-calibrated large-scale simulation experiment to understand how spatial clusters of 

these exemptions form and their potential consequences for measles transmission.  

This dissertation emphasizes the importance of interaction in social networks in 

structuring both the local context surrounding parents‘ vaccine decisions and the patterns of 



iii 

 

physical contact through which disease spreads. Major findings show that residential sorting of 

parents into neighborhoods and schools based on socio-demographic characteristics associated 

with school-level PBE rates provides only a partial explanation for broader patterns of clustering. 

Additional analyses provide evidence of spillover effects between PBE rates and socio-

demographic characteristics, particularly percent non-Hispanic white children, on PBE rates in 

nearby schools. 

A large-scale simulation of measles transmission using a synthetic population of youth in 

California in 2014 is then used to examine the potential consequences of PBEs for disease 

spread. Schools serve as hotspots for measles transmission regardless of the spatial locations of 

PBEs, although clustering of these exemptions within households and charter schools increase 

the opportunities for infections. Surprisingly, spatial pockets of PBEs may provide slight 

protection against measles transmission when outbreak sizes are small and the disease is 

introduced randomly into the population. Yet, clustering of exemptions can reduce protective 

effects of herd immunity to large measles epidemics, even when overall vaccination coverage in 

the population is high. 

This dissertation concludes by drawing connections between findings in the empirical 

chapters and linking the results to the larger theoretical context of social interaction in networks. 

Practical implications for vaccine policy and efforts to control vaccine-preventable disease are 

discussed. Overall, this project seeks to illustrate how decisions perceived as personal by parents 

contribute to collective health outcomes. 
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Chapter 1: Introduction 

 Many children in the United States and across the world dream of a trip to Disneyland, 

the self-declared ―Happiest Place on Earth.‖ But in late December 2014, ―It‘s a Small World,‖ 

took on increased meaning beyond just the name of one of the theme park‘s most iconic 

attractions after more than 40 visitors were infected with the measles (Harriman 2015). One or 

more international visitors among the tens of thousands of daily attendees at the Disney parks1 

likely introduced the disease (McCarthy 2015) before it was carried back to local communities 

across the U.S. and into neighboring countries. 

The resulting outbreak, with 147 confirmed cases in 7 U.S. states2, 159 in Canada, and 1 

in Mexico, was larger than usual for North America in recent years and raised questions 

regarding the effectiveness of measles control efforts (Blumberg et al. 2015). Once a common 

childhood illness, the measles was declared non-endemic3 in the U.S. in 2000 and domestic 

transmission is now relatively rare. The measles is not the only childhood disease that has 

experienced a significant reduction in prevalence in the past 100 years. Widespread vaccination 

in the U.S. has resulted in the drastic reduction in diseases with significant mortality rates and 

long-term health consequences in children since the beginning of the 20
th

 century, including 

smallpox, poliomyelitis, tetanus, diphtheria, pertussis (whooping cough), mumps, rubella, and 

haemophilus influenzae type b (Centers for Disease Control and Prevention 1999).  

 Yet over the past two decades, the number of children entering schools without meeting 

mandated vaccination requirements in the U.S. for non-medical reasons has increased 

                                                           
1
 The exposures occurred at both Disneyland and the adjoining Disney California Adventure Park. The source 

patient for the outbreak was never officially identified. 

 
2
 California, Arizona, Utah, Nebraska, Washington, Colorado, and Oregon 

 
3
 Non-endemic diseases are those not continuously transmitted for a period of 1 year or more in a geographical area 

(Orenstein and Papania 2004). 
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significantly (Centers for Disease Control and Prevention 2016; Omer et al. 2009). States that 

allow exemptions on the basis of parental ―personal‖ beliefs and permit relatively easy access to 

these exemptions tend to have higher rates of exempted children (Omer et al. 2006). These 

increases come despite continued efforts to increase vaccination coverage nationally and 

eradicate serious vaccine-preventable diseases by the Centers for Disease Control and Prevention 

(CDC) and the American Academy of Pediatrics (AAP) (Centers for Disease Control and 

Prevention 2015; Pediatrics 2010). 

A similar trend in non-compliance to recommended childhood vaccines has been 

observed in other high-income countries as well. Internationally, vaccine hesitancy has been 

investigated as a cause of declining vaccination rates in the United Kingdom (UK) (Brown et al. 

2011; Hobson-West 2003; Velan 2011), the Netherlands (Hak et al. 2005), Italy (Profeta, 

Ferrante, and Porro De‘ Somenzi 1986), France (Verger et al. 2015), Greece (Danis et al. 2010), 

Romania and Croatia (European Center for Disease Prevention and Control 2015), Nigeria 

(Babalola 2011), Sweden, Turkey, Japan, Australia (Gangarosa et al. 1998), and Canada 

(McGirr, Tuite, and Fisman 2013). As in the U.S., these increases in vaccine refusals come 

despite continued efforts to increase vaccine coverage and eliminate vaccine-preventable disease 

globally (Andre et al. 2008). The World Health Organization‘s (WHO) Strategic Advisory Group 

of Experts on Immunization formed the Working Group on Vaccine Hesitancy in 2011 to 

specifically target populations with increasing vaccine concerns and refusals (SAGE Working 

Group on Vaccine Hesitancy 2014). In Europe, both overall measles incidence and indigenous 
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transmission of the disease are higher in countries with suboptimal rates of vaccine coverage 

compared to countries with consistently high vaccine coverage (Muscat et al. 2009).
4
  

 The measles outbreak that began at Disneyland in December 2014 heightened tensions in 

debates surrounding vaccine compliance and permitted exemptions after unvaccinated children 

were identified as playing a significant role in the outbreak (Clemmons et al. 2015; Harriman 

2015; Majumder et al. 2015; Zipprich et al. 2015). Even though measles was declared non-

endemic in 2000, the number of reported cases has been increasing in recent years, with 

incidence spiking in 2008, 2011, 2013, and 2014 (Centers for Disease Control and Prevention 

2013, 2017b). Children with non-medical exemptions have been significant contributors to this 

upward trend in cases (Centers for Disease Control and Prevention 2013; Phadke et al. 2016). 

Previous research has also linked low measles vaccination coverage to disease outbreaks in 

Canada (Dubé, Vivion, and MacDonald 2015). In California, where the Disneyland outbreak 

began and the majority of cases were reported, increased media attention was given not only to 

the increasing number of vaccine refusals, but also ongoing efforts by parents to minimize 

exposure of their own children to those who are unvaccinated (Foxhall 2015; Kaplan 2015). 

 Previous research has shown that children with non-medical vaccine exemptions tend to 

be (non-Hispanic) white, have parents with higher levels of education, and come from relatively 

more affluent households (Atwell et al. 2013; Birnbaum et al. 2013; Carrel and Bitterman 2015; 

Richards et al. 2013; Safi et al. 2012; Smith, Chu, and Barker 2004; Wei et al. 2009). This is in 

contrast to long-standing public health findings that under-immunization in children tended to be 

associated with minority racial or ethnic backgrounds, single-parent families, lower socio-

economic status, and lower maternal education (Bobo et al. 1993; Ehresmann et al. 1998; 

                                                           
4
 According to the minimum 95% two dose vaccination coverage recommended by the WHO. Countries with 

suboptimal rates of vaccine coverage are Switzerland, Germany, Italy, UK, and Romania. Those with consistently 

high vaccine coverage are Iceland, Finland, Slovenia, Slovakia, and Hungary. 
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Hughart et al. 1999; Kenyon, Matuck, and Stroh 1998; Luman et al. 2003; Smith et al. 2004; 

Williams et al. 1995). Children from disadvantaged backgrounds face systematic health care 

barriers, including lack of consistent access to private sources of routine care, which can 

decrease the likelihood of being up-to-date with vaccinations (Bates and Wolinsky 1998).  

 Yet, lack of access to healthcare resources is unlikely to be the mechanism underlying 

vaccine refusal by white, educated, relatively affluent parents. Parents who refuse vaccines for 

their children have been portrayed as uninformed, irrational, and easily manipulated (Senier 

2008), acting out of ignorance (Allen 2008), and perceived as lacking credibility in making 

decisions (Carpiano and Fitz 2017). These explanations are not supported by studies of parents 

who choose to delay or refuse vaccines, who are generally aware of vaccine information and 

recommendations touted by most public health and medical professionals (Gust et al. 2003; 

Meszaros et al. 1996; Reich 2016; Senier 2008).  

Rather these parents likely feel personal responsibility for and efficacy in managing 

health decisions for their children and weigh perceived potential costs and benefits of 

vaccination before making these decisions (Funk, Salathé, and Jansen 2010; Kennedy, Basket, 

and Sheedy 2011; Reich 2016; Ropeik 2013; Sansom et al. 2001). Although parents may view 

their choices as asserting individual parental prerogative over the health of their children (Reich 

2016), vaccine decisions are rarely made in isolation (Brunson 2013b) and perceived costs and 

benefits of vaccination are vulnerable to influence from the social environment (Bauch and 

Bhattacharyya 2012; Brunson 2013a). Vaccine decisions are located at the intersection of 

cultural processes and social networks (Mische 2011), which affect perceptions of social norms 

toward and support of vaccination (Wang et al. 2014). Recognizing this interdependence in 
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vaccine decisions is important for understanding where children with non-medical exemptions 

are likely to be found. 

Children with non-medical exemptions tend to be geographically clustered rather than 

randomly distributed throughout the population (Atwell et al. 2013; Buttenheim, Jones, and 

Baras 2012; Ernst and Jacobs 2012; Lieu et al. 2015; Omer et al. 2008). This clustering creates 

spatial pockets without sufficient levels of herd immunity to prevent disease outbreaks. Across 

the U.S. and abroad, increasing vaccine hesitancy and refusal has been associated with the 

resurgence of vaccine-preventable diseases (Omer et al. 2006; Phadke et al. 2016; Salathé and 

Bonhoeffer 2008). Children with vaccine exemptions for non-medical reasons have not only an 

increased individual risk of infection, but also create an elevated risk for other children, both 

vaccinated and unvaccinated, in their local communities (DeBolt et al. 2002; Feiken et al. 2000; 

Imdad et al. 2013; Omer et al. 2008, 2009; Salmon et al. 1999). 

 

Research Questions 

 How do we explain increasing rates and geographical clustering of children with non-

medical vaccine exemptions? How do these trends affect how disease spreads? First, to 

understand increasing rates of non-medical exemptions we need to look beyond traditional 

understandings of under-vaccination to address the reversing trend in demographic 

characteristics associated with non-immunization. Specifically, how do social processes of 

residential sorting and local spillover effects contribute to generating geographical clusters of 

non-medical vaccine exemptions across space? The implications of this question extend beyond 

understanding associations between socio-demographic characteristics and individual health 

behaviors to community-level risk of disease spread. Does clustering of unvaccinated children 
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affect the locations in the local community where measles infections are likely to be transmitted? 

How much do these clusters affect the overall potential for measles outbreaks? 

 While previous research has presented evidence for the positive association between non-

Hispanic white population, educational attainment, and other socio-economic status (SES) 

indicators and non-medical exemptions at the school-level, this work investigates how social 

processes may contribute to associations over broader geographical areas. Membership in 

particular social categories is not itself a mechanism5 (Hedström and Swedberg 1996), nor are 

individual characteristics alone likely responsible for the clustering of decisions against 

vaccination (Crossley 2010; Emirbayer 1997). This work emphasizes the roles that both social 

selection and influence play in parents‘ decisions to obtain non-medical exemptions, resulting in 

their spatial clustering, and network processes that connect clusters of exemptions to the 

biological transmission of vaccine-preventable disease.  

 

Personal Belief Exemptions in California 

 Empirically, this project focuses on non-medical vaccine exemptions to school-mandated 

vaccination requirements in California from 1998 to 2014. There is no individual mandate for 

vaccination or federal immunization law6 in the U.S. Vaccination regulations apply to enrollment 

of children in schools and licensed childcare and are legislated at the state level. As of 1999, all 

50 U.S. states had laws requiring proof of immunization against diphtheria, measles, rubella, and 

polio (Orenstein and Hinman 1999); additional vaccine requirements vary by state. In California, 

                                                           
5
 E.g. Identifying racially as non-Hispanic white does not itself cause you to be more skeptical of vaccines; the 

association is rather the observed evidence of other individual-level mechanisms. 

 
6
 Although the right of states to require vaccinations for school-entry has been upheld by the Supreme Court on two 

occasions: Jacobson v. Massachusetts, 197 U.S. 11 (1905) and Zucht v. King, 260 U.S. 174 (1922). Additionally, the 

Court ruled that states are not required to permit non-medical exemptions to vaccination requirements in Prince v 

Massachusetts, 321 US 158 (1944). 
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compliance with vaccination requirements is reported to the Immunization Branch of the 

Department of Public Health (CDPH). This project uses the statewide, school-level data on 

Personal Beliefs Exemption (PBE) rates released annually by CDPH.7 

In California, children are required to provide proof of immunization when entering 

childcare, kindergarten, and seventh grade (California Department of Public Health, 

Immunization Branch 2016b). California has had compulsory immunization legislation requiring 

measles and polio vaccination prior to school enrollment since 1967 (Jackson 1969). Diphtheria, 

pertussis, and tetanus were added to the regulations in the 1970s. Enforcement of and 

penalization for not meeting vaccination requirements varied significantly during this period 

(Robbins, Brandling-Bennett, and Hinman 1981). Serious enforcement of immunization 

requirements for school-attendance increased following a large measles outbreak in Los Angeles 

County in 1977 (Orenstein and Hinman 1999).  

Immunization requirements shift over time as new vaccines are developed. Proof of 

adequate immunization against polio, tetanus, diphtheria, pertussis, measles, and haemophilus 

influenzae type b8 has been a requirement of childcare and/or school registration in California 

since at least 1989, covering the full period of analysis here (California Department of Public 

Health, Immunization Branch 2016b; Kizer and Allenby 1989). Two additional vaccinations 

were also added to the kindergarten requirements since then—Hepatitis B, beginning in August 

1997, and Variacella (chicken pox) in the 2001-2002 school year (Belshe 1996; California 

Department of Health Services, Immunization Branch 2003).  

                                                           
7
 Data on vaccine exemptions is not available at the individual level due to privacy concerns. Studies that examine 

vaccine coverage outside of the school setting typically audit medical records at a particular medical practices (e.g. 

Hughart et al. 1999; Lieu et al. 2015) or use random samples of parents, such as the National Immunization Survey 

(e.g. Luman et al. 2003; Smith, Chu, and Barker 2004). For analyses over larger geographical areas, such as states, 

school-level PBE data is the most complete source for general locations of exempted children. 

 
8
 The haemophilus influenzae type b vaccine has been required of licensed childcare centers since 1978; however, 

immunization regulations were updated in 1996 to also require vaccine for licensed home-based childcare programs. 
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Beginning in the early 1990s, California experienced a substantial increase in the 

percentage of children entering schools without meeting these vaccination requirements. Prior to 

2016, parents could enroll children in childcare and schools in California without fulfilling 

vaccination requirements by filing either a permanent medical exemption (PME), granted with 

documentation from a physician stating that the child cannot be vaccinated due to vaccine 

allergies, being immunocompromised, or other serious medical conditions (Salmon, Sapsin, et al. 

2005), or a non-medical Personal Beliefs Exemption. Initially, parents needed only to sign a pre-

prepared form stating their aversion to obtaining all the required vaccines for their children on 

personal/philosophic grounds to obtain a PBE (Salmon et al. 1999; Salmon, Sapsin, et al. 2005).  

Rates of children in California kindergartens with PBEs increased from .48% in 1992 to a high 

of 3.15% in 20139, as shown in Figure 1.1.  

During this same period, the state experienced a significant increase in reported pertussis 

cases, including epidemics with more than 9,000 reported cases in 2010 (Winter et al. 2012) and 

2014 (Winter et al. 2014). Spatial clustering of non-medical exemptions in California was shown 

to be correlated with elevated incidence of pertussis in 2010 (Atwell et al. 2013). In 2008, 

intentionally unvaccinated children were identified as playing a significant role in a measles 

outbreak in San Diego after a child with a PBE contracted the disease in Switzerland and 

exposed over 800 people to the illness upon returning the U.S., resulting in 11 additional cases 

and a significant containment effort to prevent additional infections by public health officials 

(Sugerman et al. 2010). 

These increases in disease outbreaks prompted the signing of Assembly Bill 2109 (AB 

2109) in 2012, which increased restrictions on obtaining PBEs. Effective January 2014, parents 

                                                           
9
 While there was some fluctuation in the rate of PMEs in California during the same period, the changes were quite 

small, non-monotonic, and the overall rate never exceeded 0.20% in any year (California Department of Public 

Health, Immunization Branch 2008, 2010, 2011, 2012, 2013, 2015, 2016a). 



9 

 

had to obtain a physician‘s signature confirming that they had been informed of the risks of 

refusing or delaying childhood vaccinations before being granted a PBE. Presumably, this 

requirement did have some effect on PBEs as the statewide rate dropped from a high of 3.15% in 

the 2013-2014 school year to 2.54% in the 2014-2015 school year (California Department of 

Public Health, Immunization Branch 2016a). Still, as shown in Figure 1.2, rates of 

kindergarteners entering schools with these exemptions remained high in several California 

counties, particularly in the northern region of the state.  

The Disneyland outbreak in December 2014 had far-reaching implications for non-

medical vaccine exemptions in California. First, it may have resulted in a further reduction in the 

percentage of children entering kindergarten with PBEs in the 2015-2016 school year (to 2.38% 

statewide) (California Department of Public Health, Immunization Branch 2016a). More 

significantly, however, it also served as the impetus for Senate Bill No. 277 (SB 277), which 

outlawed PBEs in California beginning in the 2016-2017 school year (Yang, Barraza, and 

Weidenaar 2015). Currently, all children are now required to fulfill vaccination requirements to 

enroll in licensed childcare, kindergarten, or seventh grade in private or public facilities, unless 

granted a PME by a physician10. Children not meeting these requirements must be 

homeschooled. 

This policy change moves California from one of the more lenient U.S. states with 

regards to accessing non-medical exemptions (Omer et al. 2006) to among the states with the 

most restrictive policies against allowing children who do not meet vaccination requirements to 

enroll in schools. Some exemptions to vaccination requirements are available in every state, but 

vary significantly in both the types of exemptions that are available and the ease in acquiring 

                                                           
10

 There was a larger-than-usual increase in PMEs reported in the 2016-2017 school year, particularly among 

children enrolling in private school kindergartens, raising questions about compliance with SB 277 (California 

Department of Public Health, Immunization Branch 2017). 
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them (Orenstein and Hinman 1999; Rota et al. 2001; Salmon et al. 1999; Salmon, Omer, et al. 

2005; Salmon, Sapsin, et al. 2005; Yang, Barraza, et al. 2015; Yang and Silverman 2015). All 

states allow medical exemptions and, until 2016, all but two states11 permitted some type of non-

medical exemptions. The remaining 48 states allowed exemptions for religious reasons, 20 of 

which allowed additional exemptions on the basis of vaccination violating parents‘ personal, 

moral, or philosophical beliefs (Yang and Silverman 2015). Following changes in immunization 

laws in California and Vermont in 2016, those numbers are now 47 and 18 states, respectively12. 

PBEs in California serve as an important case study on non-medical vaccine exemptions.  

The relative ease of obtaining these exemptions prior to 2014, and their continued allowance 

until 2016, permitted a significant increase in children enrolling in schools without meeting 

vaccine requirements, a trend that has been noted elsewhere across the U.S. and in other high-

income countries internationally. The resulting interaction between decreasing rates of 

vaccination and increases in disease incidence serves as an important example to the many other 

states with recent attempts to change policies addressing access to non-medical exemptions 

(Mello, Studdert, and Parmet 2015; Yang, Barraza, et al. 2015). Allowing exemptions to 

vaccination requirements for personal or philosophical reasons can significantly increase state 

medical and non-medical costs associated with disease outbreak (Sugerman et al. 2010; Wells 

and Omer 2012). Examining the social processes that result in and consequences that result from 

spatial clustering of PBEs in California from 1998-2014, is informative to active debates 

surrounding vaccine compliance in both the national and international arenas. 

It should be noted that PBEs are not a direct, consistent indicator of vaccination status; 

children with PBEs can be entirely unvaccinated, partially vaccinated, or even fully vaccinated. 

                                                           
11

 Mississippi and West Virginia 

 
12

 Vermont still permits exemptions for religious reasons. 
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PBE data released by the CDPH does not distinguish which, if any, vaccines exempted children 

have, nor do the CDPH annual immunization reports include students with PBEs, even if 

partially or fully vaccinated, in estimates of coverage for specific antigens (California 

Department of Public Health, Immunization Branch 2017). That said, an in-depth analysis of 

immunization records among children with PBEs in California shows that while coverage varies 

substantially by vaccine, the modal number of total vaccines among these children was zero 

(Buttenheim et al. 2015). Children with PBEs in schools with high PBE rates tended to have 

lower partial vaccination levels than those in schools with typical PBE rates (Buttenheim et al. 

2015). Examinations of vaccine coverage among exempted children in other states have shown 

significant variation as well; 75.5% of parents of children with non-medical exemptions 

surveyed across four U.S. states13 reported that they had consented to at least one vaccination 

(Salmon, Moulton, et al. 2005), while inspection of vaccination records of exempted children in 

Arkansas revealed the opposite—70.8% reported no vaccines at all (Safi et al. 2012). All three of 

these studies suffer from missing data, incomplete records, and lack of verification with 

physician records.14 For these and other reasons, it is difficult to ascertain the true vaccination 

status of exempted children (Buttenheim et al. 2015). In this project, no assumptions are made 

about partial vaccination for children with PBEs. Treating these children as unvaccinated is 

consistent with previous research investigating vaccination coverage (Buttenheim et al. 2012; 

Omer et al. 2008, 2009; Sugerman et al. 2010) and the link between unvaccinated children and 

disease risk (Atwell et al. 2013; Ernst and Jacobs 2012; Feiken et al. 2000; Imdad et al. 2013). 

                                                           
13

 Colorado, Massachusetts, Missouri, and Washington 

 
14

 Buttenheim et al (2015) do use the official immunization records submitted to schools, but any vaccination 

without a noted date is recorded as missing, which could be an artifact of record keeping rather than refusal. Data 

presented by Reich (2016) demonstrate that parents may prefer to submit a blank immunization record, even if a 

child is partially vaccinated, lest the partial record call into question claims that vaccination violates personal beliefs. 
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Outline of Chapters 

The following chapter provides the background for the empirical analyses in this project 

by presenting the rationale for why discussions of adherence to vaccine requirements and access 

to non-medical exemptions should be concerned with social networks and spatial processes. 

Although California is the empirical focus of this project, my goal in Chapter 2 is to present a 

larger theoretical argument that highlights how selection and social influence create homophily 

among parents‘ vaccination decisions. Local clustering of these decisions then creates 

unintended consequences for biological contagion across wider geographical areas. I argue that 

non-medical vaccine exemptions and their consequences are located at the intersection of social 

and biological contagion; both of these processes occur over the larger social network and 

interact in ways that cannot be clearly understood by parents making decisions within local 

contexts. This chapter concludes by laying the groundwork for the hypotheses advanced in the 

subsequent empirical chapters. 

Chapter 3 maps the broader patterns of spatial clustering of PBEs across schools in 

California. Previous examinations of spatial clustering of non-medical vaccine exemptions are 

mostly focused at the school-level; while school-level associations are briefly investigated in 

Chapter 3, the analysis primarily uses spatial scan statistics to identify factors associated with 

broader patterns of clustering across schools. In particular, does residential sorting explain large 

geographical pockets of PBEs? If parents select into schools and communities based on a stable 

set of socio-demographic and neighborhood characteristics associated with PBEs at the school 

level, this could create larger areas with elevated rates of non-medical exemptions.  

 Chapter 4 continues the investigation of the spatial clustering of PBEs across schools by 

examining spatially dependent processes. In particular, I shift the level of analysis to yearly data 
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to examine the spatial and temporal stability in covariate effects on PBE rates. I use spatial 

econometrics models to estimate spatial heterogeneity in covariate effects, as well as adjudicate 

whether spatial autocorrelation in PBE rates should be attributed to spillover processes between 

schools or spatial correlation in unmeasured covariates. Do characteristics and PBE rates of 

schools affect the PBE rates of others nearby?  

Chapter 5 moves to the second half of the project by examining the effect of geographical 

clustering of PBEs on locations of measles transmission. The analyses use an empirically 

calibrated synthetic population of children in California in 2014, built to reflect empirical 

distributions of socio-demographic and neighborhood characteristics, school enrollment, and 

school-level PBE rates. This population is used to conduct a large-scale simulation experiment to 

examine how focal points of interaction contribute to disease spread. Many existing 

epidemiological simulation models of disease spread include these local and community 

interaction foci; however, to my knowledge, this is the first attempt to incorporate empirical data 

on vaccine exemptions to specifically investigate how the geographical structure of social 

interaction interacts with spatial pockets of unvaccinated children to influence biological 

contagion. Therefore, this chapter combines insights from epidemiological examinations of 

measles outbreaks with understandings of social interaction in networks to investigate this 

question: Does spatial clustering of non-medical vaccine exemptions affect the focal points of 

interaction where measles transmission is most likely to occur? 

Chapter 6 uses agent-based simulation models to examine how spatial clustering of non-

medical vaccine exemptions affects the potential for measles outbreaks. This chapter particularly 

seeks to understand how the spatial clustering, not just the increasing rates of exemptions over 

time or the overall prevalence of these exemptions, influences the possibility of outbreaks. 
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Simulation models with varying spatial and temporal patterns of PBES are used to ask: Does it 

matter that PBEs are spatially clustered? Or it is just overall increasing rates of exemptions that 

may be contributing to increased measles incidence in the U.S.?  

 Chapter 7 then summarizes the findings of the four empirical chapters. I connect these 

findings back to the theoretical motivations outlined in Chapter 2 and discuss the methodological 

implications of using administrative data on PBEs and empirically calibrated simulation 

experiments to examine these research questions. I also briefly discuss the relevance of the 

findings to public health strategies to address the formation and consequences of spatial clusters 

of children with non-medical vaccine exemptions. 

 

Significance  

 Fundamentally, this project raises questions concerning how social processes underlying 

homophily, particularly residential sorting and social influence, shape spatial patterns of non-

medical vaccine exemptions that can have serious implications for biological contagion. 

Although parents may view vaccines as a question of individual decision-making for their 

children, these choices affect the entire community, often in ways they cannot discern. For this 

reason, research into the formation of spatial clusters of vaccine exemptions over time is needed 

to understand how vaccine policy and local interaction in social networks can increase potential 

for disease spread. This project contributes to a growing literature that examines this intersection 

of social processes and biological contagion and emphasizes the importance in understanding 

how local social norms and influence can have serious consequences for the introduction, spread, 

and containment of communicable disease (Bauch and Galvani 2013; Dodds and Watts 2005).  
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Figures 

Figure 1.1: Statewide PBE rate in California kindergartens by school type, 1992-2014 

 

  



16 

 

Figure 1.2: County PBE rates in California kindergartens, 2014-2015 school year 
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Chapter 2: The Importance of Social Networks and Space in Vaccine Refusals Debates 

 

Abstract 

 

Previous research shows many parents view vaccine decisions as individual choices made in the 

interest of their children. Reduction in the prevalence of vaccine-preventable disease, erosion of 

trust in healthcare institutions, and social influence all contribute to perceptions of costs and 

benefits of vaccination. Vaccination decisions are vulnerable to the same social processes that 

result in homophily of other health behaviors, such as selection into schools accepting of 

alternative views toward vaccines and social influence from others with anti-vaccine beliefs. As 

social networks also structure physical contact, these social behaviors shape larger patterns of 

biological contagion. This chapter examines the ways in which social processes contribute to 

clustering of unvaccinated children and how these clusters influence disease spread in local 

communities.  
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Chapter Introduction 

 Increasing rates and geographical clustering of non-medical vaccine exemptions across 

the U.S. and other high-income countries suggest that more research is needed to understand how 

areas of low vaccination coverage form. Why are vaccine refusals increasing in some areas and 

not others? Qualitative research on vaccine hesitancy has demonstrated that parents engage in 

decision-making processes that weigh costs and benefits of vaccination (Reich 2016; Sansom et 

al. 2001). This project seeks to connect these understandings of vaccine decision-making to 

macro-level spatial patterns in locations of vaccine exemptions by emphasizing how social 

networks can affect perceptions of risks associated with vaccination, and how the resulting 

spatial patterns of vaccine exemptions shape biological contagion. 

Vaccine Decisions 

 Traditional public health understandings of the causes of under-immunization typically 

focus on lack of access to health care and lack of information. This type of strategy assumes that 

barriers to immunization can be overcome if parents are informed of the benefits of vaccines and 

provided with opportunity to vaccinate their children. Yet, interviews with parents who have 

chosen to delay or refuse childhood vaccines generally show that parents are aware of public 

health recommendations for vaccines and have spent time seriously considering these decisions 

(Asch et al. 1994; Meszaros et al. 1996; Reich 2016; Senier 2008). 

 Previous studies undertaken to identify concerns of vaccine hesitant parents have shown 

contradictory results. Some of these studies find that parents who refuse vaccines and parents 

who vaccinate share similar knowledge of vaccines and beliefs about vaccination (Bardenheier et 

al. 2004; Gust et al. 2004). At the same time, parents who express the greatest number of 

concerns about vaccines do not share socio-demographic characteristics with those most likely to 
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seek non-medical exemptions (Gilkey et al. 2014; Shui, Weintraub, and Gust 2006).
15

 

Furthermore, a nationally representative survey showed that 22% of parents who vaccinated their 

children thought the recommended schedule was not the best choice (Dempsey et al. 2011). This 

suggests that decisions to refuse vaccines cannot be simply reduced to awareness of 

recommendations or socio-demographic characteristics, but how vaccine information is 

evaluated and acted on. Three important components of this decision-making process are 

evaluation of risk, trust in healthcare institutions, and influence from social networks. 

 

Evaluation of Risk 

Most interventions targeting vaccine compliance focus at the individual level and are 

primarily based on increasing awareness of the benefits vaccination and serious health 

consequences of vaccine-preventable disease (Jarrett et al. 2015; Nyhan et al. 2014; Sadaf et al. 

2013; Silverman 2003). For example, a government-led pro-vaccine campaign in the U.K.  

following the now-discredited claim linking the Measles Mumps and Rubella (MMR) vaccine to 

development of autism emphasized ‗the facts‘ associated with risks of measles infections in 

children (Hobson-West 2003).
16

 This focus on individual risk can be problematic for several 

reasons, including lack of discussion of costs when considering herd immunity and the 

assumption that all parents calculate risks in the same manner as public health officials (Hobson-

West 2003). 

                                                           
15

 Certainly, many studies show that more concerns about vaccine safety and anti-vaccine beliefs are associated with 

decreased likelihood of vaccination (Allred et al. 2005; Asch et al. 1994; Gaudino and Robison 2012; Humiston et 

al. 2005; Prislin et al. 1998). These results only demonstrate that it can be difficult to reduce vaccine refusals to 

associations with individual concerns and characteristics alone. 

 
16

 The MMR-autism vaccine scare began in 1998 following the publication of an article in a British medical journal 

linking the MMR vaccine to the development of autism in some children. 
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 Higher levels of vaccination result in fewer susceptible individuals in a population, 

significantly reducing the ability of a disease to spread. This collective benefit is referred to as 

herd immunity. Herd immunity is a public good. Public goods are non-excludable and non-

rivalrous; this means that people can neither be prevented from using a good, nor prevent its use 

by others (Olson 1965). Under herd immunity, everyone in the population, vaccinated or 

unvaccinated, benefits from decreased risk of infection due to lower disease prevalence.  

 As Olson (1965) points out, however, even if all people in a group acknowledge that a 

public good is in their collective interest, not all individuals will be compelled to contribute 

resources it. Because public goods are non-excludable and non-rivalrous, individuals are able to 

―free-ride‖ off of the contributions of others. In fact, from a game-theoretic perspective, it can be 

individually rational to not contribute to a public good when its cost is non-zero and others are 

contributing. Herd immunity also operates under this principle. Not everyone must be 

vaccinated; the proportion of the population that needs to be vaccinated in order to achieve herd 

immunity depends on the infectiousness of the disease. It is higher (92-96%) for highly 

infectious diseases, such as measles or pertussis, and slightly lower (84-88%) for those that are 

less infectious, such as the mumps (Anderson and May 1985).   

The cost of vaccination is non-zero. It usually requires visiting a healthcare professional, 

which may consume both time and monetary resources. There are also small risks of reactions to 

the injection or vaccine itself. People certainly have an incentive to be vaccinated—the expected 

acquisition of personal immunity to a disease—but when herd immunity has already been 

achieved in the population, this benefit may seem less important. However, when too many 

people opt out of vaccines, herd immunity is lost and disease risk increases for everyone in the 

community, even those who have been vaccinated, as no vaccine is 100% effective. 
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Although there are situations where it may seem in a parent‘s best interest not to 

vaccinate from an individually rational perspective (Hobson-West 2003; Rogers and Pilgrim 

1996; Wing 1990), it is unclear how helpful this perspective is for understanding vaccine 

decisions in practice. Assessment of costs and benefits of individual behaviors are vulnerable to 

the influence of many social factors besides those explicitly incorporated into these types of 

calculations (Oberschall and Leifer 1986), which can make it difficult to attribute individual 

vaccine decisions directly to this type of calculus. There are also questions about the extent to 

which parents understand herd immunity. While parents explaining decisions not to vaccinate 

their children generally understood that vaccines have an important role in reducing the 

prevalence of serious childhood diseases, it was unclear whether they understood how their 

choices affect herd immunity (Meszaros et al. 1996; Quadri-Sheriff et al. 2012; Reich 2016).
17

 

Similarly, physicians who promote alternative vaccine schedules emphasize that parents should 

prioritize their own children‘s health when making vaccine decisions even though they 

acknowledge the collective benefits of herd immunity (Sears 2011).  

 The reduction of disease prevalence due to herd immunity may also affect parents‘ 

perceptions of overall disease risk. The success of vaccines in significantly reducing disease 

prevalence has led to underestimations of the seriousness of these diseases (Callender 2016). 

Herd immunity reduces disease incidence to such low levels that the perceived risks of 

vaccination appear higher than risks of infection (Bauch and Bhattacharyya 2012). Previous 

studies show that vaccine beliefs and decisions are responsive to the salience of disease risks and 

outbreaks (Bauch 2005; Bauch and Bhattacharyya 2012; Funk et al. 2010; Horne et al. 2015). In 

interviews, parents of unvaccinated children have explicitly mentioned that their decision was 

                                                           
17

 For example, parents made comments such as ―If those kids that are vaccinated are truly protected…why would 

you be threatened by my child who is not vaccinated‖ (Reich 2016:236). These types of comments ignore the risks 

to those who are not able to be vaccinated and vaccine failures. 
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influenced by feeling that their children were not at risk for infection due to the vaccination of 

other children (Benin et al. 2006). Simulations of vaccine decision-making also show these 

effects: When individuals rely on anecdotes from the media and their social networks to form 

opinions of disease risk, beliefs about the necessity of vaccines can be biased by only a few 

examples of people who refused vaccines and suffered no adverse effects. In these cases, vaccine 

coverage in the population often falls well below what would be predicted if everyone were able 

to perceive actual disease risk (Fu et al. 2011). 

 Low disease prevalence is related to other forms of bias in decision-making. Omission 

bias occurs when parents think that it is worse to vaccinate and have harmful side effects than to 

refuse vaccines and risk possible future infection (Asch et al. 1994; Brown et al. 2010; Ritov and 

Baron 1990). This can be the case even when risks from an infection may be more harmful 

overall (Asch et al. 1994). Furthermore, vaccine decisions are also influenced by parents‘ 

perceptions of their ability to control their child‘s risk of exposure to a disease (Meszaros et al. 

1996; Senier 2008; Walker and Rea 2016).  

These findings suggest that some parents feel a great sense of individual responsibility 

for children‘s health when making vaccine decisions (Poltorak et al. 2005; Reich 2016; Senier 

2008). In particular, parents may want to exercise control when they fear a health risk with 

origins that are not well defined, such as autism (Reich 2016; Ropeik 2013). A sense of control 

also affects perceptions of risks associated with vaccination in other ways as well. Risks that are 

imposed may cause more concerns than those voluntarily accepted (Calman, Bennett, and Corns 

1999; Ropeik 2013). The source of the imposed risks also matter: those imposed by institutions 

seen as untrustworthy, such as the government or the pharmaceutical industry, may seem 

particularly threatening (Ropeik 2013). Trust in healthcare institutions can act as a significant 
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modifier of how risks associated with vaccines and vaccine-preventable disease are assessed 

(Hobson-West 2003, 2007). 

 

Trust in Healthcare Institutions 

As mentioned above, vaccination decisions cannot be reduced to availability of 

information. The source of vaccine information affects parents‘ decisions as well. Distrust in the 

government or official public health agencies, such as the Centers for Disease Control and 

Prevention (CDC) and Food and Drug Administration (FDA), is also associated with vaccine 

refusals in the U.S. (Lee et al. 2016; Offit and Moser 2009; Salmon, Moulton, et al. 2005). While 

some parents feel that the true risks of vaccines are unknown or intentionally hidden by the 

government and public health officials, other parents are concerned that official 

recommendations are one-size-fits-all and ignore risks to individual children in favor of the 

collective (Reich 2016). 

Parents have expressed particular concern over the associations between vaccines and the 

pharmaceutical industry. Some parents suspect that the pharmaceutical industry has vested 

interest in vaccine safety research and is involved in public health vaccination recommendations 

(Dubé et al. 2016). Suspicion over ingredients used in vaccines (Reich 2016) and the profit from 

developing and patenting vaccines (Offit and Moser 2009) are also contributors to vaccine 

hesitancy. Vaccine scares, such as the discredited MMR-autism link or unsafe mercury exposure 

from vaccines administered to infants in the U.S., create increased suspicion of pharmaceutical 

companies that can have lasting effects on public trust in vaccines (Gross 2009; Ludlow et al. 

2015). 
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Many studies of vaccine hesitancy emphasize that trust in healthcare occurs at two levels: 

trust in the larger medical establishment and trust in personal practitioners. While physicians are 

representative of the larger institution of medicine and associated health agencies, personal 

relationships with physicians influence how parents assess vaccine risks (Senier 2008). 

Physicians are still viewed as one of the most trusted sources of healthcare information (Freed et 

al. 2011; Gaudino and Robison 2012; Kennedy, LaVail, et al. 2011; Kennedy and Gust 2005; 

Sadaf et al. 2013), and physician reassurance has had positive effects on addressing concerns of 

vaccine hesitant parents (Fredrickson et al. 2004; Gust et al. 2008). Many intervention strategies 

for increasing vaccine uptake focus on physicians as playing a crucial role in reassuring parents 

of the benefits of vaccination and encouraging compliance (Berry et al. 2017; Caskey, Lindau, 

and Alexander 2009; Fredrickson et al. 2004; Gust et al. 2004; Kempe et al. 2011; Larson et al. 

2011; MacDougall et al. 2016; Omer et al. 2009). 

Trusted relationships with alternative health practitioners can have the opposite effect on 

vaccination. Parents with alternative health beliefs were more likely to have misconceptions 

about the safety of vaccines (Gellin et al. 2000) and parents of children with vaccine exemptions 

were more likely to report confidence in alternative health practitioners than parents of 

vaccinated children (Benin et al. 2006; Salmon, Moulton, et al. 2005). Some alternative views 

toward vaccines include the belief that natural infection or immunity is preferable to synthetic 

vaccines, as the latter may overwhelm the immune system (Fredrickson et al. 2004; Luthy et al. 

2012; Reich 2016; Ropeik 2013; Senier 2008). 

Parents seeking alternative sources of vaccine information may also use the Internet. 

While the amount of available information makes the Internet an attractive resource, the lack of 

verification or review comprises its quality (Cline and Haynes 2001). Although the 2002-2003 
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Health Information National Trends Survey found that physicians were still the most trusted 

source of health information overall, 63.7% of respondents who reported using the Internet had 

searched for health information in the previous 12 months (Hesse et al. 2005). More notably, 

while approximately 50% of respondents indicated that they wanted to consult their physician 

first for health information, only 11% reported doing this; 49% of respondents reported that they 

actually went online to retrieve health information first (Hesse et al. 2005). In a 2009 survey, 

24% of parents identified the Internet in the three most important sources of information on 

childhood vaccination (Kennedy, LaVail, et al. 2011). 

Healy and Pickering (2011) highlight the role of non-verified sources on the Internet in 

spreading anti-vaccine rhetoric. As the authors point out, stories that garner attention may be 

those that are novel, controversial, or generally ―newsworthy‖ rather than those that present the 

most research-supported aspects of vaccination. Parents with less trust in healthcare providers 

are more likely to use the Internet as a source of vaccine information, and parents who used the 

Internet were more likely to have children with non-medical exemptions and lower perceptions 

of vaccine safety and effectiveness (Jones et al. 2012). Research has also shown that younger and 

more educated parents are more likely to use the Internet as a source of vaccine information 

(Cotten and Gupta 2004; Jones et al. 2012). 

Other parents are also common sources of vaccine information: some parents rely 

primarily on the advice of others when making vaccine decisions (Brunson 2013a). The 

characteristics of one‘s social networks were found to be more predictive of vaccination 

decisions than individual attributes (Brunson 2013b). Parents who chose not to vaccinate their 

children were more likely to have trusting relationships with people who did not believe in 
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vaccination (Benin et al. 2006). Taking cues for vaccination decisions from social networks is 

particularly important for understanding why vaccination status clusters over geographical space. 

 

Homophily in Social Networks 

Clustering of children with non-medical vaccine exemptions within schools is an 

example of homophily. Homophily is the tendency of people with similar characteristics to share 

ties or cluster in the same areas in a social network and is generated through three social 

processes. First, parents can choose to associate with one another due to the shared refusal to 

vaccinate their children. In other words, they selectively associate due to the behavior of interest. 

Second, parents could associate due to another characteristic that is correlated with refusing 

vaccines. This has a confounding effect as the homophily in vaccination behavior is a result of 

selection on the correlated characteristic rather than the behavior itself. Third, parents can 

directly influence one another to refuse vaccines. I discuss each of these processes in turn below. 

 

(i) Selection 

 Selection has been shown to be an important determinant of homophily of other health 

behaviors in networks. Selection of friends with similar smoking status was an important source 

of homophily of smoking behavior in adolescent friendships in Finland, the U.S., and the U.K. 

(Mercken et al. 2012; Schaefer, Haas, and Bishop 2012). Without properly accounting for 

selection into social relationships, the effects of other social processes resulting in homophily, 

such as social influence, can be significantly overestimated (Kandel 1978). 

For parents who file non-medical exemptions, effects of selection would represent 

choosing to associate with or live in the same areas as other parents who are also exempting their 
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children. Selection may be an important factor in clustering of exempted children if parents 

intentionally seek out locations in which alternative beliefs toward vaccination are accepted. 

Parents who refuse vaccines may face stigma from vaccinating parents who view their decisions 

as lacking credibility and ignorant of public health (Carpiano and Fitz 2017). Alternatively, 

parents who consider protection provided by herd immunity when refusing vaccines (e.g. Benin 

et al. 2006) may be less likely to intentionally select into schools or neighborhoods that already 

have a high proportion of exempted children.
18

  

 

(ii) Confounding Effects 

 Clustering of other health outcomes has been generated not by selecting on the behavior 

of interest, but on factors correlated with the behavior. For example, poorer health outcomes 

among migrants in Sweden was associated with selecting into social networks predominantly 

composed of other migrants (Rostila 2010). The authors suggested this effect was likely due to 

the reinforcement of social norms and attitudes that promoted unhealthy behaviors in these 

networks. In a study of interaction in an online health community, ties tended to be formed based 

on similarities in age, gender, and body mass index—characteristics that are often sources of 

similarity in offline social ties—rather than the fitness and exercise characteristics of user 

profiles related to health behaviors (Centola and van de Rijt 2015). 

Clustering of non-medical exemptions could also be generated by parents selecting into 

particular schools or neighborhoods on characteristics related to vaccine behavior rather than the 

behavior itself. Residential sorting into certain kinds of neighborhoods based on socio-economic 

factors associated with non-medical vaccine exemptions—racial/ethnic background, parental 
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 This would be making the assumption that parents understand that herd immunity has a local quality. As discussed 

above, even when parents acknowledge that vaccination has collective benefits, they may not understand how herd 

immunity operates in practice. 
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education, and household income—could also produce clustering of exempted children, even if 

parents did not intend that outcome. Socio-economic factors related to racial/ethnic background, 

education, and social class are strong predictors of residential sorting (Bayer, Ferreira, and 

McMillan 2007; Massey 1990). Even if parents select into neighbors for other reasons, local 

social norms surrounding vaccine skepticism may develop and counteract influence from 

dominant cultural norms that would otherwise support vaccine compliance (Benin et al. 2006). 

 

(iii) Social Influence 

 While selection into neighborhoods or schools contributes to the structure of social 

networks, behaviors within the network can also produce homophily in health outcomes. Social 

influence occurs when the behavior of others subsequently affects an individual‘s own behavior. 

In this case, parents with unvaccinated children can influence other parents to choose not to 

vaccinate their children (Sobo 2015). Even without the ability to directly solicit the opinions of 

others, we perceive their actions as conferring information about the quality or value of 

behaviors (Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992; Salganik 2006; Strang 

and Meyer 1993). We make the assumption that, like ourselves, others weigh decisions before 

acting. Their behavior then is the visible outcome of a decision-making process in which there 

were more favorable than unfavorable considerations for that action.
19

 For example, the 

―bandwagon effect‖ was the most significant factor in influencing college students to agree to an 

optional flu-like vaccine (Hershey et al. 1994), demonstrating that knowledge of peer behavior 

can influence vaccine decisions. 
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 Although this type of process does not necessarily result in arriving at ―correct‖ outcomes, individuals decisions 

in these behavior cascades can be shown to be rational given available signals (Easley and Kleinberg 2010). 
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 Social influence also contributes to the establishment of collective attitudes toward health 

behavior. Group norms and social support surrounding healthy behaviors were found to be an 

important component of the positive SES gradient in health (Chang and Lauderdale 2009; Link 

and Phelan 1995; Phelan, Link, and Tehranifar 2010). For example, diffusion mediated by social 

status was shown to be a significant predictor of smoking behavior in the U.S. and across 

European countries (Christakis and Fowler 2008; Pampel 2001, 2002). 

The puzzle, however, is why vaccine refusals are more common among socially 

advantaged parents who are attentive to other healthy lifestyle behaviors, such as good 

nutritional practices (Gilkey, McRee, and Brewer 2013). The reversing gradient in association 

between SES and unvaccinated children may be partially the result of changing cultural attitudes. 

Over time, the positive associations between higher SES groups and high cholesterol (Chang and 

Lauderdale 2009), smoking (Pampel 2005), and cocaine use (Miech 2008) have reversed as 

social norms surrounding these behaviors have become more negative, and higher social strata 

individuals were more responsive to the cultural redefinitions and subsequent behavior 

modification. The association of vaccines with health risks rather than benefits may be 

promoting shifts in attitudes toward vaccination among health conscious, high SES parents. 

Social networks are important influencers of health; they serve as channels for the 

diffusion of information and create systems of reinforcement of behaviors (Pampel, Krueger, and 

Denney 2010; Smith and Christakis 2008). Diffusion has been studied in many social settings in 

addition to health practices, including organization structures in firms (DiMaggio and Powell 

1983) and government (Hedström, Sandell, and Stern 2000; Knoke 1982; Tolbert and Zucker 

1983), advances in technology (David 1985; Ryan and Gross 1943) and medicine (Burt 1987), 

and tactics in social movements (Andrews and Biggs 2006; Givan, Roberts, and Soule 2010; 
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Soule 1997; Tilly 1978; Wang and Soule 2012). To understand why non-medical exemptions 

cluster spatially, it is important to understand how who we are connected to in our networks 

affect the spread of health behaviors. 

 

Social Ties 

 Social ties are the connections among people in social networks. Neighbors are the 

people with whom we share direct ties. Even though we are often aware of practices in our 

networks outside of our own neighbors, we may give more weight to the information, opinions, 

and behavior of those we are directly connected to when making decisions. For example, while 

people may be aware of upcoming protest events, they are most influenced to attend when other 

people they know are also participating (Bond et al. 2012; Klandermans and Oegema 1987).  

 The strength—strong or weak—of social ties affects social influence in networks. 

Granovetter (1973) provides two related, but distinct conceptions of tie strength: the first is the 

combination of amounts of time, emotional intensity, intimacy, and reciprocity that characterizes 

the interaction and the second is how the tie relates to overall network structure. In practice, this 

project focuses most on the second definition to examine how ties affect different types of 

contagion processes in social networks. Although I spend less time discussing the first definition 

explicitly, it is important to note here because people who share strong ties tend to be similar 

(Granovetter 1973). This homophily can encourage the increased amounts of time, interaction, 

and investment that tend to characterize strong ties, or result from it. 
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 Structurally, strong ties tend to demonstrate triadic closure,
20

 while weak ties tend to 

provide bridges between local clusters of ties (Friedkin 1980; Granovetter 1973).
21

 Ties can be 

clustered geographically (Kleinberg 2006; Liben-Nowell et al. 2005) or with respect to other 

social characteristics, such as racial/ethnic background, socio-economic class, hobbies, 

educational affiliation, occupation, or organizational membership (Killworth and Bernard 1978; 

Watts 2004; Watts, Dodds, and Newman 2002). This clustering can be good for reinforcing 

behaviors, but creates redundancy in the circulation of information or opinions. Bridges provided 

by weak ties, on the other hand, allow for information and disease to spread more rapidly beyond 

local clusters (Centola and Macy 2007; Granovetter 1973, 1983; Watts 2004; Watts and Strogatz 

1998). This is why removal of weak ties tend to be more damaging to the overall connectivity of 

a network than removal of strong ties (Granovetter 1983; Onnela et al. 2007).  

To illustrate the important role of weak ties in diffusion, Granovetter (1973) 

demonstrated that people often learned of new job opportunities from acquaintances or friends of 

friends rather than close friends or family. Weak ties have also been shown to facilitate 

knowledge sharing between units within an organization (Hansen 1999),
22

 in online communities 

(Zhao, Wu, and Xu 2010), and across neighborhoods in the Philippines (Liu and Duff 1972). 

Weak ties can also be effective sources of new information among strangers that come into 

contact due to membership in the same organization. For example, employees receive technical 
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 If person A has a strong tie to person B and person A has another strong tie to person C, it is likely that persons B 

and C will become friends as well. This observation was also made in previous studies of the structure of social 

networks (Rapoport 1953; Rapoport and Horvath 1961). 
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 Bridges are ties that, if removed, would break the network into separate components. Rather than acting as true 

bridges, many weak ties act as local bridges, whose removal do not break the network into separate components but 

does significantly increase the distance between two nodes. 
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 Although complex knowledge diffusion benefits from strong ties. 
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advice from others through a large company network, even though they do not know each other 

personally (Constant, Sproull, and Kiesler 1996). 

Strong ties, on the other hand, promote the establishment and enforcement of social 

norms and aid in the adoption of new behaviors. Individuals may look to others that seem similar 

to themselves when making decisions. The spread of obesity in a social network was more likely 

to occur among same-sex contacts (Christakis and Fowler 2007). Much of our daily interaction 

occurs locally and spatial proximity is a common component of social diffusion (Rogers 2003; 

Strang and Soule 1998). Happiness can spread dynamically across social networks, but the 

influence decreases as people in the network become more geographically distant (Fowler and 

Christakis 2008). In particular, happiness was shown to increase after a next-door neighbor, 

nearby friend or sibling, or co-resident spouse reported increased happiness.  

Spatial proximity has also been shown to be important for the spread of practices among 

governments, organizations, and firms. Political affiliation and support can also diffuse among 

nearby populations, as demonstrated with support for the trade union movement in Sweden 

(Hedström 1994) and presidential candidate Salvador Allende in Chile (Petras and Zeitlin 1967). 

Protest events and riots can spread to nearby cities, potentially due to event coverage in the local 

news media (Andrews and Biggs 2006; Myers 1997), while the adoption of new organizational 

structures may spread to local governments, hospitals, and corporations from those located 

nearby (Burns and Wholey 1993; Davis and Greve 1997; Knoke 1982).  

 Diffusion may occur spatially not only due to the increased ability to observe the 

behavior of others in close physical proximity (Hedström 1994) but also because the clustering 

of ties creates multiple connections of reinforcing influence (Centola and Macy 2007). Social 

diffusion involves a conscious decision for adoption. It is assumed that an individual will adopt a 
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practice after his/her threshold is met; the threshold is the number of previous adoptions an 

individual must witness before he/she is convinced to adopt (Granovetter 1978). In simple 

contagion, thresholds are low and it is possible for adoption to occur after only one contact with 

the practice (Centola and Macy 2007).
23

 In many cases, however, the threshold for adoption is 

greater than one exposure. 

 Complex contagion requires two or more sources of contact with a practice before an 

individual adopts (Centola and Macy 2007). This has important consequences for how the 

practice spreads. Complex contagion often characterizes practices that are perceived as risky or 

not yet proven, and has been demonstrated in collective action that involves substantial 

commitment for participation (McAdam 1988; McAdam and Paulsen 1993; Zhao 1998), 

partnerships that require reliability and trust (Nelson 1989; Ruef, Aldrich, and Carter 2003), the 

promotion of collective efficacy (Morenoff, Sampson, and Raudenbush 2001), adoption of new 

medical technology (Coleman, Katz, and Menzel 1966), decisions to go to college (Berg 1970), 

and leaving social gatherings (Granovetter 1978). In many cases, the source of the exposure also 

influences likelihood of adoption (Centola and Macy 2007) While many farmers in Iowa first 

heard about a new type of hybrid seed corn from agricultural salesmen, the adoption of the seed 

corn by their neighbors was more important for influencing farmers to plant the new seeds 

themselves (Ryan and Gross 1943). 

 Complex contagion may characterize the spread of non-medical vaccine exemptions as 

the decision refusal vaccines still contradicts prevailing medical and public health advice. 

Therefore, parents may require multiple reinforcements before deciding not to vaccinate. As 
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 Two of the most straightforward examples of simple contagion are the spread of information and disease. It only 

requires coming into contact with an infectious measles case once to acquire the disease, just as it only requires one 

person informing you of a measles outbreak at Disneyland for you to be aware that it has occurred. 
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discussed above, behaviors that require multiple affirmations may show increased spatial 

concentration as physical proximity to other adopters increases the likelihood that higher 

adoption thresholds are met (Burns and Wholey 1993; Centola and Macy 2007; Davis and Greve 

1997; Gould 1991; Hedström 1994; McAdam 1988; Myers 1997; Petras and Zeitlin 1967; 

Rogers and Kincaid 1981; Whyte Jr 1954; Zhao 1998).  

Understanding spatial patterns of non-medical exemptions requires investigation not only 

of residential sorting into schools or neighborhoods, but the extent to which spatially dependent 

processes, such as complex social contagion, facilitate the spread of exemptions among 

geographically proximate parents. Social networks and space are important for debates around 

vaccine refusals because social processes associated with homophily can create spatial clusters of 

health behaviors, including vaccination decisions. Beyond influencing health behaviors, 

however, social networks also structures physical contact, which shapes biological contagion.  

 

Biological Contagion  

 Biological contagion refers the spread of disease and occurs through physical contact. 

The structure of our social networks affects who we are likely to come into contact with, and, 

therefore, the paths through which disease spreads. As social diffusion and biological contagion 

are both rooted in our social networks, spatial clusters of non-medical exemptions have 

consequences for biological contagion of vaccine-preventable diseases. As two empirical 

chapters of this project examine measles transmission, I will provide a brief review of how 

disease spreads, how social ties contribute to the creation of disease epidemics, and, finally, how 

social behavior shapes biological contagion more generally. 



35 

 

The first important way that biological contagion differs from social diffusion is that the 

adoption is a complex, unintentional biological process that does not depend on socially 

constructed thresholds. Certainly, the spread of disease is affected by susceptibility both at the 

individual and population levels. However, after accounting for specific factors that can affect 

individual susceptibility
24

 and transmission properties of a disease,
25

 the process of infection is 

so complex that it is often assumed to be random when modeling of disease spread (Easley and 

Kleinberg 2010). It should be noted that there are a few cases in which individuals intentionally 

attempt to acquire a disease. For example, parents may expose young children to chickenpox to 

minimize risks associated with contracting the disease as an adult. 

The second important way that biological contagion differs is that the ―search‖ process 

the disease conducts in spreading through the network disregards social characteristics of the 

contact. Diseases seek to infect anyone who has sufficient contact with a contagious individual. 

This process is referred to as broadcast search, and is the most efficient way for a disease to 

continue to propagate itself (Watts 2004). Disease spread usually occurs via simple contagion, 

although some previous research suggests that multiple contacts can influence some biological 

contagion outcomes (Dodds and Watts 2005).  

Spatial clustering of non-medical vaccine exemptions creates pockets of individuals with 

decreased protection to infection. When a disease reaches these pockets of unvaccinated 

individuals, it can more easily broadcast itself through the local area. While some diseases 

require physical contact with bodily fluids (e.g. Ebola or HIV) to spread, highly infectious 

diseases that spread through airborne pathogens, such as the measles, pertussis, or flu, can infect 

individuals that come into contact with the air around an infected individual, even without 
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 Such as immunity acquired from vaccination or previous infection. 
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 Including sufficient contact to spread the infection, probability of infection given contact, etc. 
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directed interaction.
26

 This magnifies the ability of these diseases to spread when unvaccinated 

individuals are clustered in close spatial proximity. 

Disease Spread in Small-Worlds 

 As mentioned above, weak ties are structurally important for the spread of disease in 

social networks. Long-range weak ties between local clusters contribute to the ―small-worlds‖ 

property exhibited by many large social networks. Social networks exhibit significant local 

clustering, due in part to triadic closure, as well as short average distances between distant 

individuals
27

 (Watts and Strogatz 1998). Long-range weak ties extend outside of the interactions 

patterned by membership in social groups, such as family, work, school, or close friendships.  

Weak ties connect otherwise disparate parts of the larger network and play important 

roles in reaching socially and geographically distant individuals (Travers and Milgram 1969). 

Infections in small worlds networks were observed to spread more quickly and at higher rates 

than those in traditional lattice or reaction-diffusion models (Kuperman and Abramson 2001; 

Moore and Newman 2000).
28

 Epidemiological modeling on small worlds networks produced 

oscillating epidemics consistent with observed patterns of infection over time (Grassly and 

Fraser 2006). Large-scale simulations of disease spread often explicitly model long-range weak 

ties as travel or interaction in focal points outside the local neighborhood, and examine how they 

contribute to both introduction of a disease into populations from external sources and spread of 

the disease internally (Chao et al. 2010; Eubank et al. 2004; Fu et al. 2011; Germann et al. 2006). 
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 This effect is even more pernicious in the case of measles as it remains in the air and can be transmitted for a 

limited period even after an infected individual is no longer present (de Jong and Winkler 1964). 

 
27

 Distance is defined as the shortest path between two nodes in a network. 
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 Lattice models have networks with regular, non-random structures. Reaction-diffusion models allow disease to 

spread outward in multiple directions from a central infection point. 
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Robustness of Networks to Disease Spread 

The different structural characteristics of strong and weak ties also affect the robustness 

of networks to failure—the ability of processes on the network to continue operating after one or 

more the nodes has been removed or becomes inoperable. Many networks, including real world 

social networks, are characterized by power law degree distributions
29

 (Watts 2004). These 

networks contain hubs, which have a disproportionately high number of ties compared to most 

nodes in the network. The presence of hubs in a network can affect its robustness to failures. 

Random ―attacks‖ in these networks are much more likely to hit peripheral nodes with low 

degrees and have little effect on the overall functionality of the network; however, many 

―attacks‖ are not random but target highly connected hubs and have serious implications for 

network functionality (Callaway et al. 2000; Watts 2004). Therefore, hubs in networks may 

increase robustness to failure in random attacks, but render the network less robust when attacks 

are targeted (Watts 2004).
30

 

Spatial pockets of unvaccinated children may serve as hubs for disease spread in social 

networks. More specifically these pockets may act as epidemiological disease cores. Disease 

cores are areas of the network characterized by high interconnectivity (Bearman, Moody, and 

Stovel 2004) that can be very influential in sustaining disease transmission and creating 

outbreaks in a population (Hethcote, Yorke, and Nold 1982; St. John and Curran 1978; Yorke, 

Hethcote, and Nold 1978). While disease cores are typically applied to the study of sexually 
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 The degree of a node is its number of ties. A degree distribution just shows the degrees of all nodes in a network. 

 
30

 Targeted attacks need not be malicious in nature; they may also occur due to increased probability for internal 

problems. An example: Mechanical problems, passenger incidents, or schedule delays at primary metro centers, 

such as 30
th

 Street Station in Philadelphia, affect transportation more than these incidents at smaller metro stations 

that only serve one or two lines along the route, and are, therefore, more consequential to continued functioning of 

the network. However, 30
th

 Street Station may also be more likely to experience these types of events as (1) there 

are just more trains, passengers, and lines running through that station than the others, increasing the underlying rate 

of opportunity for these problems, and (2) someone wishing to intentionally disrupt the metro system in Philadelphia 

may intentionally target 30
th

 Street Station as it would create the most disadvantage in the network overall. 
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transmitted diseases rather than those spread through casual physical contact, such as the measles 

or pertussis, frequent interaction among unvaccinated children may play a similar role of 

sustaining disease transmission in an otherwise highly vaccinated population. 

 If spatial clusters of children with non-medical exemptions create disease cores that act as 

hubs in the transmission of disease in social networks, they could have two contradictory effects 

on epidemics. Most schools in California do not have high rates of unvaccinated children,
31

 and 

so there are a limited number of local areas that function as disease cores. On one hand, if a 

vaccine-preventable disease is introduced into the population randomly, it may be unlikely that it 

occurs in a pocket with high exemption rates. Outside the spatial clusters of exemptions, the 

disease will encounter resistance to propagation from local herd immunity due to high levels of 

vaccination. On the other hand, if the disease is introduced into a pocket of unvaccinated 

children, or reaches a pocket of unvaccinated children early in the disease infection cycle, the 

disease may gain increased momentum. These scenarios may be comparable to random and 

targeted attacks in networks. In the first scenario, random introduction of the disease could 

potentially lead to fewer overall infections. In the second scenario, however, the clustering of 

exempted children could create much larger outbreaks of the disease facilitated by the lack of 

local herd immunity, increasing risk of infection for everyone in the community. 

 

Social Behavior and Biological Contagion 

 Disease transmission is affected by more than just the structure of social networks; 

however, it is also shaped directly by social behaviors in the network. Vaccine scares lead to 

lower vaccination rates, which in turn increase opportunity for disease spread due to loss of herd 

immunity (Bauch and Galvani 2013). The whole-cell pertussis vaccine scare in the U.K. in the 
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 This is discussed in greater detail in Chapter 3. 
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1970s resulted in increased pertussis outbreaks; the same pattern may also be emerging with the 

scare surrounding the discredited MMR-autism link and increasing rates of measles (Bauch and 

Bhattacharyya 2012). The cyclical pattern between protective behavior and disease outbreak is 

also evident in HIV transmission. The AIDS epidemic initially curtailed risky sexual behavior in 

the gay community; however, the development and diffusion of highly effective anti-viral drugs 

was followed by declines in perceptions of risk associated with unprotected sex (Crepaz, Hart, 

and Marks 2004). This resulted in the resurgence of risky sexual behavior in some communities 

(Ferguson 2007). At the community level, the prevalence of vaccination, practice of risky 

behaviors, or adoption of other preventative measures, such as covering one‘s mouth when 

coughing, can all be influenced by social norms (Bauch and Galvani 2013). 

 Patterns in social interaction also affect disease transmission throughout the population. 

Contact between individuals does not occur randomly; rather individuals mix assortively based 

on many different characteristics, including age, racial/ethnic background, or tendency to form 

connections with like others (Newman 2003). Sexual partners are selected non-randomly, 

contributing significantly to transmission patterns of sexually transmitted infections, including 

HIV/AIDS (Klovdahl 1985; Laumann et al. 1989) and gonorrhea (Yorke et al. 1978). Mapping 

overall patterns of interaction in networks, including social norms that organize dating behavior 

in schools, can be particularly important for understanding risk of sexually transmitted infections 

that extend beyond individual-level characteristics, such as number of sexual partners (Bearman 

et al. 2004). Friendship networks influence not only probability of contact with particular 

individuals, but also the practice of protective behaviors against infection during those 

interactions (Youm and Laumann 2002). Contact behavior in social networks is crucial to 
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understanding population-level transmission patterns and risk of disease outbreak (Berkman et 

al. 2000; Ferguson 2007). 

 Efforts to contain in-process epidemics also depend on social behaviors. Compliance with 

mandated outbreak control measures, such as booster vaccination and quarantines, affect the 

ability to contain epidemics (Cava et al. 2005; DiGiovanni et al. 2004). Just as important as 

mandated control measures are the voluntary behavior changes made by individuals based on 

perceptions of disease risk amidst outbreaks (Ferguson 2007; Funk et al. 2010). Awareness of 

information regarding an epidemic can influence individuals to either modify contact patterns or 

seek treatment earlier to prevent risk of subsequent infections (Kiss et al. 2010). Information 

diffusion can be particularly effective when both the epidemic and spread of information occur 

on overlapping social networks (Funk et al. 2009). The myriad of ways in which individual 

behavior and biological contagion interact before, during, and following disease outbreaks create 

feedback that fundamentally alter both social behavior and disease transmission (Funk et al. 

2010).  

 

Conclusion 

 Spatial clustering of non-medical vaccine exemptions and its consequences are located at 

the intersection social behavior and biological contagion. The goal of this project is to connect 

previous findings on how parents make vaccine decisions to broader patterns in locations of 

children with these exemptions. Certainly, there are many factors that influence vaccine 

decisions. The micro-level interactions that affect how parents weigh and justify these decisions 

are out of the scope of this project. I also do not discuss the influence of the media, political 

orientations, or larger trends in health policy in shaping these decisions, although they matter 
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too. My primary intention here is to highlight how social processes and local contexts can create 

clustering in vaccine refusals, which many parents perceive as individual decisions, and how 

these spatial clusters can alter patterns of disease spread.  

 Chapter 3 investigates how residential sorting contributes to spatial clusters of children 

with non-medical exemptions in California. The discussion of parental decision-making 

presented here is extended into formal hypotheses to test associations between PBE rates and 

factors that should affect perceived costs and benefits of vaccines in the local area. I then 

investigate the extent to which spatial clusters across schools can be explained by selection of 

parents into particular schools based on SES and other neighborhood characteristics.  

 Chapter 4 continues the examination of clustering of PBEs across schools but shifts focus 

to effects of spatially dependent social processes. Although residential sorting and selection 

contribute to homophily (Gimpel and Hui 2015; Mouw and Entwisle 2006; Schelling 1978), 

local contexts, social interaction, and endogenous processes, such as diffusion, can produce 

outcomes that are not consistent across individuals or communities that share similar 

characteristics (Sampson, Morenoff, and Gannon-Rowley 2002). PBE rates may be influenced 

not only by the characteristics of a school and its surrounding area, but also by others nearby.  

 Chapter 5 turns attention to the consequences of spatial clusters of children with PBEs. 

Specifically, I examine how clustering of PBEs affects the focal points of social interaction 

where measles transmission is likely to occur. Although the small-worlds model emphasizes the 

importance of weak ties in disease transmission, strong ties may contribute substantially to 

disease spread when a disease is non-endemic and susceptible children are spatially clustered.   

 Chapter 6 then investigates how spatial clustering of exemptions affects the robustness of 

the larger social network to disease spread. In particular, I examine the extent to which the 
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spatial clustering of exemptions, rather than the overall number, renders the network less robust 

to disease outbreaks. If spatial clusters of unvaccinated children serve as hubs for disease 

outbreaks, the protective effects of herd immunity could be comprised, even if most parents 

continue to vaccinate. 
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Chapter 3: Clustering of Personal Belief Exemptions across Kindergartens in California, 

1998-2014 

 

 

Abstract 

 

The shifting socio-demographic profile of unvaccinated children requires new research to 

understand why these parents refuse vaccines. Residential sorting into neighborhoods based on 

factors associated with increased PBE rates in schools could generate larger clusters of these 

exemptions across schools. However, use of spatial scan statistics on a longitudinal dataset of 

PBEs in California from 1998-2014 demonstrates that this mechanism cannot fully explain the 

broader spatial patterns of PBEs. Significant spatial pockets of PBEs remain even after 

accounting for the effects of factors that increase the likelihood of PBEs in schools, including 

alternative health practitioners and prevalence of autism. Racial/ethnic composition in the local 

area around the school exerts the greatest influence on clustering of PBEs across schools, and a 

series of indirect tests show that this effect is likely operating independently of socio-economic 

status. While selection into private and charter schools has a strong influence on clustering of 

PBEs in these locations, additional social processes must be investigated to understand how 

larger spatial pockets of children with vaccine exemptions are formed. 
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Chapter Introduction 

 The development and routinization of childhood vaccination have played a significant 

role in declining early-life mortality, both in the U.S. and around the world (Plotkin and Plotkin 

2012). Significant public health attention has been focused on identifying factors associated with 

children who are not up-to-date on vaccinations in an effort to increase vaccine uptake. The 

reversal in the association between socio-demographic characteristics and lack of vaccination 

due to vaccine refusals (Smith et al. 2004) requires new perspectives on the social processes 

underlying these decisions. 

 Rather than lacking access to healthcare or being unaware of physician and public health 

recommendations, parents weigh perceived costs and benefits before deciding not to vaccinate 

(Reich 2014, 2014; Senier 2008). Spatial distributions of factors associated with how parents 

evaluate costs and benefits may help explain the geographical clustering observed in non-

medical exemptions to school vaccine requirements. Residential sorting, or the selection of 

parents into particular neighborhoods, can be generated by multiple factors, including socio-

economic status (SES), racial/ethnic composition, or other neighborhood-level factors.  

Previous research on non-medical exemptions has primarily focused on identifying 

factors related to higher rates of these exemptions in schools. The focus of this analysis, 

however, is to understand how high rates of children with vaccine exemptions aggregate across 

schools. Does residential sorting of parents based on characteristics correlated with non-medical 

exemptions at the school level explain larger spatial clusters of these exemptions? While 

clustering of unvaccinated children within schools may increase very local incidence of disease, 

clustering across schools with high non-medical vaccine exemption rates may have serious 

implications for the risk of disease outbreaks that span larger geographical areas. 
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Multiple types of analyses are used to separate within and across school effects on PBE 

rates in California kindergartens from 1998-2014. First, multi-level regression models are used to 

examine school-level correlates, including presence of physicians, prevalence of alternative 

health practitioners, local incidence of autism, socio-economic conditions, and racial 

composition of the local area around a school. Second, spatial scan statistics are used to 

investigate the ability of school-level associations to explain the clustering of high rates of PBEs 

across schools. Third, a series of indirect tests will be used to further unpack the primary finding 

that racial/ethnic composition—particularly percent non-Hispanic white—of children located in 

the local area around the school has the greatest contribution to clustering of PBEs across 

schools. While residential sorting may have some effect on the broader patterns of PBEs across 

California schools during this period, the significant spatial clustering left unexplained by socio-

economic and neighborhood characteristics suggests that other spatially dependent processes, 

such as social diffusion through networks, are likely at work. 

 

Personal Belief Exemptions 

Prior to 2014, California was one of the most lenient states with regard to school vaccine 

policy in the U.S. (Omer et al. 2006; Yang, Barraza, et al. 2015; Yang and Silverman 2015). 

Parents needed only to sign a statement refusing some or all of the required vaccinations due to 

personal beliefs on the school immunization form. As shown in Figure 1, average rates of PBEs 

increased across non-charter public, private, and charter
32

 kindergartens
33

 from the early 1990s 

through 2014. 

                                                           
32

 In the U.S., charter schools are state funded, but operate independently of the local public school system. They 

provide additional schooling options for parents, and often emphasize alternative pedagogies or academic focuses. 
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Beginning in 2014, California vaccine policy was amended to require a physician‘s 

signature with the PBE request stating that the parents had been made aware of the risks of 

refusing childhood vaccinations. As shown in Figure 3.1, this change did result in a modest 

reduction of PBEs. In 2014, the statewide exemption rate for children entering kindergarten was 

2.54%, still more than double the <1% observed in 1992. This reduction could be partially 

attributed to parents who were previously filing PBEs for the sake of convenience due to 

misplaced or slightly incomplete vaccination records. Requiring a visit to a physician may have 

encouraged parents not holding strong beliefs against vaccination to either request copies of 

records or complete immunization requirements for their child. The spatial patterns of PBEs in 

2014 will be of primary interest to this analysis as these parents would have continued to refuse 

school-mandated immunizations for their child, even after consulting with a medical 

professional.  

As Figure 3.1 demonstrates, overall vaccination coverage across California kindergartens 

remains high, yet the public, private, and charter schools within the top 5% of the PBE 

distributions have approximately 10%, 20%, and 45% of students exempted, respectively. 

Vaccine beliefs are likely not fixed; as parents encounter new information and opinions about 

vaccination and vaccine-preventable disease, they may revise their stance. In particular, parents 

may be influenced by behaviors and information within the media or local social contexts (Fu et 

al. 2011). Behaviors of other parents may be themselves taken to confer information about the 

prudence of vaccination, even if the issue itself is not formally discussed (Banerjee 1992). 

Alternatively, local media coverage of vaccine safety concerns or outbreaks of vaccine 

preventable disease may make these issues more salient for parents, influencing their vaccination 

                                                                                                                                                                                           
33

 In California, proof of immunization is required for children entering licensed childcare centers, kindergarten, and 

the 7
th

 grade. This research will focus on PBEs filed when children enter kindergarten, although some attention will 

also be given to where exemptions have been observed in childcare centers from 2010-2014. 



47 

 

decisions (Bauch and Bhattacharyya 2012; California Department of Public Health, 

Immunization Branch 2016a; Healy and Pickering 2011). 

 

Costs and Benefits of Vaccination 

(a) Healthcare 

First, as mentioned in Chapter 1, children with non-medical exemptions tend to come 

from relatively more advantaged socio-demographic backgrounds (Smith et al. 2004). This 

contradicts previous findings showing an association between under-vaccination and relatively 

disadvantaged social positions, particularly lack of access to healthcare (Allred, Wooten, and 

Kong 2007). In principle, every child in the U.S. should have access to free vaccination, either 

through health insurance or federally funded programs (Centers for Disease Control and 

Prevention 2012c). Providing low-income families with access to government healthcare 

programs increases use of preventative care services, including immunization (Kempe et al. 

2000; Kim et al. 2007; Santoli et al. 1999). Previous research on PBEs in California 

kindergartens did not show a significant association with health insurance coverage (Walker and 

Rea 2016).  

Yet fewer physicians in the local neighborhood could have contributed to PBEs, 

particularly before they required a physician‘s signature. Even if the costs associated with the 

vaccines themselves should not be a barrier to immunization, visits to physicians may incur other 

inconveniences, including time commitments or access to transportation. Parents may have 

found it easier to file PBEs than visit physicians to obtain copies of lost immunization records or 

complete a few remaining vaccines (Rota et al. 2001). In part, lack of physicians locally may 

contribute to the higher rates of PBEs observed in rural areas (Richards et al. 2013). If fewer 
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local physicians contributed to the relative convenience of filing an exemption, PBEs should be 

more common in schools located in areas with few or no physicians. 

Hypothesis 1: Fewer physicians in the local area increases the school PBE rate.
34

 

(b) Socio-economic status 

Vaccine refusals tend to be associated with children from relatively higher SES 

backgrounds; however, previous research on under-immunization in California has shown 

variation in these findings. A review of electronic health records of children born between 2000 

and 2011 in Northern California showed that higher incomes were associated with higher 

immunization coverage, while higher levels of education were associated with lower 

immunization coverage in neighborhoods (Lieu et al. 2015). This same pattern of associations 

was shown in a statewide examination of PBEs between 1994 and 2009 (Richards et al. 2013). 

This contrasts with findings showing that higher community levels of education and income 

were associated with higher rates of PBEs between 2005 and 2010 (Atwell et al. 2013). Given 

the focus of this research on a more recent period during which the state experienced its highest 

PBE rates,
35

 with particular attention paid to 2014 following the policy change requiring a 

physician‘s signature to file a PBE, I expect PBEs to be correlated at the school level with both 

higher levels of education and affluence. I use mother‘s level of education in particular as 

                                                           
34

 For these analyses, all covariates are calculated for the same vicinity around a school (discussed in greater detail 

below). Some covariates may have more local effects than others. As I have no individual-level data on where 

children in schools seek medical care or socio-demographics characteristics of children with PBEs specifically, I 

make no assumptions about the relative size of the local areas in which these covariates should exert effects. The 

following chapter will specifically address whether covariate values in neighboring schools matter for a school‘s 

own PBE rate.  

 
35

 The highest statewide PBE rates were observed in 2010-2013, as shown in Figure 3.1. 
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mothers are often the parents most responsible for vaccine decisions (Carpiano 2009; Reich 

2014; Senier 2008).
36

 

Hypothesis 2a: Higher average levels of maternal education in the local area increases 

school-level PBE rates. 

 

Hypothesis 2b: Schools in areas with higher mean property values have higher PBE rates. 

Previous research on PBEs in California consistently indicates that PBEs were more likely to be 

found in more rural areas (Atwell et al. 2013; Richards et al. 2013). 

Hypothesis 2c: Schools in areas of lower population densities have higher PBE rates. 

Finally, lower percentages of racial or ethnic minorities tends to be associated with higher SES 

and higher incidence of PBEs in California (Atwell et al. 2013; Carrel and Bitterman 2015; 

Richards et al. 2013). While this finding was not consistent for overall under-immunization in 

Northern California (Lieu et al. 2015) nor non-medical exemptions in Michigan (Omer et al. 

2008), it is consistent with clustering of non-medical exemptions in both Arizona and Arkansas 

(Birnbaum et al. 2013; Safi et al. 2012). 

Hypothesis 3: Schools with higher percentages of non-Hispanic white children in the 

local area have higher PBE rates. 

 

The specific mechanisms underlying the trend in vaccine refusals among white, college-

educated, and relatively affluent parents remain to be explained. It could be that these parents are 

not overall more likely to be vaccine skeptics, just that they feel more personally responsible for 

weighing costs and benefits of vaccines and making individually informed decisions for their 

child‘s health (Reich 2016). Material highlighting vaccine safety concerns found on the Internet 

may contribute to this SES association. Younger, more highly educated parents are more likely 

to use the Internet as a source of vaccine information than their counterparts (Jones et al. 2012). 

                                                           
36

 Mothers are also the parents held most responsible for children‘s health generally in the U.S. 
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While there are also ample online resources presenting evidence that vaccines are safe, stories 

promoting more novel and/or surprising vaccine safety concerns may generate more attention 

(Healy and Pickering 2011). In particular, parents who do not consider healthcare providers as 

reliable sources of vaccine information may seek out alternative vaccine materials online (Jones 

et al. 2012). Educated parents with resources to invest in debates over vaccine safety may be 

more compelled to act on their distrust of the medical profession (Mechanic 1996) and refuse 

vaccines for their child (Gaudino and Robison 2012; Jones et al. 2012; Sobo 2015). This would 

be consistent with the finding that non-white parents, those with lower income, and those with 

lower educational attainment report having more vaccine safety concerns, but still vaccinate their 

children (Freed et al. 2010; Shui et al. 2006).
37

 

(c) Vaccine Skepticism  

The recent wave of vaccine safety concerns began after Wakefield et al. made the now-

discredited claim that the MMR vaccine causes autism in 1998. Increasing numbers of autism 

diagnoses without straightforward medical explanation (review in Eyal et al. 2010; King and 

Bearman 2009; Liu, King, and Bearman 2010) has contributed to the popularity of the vaccine-

autism link (Bearman 2009). Despite many studies demonstrating that vaccines do not cause 

autism (review in Taylor, Swerdfeger, and Eslick 2014), 25% of parents in a 2009 survey 

strongly agreed with the statement ―some vaccines cause autism in healthy children‖ (Freed et al. 

2010). The hypotheses on how vaccination may be related to autism have constantly shifted as 

they have been refuted by medical studies and epidemiological evidence (Plotkin, Gerber, and 

Offit 2009). Yet, suspicion of the for-profit pharmaceutical industry, lack of trust in medical 

                                                           
37

 It could also be that parents of different racial/ethnic backgrounds have different concerns related to childhood 

health (Pew Research Center 2015) or different perceptions of the prevalence, risk, or seriousness of vaccine-

preventable infectious disease (Walker and Rea 2016). Lower perceived disease risk has been shown to be 

associated with increased likelihood of vaccine exemptions (Jones et al. 2012; Salmon, Moulton, et al. 2005). 
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professionals, prevalence of misinformation on the Internet, and sensationalized stories in the 

media claiming adverse illnesses resulting from vaccines has continued to fuel vaccine hesitancy, 

its (supposed) link to autism, and the popularity of alternative vaccine schedules (Dempsey et al. 

2011; Offit and Moser 2009).
38

 Although many different organized factions are present in the 

promotion of anti-vaccine beliefs, the purported MMR-autism link made by Wakefield and his 

colleagues has been cited as perhaps providing the biggest boost to the anti-vaccine movement in 

recent years (Daley and Glanz 2011). Prevalence of children diagnosed with autism in the local 

area may contribute to awareness of the developmental disorder and alleged link to vaccines, 

increasing the likelihood of vaccine refusals. 

Hypothesis 4a: Increases in the number of children diagnosed with autism in the local 

area increases school-level rates of PBEs. 

 

Alternatively, autism advocacy organizations in the local area may also increase awareness of the 

autism-vaccine controversy. 

Hypothesis 4b: Presence of autism advocacy organizations in the county in which a 

school is located increases school-level rates of PBEs. 

 

Another source of vaccine skepticism may come from alternative health practitioners. For 

example, a vocal minority of chiropractors continue to be skeptical of the necessity and 

effectiveness of vaccines, choosing instead to believe disease is caused by misalignments within 

the body (Campbell, Busse, and Injeyan 2000; Colley and Haas 1994). Previous studies of non-

medical vaccine exemptions have shown that parents of exempted children are more likely to put 

confidence in alternative health practitioners than parents without exempted children (Benin et 

al. 2006; Ernst 2001; Lehrke et al. 2001; Salmon, Moulton, et al. 2005), report seeking 

                                                           
38

 In addition, during a televised debate in 2015, multiple Republican presidential candidates either explicitly 

endorsed the disputed link between vaccines and autism or refused to strongly refute it (Miller 2015). 
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chiropractic care for their children (Gaudino and Robison 2012), or live in Primary Care Service 

Areas with increased rates of naturopaths and midwives (Walker and Rea 2016).  

Hypothesis 5: Higher prevalence of alternative healthcare practitioners, particularly 

chiropractors and acupuncturists, in the local area is associated with increased school-

level PBE rates. 

 

Outbreaks of vaccine-preventable disease could have the opposite effect, increasing the 

perceived benefit of vaccination. Low perceived risk of infection of vaccine-preventable diseases 

or their consequences has been cited as an important component of vaccine hesitancy and 

seeking vaccine exemptions (Offit and Moser 2009; Ropeik 2013; Salmon, Moulton, et al. 2005). 

In a 2004 survey, a majority (72%) of parents who reported having serious vaccine safety 

concerns yet still had their child vaccinated attributed their decision to the risk of their child 

contracting a disease if not vaccinated (Shui et al. 2006). Historical data demonstrate that 

vaccination rates increase following disease outbreaks (Bauch and Bhattacharyya 2012). 

Additionally, an online experiment showed that exposure to information on consequences of 

vaccine-preventable childhood diseases can lead to increases in pro-vaccine attitudes (Horne et 

al. 2015).
39

 Here, I examine pertussis (whooping cough) rates in particular as it remains 

relatively common compared to other vaccine-preventable diseases that predominantly affect 

young children. As I am specifically interested in variation of PBEs across space, pertussis 

outbreaks may be likely to have a more local effect on awareness of vaccine-preventable disease 

than less common, but more newsworthy outbreaks of diseases such as the measles.
40

  

Hypothesis 6: Local incidence of pertussis increases the perceived level of risk of an 

infectious disease in the local area and decrease PBE rates in schools. 

                                                           
39

 Increase in pro-vaccine attitudes was demonstrated in comparison not only to the control group but also a 

condition presenting information from the Centers for Disease Control and Prevention (CDC) refuting the vaccine-

autism link. 

 
40

 As discussed in Chapter 1, serious outbreaks of the measles garner more public attention and may have a greater 

effect on vaccine exemptions for the state overall rather than just in the local area where an outbreak occurs. 
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Clustering of PBEs across Schools 

 In addition to clustering at the school-level, parental decisions to not vaccinate their child 

may create clustering of PBEs across schools as well. As shown in Figure 3.2A, this is indeed the 

case in California: the shaded regions on the map indicate pockets of schools with higher relative 

risks of PBEs than the state as a whole.
41

 It is important to understand how this clustering is 

generated as these areas may be particularly vulnerable to disease outbreaks. 

 The homophily, or similarity, of vaccination status across geographical space could have 

been formed by several processes. Given understandings of school-level correlates of PBEs, 

however, the most straightforward explanation is residential sorting. Residential sorting is the 

process of households selectively residing in particular areas due to some desired neighborhood 

characteristic or context.
42

 Parents need not choose their residential neighborhoods based directly 

on the vaccination status of other children to create these clusters. Rather, it is likely that parents 

are choosing neighborhoods, and, by extension, school districts, based on factors correlated with 

vaccine exemptions. In particular, school-level associations of SES and exemptions may be 

important as socio-demographic factors related to racial/ethnic background, education, and social 

class have been shown to be strong predictors of residential sorting (Bayer et al. 2007; Massey 

1990). In this case, it would be expected that the factors associated with PBEs at the school-level 

discussed above help explain the significant clustering of PBEs across schools as well. 

Hypothesis 7: Accounting for factors associated with higher PBE rates at the school level, 

and particularly socio-demographic characteristics, will help explain clustering of high 

PBE rates across schools. 

 

                                                           
41

 This map was generated using spatial scan analysis, discussed in more detail in the methods section below. 

 
42

 Residential sorting typically assumes selection, albeit however constrained, on the part of individuals to move to a 

particular location; however, there are certainly examples of forced relocation that also contribute to distributions of 

characteristics across neighborhoods (e.g. Desmond 2012). 
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At the school level, higher rates of non-medical exemptions have been shown in charter 

and private schools than in non-charter public schools (Birnbaum et al. 2013; Brennan et al. 

2016; Carrel and Bitterman 2015; Sobo 2015; Yang, Delamater, et al. 2015). Thus, even after 

accounting for SES and neighborhood characteristics, higher PBE rates should be observed in 

private and charter schools than non-charter public schools due to the sorting of children by 

parents into these types of schools. Parents may select into these types of schools due to 

alternative pedagogical orientations from the more standardized local public schools. Enrollment 

in private and charter schools in California is based on parental decisions rather than residence in 

a particular school district. Educated parents who choose to enroll their children in these 

educational alternatives to the traditional public school system may also perceive an important 

role of self-education regarding child health (Sobo 2015). This may prompt them to investigate 

and share alternative orientations toward health practice, including distrust of the medical 

industry or increased interest in alternative medicine.  

Hypothesis 8: Even after accounting for SES and other neighborhood characteristics, 

private and charter schools still have higher PBE rates than non-charter public schools. 

 

Data and Methods 

To examine clustering first within and then across schools, analyses will be conducted in 

two stages. First, multi-level negative binomial regression models will be used to estimate 

school-level correlations. Then, spatial scan statistics will be used to identify spatial clustering 

across schools and test associations of school-level variables. The outcome is counts of PBEs per 

school by year. When possible, covariates are measured in the immediate vicinity around the 

school. This is defined as a 500-child radius drawn around the school (or childcare center), and 

represents its ―catchment‖ area (Liu and Bearman 2015). The 500-child radius was determined 
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based on population interpolation using Census estimates. This approach was used to establish a 

comparable local geographical unit around a school across areas of the state with very different 

population densities (e.g. the radius of a school neighborhood is much smaller in urban Los 

Angeles than in the rural counties along the northern Oregon border). County is used as a tertiary 

level of geography for two measures, pertussis incidence and autism advocacy organizations, due 

to data availability. All covariates used in the analysis were lagged 6 and 3 years for 

kindergartens and childcare centers, respectively. These lags are appropriate as the timing of 

many vaccine decisions in accordance with the schedule recommended by the CDC occur in the 

first 0-15 months of life. Lagging the independent covariates by 5 years does not substantially 

change the results (Table A3.1 in Appendix). As PBEs are filed upon school entry and represent 

the final decision point for exemptions, a model without the independent covariates lagged was 

also estimated; again, the results remain substantially unchanged (Table A3.2 in Appendix). 

 

Data 

PBEs. Data on Personal Belief Exemptions from 1998 to 2014 for kindergartens in public 

and private schools with student enrollments greater than 10 is available from the California 

Department of Public Health (CDPH). PBE data for licensed childcare centers with more than 10 

students were available for 2010-2014. Students in California are required to provide proof of 

meeting vaccination requirements when enrolling in licensed childcare centers, kindergarten, and 

7th grade. The PBE data were matched to public and private school enrollment records available 

from the California Department of Education (CDE) for information on school characteristics. 

SES measures. SES is measured by average education and property values in the 500-kid 

radius around the school.  Education was measured as the highest year of schooling completed 
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by the mother at time of birth, and averaged across the 500-child school radius. Information on 

maternal education was obtained from the California Birth Statistical Master File (BSMF) for 

1992 to 2007.
43

 Data on median property values and population density were interpolated for the 

full analysis period using data from the 1990 and 2000 U.S. Censuses at the block group level, 

averaged across the school‘s 500-child radius, and logged due to skew. Property values are used 

as a measure of SES in the local area due to their relationship to property taxes, which can reflect 

the level of wealth in an area and partially fund K-12 education in California.  

Racial/Ethnic Background. Racial composition is represented as the percentage non-

Hispanic white among children in the 500-child radius around the school, and was calculated 

from the BSMF. Public school records from the CDE provide enrollment breakdowns by race 

and ethnicity. Segregation measures, specifically isolation indices, were calculated at the school 

district level. In this case, the isolation index represents the extent to which non-Hispanic white 

students are exposed only to one another in schools within the district. Due to the size of the Los 

Angeles Unified School District, schools were separated by the eight school boards within the 

district, and isolation indices were calculated at the school board level. 

Physicians. Presence of physicians was measured as counts of general, family, and 

pediatric physicians in the 500-child radius around the school. Addresses of physicians were 

collected and geo-coded from the yearly American Medical Association Directory of Physicians. 

Autism. Incidences of autism diagnoses within the 500-child school radius were taken 

from the California Department of Developmental Services (DDS) data from 1992 to 2011. The 

DDS provides services to a large majority of individuals with a full syndrome autism disorder in 

                                                           
43

 Maternal education was preferred to a measure of paternal education for two reasons. First, mothers are often most 

responsible for children‘s vaccine decisions (Benin et al. 2006; Senier 2008). Second, mother‘s years of education 

are less likely to be missing in the BSMF data. A robustness check using father‘s years of education on a restricted 

subset of the data did not show meaningful differences in covariate effects. 



57 

 

California. Further details of the DDS data are described elsewhere (Liu et al. 2010). Knowing a 

child with an autism diagnosis may have a more local effect than the other variables in the area 

around a school due to reasonable range of neighborhood social interaction for children. To 

examine broader influence of awareness of the autism-vaccine link, the count of autism advocacy 

organizations was collected from records of tax-exempt organizations kept by the Internal 

Revenue Service and recorded at the county level. 

Alternative Health Practitioners. Counts of alternative health practitioners, specifically 

chiropractors and acupuncturists, in the 500-child radius around the school were measured using 

licensing records from the California Department of Consumer Affairs. To ensure these variables 

were not simply picking up proximity to local business areas, count of veterinarians in the school 

neighborhood were also calculated, as well as a set of random business addresses with the same 

prevalence of chiropractors and acupuncturists. 

Pertussis. Reported numbers of pertussis cases in California for 2000-2010 were obtained 

from the Immunization Branch of the CDPH. De-identified data on incidence were aggregated at 

the county level, and used in the analysis as rate per 1000 population. 

 

Methods 

School-Level Correlates. Effects of the independent covariates on counts of PBEs within 

schools are estimated using negative binomial regression with random effects clustering at the 

school level. Expected counts of PBEs (uij) are calculated as:  

log(uij) = log(tij) + α + βxij + γzj + υij 

Here, schools are indexed by i and year by j, log(tij) is the logged number of enrolled 

students (exposure), α is the constant, xij is a vector of independent covariates measured by 
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school and year while β is estimated covariate effects, z is a set of indicator variables for year 

with γ estimated effects, and υij is the error term, composed of νi~N(0,σν
2
) and εij~N(0,σ

2
). 

Negative binomial models are estimated due to over-dispersion in the PBE data. Three-level 

mixed-effects Poisson models with random effects at the school and county levels are used when 

county-level predictors (pertussis and autism advocacy organizations) are included in the 

model.
44

 

The models presented in this chapter do not incorporate spatial autocorrelation in PBE 

rates. This is a concern because schools located in close geographical proximity may have 

correlated PBE rates. If autocorrelation is not taken into account, regression assumptions of error 

independence may be violated and covariate effects may be inflated. To address this concern 

spatial lag models were estimated in R using standardized inverse weighted distance between 

schools in 2014. In addition to independent covariate effects, spatial lag models also estimate a 

spatial correlation term (ρ) for the dependent variable. While the spatial dependency parameter 

was significant in the model, the covariate effects were not significantly different (spatial models 

will be discussed in much greater detail in Chapter 4). I present the results of the negative 

binomial regression model here as the residual spatial clustering of PBE rates across schools is of 

particular interest to the second part of the analysis, and will be examined in depth using spatial 

scan statistics. 

Clustering across schools. Statistically significant spatial clustering of high PBE rates 

across public schools in 2014 was identified using the Kulldorff Spatial Scan Statistic, 

implemented in SaTScan (Kulldorff 1999). Counts of PBEs in schools are assumed to be 

distributed as Poisson random variables. Maximum likelihood estimation is used to identify 
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 Using an ordinary least squares model with logged PBE rate as the dependent variable does not substantively 

change the findings reported in this chapter. Results shown in Table A3.3 in Appendix. 
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circular geographical areas (of varying sizes, see below) that encompass schools with increased 

likelihoods of PBEs compared to the statewide rate in California in 2014. Likelihood ratios for 

the circular clusters are calculated by comparing observed numbers of PBEs in schools with 

expected numbers of PBEs based on kindergarten enrollments (assuming the overall statewide 

PBE rate). Statistical significance is assessed through 9999 Monte Carlo randomizations. Only 

statically significant (using α=.05) clusters of increased relative risk of PBEs compared to the 

statewide rate are included in the analyses here. Spatial scan statistics have been used previously 

to examine both the clustering of non-medical vaccine exemptions (Atwell et al. 2013; Omer et 

al. 2008) and other health outcomes, such as autism (Mazumdar et al. 2010). 

 Spatial clusters of increased rates of PBEs across schools were first analyzed without 

adjusting for any covariates. Figure 3.2A shows the pattern of spatial clustering of PBEs among 

public kindergartens unadjusted for the spatial distributions of the covariates. Spatial clusters 

were then sequentially adjusted individually and finally jointly for covariates, including: 

demographic characteristics (logged median property values, logged population density, mother's 

highest level of education, and percent non-Hispanic white), count of physicians, incidence of 

autism (counts of children with autism diagnoses), and prevalence of alternative health 

practitioners (counts of chiropractors and acupuncturists). The shaded regions of the maps show 

geographical areas with schools that have statistically significantly higher relative risk of PBEs 

than the state overall. If distributions of covariates are responsible for these broader patterns of 

spatial clustering in PBEs across schools, the shaded circles should disappear (i.e. the increased 

relative risk of PBE should be reduced) once the covariate is taken into account. Not every 

school within a cluster necessarily has statistically significantly higher PBE rates; the goal is to 

identify geographical areas with high rates of unvaccinated children. Being located within a 
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cluster increases the exposure of all children, vaccinated or not, to unvaccinated children, which 

can have serious implications for risk of disease spread (Buttenheim et al. 2012). 

As shown in the results below, racial composition in the 500-child radius around the 

school has the largest effect on clustering of PBE rates across schools. To understand why this 

might be the case, particularly compared to the limited findings for other SES indicators, a series 

of indirect tests are estimated to examine possible explanations for this result. First, the effect of 

neighborhood racial composition, measured as percent non-Hispanic white, is estimated among a 

homogenous population with regard to SES—Head Start participants. Head Start is a 

government-funded program that provides education, nutrition and health services to young 

children from low-income families. In general, families must earn less than 100% of the federal 

poverty level to be eligible. If neighborhood racial composition is merely picking up the effect of 

another unmeasured effect of SES, there should be no additional effect of neighborhood racial 

composition in this population.  

Second, Moran I‘s spatial autocorrelation statistics was calculated for census block 

group-level racial composition and maternal education across California. If residential sorting 

explains larger spatial clustering of PBEs across schools, it could be that some covariates have 

more uneven distributions across the state, producing the observed uneven distribution of PBEs. 

Inverse weighted distance was calculated between the centroids of each Census block group and 

statewide autocorrelation was estimated.  

Third, the correlation of PBE rates across school district boundaries is examined to 

investigate whether PBE rates across schools can be attributed to school-district specific factors. 

If PBE rates in childcare centers and private schools located geographically near public schools 

with statistically significantly higher PBE rates (compared to the state overall) also have 
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increased PBE rates, this suggests that school-district specific factors are not increasing rates 

only in schools located within the administrative boundary. This logic reflects tests for proximity 

effects used in examining social influence in the spread of autism diagnoses (Liu et al. 2010). 

Fourth, the effect of racial segregation on PBE rates is used to further investigate how the 

concentration of racial composition the local area around a school may influence rates 

independently of SES or overall neighborhood racial composition. If non-Hispanic white parents 

are the most likely to act on concerns over vaccine safety, children living in more segregated 

areas may have higher PBE rates even after controlling for the effects of other socio-

demographic variables. This may also suggest high PBE rates are not observed due to a selection 

process alone but through reinforcement of these behaviors by similar parents in the local 

community. 

 

Results 

School-level Correlates. Table 3.1 shows associations of covariates with PBEs at the 

school-level. Each additional physician in the 500-child radius around the school increases PBE 

rates by a factor of 1.004, net of the other variables in the model. Lack of convenient access to 

physicians should result in a negative association if this was driving PBEs rates. This is the 

opposite relationship predicted by Hypothesis 1—lack of physicians in the local area does not 

appear to explain high PBE rates in schools. 

Rather than lack of access to physicians, it could be that selective access to physicians 

contributes to discrepancies in PBE rates. Physicians themselves could vary in their attitudes 

toward vaccination or activeness in encouraging skeptical parents to vaccinate their children 

(Freed et al. 2004; Walker and Rea 2016). Consistent with these results, when physicians are 
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divided by specialty, count of pediatricians in the school neighborhood decreased PBE rates, 

while counts of family and general practitioners increased PBE rates, controlling for other socio-

demographic and neighborhood characteristics (Table A3.4 in Appendix). The association 

between PBEs and physicians then may depend on the type of health practitioner, and the 

counseling and options that they provide with regards to childhood vaccination (Freed et al. 

2004).
45

 

The socio-demographic variables mostly have the hypothesized effects. A one year 

increase in average mother‘s educational attainment in the school neighborhood is associated 

with a 20% in expected number of PBEs, controlling for other socio-demographic and 

neighborhood characteristics. Property values initially have a positive effect on PBE rates, 

although this relationship becomes insignificant once other socio-demographic variables are 

accounted for.
46

 Consistent with previous findings, higher population densities in a school 

neighborhood are associated with a reduction in the number of PBEs. Finally, a 10% increase in 

percent non-Hispanic white in a school neighborhood is associated with a 22% increase in 

expected number of PBEs, net of other model covariates. These findings suggest that PBEs in 

California from 1998-2014 were more likely to be located in schools in neighborhoods with 

higher education levels (supports Hypothesis 2a), lower population densities (supports 

                                                           
45

 The effect for count of pediatricians in the school neighborhood does not retain significance when northern 

California is excluded from the analysis (this is not true of the other covariates of interest discussed here). For this 

analysis, the correlation with PBEs at the school level could be, in part, a product of lack of pediatricians in school 

neighborhoods in less populated areas (e.g. Northern California). This may contribute to the higher rates of PBEs 

observed in schools there, but also may be influenced by a lower likelihood for specialized practitioners to be in 

these areas than general or family practitioners. 

 
46

 Controlling for percent renters does not affect this finding for property values, or substantially change the effects 

of other covariates included in the model, as shown in Table A3.5 in Appendix. The percent renters variable was 

constructed by averaging the percent of households renting in the Census block group across the 500-child radius 

around a school. Furthermore, Table A3.6 in Appendix shows that using logged household income instead of 

property values shows a negative association with PBEs in the full model. This is opposite the expected finding; net 

of other model covariates, increases in logged household income decrease PBE rates. As when controlling for 

percent renters, however, the effects of the other covariates in the model remain largely unchanged. 
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Hypothesis 2c), and higher percentage non-Hispanic white population (supports Hypothesis 3). 

Support was not found for Hypothesis 2b—after controlling for other SES and neighborhood 

characteristics, measures of affluence do not show a significant positive relationship with school-

level PBE rates.  

For the hypotheses on factors that might affect perceived costs and benefits of 

vaccination, the results were mixed. Counts of children with autism diagnoses in the school 

neighborhood had the expected positive effect on PBEs, although the effect was modest: an 

additional child in the school neighborhood diagnosed with autism increased expected PBE rate 

in the school by 0.8%, controlling for other factors. The presence of autism advocacy 

organizations in the county in which the school was located, however, did not have a significant 

relationship with school PBE rates, as shown in Table 3.2. Although these findings provide 

support for Hypothesis 4a stating that children with autism diagnoses in the local area around a 

school should increase PBE rates, the effects are modest. Hypothesis 4b, specifying that autism 

awareness organizations should have a broader effect on PBE rates, is not supported. This 

measure only records the presence of an advocacy organization though, not any particular 

outreach activities or approach to creating awareness. It could be that the organizations have 

worked to dispel the discredited link between vaccines and autism, or that this concern is more 

likely to spread in networks among parents than it is through general autism outreach. 

Counts of alternative health practitioners were also positively associated with PBE rates 

in schools, although only the effect of chiropractors remains significant once the other covariates 

are included in the model. For each additional chiropractor in the local area around a school, the 

PBE rate is expected to increase by 2.7%, net of the other covariates in the model. This effect 

cannot be explained by the potentially confounding effect of proximity to business areas: a 
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variable created to measure proximity to the same number of random business addresses does not 

have statistically significant effects on PBEs (Table A3.7 in Appendix). This provides some 

evidence for Hypothesis 5 that parents who seek PBEs are more likely to live in school 

neighborhoods where alternative medicine practices are more common. Yet, this finding is far 

from straightforward; Table A3.7 in the Appendix shows that the count of veterinarians also has 

a significant, positive effect on PBEs. The association between alternative medicine and PBEs 

could also be spurious and instead picking up the effect(s) of another unmeasured neighborhood-

level characteristic or process.  

Finally, pertussis incidence at the county level does not appear to be significantly 

associated with school-level PBEs. While the covariate effect is in the direction predicted by 

Hypothesis 6, indicating that as pertussis cases (per 1000) increase, school PBE rates decrease, it 

is not statistically significant (p=0.086). The availability of this data at the school neighborhood 

level may have provided a more direct test of this relationship. 

Clustering Across Schools. I now turn to the question of whether the school-level 

correlates discussed above provide explanatory power for clustering of high PBE rates across 

schools in California, as was predicted by Hypothesis 7. As discussed above, if a covariate is 

responsible for the clustering of PBEs across schools, the shaded clusters of high PBE rates 

shown on the maps in Figure 3.2 should significantly decrease or disappear after adjusting for the 

covariate. Figure 3.2A shows the unadjusted statistically significant clusters of PBEs across 

public kindergartens in 2014. Unadjusted PBE clusters are located in the rural northern region 

near the Oregon border, along the coast around San Francisco, Santa Cruz, Santa Barbara, Los 

Angeles, and the northern suburbs outside San Diego, and finally in the central inland areas. 
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At the school level, presence of physicians had a positive effect on PBEs. Adjusting for 

the positive effect of physicians has almost no impact on the spatial clusters of PBEs across 

schools (Figure 3.2B). On the other hand, controlling for logged population density largely 

explains away the cluster of high PBEs in the rural areas near the Oregon border (Figure 3.2C). 

Traditionally, clustering of unvaccinated children in rural areas may have been attributed to lack 

of healthcare resources, but the positive effect of physician presence in the local area around a 

school found in the school-level models suggests this is not the mechanism here. Residing in a 

rural area itself is unlikely to influence vaccination decisions; the effect of population density on 

clustering of high PBE rates across schools here is likely picking up the effect of another 

mechanism yet to be explained.  

Somewhat surprisingly, the strong effect of mother‘s education at the school level does 

not seem to contribute explanatory power to clustering of PBE rates across schools. Controlling 

for average years of mother‘s education in the area around the school has very little effect on 

reducing spatial clustering of PBEs across schools (Figure 3.2D). Likewise, distributions of 

property values across schools do not appear to have significant effects of broader clustering of 

PBEs either (Figure 3.2E); adjusting for property values produces little effect beyond modest 

reductions in some of the clusters in urban areas along the coast (Figure 3.2B). Likewise, the 

distributions of neither counts of autism diagnoses (Figure 3.2F) nor alternative health 

practitioners (Figure 3.2G) have significant effects on reducing the clustering of PBEs across 

schools. 

As shown in Figure 3.2H, however, percent non-Hispanic white appears to have the most 

significant effect of any of the covariates in reducing the size and prevalence of spatial clusters 

of PBEs across schools in both the rural northern and urban coastal areas. While some significant 
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clusters still remain to be explained, this reduction may indicate that racial composition is 

associated with the formation of clusters of PBEs across schools, and cannot be attributed to 

unmeasured characteristics of SES. This finding will be explored in greater detail below. 

Overall, controlling for school-level correlates of PBE rates does not provide adequate 

explanatory power for clustering across schools, as predicted by Hypothesis 7. This suggests that 

residential sorting into neighborhoods may leave important mechanisms unexplained. As 

detection of these clusters may be vulnerable to the influence of a small number of schools in a 

particular year, spatial scan statistics were estimated across multiple years; results remain largely 

unchanged over time (Figure A3.1 in Appendix).  

Before moving on, however, there may be other sorting processes generating clustering 

of PBEs across schools that are not attributable to residential sorting, but to selection into 

particular schools. Results in Table 3.3 show support for Hypothesis 8—compared with public 

schools, private and charter schools have significantly higher predicated PBE rates, even after 

adjusting for socio-demographic covariates. Compared to non-charter public schools, private 

schools increase expected PBE rates by a factor of 2.162, while charter school status increases 

expected PBE rates by a factor of 3.066, accounting for socio-demographic covariates.
47

 The 

effect of mother‘s years of education and non-Hispanic white in the school neighborhood remain 

approximately the same after controlling for school type; however, the effect of logged property 

values on PBEs appears to be mediated through school type. This finding is consistent with 

previous research showing selection into particular charter or private schools with alternative 

pedagogies or norms sympathetic to non-vaccination by parents who file PBEs for their children 

(Brennan et al. 2016; Sobo 2015). 

                                                           
47

 Including school neighborhood characteristics (counts of physicians, acupuncturists, chiropractors, or autism 

diagnoses) does not significantly alter these results. 



67 

 

 Neighborhood Racial Composition. The above findings suggest that selection by parents 

into certain schools increases PBE rates, even after controlling for other school-level factors, but 

that residential sorting into particular neighborhoods by SES does not adequately explain PBE 

clustering across schools. Furthermore, the distribution of percent non-Hispanic white in the 500-

child radius around schools across the state seemed to provide more explanatory power for 

clustering of PBEs across schools than measures of SES. This suggests that the effect of 

neighborhood racial composition on PBEs may indicate the presence of a mechanism that is 

independent of SES and residential sorting. Race/ethnicity itself does not act (and is, therefore, 

not the mechanism), but may indicate the presence of other processes that are associated with 

racial composition of the local area. 

 Several indirect tests were estimated to further investigate this finding for non-Hispanic 

white population. As shown in Figure 3.3, The effect of percent non-Hispanic white in the school 

neighborhood was estimated across types of kindergartens (public, private, charter) and licensed 

childcare centers (day care centers, Head Start Centers) to examine whether the effect was 

consistent. Head Start Centers were of particular interest as they represent a population that is 

homogeneous with regard to SES. If percent non-Hispanic white was simply picking up an 

unmeasured effect of SES, percent non-Hispanic white population around the childcare center 

should have no effect on PBEs in Head Start Centers. The opposite is found: Among Head Start 

Centers, a 10% increase in percent white in the neighborhood is associated with a 37% increase 

in the expected PBE rate, controlling for other SES and neighborhood covariates. 

Results presented in Table 3.4 also indicate that racial composition of the area around the 

school has a significant effect beyond simple selection. Controlling for other socio-demographic 

and neighborhood characteristics, a non-Hispanic white isolation index has a positive effect on 
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PBE rates; specifically, a 1% increase in the isolation index is associated with a 1.3% expected 

increase in school PBE rates. This finding suggests that, even after controlling for percent non-

Hispanic white and other SES characteristics, schools with increased segregation of non-

Hispanic white students have increased exemption rates. This could magnify the effect of 

concentration of anti-vaccine attitudes and its influence in some neighborhoods that exhibit 

increased homophily along lines of race and ethnicity. 

As a robustness check for these findings, Moran‘s I was calculated for the distributions of 

mother‘s education level and percent non-Hispanic white by Census block group across 

California. It could be that racial/ethnic composition of a neighborhood shows an increased 

association with PBE rates because it is more geographically segregated and clusters of non-

Hispanic white children happen to overlap with clusters of PBEs. Moran‘s I results suggest that 

this is not the case. Both percent non-Hispanic white (observed = 0.170, expected < 0.001, p< 

0.001) and mother‘s education level (observed= 0.174, expected < 0.001, p< 0.001) have 

similarly statistically significant uneven spatial distributions across the state, while only percent 

non-Hispanic white seems to have an effect on clustering of PBEs across schools. This suggests 

that the unevenness of underlying spatial distributions of the socio-demographic characteristics 

themselves cannot explain the non-Hispanic white finding. 

Additionally, to rule out that this effect could be generated by school- or school district-

specific factors, PBE rates in childcare centers and private schools located near public schools in 

significant spatial PBE clusters were compared to those that were not similarly located near these 

clusters. As shown in Figure 3.4, being located closer to a public kindergarten in a PBE cluster 

increased the expected rate of PBEs within the childcare center. However, this could be due to 

children in the local kindergarten having younger siblings in the nearby childcare centers who 
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share similar vaccination status. It seems less likely that one child would attend public 

kindergarten while another sibling attended kindergarten in a private school, yet the effect 

remains: spatial proximity to a public kindergarten located in a PBE cluster has a significant, 

positive effect on expected PBE rates in the private kindergarten. Clustering of PBEs in a 

neighborhood appears to reach beyond administrative boundaries in the local area. 

 Finally, Figure 3.2I demonstrates that statistically significant PBE clusters across schools 

remain after controlling for all school-level covariates. Effects of demographic, socio-economic, 

and neighborhood characteristics investigated here are not able to adequately account for larger 

pockets of exempted children.  

 

Discussion 

These analyses align with previous findings of increasing rates of unvaccinated children 

in the U.S. (Smith et al. 2004): Traditional public health understandings of lack of access to 

healthcare cannot explain the rising PBE rates in California over the past two decades. Schools 

with high PBE rates are likely to be located in neighborhoods with relatively higher levels of 

education and proportions of non-Hispanic white population. Addressing this increase in 

unvaccinated children requires a new perspective on who is most vulnerable to under-

immunization and how parents are making decisions to refuse vaccines for their children.  

This chapter makes two contributions to understating the increasing rates of children with 

PBEs in California. First, in addition to socio-demographic factors linked to increasing rates of 

unvaccinated children in the U.S., characteristics of the local area that could affect perceptions of 

costs and benefits of vaccination are investigated to understand their influence on school-level 

PBE rates. In particular, proximity to children with autism diagnoses and reported cases of 
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pertussis were investigated to determine if vaccine skepticism attributable to the discredited 

vaccine-autism link or disease incidence influenced the number of children with vaccine 

exemptions. Prevalence of children diagnosed with autism in the area around the school was 

associated with a modest, statistically significant increase in PBE rates in schools; however, 

county-level rates of pertussis incidence and presence of autism advocacy organizations did not 

appear to have significant effects. Access to data on pertussis incidence at a more local level 

would likely shed additional light on how disease incidence may be related to requests for PBEs. 

Previous research has linked PBE rates in local areas to increased incidence of pertussis (Imdad 

et al. 2013; Omer et al. 2008) and measles (Feiken et al. 2000; Salmon et al. 1999). Further 

research could establish if vaccine uptake increased in these areas following disease outbreak. 

Second, PBE rates across schools were analyzed to understand how larger pockets of 

exemptions are formed. Clustering of PBEs across schools can have significant consequences for 

all children located within these clusters, as it increases exposure to unvaccinated children 

(Buttenheim et al. 2012) and vaccine exemptions increase community level risk of disease 

spread, not just individual-level risk for those with exemptions (Atwell et al. 2013; Feiken et al. 

2000; Imdad et al. 2013; Omer et al. 2008, 2009). While sorting into alternative, non-public 

schools had significant effects on PBE rates net of other SES and school neighborhood 

covariates, residential sorting into neighborhoods based on statistically significant school-level 

correlates could not adequately explain clustering across schools.  

Yet, racial composition of the school neighborhood was shown to have effects that were 

independent of other measures of SES, suggesting that other important mechanisms may help 

explain larger pockets of PBEs and the unevenness in the distribution of PBEs across schools. 

The finding that percent non-Hispanic white in the area around the school contributed to broader 
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spatial clustering of PBEs across schools did not appear to be attributable to (1) unmeasured 

indicators of SES; (2) the underlying spatial distribution of race or ethnicity in California; (3) 

school- or school district-specific factors; or (4) distributions of race or ethnicity within schools 

districts (in fact, non-Hispanic white students concentrated in particular schools within a district 

increased PBE rates). 

 

Conclusion 

Other mechanisms generating these broader patterns of clustering could be spatially 

dependent and endogenous processes, such as diffusion. The potential spillover effects of 

vaccine skepticism in social networks and spread of exemptions outside alternative charter or 

private schools to nearby public schools warrants additional investigation. Although autism 

diagnoses in the school neighborhood are not associated with broader patterns of PBE clusters 

across schools, it could be that the now-discredited vaccine-autism link was sufficient to spark 

the recent wave of vaccine skepticism that has spread well beyond communities where clusters 

of autism cases were initially found. This chapter focused on identifying spatial clustering of 

PBEs across schools in California, the following chapter will build on this analysis to investigate 

how the influence of factors associated with PBEs may spread between schools, creating the 

broader spatial patterns observed here. 
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Tables 

 

Table 3.1: Correlates of PBEs among public school kindergartens, 1998-2014
1
 

 

Unadjusted
2
 

IRR
3
 

Sig. 95% C.I. Adjusted 

IRR 

Sig. 95% C.I. 

Mother‘s education 1.560*** 0.000 1.533 1.588 1.195*** 0.000 1.168 1.222 

Property values (ln) 1.715*** 0.000 1.637 1.796 0.995 0.854 0.947 1.046 

Pop. density (ln) 0.671*** 0.000 0.656 0.688 0.776*** 0.000 0.760 0.793 

% white
4
 1.346*** 0.000 1.336 1.356 1.218*** 0.000 1.206 1.230 

Physicians 1.011*** 0.000 1.009 1.013 1.004*** 0.000 1.002 1.006 

Acupuncturists 1.043*** 0.000 1.035 1.050 0.999 0.886 0.992 1.007 

Chiropractors  1.051*** 0.000 1.045 1.056 1.027*** 0.000 1.022 1.033 

Autism diagnoses 1.015*** 0.000 1.009 1.021 1.008* 0.012 1.002 1.014 

Note: 
1
 2-level random intercept negative binomial regression model,  N= 89,063 school-years. Year indicator variables 

included not shown. All independent variables lagged 6 years. †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001 
2
 Adjusted for year indicator variables. 

3
 Incidence Rate Ratio 

4
 Measured in 10% increments (deciles) 
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Table 3.2: Three-level model for correlates of PBEs among public school kindergartens, 2006-

2014
1 

 IRR  Sig. 95% C.I. 

Mother‘s education 1.257*** 0.000 1.222 1.293 

Property values (ln) 1.294*** 0.000 1.186 1.411 

Population density (ln) 0.910*** 0.000 0.884 0.937 

% white
2
 1.158*** 0.000 1.143 1.174 

Physicians 0.999 0.166 0.997 1.001 

Acupuncturists 0.970*** 0.000 0.962 0.978 

Chiropractors  1.030*** 0.000 1.025 1.036 

Autism diagnosis 1.007* 0.025 1.001 1.012 

Autism advocacy orgs (county) 0.996 0.105 0.992 1.001 

Pertussis rate, ages 0-6 (county) 0.962† 0.086 0.921 1.006 

Note: 
1
 3-level random intercept Poisson model, N= 49,153 school-years. Year indicator variables included but not shown. 

All independent variables lagged 6 years. †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001 
2
 Measured in 10% increments (deciles) 
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Table 3.3: Effects of school type on PBEs among kindergartens, 1998-2014
1 

 Model 1 Model 2 

 IRR Sig. 95% C.I.  IRR Sig. 95% C.I. 

School type
2
         

Private schools     2.162*** 0.000 2.063 2.266 

Charter schools     3.066*** 0.000 2.832 3.320 

Mother‘s education 1.147*** 0.000 1.121 1.173 1.144*** 0.000 1.119 1.169 

Property value (ln) 1.110*** 0.000 1.057 1.165 1.049* 0.044 1.001 1.010 

Pop. density (ln) 0.821*** 0.000 0.804 0.839 0.787*** 0.000 0.771 0.803 

% White
3
 1.213*** 0.000 1.201 1.225 1.206*** 0.000 1.195 1.217 

Note:  
1
 2-level random intercept negative binomial regression model, N= 116,351 school-years. Year indicator variables 

included but not shown. Demographic variables lagged 6 years. †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2
 Reference category: public, non-charter schools.  

3
 Measured in 10% increments (deciles) 
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Table 3.4: Effect of racial segregation on PBEs rates among public kindergartens
1
 

 

Adjusted IRR
2
 Sig. 95% C.I. 

Mother‘s education 1.195*** 0.000 1.168 1.223 

Property values (ln) 1.003 0.895 0.954 1.056 

Population density (ln) 0.795*** 0.000 0.778 0.813 

% white
3
 1.138*** 0.000 1.124 1.152 

Physicians 1.005*** 0.000 1.003 1.007 

Acupuncturists 1.002 0.579 0.995 1.010 

Chiropractors  1.023*** 0.000 1.017 1.029 

Autism diagnoses 1.007* 0.021 1.001 1.013 

White isolation Index*100 1.013*** 0.000 1.011 1.014 

 Note:  
1
 2-level random intercept negative binomial regression model, N= 83,825 school-years. Demographic variables 

lagged 6 years.  †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2
 Yearly indicator variables included but not shown. 

3
 Measured in 10% increments (deciles) 
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Figures 

 

Figure 3.1: PBE rates in California kindergartens, 1992-2014 
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Figure 3.2: Adjusted spatial clusters of PBEs across public schools, 2014 
 

   
A. Unadjusted B. Physician count C. Population density (logged) 

   
D. Mother‘s education E. Property values (logged) F. Autism diagnoses 

   
G. Alternative health practitioners H. Percent non-Hispanic white I. All covariates 
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Figure 3.3: Effect of percent non-Hispanic white by school type 

 

 
 

Note: Kindergarten analyses include data from 1998-2014, while childcare center analyses include data from 2010-

2014. IRRs estimated via negative binomial regression and adjusted for mother‘s education, logged property values, 

logged population density, counts of physicians, chiropractors, acupuncturists, and autism diagnoses, and yearly 

indicator variables. Public schools: N=84,303; private schools: N=27,378; charter schools: N=5,247; day care 

centers: N=30,801; Head Start centers: N=6,049. 
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Figure 3.4: Effect of distance to nearest public school kindergarten in PBE cluster on PBE rates in 

childcare centers and private schools 

  

  
Distance to Nearest Kindergarten in PBE Cluster 

Childcare Centers Private Schools 
 

 

Note: IRRs estimated via negative binomial regression and adjusted for mother‘s education, logged property values, 

logged population density, % white, counts of physicians, chiropractors, acupuncturists, autism diagnoses, and 

yearly indicator variables; N=36,850. Public schools in clusters only include those with statistically significantly 

higher relative risk of PBEs after adjusting for covariates. 
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Appendix 

Table A3.1: Correlates of PBEs among public school kindergartens, 5 year lag, 1998-2014
1
 

 

Unadjusted  

IRR
2
 

Sig. 95% C.I. Adjusted 

IRR  

Sig. 95% C.I. 

Mother's education 1.535*** 0.000 1.508 1.563 1.186*** 0.000 1.159 1.214 

Property values (ln) 1.673*** 0.000 1.596 1.753 0.989 0.670 0.940 1.040 

Pop. density (ln) 0.669*** 0.000 0.655 0.684 0.776*** 0.000 0.759 0.792 

% white
3 1.344*** 0.000 1.334 1.354 1.221*** 0.000 1.208 1.233 

Physicians 1.009*** 0.000 1.007 1.011 1.004*** 0.001 1.002 1.006 

Acupuncturists 1.036*** 0.000 1.029 1.043 0.998 0.509 0.991 1.005 

Chiropractors  1.040*** 0.000 1.035 1.045 1.026*** 0.000 1.021 1.032 

Autism Diagnoses 1.010*** 0.000 1.004 1.016 1.004 0.184 0.998 1.010 

Note: 
1 
2-level random intercept negative binomial regression model, N= 89,550 school-years. Year indicator variables 

included but not shown. All independent variables lagged 5 years. †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2 
Adjusted for year indicator variables. 

3
 Measured in 10% increments (deciles) 
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Table A3.2: Correlates of PBEs among public school kindergartens, 1998-2010
1
 

 

Unadjusted  

IRR
2
 

Sig. 95% C.I. Adjusted 

IRR 

Sig. 95% C.I. 

Mother's education 1.659*** 0.000 1.623 1.695 1.181*** 0.000 1.149 1.215 

Property values (ln) 1.846*** 0.000 1.743 1.945 0.978 0.466 0.921 1.038 

Pop. density (ln) 0.599*** 0.000 0.583 0.616 0.748*** 0.000 0.729 0.768 

% white
3 1.403*** 0.000 1.392 1.415 1.256*** 0.000 1.241 1.272 

Physicians 1.011*** 0.000 1.009 1.014 1.003* 0.020 1.000 1.005 

Acupuncturists 1.071*** 0.000 1.062 1.080 1.027 0.000 1.019 1.036 

Chiropractors  1.054*** 0.000 1.047 1.061 1.019*** 0.000 1.013 1.025 

Autism Diagnoses 1.016*** 0.000 1.009 1.023 1.005 0.138 0.998 1.012 

Note: 
1 
2-level random intercept negative binomial regression model, N= 67,336 school-years. Year indicator variables 

included but not shown. Independent variables not lagged. Model only estimated through 2010 due to availability of 

data on autism diagnoses †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2 
Adjusted for year indicator variables. 

3 Measured in 10% increments (deciles) 
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Table A3.3: Correlates of logged PBE rates among public school kindergartens, 1998-2010
1
 

 

Unadjusted  

IRR
2
 

Sig. 95% C.I. Adjusted 

IRR 

Sig. 95% C.I. 

Mother's education 0.342*** 0.000 0.327 0.358  0.075*** 0.000  0.055  0.095 

Property values (ln) 0.531*** 0.000 0.480 0.581  0.103*** 0.000  0.054  0.153 

Pop. density (ln) -0.444*** 0.000 -0.467 -0.420 -0.272*** 0.000 -0.295 -0.250 

% white
3 0.253*** 0.000 0.247 0.260  0.170*** 0.000  0.160  0.179 

Physicians 0.009*** 0.000 0.006 0.012  0.000*** 0.786 -0.003  0.002 

Acupuncturists 0.053*** 0.000 0.044 0.062  0.017*** 0.000  0.008  0.025 

Chiropractors  0.070*** 0.000 0.063 0.076  0.037*** 0.000  0.030  0.043 

Autism Diagnoses 0.030*** 0.000 0.024 0.037  0.021*** 0.000  0.014  0.028 

Note: 
1 
2-level random intercept linear regression model, N= 89,063 school-years. Dependent variable logged to adjust for 

skew. Year indicator variables included but not shown. Independent variables lagged 6 years. †p ‹ .10; *p ‹ .05; **p 

‹ .01; ***p ‹ .001.  
2 
Adjusted for year indicator variables. 

3 Measured in 10% increments (deciles) 
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Table A3.4: Physician effects on PBEs, by physician type, 1998-2014
1 

 

Adjusted IRR
2
 Sig. 95% C.I. 

Mother‘s education 1.193*** 0.000 1.166 1.220 

Property values (ln) 0.975 0.336 0.927 1.026 

Population density (ln) 0.782*** 0.000 0.766 0.799 

% white
3 1.216*** 0.000 1.204 1.229 

Family Practitioners 1.008*** 0.000 1.004 1.011 

Pediatricians 0.995* 0.040 0.991 0.999 

General Practitioners 1.021*** 0.000 1.010 1.032 

Acupuncturists 0.995 0.206 0.988 1.003 

Chiropractors  1.028*** 0.000 1.022 1.033 

Autism diagnoses 1.006* 0.037 1.001 1.012 

 Note:  
1
 2-level random intercept negative binomial regression model, N= 89,550 school-years. All covariates lagged 6 

years.  †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2 
Yearly indicator variables included but not shown. 

3
 Measured in 10% increments (deciles) 
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Table A3.5: Percent renters effects on PBE rates in public kindergartens, 1998-2014
1 

 

Adjusted IRR
2
 Sig. 95% C.I. 

Mother‘s education 1.218*** 0.000 1.190 1.246 

Property values (ln) 1.036 0.176 0.984 1.089 

Percent renters 1.006*** 0.000 1.005 1.007 

Population density (ln) 0.747*** 0.000 0.730 0.764 

% white
3 

1.223*** 0.000 1.211 1.235 

Physicians 1.003** 0.002 1.001 1.005 

Acupuncturists 0.995 0.245 0.988 1.003 

Chiropractors  1.024*** 0.000 1.018 1.030 

Autism diagnoses 1.008** 0.008 1.002 1.014 

 Note:  
1
 2-level random intercept negative binomial regression model, N= 89,063 school-years. All covariates lagged 6 

years.  †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2 
Yearly indicator variables included but not shown. 

3
 Measured in 10% increments (deciles) 
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Table A3.6: Effect of household income on PBE rates in public kindergartens, 1998-2014
1 

 

Adjusted IRR
2
 Sig. 95% C.I. 

Mother‘s education 1.281*** 0.000 1.250 1.312 

Household Income (ln) 0.711*** 0.000 0.659 0.766 

Population density (ln) 0.782*** 0.000 0.766 0.798 

% white
3 

1.222*** 0.000 1.210 1.234 

Physicians 1.004*** 0.000 1.002 1.006 

Acupuncturists 0.998 0.619 0.991 1.006 

Chiropractors  1.025*** 0.000 1.020 1.031 

Autism diagnoses 1.007* 0.026 1.001 1.013 

 Note:  
1
 2-level random intercept negative binomial regression model, N= 89,063 school-years. All covariates lagged 6 

years.  †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2 
Yearly indicator variables included but not shown. 

3
 Measured in 10% increments (deciles) 
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Table A3.7: Correlates among public school kindergartens, additional local business variables, 

1998-2014
1 

 IRR  Sig. 95% C.I. 

Mother‘s education 1.191*** 0.000 1.164 1.219 

Property values (ln) 0.963 0.152 0.916 1.014 

Population density (ln) 0.786*** 0.000 0.770 0.803 

% white
2 1.214*** 0.000 1.202 1.227 

Physicians 1.004*** 0.000 1.002 1.006 

Acupuncturists 0.994 0.154 0.987 1.002 

Chiropractors  1.026*** 0.000 1.021 1.032 

Autism diagnosis 1.006* 0.035 1.001 1.012 

Random addresses (N=Chiropractors) 1.002 0.420 0.997 1.007 

Random addresses (N=Acupuncturists) 0.997 0.476 0.989 1.005 

Veterinarians 1.016*** 0.000 1.009 1.023 

Note: 
1 
2-level random intercept negative binomial regression model, N= 89,550 school-years. Year indicator variables 

included but not shown. All independent variables lagged 6 years. †p ‹ .10; *p ‹ .05; **p ‹ .01; ***p ‹ .001.  
2
 Measured in 10% increments (deciles) 
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Figure A3.1: Adjusted spatial clusters of PBEs by mother‘s education and percent non-

Hispanic white, 1998-2013 
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Chapter 4: The Structure of Spatial Dependence in Yearly Personal Beliefs Exemption 

Rates across Kindergartens in California, 1998-2014 

 

 

Abstract 

 

Social interaction among parents can generate shared attitudes toward vaccines. Instead of the 

static effects of socio-demographic and neighborhood characteristics that would be expected to 

result from residential sorting, this type of process can create local variation in the influence of 

these factors on PBEs. Results from spatial regression analyses support that PBE rates in 

California are influenced not only by the conditions in the area immediately surrounding a 

school, but also those in neighboring areas. In particular, higher proportions of non-Hispanic 

white population and numbers of alternative health practitioners are associated with higher PBE 

rates in nearby schools. Being located near schools with high PBE rates in the previous year also 

has a positive effect on school PBE rates. These findings suggest that spatially dependent 

processes, such as spatial diffusion, that are not addressed in standard regression analyses may 

play a key role in generating broader spatial clusters of children with non-medical vaccine 

exemptions. 
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Chapter Introduction 

 

 What if geographical clusters of schools with high PBE rates are generated not only by 

parents selecting into particular neighborhoods, but also through interaction among parents in 

nearby areas? Previous studies have shown that local social norms and networks contribute to the 

disparity in rates of children with non-medical vaccine exemptions across schools and 

communities (Gaudino and Robison 2012; Sobo 2015). These processes of social influence are 

more dynamic that residential sorting because conditions in one neighborhood can spill over its 

boundaries to affect outcomes in surrounding areas. This creates variation in effects that are 

difficult to capture with standard regression approaches that assume a given set of characteristics 

reproduce the same outcomes across space.  

Results from the previous chapter indicate that socio-demographic and neighborhood 

characteristics correlated with PBE rates at the school level cannot fully account for large PBE 

clusters that span schools. Spatially dependent processes, such as spatial diffusion of vaccine 

skepticism and other spillover effects from characteristics in the surrounding neighborhoods, can 

contribute to the formation of large pockets of PBEs. In this scenario, it is the relationship 

between nearby covariate values that contributes PBE clustering beyond what can be explained 

by residential sorting. Alternatively, the models I estimate could be missing important factors 

associated with PBE rates that are not distributed evenly across space. Any spatial correlation of 

these missing factors can produce the residual clustering of PBE rates after accounting for the 

other covariates in the model.  

In this chapter, I use spatial econometrics models to investigate whether spatial 

dependence in PBE rates across schools is likely attributable to omitted, spatially correlated 

variations or local spillover. I begin with a brief review of previous literature pointing to the 
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importance of spillover processes in generating spatial clustering. I then discuss how spatial 

econometrics models can help identify processes that generate underlying spatial autocorrelation 

in outcomes (Anselin 1988b; Haining 1978). Next, I apply these models to the longitudinal 

dataset of PBEs in kindergartens in California from 1998-2014 described in the previous chapter. 

The results suggest that PBE rates and characteristics of one school have spillover effects on the 

prevalence of PBEs in nearby schools. The chapter concludes with a discussion of the 

importance of spatially dependent social context in vaccine decisions.  

 

Spatial Dependence in PBE Rates 

 PBE rates are not equally distributed across schools in California. Figures 4.1A and 4.1B 

present Lorenz curves for PBE rates across public, private and charter kindergartens in 1998 

(1A) and 2014 (1B). Lorenz curves are used to display the cumulative share of a good
48

 by the 

cumulative share of the population. In 1998, approximately 80% of PBEs were concentrated 

within 10% of the student population in charter and private schools and 15% of the student 

population in public schools. Concentration of PBEs within the student population decreases 

over time; by 2014, approximately 80% of PBEs are found in 25% of the student population, 

regardless of school type. 

This concentration is consistent with the increasing dispersion of PBEs across schools 

over time shown in Figure 4.1C. Dispersion measures the percent of schools that had at least one 

enrolled student with a PBE (Cohen and Tita 1999). Between 1998 and 2014, the percentage of 

kindergartens with any exempted children steadily increased. For public and charter schools, 

percentages of kindergartens with any exempted children almost doubled (percentages increased 

by approximately 90% in both cases), while the percentage of private schools more than tripled, 

                                                           
48

 Lorenz curves are most commonly used to model inequality in income. 
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from 14% to 46% of kindergartens. Over the same period, the average percentage of children 

with PBEs in charter and private kindergartens increased from approximately 7.5% to 12%, 

while public schools had a more limited increase from an average of 2% in 1998 to 4% in 2014.  

 Interestingly, simultaneous with this dispersion of PBEs in schools over time, the spatial 

autocorrelation of PBEs has increased. Spatial autocorrelation is the spatial dependence between 

an observation in one location and others nearby (Cliff and Ord 1981; Ord and Getis 1995). 

Figure 4.1D demonstrates that the global autocorrelation in PBE rates across all kindergartens, as 

measured by Moran‘s I
49

, increased from 0.21 to 0.36 between 1998 and 2014. These patterns—a 

highly uneven distribution of PBEs across schools, the dispersion of PBEs to a greater proportion 

of schools along with increasing spatial autocorrelation warrant the investigation of spatially 

dependent processes, which may explain why PBE rates cluster across space. 

 

Spatial Heterogeneity 

 Spatial heterogeneity refers to local differences in relationships between independent 

covariates and dependent outcomes across space (Getis 1994). This variation is also known as 

non-stationarity. Non-stationarity in relationships between covariates and outcomes can be 

observed for a variety of reasons, including unmeasured, spatially correlated covariates that are 

not included in the model and spillover effects among nearby observations (Fotheringham, 

Brunsdon, and Charlton 2003). Certainly, some variation will be observed in relationships across 

space when examining social outcomes, even if only through random processes. Models that 

examine spatial heterogeneity, such as Geographically Weighted Regression, specifically 

                                                           
49

 Moran‘s I is commonly used measure spatial correlation among observations. Values range from -1 to 1; 

statistically significant positive values indicate assortative spatial correlation, while significant negative values 

indicate disassortative spatial correlation. Statistically insignificant values indicate lack of spatial patterns. Random 

permutations are used to compare significance against the value expected if the observations did not exhibit any 

spatial patterns. Moran‘s I was estimated using the spdep package in R.  
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investigate statistically significant variation in relationships between covariates and outcomes 

across space (Brunsdon, Fotheringham, and Charlton 1996; Fotheringham et al. 2003; Getis 

1994). 

 

Unmeasured Covariates 

 Perhaps the most straightforward explanation for spatial dependence in outcomes after 

controlling for covariates of interest is omitted, spatially correlated covariates. Standard 

regression analyses assume a well-specified model. If the model is missing important variables 

that are not evenly distributed across space, their unmeasured effects will create spatial 

dependence in the error terms. For example, PBE rates may be increased by the presence of anti-

vaccine organizations in the local area. If anti-vaccine groups are only located in some areas 

across California and the model does not control for their presence, predicted PBE rates in 

schools in these areas will have similar (and correlated) residual values. The presence of these 

types of effects could also be attributable to selection into certain neighborhoods, and would not 

require the specification of additional spillover processes between schools to explain clustering 

of PBEs. 

 

Spatial Externalities 

 But again, it is not unreasonable to expect that parents‘ interaction in their neighborhood 

and others nearby may also help spread vaccine skepticism locally. Spatial externalities refer to 

the influence that characteristics of one neighborhood have on outcomes in other nearby areas 

(Anselin 2003; Morenoff 2003). Spatial externalities create spatially dependent relationships 

because an outcome in one neighborhood depends not only on conditions in that neighborhood 
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but also in those nearby. These externalities may result from social behavior that crosses 

neighborhood boundaries (Caughy et al. 2013) or indirect effects of behaviors that are not 

contained locally. For example, high crime rates in one neighborhood can produce negative 

externalities by increasing stress in surrounding neighborhoods (Morenoff 2003).  

Spatial externalities of covariates in nearby schools may be partially responsible for 

spatial patterns of PBEs. For example, previous research has shown that increased confidence in 

and use of alternative medicine is positively associated with vaccine skepticism (Gaudino and 

Robison 2012; Gellin et al. 2000; Salmon, Moulton, et al. 2005). Alternative health practitioners 

in one local area may create interest in these practices and draw patients from nearby 

neighborhoods as well. This could increase PBE rates not only in the schools immediately 

surrounding offices of alternative health practitioners, but also other schools nearby. Schools, 

particularly those whose enrollment is not determined by residence in a particular school district, 

may enroll children from other nearby neighborhoods with characteristics associated with higher 

PBEs rates.  

 

Spatial Diffusion 

 A specific type of spatial externalities indicates a spatial diffusion process: when PBEs 

rates in one school directly affect the subsequent likelihood of PBEs in nearby schools. Under a 

diffusion mechanism, an individual‘s decision to adopt a practice is not only a product of own 

preferences, but also the behavior of others around them. Erosion of trust in health care providers 

has prompted some parents to look beyond physicians for credible information on vaccine safety 

(Hilton, Petticrew, and Hunt 2007). In a 2009 survey, 82% of parents reported having ―some‖ or 

―a lot‖ of trust in vaccine safety information provided by family and friends (Freed et al. 2010). 
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In qualitative interviews with new mothers, both local cultural norms and trusting relationships 

with other parents holding anti-vaccine beliefs emerged as influences on vaccination intentions 

(Benin et al. 2006). 

Diffusion creates a dynamic process in which populations with almost identical sets of 

characteristics and preferences can have very different distributions of adoptions (Granovetter 

1978). In the case of PBEs, some initial selective decisions to not vaccinate children within in a 

school community may influence other parents to refuse vaccines as well (Bikhchandani et al. 

1992; May and Silverman 2003). For instance, previous research has shown that social 

interaction can spread anti-vaccine beliefs to parents who had previously vaccinated older 

children (Sobo 2015).  

 Diffusion of vaccine concerns though spatially embedded social networks could result in 

the severe disparities in PBE rates across schools in California. Spatial proximity is an important 

contributor to local clustering of ties in social networks (Bullock, Barnett, and Di Paolo 2010; 

González, Hidalgo, and Barabási 2008; Herrmann, Barthélemy, and Provero 2003). Diffusion of 

risky or unproven behaviors tends to require multiple reinforcements before an individual adopts 

(Centola and Macy 2007). Although parents with anti-vaccine beliefs may perceive vaccines as 

risky (Gust et al. 2004), refusal of recommended childhood vaccination still conflicts with 

prevailing recommendations from pediatricians and school immunization requirements in all 

U.S. states (Committee on Practice and Ambulatory Medicine et al. 2016). Deciding not to 

vaccinate after witnessing others in a local area making the same decision may increase spatial 

concentration of children with PBEs, as observed in other complex contagion outcomes (Centola 

and Macy 2007; Hedström 1994) and spread of health behaviors in social networks (Fowler and 
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Christakis 2008). An opinion formation process that requires affirmation from multiple sources 

intensifies the spatial clustering of vaccine exemptions (Salathé and Bonhoeffer 2008). 

 Homophily can increase the likelihood of diffusion (Centola 2010, 2011; Centola and 

Macy 2007). Racial or ethnic background has been identified as the greatest source of homophily 

in social networks in the U.S. (McPherson, Smith-Lovin, and Cook 2001), and plays a strong 

role in the creation of social ties (Currarini, Jackson, and Pin 2010; Smith, McPherson, and 

Smith-Lovin 2014). Tendency for racially homophilous ties in social networks can shape health 

risks, such as frequency of opiate use (Rowe et al. 2017). Similarity in racial composition of 

neighborhoods can also influence spatial diffusion of other behaviors, such as the spread of non-

youth homicides among Pittsburgh census tracts in the early 1990s (Cohen and Tita 1999). 

Homophilous adoption decisions may also be prompted by others who share cultural (Chaves 

1996; Soule 1997, 2004) or structural (Burt 1987; Strang and Tuma 1993) similarities. 

Adoption influenced by homophily can also render geographically near, but socially 

unlike individuals less influential. Observation of like others may result in ―hierarchical‖ 

diffusion in which spread occurs not through spatial contiguity, but via imitation of behavior 

observed in others that one wishes to emulate (Bale 1978; Centola 2011; Cohen and Tita 1999) 

or perceives as peers (Soule 1997). While concentrations of unvaccinated children in home-

schooling programs (Kennedy and Gust 2005; Khalili and Caplan 2007) and Montessori 

(Brennan et al. 2016) or other charter or private schools (Carrel and Bitterman 2015) may depend 

heavily on selecting into programs with more lenient policies and collective attitudes toward 

vaccination, these parents may also become more skeptical toward vaccines after observing 

rising rates of vaccine refusals among parents with similar educational practices, even if they are 

located farther away. Therefore, when examining spillover effects between schools, it is 
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important to consider how a school‘s neighbors are defined and test alternative specifications in 

the spatial models. 

In summary, non-stationarity in relationships between independent covariates and 

dependent outcomes can be caused by many factors. One such factor is unmeasured, spatially 

correlated covariates that are not included in the model. But complex interactions within and 

across neighborhoods can lead to instability in social processes and inconsistent outcomes across 

individuals or communities that share similar characteristics (Sampson et al. 2002). Spillover 

processes reflex these dynamic processes, and could be contributing to differences in the 

prevalence of PBEs in schools that may otherwise have very similar socio-demographic and 

neighborhood profiles.  

Individual level data are needed to directly test specific mechanisms of spillovers and 

diffusion. As discussed in the previous chapter, the longitudinal dataset of PBEs in California 

kindergartens does not include individual-level measures of vaccination status or social 

networks. However, by describing the overall spatial patterns of associations between covariates 

and PBEs, we can infer whether observed trends in school PBE rates are consistent with some 

social processes more so than others. Specifically, spatial econometrics models are used here to 

gather indirect evidence to help adjudicate between spatial dependency due to unmeasured 

covariate effects and spillover processes. These spillover processes can occur as both spatial 

externalities of covariate effects and spatial diffusion of PBEs through local social networks.  

 

Data 

 The analyses in this chapter again utilize the school-level dataset of PBE rates in 

California kindergartens for the 1998-2014 period. The dependent variable for these analyses is 
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logged
50

 yearly PBE rates in California public, charter, and private year kindergartens with more 

than 10 enrolled students, as reported by the California Department of Public Health. PBE 

reports are matched to enrollment records from the California Department of Education. 

Covariates include the following measures for the 500-child radius around a school: logged mean 

property values, household income, and population density
51

 from the U.S. Census; average 

mother‘s years of education and percent non-Hispanic white children from the California 

Statistical Birth Master File; count of local physicians from the American Medical Association 

Directory of Physicians; count of autism diagnoses from the California Department of 

Developmental Services; and counts of licensed acupuncturists and chiropractors from the 

California Department of Consumer Affairs. Full details of the construction of this dataset are 

presented in the previous chapter. Table A4.1 in Appendix shows the yearly counts of schools 

included in the following models.
52

 

 

Analytic Strategy 

 A series of spatial analyses were conducted to examine spatial trends in covariate effects 

on school PBE rates over time. Models were estimated yearly to assess how covariate effects and 

model fit varied over time. Standard spatial panel econometric models do not allow inclusion of 

time-lagged covariates or examine dynamic time trends (Millo and Piras 2012); however, 

random effect spatial panel models are estimated for robustness purposes and included in the 

Appendix. 

                                                           
50

 Rates have a positively skewed distributed and were logged to adjust for this. 

 
51

 Measured at the Census block group level. 

 
52

 Unless otherwise noted, all models for the same year have the same number of observations. For the sake of 

space, I report the Ns in Table A4.1 rather than including them in the footnotes of each separate figure. 
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 First, Geographically Weighted Regression (GWR) models were estimated yearly to test 

local non-stationarity (spatial heterogeneity) in regression coefficients. Non-spatial regression 

models assume covariate effects are consistent across space; GWR models test the plausibility of 

this by estimating covariate effects locally at each observation. In addition to coefficients, 

standard errors and significance tests are also estimated locally. The results presented here are 

restricted to only those effects that were statistically significant. Including statistically 

insignificant effects may capture variation that is non-systematic and attributable to random 

processes. For the GWR models, all covariates were allowed to vary geographically.
53

 

The GWR spatial kernel is estimated using an adaptive Gaussian k-nearest neighbor (k-

NN) approximation; multiple values of k were fitted to select the optimal number of neighbors 

(bandwidth). For the results presented here, the bandwidth was 0.01, presenting the 

approximately 60 nearest schools.
54

 Model fit was assessed by comparing Akaike Information 

Criterion (AIC) values from the GWR models to those obtained from Ordinary Least Squares 

(OLS) models (Nakaya et al. 2016). Models were estimated using the spgwr package in R 

(Bivand et al. 2009). Results from these models allow us to assess whether there is statistically 

significant local variation in covariate effects on school PBE rates across California.  

As discussed above, local variation in covariate effects can be generated by spatial 

externalities of covariates, other endogenous processes, such as diffusion of vaccine skepticism 

across neighborhoods, or bias due to spatially correlated, omitted variables. Spatial econometrics 

models can be used to help identify processes that generate spatial autocorrelation in outcomes 

(Anselin 1988b; Haining 1978) and contribute to spatial heterogeneity in covariate effects. 

                                                           
53

 Allowing some coefficients to vary locally while others are held constant at their global mean can create bias in 

both local coefficient estimates and relative improvement shown by comparisons of model fit statistics. 

 
54

 The exact numbers of schools including in this bandwidth each year can be directly calculated by multiplying the 

yearly counts presented in Table A4.1 by 0.01. 
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Specifications of relationships between measured covariates, unmeasured covariates, and 

outcomes vary in these models. Figure 4.2 provides an illustration of the spatial relationships in 

these models, and I discuss each of  

Spatial error models
55

 (Figure 4.2A) attribute spatial autocorrelation in the dependent 

outcome to unmeasured, spatially correlated covariates. The omission of these covariates from 

the model creates correlation in the error terms of OLS regression models.
56

 This correlation is 

demonstrated by the multi-directional arrows with dashed lines in Figure 4.2A. In this case, 

spatial dependency in PBE rates is assumed to result from unmeasured covariates, such as 

presence of anti-vaccine organizations. If these factors could be measured and included in the 

model, it is assumed that the spatial dependence would disappear. Formally, the spatial error 

model estimates a school‘s logged PBE rate (yi) as: 

yi = α + βXi + λWε + ui 

Here, schools are indexed by i, α is the constant, Xi is a vector of independent covariates for each 

school, β is estimated covariate effects, W is the weights matrix, while ε represents spatially 

correlated errors due to omitted covariates, λ the strength of the spatial dependency in these 

errors, and ui the random, school-specific error.
57

  

Alternatively, spatial lag models
58

 (Figure 4.2B) assume a spillover process in which 

events at one location increase the likelihood of observing similar events in nearby locations 

(Anselin 1988b). This model is more consistent with a diffusion process. Spatial lag models have 

been used in previous research to examine spillover effects in the production of knowledge and 

                                                           
55

 Sometimes referred to as spatial disturbance models. 

 
56

 Thus violating the independence of errors assumptions in OLS models and creating potential bias in coefficients. 

 
57

 As models are estimated yearly, these terms are not indexed by t. 

 
58

 Sometimes referred to as spatial effects models. 
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innovative activity across European countries (Moreno, Paci, and Usai 2005), behavior problems 

among adolescent peers (Caughy et al. 2013), and county homicide rates in the U.S. (Baller et al. 

2001).  

In the case of PBE rates, use of a spatial lag model suggests that schools are influenced 

by the PBE rates of other schools nearby. A school‘s PBE rate then is influenced not only by its 

covariates, but also PBE rates in neighboring schools. For example, vaccine refusals may flow 

through parental social networks that cross schools, creating spatial dependency in PBE rates in 

nearby schools. The spatial lag model estimates a school‘s logged PBE rate (yi) as: 

yi = ρWy + α + βXi + εi 

Here, schools are again indexed by i, ρ is the spatial dependency parameter, W is the weights 

matrix, y presents the PBE rates in nearby schools (and is multiplied by the weights matrix), α is 

the constant, Xi is a vector of independent covariates for each school, β is estimated covariate 

effects, and εi is the individual error term. As others have pointed out, an important caveat is that 

spatial lag models do not specify temporal order while diffusion occurs over time (Morenoff 

2003). For this reason, spatial lag models capture the spatial patterns that may result from 

diffusion rather direct evidence of the process itself.
59

 As discussed in more detail below, I do 

create a secondary measure of temporally lagged PBE rates in neighboring schools to further 

examine the possibility of diffusion. 

As discussed above, influence from covariates in nearby schools may also spillover, 

creating spatial externalities in their effects. In theory, spatial externalities in covariates are 

captured in the spatial dependency (ρ) term in spatial lag models. This is because spatially lagged 

                                                           
59

 While spatial lag models can capture the spatial dependency in outcomes resulting from dynamic diffusion 

processes, they do not directly allow for estimation of a secondary spatial dependency parameter for time-lagged 

outcomes (Anselin 2001). More generally though, even if we could specify the temporal order, caution is still 

needed in making claims about causation based on spatial correlation.  
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dependent variables capture not only direct correlation between outcomes but also spillover 

effects of covariates in nearby locations (Morenoff 2003). Spatial Durbin models can be used to 

estimate these indirect, or spatially lagged, effects of the covariate terms. 

Figure 4.2 illustrates that the difference between the spatial Durbin model and a spatial 

lag model is that the Durbin model has an additional set of spatially lagged covariate terms.
60

 

Spatial Durbin models are assumed to produce unbiased coefficient estimates even if the true 

process generating the spatial dependency is spatially lagged effects of the dependent variable or 

spatial correlation in the error due to omitted covariates (Elhorst 2010; LeSage and Pace 2009).
61

 

To reiterate the example above, the presence of acupuncturists in the local area surrounding a 

school may have a positive spatially lagged effect on nearby neighborhoods if parents of children 

in those schools also visit those practitioners.  

Direct effects of spatial Durbin models used here estimate influence of a school‘s own 

covariates on its PBE rate,
62

 while indirect effects estimate the influence that spills over from 

covariates in neighboring schools
63

 (Elhorst 2010; Golgher and Voss 2016; LeSage and Pace 

2009). Here, a school‘s logged PBE rate (yi) is estimated as: 

yi = ρWy + α + βdXi + βsWX + εi 

This is the above equation for the spatial lag model, with the exception that the covariate effects 

are now separated into a set of direct effects (βd) of a school‘s covariate values (Xi) and indirect 
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 This is the standard spatial Durbin model and it provides the best fit for this data. There is also a less commonly 

used spatial Durbin error model, which I also tested. It produced slightly higher values of AIC but similar estimates 

of direct and indirect effects of the covariates. As the number of neighbors included in the weights matrices 

increases, the AIC values for the spatial Durbin models and spatial Durbin error models converge. 

 
61

 This is because both the spatial lag and spatial error models are special cases of the spatial Durbin model. 

 
62 

This can also pick up feedback effects if there is spillover between PBEs rates in neighboring schools. 

 
63

 These spillover effects can be interpreted in two ways: (1) the average change in all neighboring school PBE rates 

produced by a one-unit change in covariate x at school j, or (2) the average change in school j‘s PBE rate that 

accrues from a one-unit change in covariate x in all neighboring schools. Mathematically, the results are the same. 

There is a nice discussion of this in LeSage and Pace (2009), which includes the algebraic equations. 



102 

 

effects (βs) from covariate values of neighboring schools (WX). Also, ρ now measures the effect 

of PBE rates in nearby schools after controlling for the indirect effects of covariates. All spatial 

econometrics models were estimated using the spdep package in R. 

 To summarize, spatial lag models are generally assumed to be more consistent with 

diffusion process and spatially lagged effects of covariates, while spatial error models tend to 

indicate bias due to omitted variables. Evidence of externalities in particular covariates from 

spatial Durbin models can further suggest potential mechanisms responsible for spillover effects 

between schools. Relative fit of spatial lag and spatial error models for school PBE rates is 

compared using Lagrange Multiplier tests and AIC (Anselin 2003; Baller et al. 2001). Lagrange 

multiple tests examine spatial autocorrelation in residuals from an OLS model using the same 

independent covariates. Formulas differ slightly for calculation of test statistics for spatial lag 

and spatial error models, and larger test statistics indicate more evidence for a particular model 

(Anselin 1988a). Lower values of AIC indicate better model fit (Akaike 1974; Fotheringham et 

al. 2003; Nakaya et al. 2016; Snipes and Taylor 2014). 

 

Spatial Neighbors  

 Spatial neighbors can be defined in many ways (Anselin, Syabri, and Kho 2006), which 

can affect results of spatial analyses (Lee et al. 2014). K-Nearest Neighbors (k-NN) weighting 

was used for this analysis; this method was preferred to both spatial contiguity weighting, which 

is more appropriate for areal units
64

, and weighted distance matrices, which are more appropriate 

for data with relatively even distribution of points across space (Anselin et al. 2006; Nakaya et 

al. 2016). Schools in California are not evenly distributed across space—schools are clustered in 
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 Areal units aggregate point-based data into larger spatial geographies (e.g. Census tracts or counties), but choice 

of aggregating unit can influence results of statistical tests (Fotheringham and Rogerson 2008). 
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urban areas and relatively far apart in the more sparsely populated northern counties. As I had no 

theoretical basis for defining how many neighbors should be included in the analyses, I tested 

NN matrices for the nearest 5, 10, and 15 neighbors, with additional robustness checks for up to 

50 nearest neighbors, in increments of 5. 

 As mentioned above, a caveat of using spatial lag models to investigate diffusion 

processes is that they do not specify temporal order. To address this, I created an indicator 

variable to record whether a school had a high PBE rate in the previous year. Schools with high 

PBE rates were defined as those with rates more than 2 standard deviations above the mean 

standardized PBE rate across the 1998-2014 period. The mean rate over the full period was used 

to account for increasing PBE rates over time (Cohen and Tita 1999), although standardized rates 

by year were also calculated and used for robustness tests. When used in spatial Durbin models, 

this indicator variable estimates both the direct influence of a school having a high PBE rate in 

the previous year and the indirect effects of having neighboring schools with high PBE rates in 

the previous year. Time-lagged dependent variables were not used directly as covariates due to 

the bias this can create in the effects of other covariates (Achen 2000; Keele and Kelly 2006; 

Millo and Piras 2012).
65

 To estimate these effects, only schools with PBE data recorded for the 

previous year were included in the analyses. Robustness checks for these results were conducted 

using a balanced panel spatial lag model with random effects for schools. This model was 

estimated using the splm package in R. 

The analytic strategy so far has assumed that spillover effects through covariates or PBE 

rates or covariates occur across spatially proximate schools. The modification of diffusion effects 

by homophily suggests that all school may not be equal in their influence others nearby. 
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 Although this variable is created from the dependent variable value in the previous year, it does not meaningfully 

change the values or significance of direct or indirect effects of the other covariates when included in the model. 
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Spillover effects may be most pronounced across schools of the same type. For example, parents 

of students in charter schools may be more attentive to PBE rates in other nearby charter schools, 

rather than vaccination trends in nearby public schools. To investigate whether it is the 

geographically nearest schools or the nearest schools of the same type that most influence a 

school‘s PBE rate, two sets of NN weights matrices were created. The first included the nearest 

schools across all school types. The second included the nearest schools of the same type only.
66

  

 

Results 

 As discussed above, the presence of spatial externalities, which can be produced by 

spillovers in covariate effects, endogenous processes, or omitted variables, will produce local 

variation in covariate effects. Results from the GWR models presented in Figure 4.3 provide the 

evidence of this spatial heterogeneity. Figure 4.3A shows that allowing local variation in 

coefficients leads to better fitting model, as indicated by statistically significant reduction in AIC 

compared to an OLS model. Figures 4.3B-4.3I present the distribution of significant local effects 

for each covariate over time, as well as the percentage of schools that had significant local 

effects.  

 Consistent with findings in the previous chapter, count of physicians in the local area 

surrounding a school has only a small percentage of significant local effects and very small 

effect sizes (4.3B). Count of chiropractors also has a relatively small percentage of significant 

local effects and little variation in effect size (Figure 4.3C). Count of acupuncturists has a greater 

proportion of local significant effects, but most of the variation is in the tails, rather than center, 

of the distribution of effect sizes (Figure 4.3D). This is an interesting finding given that the effect 
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 Effects for all schools were still estimated in the same model, but rows in the weight matrices corresponding to 

charter schools could only contain other charter schools, etc. 
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of acupuncturists was insignificant in the full model in the previous chapter. Effects of autism 

diagnoses in the local area surrounding a school become more positive over time, consistent with 

what might be expected given the MMR-autism vaccine scare in the late 1990s; however, these 

effects are only significant for a very small percentage of schools (Figure 4.3E). 

The socio-demographic variables appear to have greater local variation and a higher 

percentage of locally significant coefficients. Logged household income, in particular, exhibits 

significant variation over time, but, again, in no year do more than 20% schools show significant 

local effects (Figure 4.3I).
67

 Logged block group density consistently has negative local effects 

on school PBE rates, although there are some positive local effects for some schools, as shown in 

the tail of the distribution (Figure 4.3H). The percentage of significant local coefficients does not 

change systematically across the 1998-2014 period. The local effects of average mother‘s 

education (Figure 4.3F) and percent non-Hispanic population in the local area surrounding a 

school (Figure 4.3G) are similar in that they both show increases in the percentage of statistically 

significant local effects over time. Percentage non-Hispanic white seemingly exhibits less 

variation than average mother‘s education, but the variation that does occur is consistently 

positive across almost all years.  

Local variation in the effects of private and charter school status show different, but 

interesting effects. Private school status appears to have the most consistent effects on PBE rates 

across schools in this period (Figure 4.3J). The effects are consistently positive, and the covariate 

maintains more than 50% of local effects are significant in all years. Charter school status also 

consistently has positive effects on PBE rates, but exhibits more variation over time than private 

schools (Figure 4.3K). In particular, the percentage of statistically significant local effects for 
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 Property values were insignificant after controlling for other covariates in the model. 
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charter schools increases substantially over time. This provides additional support for charter 

schools as a significant influence in increasing PBE rates in California kindergartens.  

In summary, results from the GWR models demonstrate that there is local variation in 

covariate effects, but that the distributions of local effects vary across covariates. The ability of 

covariates to produce positive and negative local effects indicates that the influence of covariates 

is likely modified by other spatially dependent process or omitted variables. Covariates that 

produce consistently positive and statistically significant local effects, such as percent non-

Hispanic white and private school status, may be particularly important to spatially dependent 

relationships. 

Spatial econometrics models were then estimated to examine the potential underlying 

processes of spatial dependence in PBE rates. Improvement in model fit, as measured by 

reduction in AIC, produced by spatial lag and spatial error models are presented in Figure 4.4. 

An OLS model that does not incorporate spatial dependency is used for the baseline comparison 

for values of AIC. Figure 4.4 suggests two findings. First, spatial lag models generally provide 

improved fit over spatial error models, which suggest spatial spillover in PBE rates. As the 

number of nearest neighbors included in the spatial weights matrix increases, the AIC values 

generally decrease, but inconsistently and with decreasing returns after 15-NN.
68

 The reduction 

in AIC for k-NN values of 20 through 50 is shown in Figure A4.1 in Appendix. Table A4.2 in 

Appendix shows that Lagrange Multiplier tests also indicate that spatial lag models generally 

provide better specification for the spatial dependence in the data. Second, Figure 4.4 also shows 

that using all nearest schools as neighbors provides a significantly better fit than using only the 

nearest schools of the same type. This is at least partially attributable to the increased distance of 
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 The difference between AIC values for spatial lag and spatial error models also decreases as the number of 

neighbors included in the weights matrix increases, as might be expected from a local spillover process. 
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the nearest neighbors when restricting the weights matrix to only other schools of the same type. 

But if parents were looking primarily to parents in peer schools for cues on vaccine decisions, 

geographical proximity may not be the most important factor, as observed in other studies on 

diffusion (Soule 1997). 

To examine the potential indirect effect of covariates, spatial Durbin models were 

estimated using a 15-NN weights matrix for all nearest schools.
69

 I chose to estimate the spatial 

Durbin models for 15-NN as it provided a lower value of AIC than for 5-NN or 10-NN and 

Lagrange Multiplier tests showed no significant spatial dependence in the spatial lag model 

residuals for most years.
70

 Figure 4.5 presents these results. These results provide insight into 

whether spatial heterogeneity shown in the GWR models can be attributed to spillover effects of 

covariates in neighboring schools. 

First, the variables that were shown to have lower proportions of significant local effects, 

particularly counts of physicians (Figure 4.5A) and autism diagnoses (Figure 4.5D), also do not 

show many significant direct or indirect effects in the spatial Durbin model. Interestingly, 

alternative health practitioners, particularly acupuncturists (Figure 4.5C), are more likely to have 

statistically significant indirect rather than direct effects over this period. Chiropractors also have 

small indirect effects, but they are only significant in a few years (Figure 4.5B). This suggests 

that the effects of these practitioners may span larger areas than just in the schools located most 

nearby. The result for acupuncturists in particular may be responsible for the greater proportion 
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As shown in Figure A4.1 in Appendix, AIC does continue to reduce slightly until approximately 30 NN. The 

magnitude of reduction decreases as NN increases over 15. I examined results from spatial Durbin models for many 

values of NN, particularly those between 25 and 35; the results do not substantially change. 
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 There was one exception—the model for 1998 showed mildly significant spatial dependence in residuals. Ideally, 

after spatial dependency is properly incorporated into regression models, the residual terms should not show 

significant spatial autocorrelation. 



108 

 

of significant local effects shown in the GWR results yet the insignificant findings in the 

previous chapter.
71

 

More importantly, the only socio-demographic variable that exhibits consistent indirect 

spatial spillover effects is percent non-Hispanic white, particularly after 2003. Although percent 

non-Hispanic white (Figure 4.5F) and mother‘s education (Figure 4.5E) have similar direct 

effects on school PBE rates, only percent non-Hispanic white has statistically significant indirect 

effects. This suggests that racial/ethnic composition matters not only in the local area around a 

school, but also in the surrounding neighborhoods.  

Logged block group density also shows significant indirect effects, but only in the first 

few years (Figure 4.5G). This indicates that PBE rates were initially higher in more rural areas. 

Property values (Figure 4.5H) do not show consistent significant direct or indirect effects over 

time, although, interestingly, direct effects tend to be positive and indirect effects negative. Some 

of the variation in local covariates shown in the GWR models could be attributable to the 

opposite signs in direct and spillover effects, although it is difficult to draw these conclusions 

when effects are only significant in a handful of years. 

Despite the strong positive effects shown by school type in the GWR models, neither 

private (Figure 4.5I) nor charter (Figure 4.5J) school status shows consistent indirect effects on 

PBE rates in neighboring schools. Surprisingly, the few statistically significant indirect effects 

shown for charter school status in later years are negative rather than positive. Based on the 

GWR results and increasing PBE rates over time, I suspected there might be a positive spillover 

effect on PBE rates from private and charter schools to nearby public schools, yet results are not 

consistent with this hypothesis. Rather, if anything, private and charter schools may be attracting 
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 The lack of direct effects in some years may be influenced by the increased likelihood of PBEs in rural areas. 

Acupuncturists may influence PBE rates in the general area, but not necessarily in the local business district where 

the office is located. 
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vaccine hesitant parents over time, increasing the disparities between PBE rates in these schools 

and neighboring public schools.
72

 For this data, this could be in part a result of parents of 

children selecting into charter schools in neighboring communities. 

 Finally, to further examine possible diffusion of PBEs, spillover effects of having 

neighboring schools with high PBE rates in the preceding year are shown in Figure 4.6. Using an 

indicator of high PBE rates in the previous year preserves the temporal order assumed in 

diffusion processes. These results are net of the direct impact of whether the school itself had a 

high PBE rate and both the direct and indirect effects of the other covariates described above. 

The strongest effects are shown when neighbors are defined as nearest schools of all types 

(Figure 4.6A). Using nearest schools of the same type instead (Figure 4.6B) also has some 

positive effects, albeit smaller and not consistently statistically significant. This is consistent with 

the results above demonstrating that the nearest schools of any type most influence PBE rates. 

Again, this could be a product of increased distance between schools of the same type, but 

emphasizes that the spillover effects on PBE rates are likely occurring in spatially local areas and 

are not confined within particular types of schools. 

As shown in Figure 4.6A, as the number of neighbors included in the model increases, 

there are decreasing returns on the positive effects on school PBE rates. In other words, the 

nearest 5 to 10 schools provide the greatest influence on PBE rates. Using the 15 or 20 nearest 

neighbors continues to show positive effects, but it is largely capturing the effects present when 

only 10 neighbors are included in the model. These results are also generally consistent with 

those obtained from a panel spatial lag model with random effects over the full analysis period 

demonstrating that high PBE rates in the most nearby schools in the previous school year has a 

positive effect on PBE rates (Figure A4.3 in Appendix). 
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 To be fair though, the negative indirect effects for charter schools are only statistically significant in 2011. 
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Discussion 

As PBE rates have increased in California kindergartens over time, PBEs have been 

observed in a greater percentage of schools and spatial autocorrelation of PBE rates has also 

increased. Results in the previous chapter suggested that the broader spatial clustering of PBEs in 

California could not be attributed to selection processes based on school-level correlates. The 

spatial econometrics analyses presented in this chapter extend this discussion to examine how 

spatial externalities in covariate effects and endogenous processes, such as diffusion, may be 

responsible for the high inequality in PBE rates across schools. Separating this type of social 

process from residential sorting is important for understanding how pockets of unvaccinated 

children are formed and may be targeted in intervention strategies. 

 Significant local variation in covariates effects PBE rates, as shown in the GWR models, 

suggests the neighborhood characteristics do not uniformly affect PBE rates over space. 

Investigation of whether local variation in the covariate effects could be attributed to spatial 

spillover effects showed mixed results. Only percentage non-Hispanic white had consistent 

indirect effects. Acupuncturists also showed indirect effects, which may explain the local 

variation in its effects, despite the insignificant result in the full model in the previous chapter. 

Furthermore, school type failed to show significant spillover effects, despite strong positive local 

effects. 

 Improved model fit for spatial lag over spatial error models is consistent with spillover 

effects of PBE rates. This was also supported by positive effects of having nearby schools with 

high PBE rates in the previous year. The positive indirect effects of percent non-Hispanic white 

children in nearby schools suggest that these parents play a significant role in the increasing rates 

of non-medical vaccine exemptions.  As many social ties in the U.S. are racially/ethnically 
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homophilous, the indirect effects of percent non-Hispanic white may be picking up effects of 

spatial diffusion of vaccine hesitancy across nearby schools with high proportions of non-

Hispanic white children.  

These findings are limited by the use of administrative data. Data is not available for 

individual-level locations of PBEs, boundaries for school enrollment, and parental networks. The 

local area around a school is defined here as a 500-kid radius. If school neighborhoods actually 

span wider areas, this may affect the findings of the spatial models.
73

 The challenge is to fit 

models at a geographical level that captures spatial variation without fitting too much to local 

idiosyncrasies. The macro-level results presented here suggest the presence of spatially 

dependent processes in generating clusters of PBE rates across local school areas. Future 

research on micro-level processes is needed to uncover how socio-demographic characteristics, 

such as race/ethnicity, consistently contribute to generating these larger spatial patterns of non-

medical exemptions. 

 These results were also limited by the use of year cross-sectional data to examine 

dynamic processes that unfold over time. Existing spatial panel methods do not yet allow 

incorporation of temporally lagged effects (Millo and Piras 2012; Parent and LeSage 2012). 

Regression modeling of both spatial and temporal dependency can be difficult due to 

endogeneity and potential non-stationarity in both time trends and spatial dependency, which can 

produce biased estimates of parameters. More sophisticated dynamic space-time models 

estimated via simulation (Lee et al. 2014) could be used to better estimate expected patterns of 

                                                           
73

 As discussed in the methods section above, how you define neighbors in spatial econometrics models can 

meaningfully affect your results. In practice, the definition of the size of the school neighborhood could also affect 

the results presented here. Like number of neighbors included in the spatial weights matrices, I suspect that 

substantial increases in the size of the school neighborhood will decrease differences in fit between spatial lag and 

spatial error models, as well as decrease reduction in AIC compared to standard OLS models. As the geographical 

area under examination increases, it would be expected that some of the differences over space average out and 

estimates tend more toward the global averages presented in standard regression models. 
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particular diffusion processes over time. Event history analysis could also offer insights 

specifically into the dispersion of PBEs over time by examining time-varying effects on the 

hazard rate of a school having at least one enrolled child with a PBE. 

 

Conclusion 

 The results presented here move beyond a static representative of social determinants and 

emphasize the importance of investigating local spillover to better understand underlying 

processes that may be responsible for the spatial patterns of non-medical vaccine exemptions 

across schools. Examining how spatially dependent social processes generate these local effects 

is an important step in identifying the merging of social and spatial patterns in vaccine 

exemptions (Wang et al. 2014). The results are consistent with qualitative research that suggests 

that parents are aware of social norms toward vaccination and are influenced by others in their 

social networks (Attwell and Freeman 2015; Gaudino and Robison 2012; Sobo 2015). Social 

marketing campaigns that target specific segments of the population while addressing local 

social norms and misconceptions associated with vaccination may be more effective in 

influencing hesitant parents to vaccinate (Chiprich and White 2011; Opel et al. 2009). The results 

presented here and in the previous chapter demonstrate that significant spatial dependence exists 

in locations of children with PBEs in California. The next two chapters will examine the 

consequences of this clustering on local measles risk.  
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Figures 

 

Figure 4.1: Spatial concentration and dispersion of PBE rates in California kindergartens, 1998-

2014 
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Note: Concentration of PBEs within schools has decreased slightly over time, although the distribution remains 

highly uneven regardless of school type, as shown in Lorenz curves for 1998 (A) and 2014 (B). If PBEs were evenly 

distributed across the student population, the lines should fall on the diagonal (as shown by the light gray dashed 

line). The proportion of schools with at least one enrolled child with a PBE has increased over time, regardless of 

school type, as has the mean PBE rate in all schools with at least one exemption (C). Not only is the mean PBE rate 

higher in charter and private schools, it has also experienced a steeper gradient of mean increase across this period. 

Finally, the spatial autocorrelation among PBE rates in neighboring schools, measured by global Moran‘s I, has 

increased over time (D). All values of Moran‘s I are statistically significant at α < .001. 
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Figure 4.2: Diagrams of spatial relationships in autocorrelation among school PBE rates in 

spatial error (A), spatial lag (B), and spatial Durbin lag (C) models 
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Figure 4.3: Local variation in covariate effects in GWR models, 1998-2014 

  
A. Reduction in AIC for GWR Models B. Physicians 

  
C. Chiropractors D. Acupuncturists 

  
E. Autism cases F. Mother‘s education 
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G. Percent non-Hispanic white H. Block group density (logged) 

  
I. Property values (logged) J. Private school status 

 

 

K. Charter school status  

Note: Percent of locally significant coefficients shown above the x-axis. The box plots include only statistically 

significant (α < 0.05) local coefficients; the values shown are the minimum effect size (lower whisker), 25
th

 

percentile (lower bound of box), median (midpoint of box), 75
th

 percentile (upper bound of box), and maximum 

(upper whisker). Bandwidth set at 0.01. Figure 3A reports the reduction in AIC in GWR models as compared to OLS 

models. 
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Figure 4.4: Reduction in AIC (compared to OLS models) for spatial autocorrelation models 

  

  

A. All Schools B. Schools of Same Type 
 

 

 

Note: Results are shown for models with 5, 10 and 15 nearest neighbors for both all nearest schools (A) and nearest 

schools of the same type (B). These comparisons demonstrate that: 1) Spatial lag models generally fit the data better 

than spatial error models, indicating a spillover effect between PBE rates in neighboring schools. 2) Defining 

neighbors as all nearest schools results in a better fit than assigning neighbors as the nearest schools of the same 

type (notice differences in the scale of the y-axis). The preferred models support that PBE rates may be a result of a 

local spillover process among geographically nearby schools. Although some of the differences in AIC look quite 

small, very small reduction in AIC can be used as evidence of a significantly better model fit (Fotheringham et al. 

2003).
74

 Models were estimated independently for each year; dependent variable is logged school PBE rate and 

covariates include: mother‘s years of education, percent non-Hispanic white, Census block group density (logged), 

average property values (logged), count of physicians, acupuncturists, chiropractors, and children diagnosed with 

autism in the school‘s 500-child radius and dummy variables representing school type. Nearest neighbor values of 5 

through 50 (in increments of 5) were tested for each year and neighbor type (Figure A4.1 in Appendix). 
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 Fotheringham et al (2003) suggest that an absolute difference of 3 in AIC is sufficient evidence to prefer one 

model over another.  
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Figure 4.5: Direct and indirect effects of covariates 

   
A. Physicians B. Chiropractors C. Acupuncturists 

   
D. Autism Diagnoses E. Mother‘s Education F. % Non-Hispanic White 

  

 

G. Pop. Density (logged) H. Property Values (logged)  

  

 

I. Private School J. Charter School  

 

Note: Covariates with spatial externalities have indirect as well as direct influence. Effect sizes estimated using 

spatial Durbin models with 15-NN for all nearest schools. Lines show all estimated effect sizes; points mark only 

those statistically significant using α < .05. Covariates with spatial externalities should have indirect as well as direct 

influence. Effects of charter and private school status are separated in the fourth row due to differences in axis 

scales. 

 



119 

 

Figure 4.6: Effect of having neighboring schools with high PBE rates in the previous year 

  

A. All Nearest Schools B. Nearest Schools of Same Type 

 

 

Note: High PBE rates in the geographically nearest neighbors, regardless of school type (A), has a more 

consistent positive effect on PBE rates in a school than nearest schools of the same type (B), controlling for the 

direct effect of a school itself having a statistically significantly higher PBE rate in the previous year. Nearest 

neighbors are grouped in increments of 5 to show decreasing returns on positive effects as distance increases. 

Lines show all effect sizes; points represent only those statistically significant at α < .05. Effects were estimated 

using spatial Durbin models, controlling for mother‘s years of education, percent non-Hispanic white, Census 

block group density (logged), average property values (logged), count of physicians, acupuncturists, 

chiropractors, and children diagnosed with autism in the school‘s 500-child radius, indicator variables 

representing school type, and the direct effect of a school itself having a high PBE rate in the previous school 

year. Results using yearly standardization are generally consistent with those presented here, as shown in Figure 

A4.2. 
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Appendix  

 

Table A4.1: Yearly observations, by school type 

Year Public  Private Charter Total 

1998 4537 1826 124 6487 

1999 4616 1738 131 6485 

2000 4666 1769 146 6581 

2001 4737 1749 166 6652 

2002 4772 1644 181 6597 

2003 4814 1509 199 6522 

2004 4806 1450 204 6460 

2005 4869 1419 213 6501 

2006 4931 1404 223 6558 

2007 4957 1368 235 6560 

2008 4924 1236 241 6401 

2009 4974 1155 277 6406 

2010 4930 1189 290 6409 

2011 4961 1163 323 6447 

2012 4948 1186 388 6522 

2013 4932 1205 409 6546 

2014 4952 1126 446 6524 

Note: These yearly counts serve as the N for all the spatial models presented in this chapter, unless otherwise noted. 
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Table A4.2: LaGrange Multiplier tests for spatial dependence, 1998-2014 

Year LM Error LM Lag Robust LM Error
1 

Robust LM Lag
2 

1998 241.28*** 319.47***   0.26 78.45*** 

1999 218.09*** 262.57***   1.87 46.34*** 

2000 219.59*** 258.61***   3.17 42.19*** 

2001 303.98*** 336.55*** 10.77** 43.35*** 

2002 226.79*** 256.96***   6.81** 36.98*** 

2003 227.71*** 221.95*** 21.67*** 15.91*** 

2004 288.40*** 309.75*** 15.91*** 37.27*** 

2005 231.74*** 266.95***   9.03*** 44.24*** 

2006 241.61*** 283.44***   6.56** 48.39*** 

2007 356.86*** 386.02*** 21.76*** 50.93*** 

2008 255.08*** 295.55*** 11.96*** 52.42*** 

2009 265.24*** 278.50*** 23.97*** 37.24*** 

2010 255.41*** 301.70*** 11.00*** 57.29*** 

2011 173.96*** 197.66***   9.90*** 33.61*** 

2012 252.05*** 247.76*** 30.73*** 26.44*** 

2013 330.84*** 334.94*** 38.05*** 42.15*** 

2014 307.92*** 309.21*** 37.72*** 39.01*** 

Note: Models estimated for 15 nearest schools (all types). Values shown are χ
2
(1) test statistics, with significance 

represented as  *** p < .001; ** p < .05.  
1
Robust LM error model tests for presence of spatial dependency in errors after accounting for spatial lag process. 

2
Robust LM lag model tests for presence of significant spatial lag after account for spatial dependency in errors. 
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Figure A4.1: Reduction in AIC (compared to OLS) for spatial autocorrelation models, nearest 5 to 

50 neighbors for all schools (A) and schools of the same type (B) 

A 

 

 

B 

 

 

 

 

 

Note: Note differences in y-axis scale—defining nearest neighbors as all schools rather than nearby schools of the 

same type almost always results in a larger reduction in AIC, regardless of specification of k. The best fitting models 

should produce the lowest values of AIC; however, as shown in the graphs above, there is no value of k that 

consistently produces the best fit across all years. The best fitting models (i.e. lowest values of AIC) are generally 

produced when including from 15 to 35 neighbors, although, overall, there are diminishing returns on reduction to 

AIC for increasing the number of neighbors above 15. 
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Figure A4.2: Effect of having neighboring schools with high PBE rates in the previous year, 

as measured by yearly standardized rates 

  

 

A. All Nearest Schools B. Nearest Schools of Same Type 

 

Note: Models were estimated independently for each year using spatial Durbin models, controlling for mother‘s 

years of education, percent non-Hispanic white, Census block group density (logged), average property values 

(logged), count of physicians, acupuncturists, chiropractors, and children diagnosed with autism in the school‘s 

500-child radius, indicator variables representing school type, and the direct effect of a school itself having a high 

PBE rate in the previous school year. 
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Figure A4.3: Effect of neighboring schools with high PBE rates in the previous year, 1998-2014 

 

 

 

Note: High PBE rates were defined as having a PBE more than 2 standard deviations above the standardized mean. 

Results were obtained from a balanced panel spatial lag model using 15-NN weights, and controlling for having a 

high PBE rate in the school in the previous year, mother‘s years of education, percent non-Hispanic white, Census 

block group density (logged), average property values (logged), count of physicians, acupuncturists, chiropractors, 

and children diagnosed with autism in the school‘s 500-child radius, dummy variables representing school type, and 

dummy indicators for year; yearly n= 4,373, overall N= 74,341. 
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Chapter 5: How Spatial Clustering of Non-Medical Vaccine Exemptions Affects Locations 

of Measles Transmission in Social Networks 

 

 

Abstract 

 

Physical contact in social networks structures transmission of infectious disease. The small-

worlds model emphasizes the role of weak ties in disease spread by facilitating transmission 

between local clusters in the network. Yet, for diseases in highly vaccinated populations, such as 

measles in the U.S., contact with strong ties—those we interact with frequently—may play an 

important role in disease transmission among unvaccinated children. An empirically calibrated 

simulation model using 9,059,060 children shows that, with or without spatial clustering of 

PBEs, schools are predominant sites of measles infections. Yet, clustering of PBEs in charter 

schools increases the opportunity for transmission. Additionally, households only become 

important transmission settings when siblings share vaccination status. Community interaction 

results in a smaller percentage of infections overall, yet does reduce outbreak size when 

eliminated from the model. Physician offices are the most frequent sites of community infections 

due to exposure of infants too young to be vaccinated. These findings emphasize the important 

role strong ties play in disease transmission when children who lack vaccination are clustered 

within social networks and have implications for containment strategies. 
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Chapter Introduction 

Disneyland grabbed headlines in early January 2015
75

, when it emerged as the common 

exposure setting in an escalating measles outbreak. Infections spread to 7 U.S. states, Canada, 

and Mexico (Zipprich et al. 2015), sparking intense debate over vaccines (Blumberg et al. 2015; 

Radzikowski et al. 2016) and vaccine refusals (Yang, Barraza, et al. 2015). However, visits to 

Disneyland during the initial exposure period accounted for only 32% of the cases reported in 

California; infections acquired at the Disney theme parks were carried back to local communities 

where the disease continued to spread (Harriman 2015). 

This chapter transitions from investigating social processes that influence spatial 

clustering of children with non-medical vaccine exemptions to examining its effect on disease 

spread. Examining how outbreaks move through social networks is important for understanding 

the ways in which social processes shape patterns of biological contagion and have implications 

for disease prevention and containment strategies. How does spatial clustering of non-medical 

vaccine exemptions affect the types of social ties through which measles is transmitted? Like 

social diffusion, biological contagion is heavily influenced by the structure of contact in social 

networks (Granovetter 1973; Newman, Barabási, and Watts 2006). While weak social ties, those 

that reach outside local clusters of interaction, likely introduce measles infections to new areas of 

a network (Watts 2004; Watts and Strogatz 1998), this chapter demonstrates that the clustering 

of vaccination exemptions makes strong ties play a crucial role in continued transmission in local 

communities due to their ability to connect unvaccinated children.  

This chapter begins with a discussion of contact and disease spread in social networks. I 

then introduce a cross-sectional synthetic population of California youth in 2014 and an agent-

                                                           
75

 While visitors to the park contracted measles in December 2014, cases were not reported to the California 

Department of Public Health until early January 2015. 



127 

 

based simulation model I built to examine the role of social ties in measles transmission. 

Vaccine-preventable disease outbreaks are highly stochastic events, particularly in developed 

countries where a disease is no longer endemic
76

 (Bjørnstad, Finkenstädt, and Grenfell 2002). 

The simulation experiment models disease transmission as a dynamic, stochastic process to 

understand the variation in outcomes that can result from identical populations and transmission 

parameters (Bolker and Grenfell 1993; Bruch and Atwell 2015; Rahmandad and Sterman 2008). 

I conclude with a discussion of why interaction among unvaccinated children is an important 

component of understanding localized disease risk. 

 

Social Contact and Disease Spread in Networks 

Social networks affect health not only through social processes of diffusion, residential 

sorting, and establishing local norms, but also by providing paths for biological contagion. 

Unlike social influence, which can occur via many channels, networks shape biological 

contagion through structuring physical contact (Smith and Christakis 2008). Contact in networks 

is assortative; people tend to interact with like others, such as those who are of similar age, speak 

the same language, or share the same affiliations (Newman 2003), and these mixing patterns 

correspond with local community structure in large social networks (Newman and Girvan 2003; 

Newman and Park 2003). Human mobility patterns tend to be geographically local; high 

regularly and repeated interaction in local neighborhoods shapes opportunities for contagion 

(González et al. 2008; Mossong et al. 2008), particularly for disease spread through casual 

physical contact (Ferguson 2007).  

                                                           
76

 Again, non-endemic diseases are those not continuously transmitted for a period of 1 year or more in a 

geographical area. Measles has been non-endemic in the U.S. since 2000, a result of maintaining sufficient herd 

immunity to prevent continuous transmission in the population (Hinman, Hutchins, Bellini, et al. 2004; Orenstein 

and Papania 2004). 
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Even though much of our physical interaction tends to occur with those who share socio-

demographic characteristics and are geographically proximate, disease outbreaks have the ability 

to quickly transform from local clusters of cases into global epidemics (Watts 1999, 2004). This 

is due to the small-worlds properties of real-world social networks. Small-worlds models contain 

both local clustering resulting from regular and overlapping social interaction (usually associated 

with strong social ties) and more long-range connections formed through less frequent 

interaction outside local clusters in our networks (typically attributed to weak social ties) (Watts 

2004; Watts and Strogatz 1998). 

Small-worlds properties in social networks increase disease spread through a combination 

of global and local efficiency. The local clustering in small-worlds networks provide sufficient 

redundancy that permits flow among proximate nodes even if some nodes in the cluster are 

removed (local efficiency) while the long-range ties allow relatively short, navigable paths 

between more distant nodes (global efficiency) (Latora and Marchiori 2001). The long-range 

ties, in particular, allow disease to spread more quickly across local clusters in the network 

(Moore and Newman 2000). Having even only a small proportion of social ties extend outside 

local clusters to distant parts of the network significantly reduces both the level of infectiousness 

required to infect half of a population and, in cases of highly infectious diseases, significantly 

reduces the time necessary to completely saturate the population (Watts and Strogatz 1998).  

While long-distance travel creates opportunities for the introduction of disease to new 

areas (Chen et al. 2010; Sugerman et al. 2010), patterns of interaction in social networks sustain 

transmission locally. Contact with strong ties, those we interact with regularly based on 

membership in enduring social structures, such as households and schools, may limit the reach of 

the disease, while weak tie interaction, the infrequent contact with others who may or may not be 
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previously known to us in the neighborhood and larger community, may extend it. For non-

endemic diseases in highly vaccinated populations, such as measles in the U.S., the actual 

distributions of unvaccinated children modify these patterns of transmission via strong or weak 

ties. Empirically calibrated simulation models allow examination of the aggregate effects of 

individual decisions against vaccination that is not otherwise possible with abstract models or in 

real-world settings (Hedström and Åberg 2005). 

 

Measles Transmission 

Measles is easily spread through casual physical contact (Ferguson 2007) or airborne 

transmission (de Jong and Winkler 1964). Infections occur most commonly in children; this was 

the case both before (Top 1938) and after routine vaccination (Markowitz et al. 1989).Children 

not only tend to interact with others close to their own age(Del Valle et al. 2007; Del Valle, 

Hyman, and Chitnis 2013; Longini, Ackerman, and Elveback 1978; Schenzle 1984), but are also 

more likely to have contact adequate for transmission of diseases spread through casual physical 

contact compared to adults (Del Valle et al. 2007). Significant amounts of children‘s contact with 

family members in the household and other children who attend the same school (Del Valle et al. 

2007; Longini et al. 1982; Mossong et al. 2008; Viboud et al. 2004). Schools and childcare 

centers in particular have been dominant transmission settings for many measles outbreaks 

(Centers for Disease Control and Prevention 2004; Chen et al. 1989; Davis et al. 1987; Feiken et 

al. 2000; Gustafson et al. 1987; Hull et al. 1985; Markowitz et al. 1989; Marks, Halpin, and 

Orenstein 1978; McCombie et al. 1988; Nkowane et al. 1987; Wassilak et al. 1985). Outbreaks 

in schools can be carried to back to households, where siblings are exposed (Gindler et al. 1992; 

Markowitz et al. 1989), and into the wider community (Longini et al. 1982; Viboud et al. 2004).  
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In the vaccine era, when transmission in the general population is less common, children 

under five years of age are particularly vulnerable to measles infections (Gindler et al. 1992; 

Hinman, Hutchins, Baughman, et al. 2004). In some outbreaks, the highest attack rates
77

 are 

experienced among infants under one year of age that are not yet eligible for vaccination 

(McCormick, Halsey, and Rosenberg 1977). Increased susceptibility to measles infection has 

been observed among children with mothers born after 1963 due to reduced levels of inherited 

maternal immunity (Papania et al. 1999).
78

 Medical settings, particularly pediatrician offices, 

contribute significantly to exposure to the disease for children under five years of age in the 

larger community (Davis et al. 1986; Gindler et al. 1992) and serve as a common locations for 

measles infections (Bloch et al. 1985; Markowitz et al. 1989). 

Few previous epidemiological studies have documented how transmission settings are 

affected by patterns of selective vaccine refusal.
79

 Locations of measles transmission are a 

product of not only where physical contact is likely to occur, but also where vulnerable children 

can be reached. The previous two chapters demonstrate that children with PBEs are not 

distributed randomly across geographical space. The simulation model used here can examine 

how PBE clusters alter risk of infections in locations of frequent contact among children, which 

will have implications for containment strategies.  

 

 

                                                           
77

 Attack rates are the proportion of exposed individuals who become infected. 

 
78

 Mothers who were born after license of the measles vaccine in 1963 are less likely to have been infected by the 

measles as a child; mothers who have experienced a previous measles infection develop and pass on higher antibody 

titers than those who have acquired immunity through immunization (Papania et al. 1999). 

 
79

 Buttenheim et al (2013) present results from simulation experiments demonstrating that heterogeneity in physician 

policies toward unvaccinated children can create clustering of susceptible individuals in certain offices. This 

suggests increased risk of infection in these locations that may spillover into the local community; however, the 

simulation experiments do not explicitly model disease spread. 



131 

 

Hypotheses 

Unvaccinated children are at higher risk for measles infection, and spatial clustering of 

unvaccinated children contributes to increased community-level risk of disease transmission 

(Feiken et al. 2000; Omer et al. 2009; Salmon et al. 1999). Schools and childcare centers are 

likely to be important transmission settings for measles regardless of PBEs due to the 

predominance of contact among children which occurs there; however, clustering of PBEs in 

these locations may increase their importance in measles transmission during outbreaks. 

Hypothesis 1A: Measles infections should be more common in schools when PBEs 

are spatially clustered than if PBEs were randomly distributed in the population. 

Private schools and charter schools have higher PBE rates than non-charter public schools 

(Birnbaum et al. 2013; Brennan et al. 2016; Carrel and Bitterman 2015; Sobo 2015), which could 

create increased opportunity for measles transmission in these types of schools in particular.  

Hypothesis 1B: Charter and private schools should produce high percentages of 

infections relative to student enrollment than non-charter public schools. 

As mentioned above, households are also an important setting for contact among children. 

Although the number of unique contacts in the household is limited, regular contact among 

siblings and the tendency to share vaccination status (Liu et al. 2015; Sugerman et al. 2010) 

likely contributes to increased risk of measles infection in this setting. 

Hypothesis 2: Higher percentages of infections should occur in households when 

PBEs are spatially clustered than would be expected if PBEs were distributed 

randomly. 

As predicted by the small-worlds model, weak tie interaction may serve as important 

pathways through which new infections are sustained in the population due to redundancy in 

contact among strong ties in households and schools. At some point, exposure and infection 
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among susceptible individuals in these locations will become saturated. To sustain itself in the 

population long-term, the disease must travel outside local clusters into the larger network. Even 

if weak tie contact generates a small proportion of total measles cases, interaction in community 

settings, including neighborhoods, physician offices, and other public places such as shopping 

malls, may play a crucial role in spreading infections between strong tie settings (schools, 

childcare, and households). 

Hypothesis 3: Eliminating contact in community settings should significantly reduce 

the overall size of outbreaks, even if the percentage of infections generated in these 

locations is relatively low. 

 

 

Synthetic Population  

The synthetic population includes all children ages 0-17 in California in 2014. The 

foremost goal of creating this population was to capture where children with PBEs are located in 

California and the focal points where they are likely to interact with other children (Liu and 

Bearman 2015). The base population was built from age-year estimates by race/ethnicity for 

Census block groups in 2014 from 2015 ESRI Business Analyst.
80

 Children were assigned 

household incomes and mother‘s level of education and employment status based on 2014 

Census block group-level data from 2015 ESRI Business Analyst and the 2014 American 

Community Survey. Children were aggregated into families using predicted sibship size and 

sibling age gaps by race/ethnicity, mother‘s level of education, and geographical location
81

 as 

informed by data from the 2000 California Birth Statistical Master File. Children were assigned 
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 Supplemental data from the 2010 Census was used to separate population counts of Hispanic/Latino children due 

to assignment as an ethnicity by the Census and a racial category by the California Department of Education. 

 
81

 At the three-digit zip code level. 
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point-level geographical locations from population density estimates at the block level from the 

2010 Census. 

 Children were assigned to schools based on 2014 enrollment records from the California 

Department of Education (CDE). School type (public, charter, private, or home school) was 

predicted by grade level based on race/ethnicity, mother‘s education level and employment 

status, and household income using data from the 2012 National Household Education Surveys 

Program.
82

 Enrollment in licensed childcare was assigned for children ages 3-4 years using the 

same method with data from the California Department of Social Services.
83

 Students were 

enrolled in schools based on distance and enrollment availability (Wheaton et al. 2009). For 

public schools (including charters schools) enrollment proportions by race/ethnicity were 

maintained. Race/ethnicity enrollment for private schools was informed by the 2012 Private 

School Universe Survey.
84

 Grade assignment was based on age. Table 1 provides descriptive 

statistics for enrollments in the synthetic population. 

Children were also assigned to neighborhood and community interaction locations. I 

define neighborhoods as the 2010 Census block group the child resided in. Use of block groups 

as neighborhoods is consistent with previous health research examining walkability (Frank et al. 

2010) and access to resources of adolescents local areas (Gordon-Larsen et al. 2006).
85

 

Interaction points in the larger community occurred in two locations: physician offices and 
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 The National Household Education Surveys Program provides descriptive statistics on childcare and K-12 

educational enrollment in the U.S. population. 

 
83

 Childcare enrollment percentages for children ages 3-4 were consistent with state-level statistics available in the 

2014 American Community Survey. 

 
84

 Available from the National Center for Education Statistics; enumerates and provides descriptive statistics for 

U.S. private schools. CDE does not provide private school enrollment by race/ethnicity. 

 
85

 Neighborhoods are also often defined as Census tracts in health research (e.g. Saelens et al. 2003), but preference 

was given to constituting neighborhoods as block groups in this population as all the agents are children and may not 

be expected to traverse as large of a daily ―neighborhood‖ as adults. 
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shopping malls. Physician offices were included due to their noted role as transmission settings 

in epidemiological studies of measles infections, as discussed above. Children were assigned to a 

local physician
86

 using standardized inverse weighted distance and location data from the 

American Medical Association‘s 2012 Directory of Physicians. Shopping malls were chosen to 

represent a general community location in which children may come into contact (Liu and 

Bearman 2015). There is nothing special about social contact in malls for disease spread in 

particular; they serve a more theoretical role in the model to represent community contact. 

Children in the population were assigned identifiers for the three nearest shopping malls. 

Shopping mall locations were collected from the Directory of Major Malls. Unlike 

neighborhoods and physicians, which can be expected to remain relatively constant for the 

simulation period, families visit many different locations in the larger community in relatively 

short periods of time. For this reason, before each visit, children were randomly
87

 assigned to one 

of their three possible malls. 

 In addition to using an empirically informed synthetic population, this simulation 

experiment is novel in its use of reported PBE data
88

 to assign children immunization status. PBE 

statistics are typically provided by the California Department of Public Health (CDPH) for 

students entering kindergarten and the 7
th

 grade. Kindergarten and 7
th

 grade PBEs in the 

synthetic population were assigned by school according to the 2014 data. Other grades were 

assigned PBE rates that are consistent with those reported in that school in their kindergarten or 

7
th

 grade year. Kindergarten rates were used for elementary grades, while 7
th

 grade rates were 
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 Includes pediatricians, family and general practitioners.  

 
87

 There is some bias toward closer malls if there is substantial difference in distances to the three nearest malls. 

 
88

 Children with PBEs may be entirely unimmunized or may only be missing one or two required vaccines. Again, 

for this project, no assumptions are made about partial vaccination. 
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used for middle school grades. For the 2011-2012 school year, PBE statistics were reported for 

the 7
th

 through 12
th

grades; these rates were used to determine appropriate PBE rates in high 

school grades. Schools and grades with missing PBE data
89

 were assigned average PBE rates of 

that school type (public, private, charter) in the same school district.
90

 Home-schooled children 

were assigned PBEs rates in private schools located in the same county.
91

 Licensed childcare 

PBE rates were assigned as reported in 2014, and those missing data were assigned rates of the 

same center type (daycare or Head Start) within the same county. Children ages 0-4 not in 

licensed childcare were assigned to have the same PBE rates as children in childcare in the same 

county. Infants under 1 year of age were considered to be unvaccinated as the CDC does not 

typically recommend the first dose of the MMR vaccine until ages 12-15 months (Centers for 

Disease Control and Prevention 2017a). Siblings were given preference for similar PBE status
92

 

to reflect the tendency of hesitant parents to make selective vaccination decisions for all of their 

children (Reich 2016); consistent with previous research (Liu et al. 2015) I will show that 

clustering of PBEs in households can have a substantial effect on measles transmission.  

 

Simulation Model 

Contact parameters for interaction in families, childcare, schools, neighborhoods, and 

malls were adapted from empirically calibrated influenza simulations (Chao et al. 2010; 
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 PBE data is only available for schools with 10 or more students and some grades were not able to be matched to 

with school data for the appropriately lagged year. 

 
90

 After assigning PBE rates in all schools, including those with missing data, I confirmed that the overall PBE rates 

by grade level were consistent with those released in annual CDPH immunization reports for the corresponding year. 

 
91

 Rates of PBEs among homeschooled children tend to be particularly high (Khalili and Caplan 2007), and this may 

under-estimate the actual rates of vaccine refusals among these children. 

 
92

 The model prioritized PBEs for other siblings if another child in the household was assigned to be unvaccinated, 

however, there is a small proportion of siblings that do not share vaccination status. 
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Germann et al. 2006). Previous measles simulations have also adapted contact networks 

developed for influenza transmission (e.g. Grefenstette et al. 2013) and the age-structured 

contact rates used here are comparable to those used in other measles simulation experiments 

(Liu et al. 2015). These parameters reflect: (1) the tendency of children to interact with others of 

similar age (assortative mixing), (2) differences in the number of potential contacts due to the 

size
93

 of the focal points in this population, and (3) the frequency/intensity of interaction. For 

example, students are more likely to have adequate contact for disease transmission with other 

children sharing the same classrooms than in the overall school population (Del Valle et al. 

2007). Within-grade contact was estimated to be five times that of within-school contact 

(Cauchemez et al. 2011). Contact in schools is of particular interest as PBEs are reported at the 

school-level,
94

 and vaccination coverage within schools can significantly influence opportunities 

for measles outbreaks in local areas (Mossong and Muller 2000). Probability of contact at a 

physician office was calibrated from epidemiological reports of measles exposure (Sugerman et 

al. 2010) and adjusted to reflect the higher probability of contact with other children at 

pediatricians than in family/general practitioner offices.
95

 Table 1 above includes the age-

structured contact probabilities for each type of focal point. It is important to note that robustness 

checks confirm that these contact probabilities, together with empirical transmission parameters 

(described below), can successfully reproduce the expected basic reproduction number for 

measles (R0 = 12-18; see Fine 1993) in an entirely susceptible population. 
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 In other words, the number of other children also assigned to that particular interaction point. 

 
94

 As previously mentioned, individual-level PBE data is unavailable due to privacy concerns.  

 
95

 This was achieved using the relative proportions of children assigned to pediatricians versus general/family 

practitioners in the synthetic population. 
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Similarly, the model‘s disease transmission parameters are grounded in epidemiological 

findings. First, probabilities of transmission in the pre-vaccine era (Top 1938) are used to 

represent the probability of infect given exposure.
96

 These probabilities are age-dependent to 

reflect the protection afforded by maternal immunity for the first 6-12 months of life (Papania et 

al. 1999). Second, the overall vaccine efficacy is set at 96.9% based on previous research (Davis 

et al. 1987). Vaccine failure is modeled as an exponentially decreasing function across number of 

exposures to reflect that the initial exposures likely pose greater risk of infection than subsequent 

exposures.
97

 Third, previous research shows that the average time from exposure to first 

symptoms for measles is 14 days and that individuals are most infectious 2 days before and after 

the appearance of symptoms, such as a rash (Papania et al. 1999). Therefore, I set the incubation 

period at 12 days, with an individual becoming infectious the 13
th

 day after exposure. The 

individual remains infectious for 3 days—assumed to be 2 days prior to and the first day of the 

appearance of symptoms. On the third day, it is assumed the child visits a physician, receives a 

measles diagnosis, and is quarantined.
98

 

A discrete time Susceptible-Exposed-Infected-Recovered (SEIR) model is used to 

simulate measles transmission. SEIR models are appropriate for the modeling of measles 

transmission (Allen et al. 1990; Grenfell 1992; London and Yorke 1973) due to the extended 

latent period between exposure and appearance of symptoms (E) and immunity from re-infection 
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 Estimates based on data collected after introduction of the measles vaccine are confounded by both the prevalence 

of vaccination and probability of contact between children with different vaccination statuses. Nor can estimates of 

force of infection be used as they incorporate both infectiousness and age-dependent contact. 

 
97

 If an individual has been vaccinated but not developed measles seropositivity, the failure would be expected to 

occur within the initial exposure(s) (i.e. probability of vaccine failure is not uniform across exposures). Using a 

function in which the risk of failure exponentially decreases with number of exposures results in an overall vaccine 

efficacy rate more consistent with reported efficacy rates than if vaccine failure were set uniformly at 96.9%. 

 
98

 The simplifying assumption is made that the first visit to the physician results in an accurate diagnosis and 

initiates separation from the population. Empirically, failure to diagnose measles on the initial healthcare visit can 

result in longer exposure in the population and increase likelihood of further transmission (Blumberg et al. 2015). 

This can particularly be a problem at the beginning of an epidemic (e.g. Sugerman et al. 2010). 
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after a case has recovered (R) (Markowitz et al. 1990). The SEIR model was run with a daily 

time step.
99

 At the beginning of each simulation trial, 10 children were randomly selected to 

serve as the initial infections—these seeded infections represent external introduction points of 

the disease into the population. After the three-day infectious period, children recovered and 

were considered to be immune from re-infection.
100

 The analysis period was 36 weeks, the 

typical length of a school year in the U.S.
101

 

 Each weekday, children have contact in households, childcare centers, schools, 

neighborhoods, and at the mall. On weekends, contact occurs in households, neighborhoods, and 

malls. Possibility of transmission begins when the child becomes infectious after the incubation 

period. As mentioned above, on the third day children are contagious, symptoms appear, and 

they visit the physician and can expose a small number of other children visiting the same 

physician.  

Infections occur probabilistically. For each interaction location, a child is assigned a 

random number of exposures based on the probability of contact and the number of infectious 

children in that location. For unvaccinated children, the probability of infection, pu, is: 

pu= 1-(1-βa)
τ
 

where βa is the age-dependent rate of transmission and τ is the number of exposures to infectious 

children in that location. For vaccinated children, the probability of infection, pv, is: 
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 Due to the incubation period, weekend contact was rendered unimportant in early generations of cases in the 

model. Children were permitted to have contact in households, neighborhoods, and the larger community—locations 

where weekend contact could occur—daily in the simulation. 

 
100

 Immunity is typically considered to be lifelong, although in rare cases measles has been re-acquired later in life 

(Markowitz et al. 1990). Here it is assumed (reasonably) that after infection children are immune for the remainder 

of the 36-week period. 

 
101

 The model does not account for holidays. Holidays would likely decrease measles transmission as school closure 

can be an effective intervention strategy for reducing contact for disease spread (Germann et al. 2006), although 

long-term investigation of measles transmission showed the drop in contact rates during holidays averaged out over 

time (London and Yorke 1973).  
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pv = 1-(1-(βa*γ)
τ
 

where βa is the age-dependent rate of transmission, γ is the vaccine efficacy
102

 and τ is the 

number of exposures to infectious children in that location. Here, efficacy is calculated as: 

γ = π0/2
Τ
 

where π0 is the overall probability of vaccine failure and Τ is the total number of exposures up to 

and including that location. If exposed, children become infected randomly based on their 

probability of infection. 

 

Results  

 Figure 5.1 provides the transmission settings of measles infections in the synthetic 

population. Figure 5.1A shows the locations where children in the simulation experiment 

contract measles when PBEs are distributed as observed.
103

 Approximately 83% of all 

transmission occurs through contact with strong ties—siblings, schoolmates, and children in the 

same childcare center. Interaction in the local neighborhood (Census block group) and larger 

community, including malls and physician offices, accounts for significantly fewer direct 

infections overall. Among these locations, physician offices are responsible for the majority of 

infections. Results from simulations with 1 and 40 seeded infections show that these findings are 

generally robust to the number of initial infections introduced into the population (Figure A5.1 in 

Appendix).  
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Probability that the vaccine does not fail. 

 
103

 Here, ―observed‖ refers to assignment consistent with empirical PBE data, as described above. 
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Figure 5.1B shows results from a comparison population in which PBEs were 

redistributed throughout the population at random.
104

 When PBEs are randomly assigned, most 

infections are still generated by contact with strong ties (~76%, as compared to ~83%), and a 

majority of the weak tie infections occur in physician offices. That said, even though contact 

with strong ties may account for a larger percentage of infections, weak tie interactions could 

play an important role in transmitting the disease between locations, substantially affecting the 

overall level of infections. This would be consistent with findings from the small-worlds model 

that redundancy in contact among strong ties limits new exposures, while weak ties carry the 

disease outside local clusters. These effects are investigated by simulating outbreaks in 

conditions in which contact in each focal point is eliminated while the other interaction points 

remain active. Results for each of the contact settings in these models are discussed below. 

 

Schools and Childcare Centers 

Schools were the most common transmission setting in the simulation. When PBEs were 

assigned as observed, schools accounted for 57% of all infections across 1000 replications 

(Figure 5.1A). This percentage includes infections generated by contact both within the same 

grade and in the larger school population. This result is consistent with epidemiological studies 

and previous measles simulation models, which have identified schools as hotspots for measles 

transmission (Becker et al. 2016; Markowitz et al. 1989; Sugerman et al. 2010). 

Surprisingly, when PBEs were distributed randomly, schools accounted for an even 

higher proportion of infections (67%) across 1000 replications (Figure 5.1B). Although the 
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 Therefore, this comparison population has the same overall number of PBEs but they are not clustered spatially. 

PBEs were not randomly assigned to children aged < 1 year as they are considered too young for vaccination. The 

next chapter will discuss the logic behind random assignment of PBEs in greater detail. 
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absolute number of school infections is higher when PBEs are distributed as observed,
105

 the 

percentage of transmissions is higher in schools when PBEs are randomly distributed due to the 

frequency of daily contact among children that occurs in this setting. This result seems to 

contradict Hypothesis 1A, which predicted that measles infections would be more common in 

schools when PBEs are spatially clustered than if randomly distributed. Regardless of the spatial 

clustering of PBEs, the percentage of infections transmitted in schools increases as the overall 

outbreak size increases. This suggests that contact in schools presents opportunities for larger 

outbreaks of disease, but that spatial clustering of PBEs can create larger outbreaks overall. 

Panels C and D in Figure 5.1 present the percentage reduction in the number of cases 

when contact settings are removed across the distribution of outbreak sizes. As shown in Figure 

5.1C, removing contact in schools reduces the number of cases across the entire distribution of 

outbreak sizes, but with a disproportionate effect among the largest outbreaks in the right tail of 

the distribution. Unlike the other interaction points, removing contact within schools continues to 

have a strong effect even in the largest outbreaks and eliminates over 95% of cases. Figure 5.1D 

shows a similar effect of removing contact in schools when PBEs are randomly distributed in the 

population, although the reduction in cases in the largest outbreaks is only approximately 90%. 

This difference in the effects of removing schools when PBEs are clustered rather than randomly 

distributed reflects the extent to which the spatial concentration of PBEs intensifies schools‘ 

efficiency as hotspots of measles transmission. The model shows that the importance of these 

clusters is not necessarily in the percentage of infections that occur there, but in the higher 

number of infections produced overall. In short, my results provide only mixed support for 

Hypothesis 1A—a higher percentage of infections occur in schools when PBEs are randomly 

distributed; however, PBE clusters in schools can produce larger outbreaks overall. 
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 Spatial clustering of PBEs creates larger possible maximum outbreak sizes, as discussed in the next chapter.  
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 The effect of contact in schools, moreover, varies by school type. Figure 5.2 reports the 

ratio between the percentage of infections and the percentage of children enrolled by school 

types. When PBEs are distributed as observed, the percentage of infections transmitted in public 

schools is about 90% of what we would expect given the proportion of children enrolled in 

public schools. When PBEs are distributed randomly, percentages of infections more closely 

reflect average school sizes. Public schools have the largest average enrollment sizes (Table 1), 

and, as a result, have approximately 10% more infections than the proportion of children enrolled 

in public schools alone would suggest when PBEs are distributed randomly. 

Figure 5.2 shows that charter schools are responsible for more infections than what would 

be expected given the proportion of children enrolled. This is primarily due to the high PBE rates 

in charter schools: if PBEs are distributed randomly, charter schools are shown to have fewer, 

rather than more, infections than their over enrollment proportion would suggest. This is because 

the smaller average size of charter schools suppresses transmission. Similarly, Figure 5.2 shows 

that very low percentages of infections occur in private schools when PBEs are distributed 

randomly. The small average enrollment size of private schools is sufficient to decrease infection 

rates despite their relatively high PBE rates.  

These findings provide qualified support for Hypothesis 1B. School types with higher 

PBE rates, and particularly those with higher average enrollment sizes, are more prone to 

measles transmission. Similar results are observed for childcare centers. Infections occur less 

frequently in Head Start programs than daycare centers, as Head Starts tend to have lower PBE 

rates than daycare centers (California Department of Public Health, Immunization Branch 2007, 

2008; see Table 1 for rates in synthetic population). 
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Figure 5.1A demonstrates that childcare centers account for only a small percentage of 

measles infections, and removing childcare contact only reduces outbreak size approximately 

20% between the85
th

 and 95
th

 percentiles of the outbreak distribution. Removing contact in 

childcare has almost no effect on reducing outbreak sizes in large epidemics. Yet, among 

children ages 3-4, 38.2% of infections are acquired in childcare centers. This population likely 

underestimates the risk of childcare transmission as only licensed centers for pre-school age 

children are included. Measles transmission in the U.S. may be particularly likely in centers that 

serve infants too young to be vaccinated (Centers for Disease Control and Prevention 2004). 

 

Households 

 As shown in Figure 5.1A, only about 23% of measles infections are transmitted in 

households. However, when household contact is removed, there are substantial reductions in 

outbreak size. Figure 5.1C shows that removing household contact has the second greatest 

overall effect on reducing outbreak size (after schools).Removing sibling contact exerts the most 

influence around the 90
th

 percentile of the outbreak distribution when it reduces outbreak sizes 

by approximately 80%.  

Removing household contact produces a substantial effect because siblings with shared 

exemption status act as bridges between other interaction locations. Removing household contact 

has only a very weak effect when PBEs are assigned randomly (Figure 5.1D). Figure 5.3 further 

illustrates that it is the tendency for siblings to share vaccination status rather spatial clustering 

alone that produces this result. The middle box in Figure 5.3 shows outbreaks sizes from a model 

in which PBEs are spatially clustered as observed in schools, but siblings do not have a tendency 

to share the same vaccination status. This reduces outbreak size in the top 50% of the 
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distribution. Outbreak sizes at the 75
th

 percentile and above are more similar to those generated 

when household contact is removed entirely (left-hand box) than when permitted and siblings 

tend to share vaccination status (right-hand box). When siblings do not share vaccination status, 

the percentage of infections transmitted via household contact reduces to just over 9% (Figure 

A5.2 in Appendix), comparable to the percentage of infections transmitted in households when 

PBEs are assigned randomly (8%, Figure 5.1B). This provides support for Hypothesis 2; contact 

in households results in a greater percentage of infections when siblings tend to share 

vaccinations status. 

My results are consistent with existing findings that households have served as important 

transmission settings in many measles outbreaks, especially following increasing rates of non-

medical exemptions. Figure 5.4A shows that sibling contact was an important source of 

infections in the 2008 San Diego measles outbreak that primarily affected unvaccinated children. 

Similarly, households were an important transmission setting in the Disneyland outbreak 

(Harriman 2015; Zipprich et al. 2015) and measles infections generally in the U.S. in recent 

years (Figure 5.4B), while it has a less important role to measles transmission prior to the rise of 

non-medical exemptions (Figure 5.4C).
106

 

 

Physicians 

 As mentioned above, physician offices were the most frequent transmission setting in 

weak tie interaction. Contact in physician offices accounted for 15% of all measles infects when 
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 Caution is needed when comparing transmission settings in the Disneyland outbreak and cases reported in 

Figures 4B and 4C to those obtained in the synthetic population as the former include both children and adults while 

the latter includes only children. Differences in contact patterns among children and adults can result in important 

differences in transmission settings (Mossong et al. 2008). Yet, epidemiological accounts of measles infections in 

the U.S. demonstrate that household contact plays a significant role in transmission, particularly among 

unvaccinated siblings. 
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PBEs were spatially clustered, and 21% when PBEs were distributed randomly. In both 

conditions, infections acquired in physician offices disproportionately affected children too 

young to be vaccinated (Figure 5.5C), consistent with epidemiological findings (Gindler et al. 

1992; Sugerman et al. 2010). As shown in Figure 5.5A, on average, approximately 23% of 

secondary measles infections in the simulation occurred in children less than 1 year of age. 

Epidemiological reports of infections in infants less than 1 year of age also presented in Figure 

5.5A show that this percentage is generally consistent with that observed in actual outbreaks. In 

fact, infants too young to be vaccinated are often the age cohort with the highest attack rates in 

measles outbreaks (Bloch et al. 1985; Hinman, Hutchins, Baughman, et al. 2004; Papania et al. 

2014; Phadke et al. 2016). Figure 5.5B demonstrates that medical settings and households are the 

most common sources of infections for infants in the simulation, consistent with epidemiological 

accounts of risk of measles exposure for children under age 5, and particularly those under 16 

months of age (Gindler et al. 1992). Eliminating interaction in physician offices significantly 

reduces outbreak size despite its relatively small share in terms of direct transmissions, 

particularly when PBEs are spatially clustered. As shown in Figure 5.1C, outbreak size is 

reduced more than 60% between the 80
th

 and 95
th

 percentiles as outbreak size begins to increase 

rapidly when PBEs are spatially clustered. Unlike removing contact in schools, however, 

removing contact at physician offices has only limited impact on reducing infections in the 

largest outbreaks. 

 

Neighborhoods and Malls 

 Very few direct infections occurred through contact in Census block groups 

(neighborhoods) and malls. Whether PBEs were spatially clustered or distributed randomly, 



146 

 

interaction in these locations only accounted for 1-2% of infections (Figures 1A and 1B). Despite 

this lower overall number of infections, interaction in these locations could still be important for 

spreading infections between sites that generate many infections, such as schools and 

households. Removing contact in these locations does lower the number of cases, but only when 

outbreak size is within a narrow range. As shown in Figure 5.1C, eliminating contact in malls 

begins to limit outbreaks sizes only around the 75
th

 percentile (when outbreak sizes begin to 

noticeably increase), and has the greatest effect around the 80
th

 percentile, when outbreak sizes 

are reduced by approximately 30%. In larger outbreaks with higher proportions of infections in 

school, removing contact in malls has little impact in reducing overall size. In comparison, 

eliminating contact in neighborhoods also begins to reduce outbreak sizes around the 75
th

 

percentile, but has the largest effect around the 90
th

 percentile, again reducing outbreak sizes by 

approximately 30%. 

 Undoubtedly, the choice of contact probabilities in these locations affects these results. A 

series of additional models were estimated to test how results vary with changes in probabilities 

of contact. First, it could be that the relative amount of contact in these two locations affects the 

overall ―weakness‖ of ties. Perhaps a greater proportion of weak tie contact in malls than in 

neighborhoods will lead to increased transmission overall due to increasing contact spanning 

wider areas. To investigate this, I held the overall expected number of ties in neighborhoods and 

malls constant, but varied the relative amount of expected ties in each location.
107

As shown in 

Figure 5.6, while increasing the relative share of contact in malls (Figure 5.6A) and 

neighborhoods (Figure 5.6B) increases the percentage of infections acquired in those locations, 
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 This entails compensating the increase in the probability of contact in one of these locations (either 

neighborhoods or malls) with a proportional decrease in the other. This results in the same overall number of ties in 

these two settings, but varies which setting the majority of ties occur in. Increasing the overall number of contacts 

increases the reproduction number and outbreak sizes, which makes it difficult to isolate the effects of increases in 

contact within one setting in particular. 
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respectively, there is no consistent relationship between the share of weak tie interaction in either 

type of location and the overall outbreak size. This is the case with or without spatial clustering 

of PBEs. Thus, the lack of substantial results for contact in malls and neighbors cannot be 

attributed to the relative ―weakness‖ of ties in these locations.  

 Second, I increased the probability of contact in neighborhoods and malls separately 

(Figure 5.6C) and jointly (Figure 5.6D), without holding the overall number of expected ties 

constant, to examine how outbreak size is affected if overall contact in these locations is actually 

higher. Surprisingly, increasing the probability of contact does not produce a substantial effect 

on size of outbreaks, either separately or jointly, until approximately 5-fold increases. A 5-fold 

increase in contact probability in these locations necessitates that on average, every child, 

including infants aged less than 1, must have 30 minutes of close, i.e. school-level, contact in 

neighborhoods or malls every day of the week, which may not be empirically plausible.  

When contact in neighborhoods is increased 5-fold, the most noticeable increase is in the 

maximum outbreak size. Alternatively, when contact in malls is increased 5-fold, outbreak sizes 

increase more in the 3
rd

 quartile of the distribution (between the 50
th

 and 75
th

 percentiles). This 

difference can likely be attributed to the clustering of PBEs in neighborhoods. Some block 

groups have substantial percentages of children with PBEs; increasing neighborhood contact 

then presents greater opportunity for larger outbreaks in those neighborhoods when the disease 

happens to reach them. Malls, on the other hand, provide ties that extend outside local 

neighborhoods, increasing the likelihood of reaching more distant children with PBEs, but not 

necessarily linking large clusters of children with PBEs. Jointly increasing probability of contact 

in neighborhoods and malls (Figure 5.6D) produces increases both in the middle 50% (between 

the 25
th

 and 75
th

 percentiles) and the maximum outbreak sizes. 
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These findings provide mixed support for Hypothesis 3, which predicts that the 

elimination of contact in neighborhoods, malls, and physician offices should significantly reduce 

the overall size of outbreaks. Eliminating contact in physician offices does have a substantial 

effect on reducing outbreak sizes, and primarily affects children too young to be vaccinated. 

Interaction in neighborhoods and malls, on the other hand, neither generates significant 

percentages of direct infections, nor has substantial impact on reducing overall outbreak size 

outside a very limited range of the distribution. 

Overall, while eliminating contact in all interaction points has some effect on initially 

reducing outbreak sizes when PBEs are spatially clustered, model results show that only the 

removal of contact in schools is sufficient to prevent large outbreaks. Removing contact in other 

locations, particularly households and physician offices, reduces connectivity and makes it more 

difficult to reach PBE clusters; however, ultimately, as long as contact is permitted in schools 

and PBEs are spatially clustered, large epidemics are possible. Although the percentage of 

infections in schools increases as outbreak size increases regardless of distribution of PBEs, 

spatial clustering of PBEs attenuates this trend and produces much larger outbreaks overall.  

 

Discussion 

Social networks structure physical contact, which, in turn, structures disease 

transmission. This simulation experiment demonstrates that the overlap between locations of 

frequent, routine social contact and concentrations of children who lack measles protection due 

to non-medical vaccine exemptions elevate the risk of disease transmission in these settings. 

While weak ties may play important roles in the introduction of a disease to new areas of the 

contact network (Watts 1999, 2004; Watts and Strogatz 1998), strong ties play an important role 
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in infecting local clusters of vulnerable children. The following chapter will extend this analysis 

to examine how interaction in these clusters may increase disease risk for the network as whole. 

Regardless of locations of PBEs, schools are the most common setting for measles 

transmission due to the amount of daily contact among children that occurs there. Schools have 

been sites of major measles outbreaks even when vaccination coverage among students has been 

very high (Chen et al. 1989; Gustafson et al. 1987; Nkowane et al. 1987). This chapter shows 

that the clustering of PBEs in certain types of schools, particularly charter schools, increases 

opportunity for measles transmission. Allowing parents to enroll children in charter schools by 

choice can increase PBE concentration in these schools beyond what might be expected by 

residence-based enrollment alone.
108

 Moreover, my results show that parental decisions against 

vaccination also create increased opportunity for measles transmission within the household 

through contact with unvaccinated siblings—those siblings then have the ability to carry the 

disease into new classrooms or schools (Sugerman et al. 2010). 

Weak tie contact results in a smaller percentage of infections, but there is evidence that 

interaction in physician offices, neighborhoods, and malls increases connectivity between more 

common infection sites. When PBEs are spatially clustered, eliminating contact in these 

locations decreases outbreak sizes more than would be expected by simply eliminating the direct 

infections that occur there. Yet, an important finding of this study is that as long as paths to 

schools with high concentrations of PBEs exist, it is not possible to prevent large outbreaks by 

eliminating contact in these weak tie locations. That said, physician offices are the most common 

sites of infections in community contact and therefore a crucial site for intervention. Children 

infected with measles are very likely to seek medical attention (Davis et al. 1986), and lack of 
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 As mentioned in Chapter 3, enrollment in traditional public schools is based on residence in a particular district, 

while charter school enrollment does not have this restriction. 
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necessary preventative precautions or delay in obtaining a correct diagnosis can significantly 

increase transmission risk in medical settings (Blumberg et al. 2015; Chen et al. 2011). 

 This study has several limitations. First, the synthetic population includes only youth 

under18 years of age as the effects of clustering of PBEs in schools were of primary interest. 

This may underestimate transmission risk in households, neighborhoods, or other locations 

where contact between children and adults is common. Although measles infections are most 

common in children due to increased likelihood of sufficient contact for disease spread, adults 

have constituted a substantial proportion of cases in some recent U.S. outbreaks (Chen et al. 

2011; Harriman 2015; Parker Fiebelkorn et al. 2010). Spatial concentration of PBEs in schools 

most likely affects measles transmission risks among children, yet use of populations that include 

adults may be better able to assess overall population transmission risk in these shared settings. 

Second, the intention of this study was only to capture the general contours of the contact 

network among children to evaluate the effects of PBE clusters on measles outbreaks. Even very 

detailed simulation models cannot predict the timing, location, or severity of outbreaks. The 

exact definitions and inclusion of interaction locations influence where simulated transmission 

occurs. For example, heterogeneity in contact probabilities and vaccination status within schools 

and neighborhoods can affect results. Nonetheless, the simulation results presented here are 

generally consistent with existing epidemiological findings. Furthermore, the simulation model 

provides an opportunity to evaluate the roles of strong and weak ties across various outbreak 

sizes as well as hypothetical scenarios, which is not possible to observe in the real world. 

Third, PBE rates were estimated for all ages except children in kindergarten and the 7
th

 

grade. More complete reporting of vaccination coverage in all school grades would help to more 

accurately assess where children with PBEs are clustered and how this affects disease 
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transmission. Fourth, PBE reports used here did not indicate levels of MMR vaccination 

specifically. Actual rates of MMR coverage among children with PBEs vary significantly across 

schools (Buttenheim et al. 2015), and likely exert influence on where actual measles outbreaks 

are most likely to occur. To my knowledge, however, previous simulation experiments of disease 

spread have not incorporated empirical data on PBEs. The use of this type of data can help 

examine how current prevalence and spatial patterns of PBEs affect locations of measles 

transmission beyond models without empirical grounding. 

 

Conclusion 

These results demonstrate that schools remain important sites of measles transmission, 

and suggest that intervention strategies focusing on eliminating transmission in schools may be 

most effective in containing disease epidemics (Germann et al. 2006; Ogbuanu et al. 2012; 

Painter et al. 2010). Easily obtained non-medical vaccine exemptions and school choice allow 

clustering of unvaccinated children in charter schools, which may be particularly vulnerable to 

measles outbreaks (e.g. Sugerman et al. 2010). Exposure to other unvaccinated children in 

schools is particularly high for children with PBEs in California (Buttenheim et al. 2012). 

Policies that limit exposure to intentionally unvaccinated children in the community, such as 

physician policies against high proportions of unvaccinated children in their practice, may reduce 

risk to susceptible children, particularly those too young to be vaccinated (Buttenheim, Cherng, 

and Asch 2013; Freed et al. 2004). Results in this chapter suggest that the spatial clustering of 

PBEs in schools results in the potential for large measles epidemics. The next chapter will 

specifically address this finding by examining the overall effect of spatial clustering on the size 

of measles outbreaks. 
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Tables 

 

Table 5.1: Descriptive Statistics of Synthetic Population 

   Focal Point Size  % Unvaccinated (µ) Contact Probabilities 

Foci Type N Mean Std. Dev. % Enrolled PBE Age < 1 Ages 0-4 Ages 5-17 

Families Siblings 5,895,518 1.54 0.79 100.00 1.97 5.48 0.8 0.8 

          
Childcare 

Daycare 9,599 43.66 31.75 5.95 3.41 
0 0.04 

 

Head Start 1,586 49.75 44.56 1.12 0.25  

          

School: Type 

Public 8,757 607.06 497.77 75.42 1.72 

0 

  

Private 3,174 153.99 205.64 6.93 3.68   

Charter 1,079 427.41 408.81 6.54 4.09   

          
School: 

Grades 

Elementary 48,441 60.28 42.38 
[same as below] [same as below] 0 

 0.01999 

Middle 16,230 88.49 121.83  0.02234 

High 13,521 140.81 196.70  0.01576 

          
School: 

Levels 

Elementary 8,935 387.31 274.52 32.25 2.27 

0 

 0.00399 

Middle 7,509 419.45 350.20 15.90 1.36  0.00447 

High 3,840 543.99 746.27 21.02 0.96  0.00315 

          Neighborhood Block Groups 23,112 391.96 311.81 100.00 2.27 5.48 0.0000653 0.0001958 

          
Community 

Physicians 19,247 470.67 299.86 100.00 2.31 5.54 0.0000024 0.0000073 

Malls 801 12078.69 7868.75 100.00 2.28 5.38 0.005 0.0025 

          Total 9,059,020    1.91 5.74   
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Figures 

    

Figure 5.1: Transmission settings for measles infections 

    

 Observed PBEs  Random PBEs 

A  

 

B 

 
C 

 

D 

 

 
 

Note: Panels A and B compare percentages of infections acquired in each of the contact locations when PBEs are 

distributed as observed in California (A) to what would be expected if PBEs were distributed randomly in the 

population (B). While this demonstrates where infections are likely to occur overall, Panels C and D show how 

measles outbreaks sizes are affected by removing interaction points from the model. Contact in some locations may 

provide important channels for disease spread, even if infections directly acquired in that setting is relatively low. 

When PBEs are distributed as observed (C), removing interaction settings can reduce the size of outbreaks by 

making it more difficult for the disease to reach pockets with high numbers of unvaccinated children, as shown by 

the reduction in outbreak sizes in the 85
th

 to 95
th

 percentiles of the distribution. However, a steep decrease in these 

effects is observed above the 95
th

 percentile in Panel C, indicating that this reduction in connectivity is not sufficient 

to fully prevent large potential measles outbreaks as long as children are permitted to have contact in schools with 

high PBE rates. Alternatively, removing interaction points when PBEs are distributed randomly over space creates 

more uniform reductions in the size of outbreaks across the distribution (D). In Panels C and D, the x-axis plots 

1000 trials ranked from least to greatest by the total number of infections across the 36-week simulation period. The 

primary y-axis shows the % reduction in measles infections produced by eliminating contact in a setting at that 

simulation rank. The secondary y-axis and solid black line show the total number of cases per trial in that rank. 
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Figure 5.2: Ratio of percentage of infections to percentage of children enrolled in school and 

childcare centers

 
 

Note: While schools serve as primary transmission settings both when PBEs are spatially clustered and randomly 

distributed in the population, charter schools are more frequent settings of school transmissions when PBEs are 

distributed as observed. Charter schools have only 7% of the student population in the simulation, yet experience 

almost 13% of the school infections (1.7 times higher than expected). Alternatively, Head Start programs enroll 16% 

of children ages 3-4 in childcare, but experience only 4% of all childcare center infections (only 0.27 times what 

would be expected). This is due to the higher average rates of children with PBEs in charter schools (and very low 

PBE rates in Head Start programs) (see Table 1). When PBEs are distributed randomly, percentage of infections 

depends more heavily on average enrollment size. Private schools have fewer infections than expected based on the 

percentage of student population enrolled due to smaller average grade and school sizes, while public schools have 

more infections than expected based on enrollment proportion due to higher average grade and school sizes, see 

Table 1). Percentage of school and childcare center population enrolled in that institution type shown in parenthesis 

following label; points show mean estimates, error bars show 95% confidence intervals.  
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Figure 5.3: Distribution of outbreak sizes with and without shared vaccination status among 

siblings 

 

 
 
Note: Frequent contact between infectious children and unvaccinated siblings in the household contributes to 

increased infections across the distribution of outbreak sizes. Outbreak sizes when contact within the household is 

permitted but siblings do not share vaccination status (Plot 2) is more similar to outbreak sizes when there is no 

household contact (Plot 3) than with household contact among siblings with shared vaccination status (Plot 1). PBEs 

distributed as observed in all trials. Values shown in box plots are the minimum number of cases (lower whisker), 

25
th

 percentile (lower bound of box), median (midpoint of box), 75
th

 percentile (upper bound of box), and maximum 

(upper whisker).  
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Figure 5.4: Prominence of household transmission in reported measles outbreaks 

   

   

A. San Diego Outbreak, 

January 2008
109

 
 

B. U.S. Acquired Infections, 

2001-2008
110

 

C. U.S. Outbreak Settings, 

1985-1986
111

 

 

Note: In the San Diego outbreak (A), 1 infected child generated 11 additional child infections, 3 transmitted via 

sibling contact. Household transmission constituted a similar portion of all secondary measles cases with known 

transmission settings in the U.S. from 2001-2008 (B). Prior to the rise of non-medical vaccine exemptions in the 

U.S., the household may have played an important though slightly less prominent role (C). It should be noted that 

transmission settings of cases in (B) and (C) include both adults and children. 
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 Data from (Sugerman et al. 2010). 1 infection acquired in Switzerland generated 11 secondary cases in children 

in California. 

 
110

 Settings known in 235 (72%) of the 325 cases acquired in children and adults in the U.S. from 2001-2008. Data 

in (Parker Fiebelkorn et al. 2010). 

 
111

 Known settings reported for 113 of the 152 outbreaks in 1985-1986. Outbreaks include cases in both children and 

adults. Data from (Markowitz et al. 1989). 
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Figure 5.5: Infections in children aged < 1 year 

A 

 
B  

 

C  

 

 Transmission settings for children aged < 1  Infections in physician’s offices 
 

Note: (A) Percentage of infections occurring in children aged< 1 year (children too young to be vaccinated). The 

top line shows the average percentage of secondary infections in children aged < 1 in the simulation experiment 

(1000 trials); error bars show 95% confidence interval around the mean. This finding is compared to percentage 

children aged < 1 year (of all infections in children) in actual outbreaks and reporting periods (data from Centers 

for Disease Control and Prevention 2002, 2004, 2012a, 2012b, 2013; Chen et al. 2011; Gastañaduy et al. 2014; 

Harriman 2015; Parker Fiebelkorn et al. 2010; Sugerman et al. 2010). The percentage of simulated infant 

infections is generally consistent with actual measles outbreaks. (B) Transmission settings among infected 

children aged <1 year (1000 trials). Contact with infected siblings and other children in physician offices are 

important sources of exposure for infants. (C) Age distribution of infections in physician offices. Infections 

generated in physician offices disproportionately affect infants, which is consistent with epidemiological accounts 

of exposure in medical settings (Gindler et al. 1992; Papania et al. 1999). 
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Figure 5.6: Average number of overall infections and percentage of infections acquired in malls 

(A) and neighborhoods (Census block groups) (B) as proportion of contact increases 

    

A 

 

B 

 
C 

 

D 

 
  
Note: In order to hold the combined number of expected contacts in these locations constant, as probability of 

contact in the mall increases, probability of contact in the neighborhood decreases, and vice versa. This 

demonstrates that although the percentage of infections acquired in these locations responds to increases in the 

probability of contact there, the relative share of contact in malls versus the local neighborhood has very little effect 

on the overall outbreak size. The second two panels show the outbreak distribution as contact probability is 

increased separately (C) and jointly (D) in block groups and malls, without holding constant the overall number of 

contacts. Increasing probability of contact in these locations does not initially have a substantial effect on size of 

outbreaks, either separately or jointly until approximately 5-fold increases. At that point, there is a noticeable effect 

on outbreak sizes in both locations, albeit in different parts of the distribution. When probability of contact is 

increased 5-fold within block groups, the greatest effect is in the tail (the maximum size of outbreaks), while 

increasing probability of contact 5-fold within malls has more effect on 50
th

-75
th

 percentiles of the distribution. This 

difference is likely due to locations of PBEs; PBEs are more clustered within some block groups, leading to larger 

potential outbreaks in those neighborhoods when probability of contact is increased. Weak tie connections in malls 

may link geographically distant children with PBEs but may not provide easily searchable links to large PBE 

clusters. 
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Appendix 

 

Figure A5.1: Transmission settings for measles infections, using 1 and 40 initial infections. 

  

  
A. 1 infectious child B. 40 infectious children 

 
Note: PBEs distributed as observed. Results over 100 trials. 
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Figure A5.2: Transmission settings for measles infections, when PBEs are distributed as 

observed by siblings do not have the tendency to share vaccination status 

 

 
 
Note: Results over 1000 trials.  
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Chapter 6: Effects of Non-Medical Vaccine Exemptions on Overall Size of Measles 

Outbreak 

 

 

Abstract 

Clustering of non-medical vaccine exemptions allows children to act as multiple transmitters in 

disease cores, increasing the effective reproduction number of measles in an otherwise highly 

vaccinated population. An empirically calibrated simulation experiment with 9,059,020 children 

in California demonstrates that the observed spatial concentration of PBEs increases maximum 

outbreak size over ten-fold while offering slight protection against transmission during small 

outbreaks. As expected, spatial clustering of PBEs weakens herd immunity, allowing large 

outbreaks at approximately 93% population vaccination comparable to what would be expected 

at only 90% population vaccination if PBEs were spatially random. These small differences in 

vaccination coverage close to the levels necessary for herd immunity determine whether a 

disease is non-endemic. Spatial clustering of vaccine exemptions may force us to reevaluate 

levels of overall levels of population vaccination necessary to secure the benefits of herd 

immunity. 
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Chapter Introduction 

This chapter addresses the puzzle of why measles incidence has been increasing in the 

U.S., despite high overall levels of vaccination coverage in the population. The measles outbreak 

that began at Disneyland in December 2014 came at the end of a year in which the U.S. 

experienced its highest measles incidence since the disease was declared non-endemic (Centers 

for Disease Control and Prevention 2017b).
112

 Vaccine refusals have been identified as playing a 

significant role in many of these recent outbreaks (Centers for Disease Control and Prevention 

2017b; Harriman 2015; Majumder et al. 2015; Zipprich et al. 2015). Nonetheless, adequate 

MMR vaccination
113

 coverage among children entering kindergarten in California in 2014 was 

reported at 92.6% (California Department of Public Health, Immunization Branch 2015), within 

estimated levels of population measles vaccination necessary for herd immunity (Anderson and 

May 1985).  

The previous chapter presented evidence from an empirically calibrated simulation 

experiment that concentrations of unvaccinated children in households, charter schools, and 

physician offices create increased opportunity for measles transmissions in these locations. This 

chapter again uses simulation modeling to address how spatial clusters of children with PBEs can 

affect overall sizes of measles outbreaks. Large-scale empirically calibrated simulation models 

that incorporate data on both locations of PBEs and interaction in social networks are better able 

to examine how current levels and locations of potentially unvaccinated children can affect the 

probability of severity of disease outbreaks (Chao et al. 2010; Eubank et al. 2004; Germann et al. 

2006; Halloran et al. 2008; Hethcote 1997). This chapter examines larger implications of non-
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 Again, measles was declared non-endemic in the U.S. in 2000; this indicates that measles transmission is not 

sustained domestically for at least 1 year or more currently in the U.S. 
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medical exemptions by asking: can the current level of spatial clustering of PBEs being observed 

in California increase the potential of measles outbreaks? To the best of my knowledge, this is 

the first large-scale simulation model that utilizes observed data on vaccine exemptions to 

evaluate their potential effects on outbreaks. 

Specially, this chapter asks whether the spatial pockets of children with high rates of non-

medical vaccine exemptions constitute cores of disease transmission, sustaining contagion in an 

otherwise highly vaccinated population. These cores create the potential for measles outbreaks 

comparable to what would be expected with lower vaccination coverage in the population. As 

discussed in the previous chapter, social interaction tends to be spatially local, allowing 

infectious children in these core areas to transmit the disease to multiple other unvaccinated 

children, amplifying the average reproductive rate. Investigating effects of spatial clustering of 

unvaccinated children on disease outbreak potential is crucial as it may force us to re-think 

standard guidelines (e.g. Anderson and May 1985) for levels of population vaccination required 

to achieve herd immunity. 

Following a brief review of previous work on disease cores and the formation of disease 

epidemics, I will use the synthetic population and simulation model outlined in the previous 

chapter to compare measles outbreak potential in populations with the same overall levels of 

vaccination but different spatial and temporal clustering in the locations of PBEs. Specifically, I 

examine effective reproduction numbers and the overlap of outbreak locations with spatial 

clusters of PBEs to investigate whether children with non-medical vaccine exemptions may be 

constituting disease cores of measles transmission in the population. I conclude by discussing 

why this work is informative to on-going debates surrounding state-level policies toward vaccine 

requirements and permitted exemptions (Yang and Silverman 2015).  
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Spatial Clusters of PBEs as Disease Cores 

Spatial clusters of unvaccinated children create pockets in the contact network that can be 

particularly vulnerable to disease outbreak. In these areas, an infectious child has the opportunity 

to expose and infect multiple other susceptible children through regular patterns of local social 

interaction. The ability of an infectious individual to create multiple subsequent infections, 

therefore serving as a ―multiple transmitter‖, can constitute an epidemiological disease core 

(Thomas and Tucker 1996).The concept of disease cores was defined and continues to be used 

primarily in the context of sexually transmitted diseases (STDs). It was first introduced by York 

et al (1978) to capture the dynamics and persistence of the transmission of gonorrhea. Disease 

cores allow a relatively small subset of the population who are highly interconnected (share 

direct ties) to infect one another and sustain transmission of a disease beyond what would be 

expected if all members of a population interacted randomly (Bearman et al. 2004; Hethcote et 

al. 1982; Yorke et al. 1978). A small proportion of individuals constituting the core can be 

disproportionately responsible for sustaining an epidemic. 

Typically, diseases spread through casual physical contact, such as the measles, pertussis, 

and flu, are assumed to propagate via random mixing in contact networks that does not depend 

on disease cores (Liljeros, Edling, and Amaral 2003).While multiple transmitters were first 

identified as key players in the epidemiology of gonorrhea, it is applicable here as it emphasizes 

the important role that individuals who infect multiple others play in maintaining an effective 

reproduction number (Reff) above 1 (Over and Piot 1993). Reff is the expected number of new 

infections generated by each infectious individual (Anderson and May 1990).
114

 For an epidemic 

to be created and sustained, Reff must be maintained above 1 (Dietz 1993; MacDonald 1952, 
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 The effective reproduction number differs from the basic reproduction number in that the latter assumes a 

completely susceptible population, whereas the former does not. 
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1957). If Reff is less than 1, each infectious case is failing to reproduce itself and the epidemic is 

expected to die out. Multiple infections in a local area can push Reff above the critical threshold 

of 1, which can spillover into other neighborhoods through interaction points located in the 

larger community (e.g. physician offices or malls) or more distant geographical areas (e.g. 

amusement parks or airports). 

 

Hypotheses 

Most children in California continue to fulfill school-mandated vaccination requirements; 

however, there are distinct spatial and temporal trends in those that have PBEs. First, children 

with PBEs tend to be spatially clustered (Atwell et al. 2013; Carrel and Bitterman 2015; Richards 

et al. 2013). Second, the overall rate of PBEs in the state has been increasing over time, from less 

than 1% of children entering kindergarten in 1992 to a peak of 3.15% in 2013
115

(California 

Department of Public Health, Immunization Branch 2016a). In the general population then, 

younger school-aged children would be expected to have lower overall levels of vaccination than 

older adolescents. Assortative mixing by age in social networks (Mossong et al. 2008; Newman 

2003) could increase disease outbreak potential, primarily among younger age groups, even if 

PBEs were randomly distributed across space. To understand how exempted children may be 

serving as cores for the transmission of vaccine-preventable disease in the population, it is 

important to separate spatial effects from the overall temporal trends that cluster exemptions 

within different age cohorts. To examine how the spatial clustering of PBEs affects measles 

transmission in California in 2014, three possible ―worlds‖ were modeled in the simulation 

experiment. 
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 PBEs decreased slightly to 2.54% of the kindergarten population in 2014 due to a change in state law that 

mandated that PBE requests be accompanied by a physician‘s signature. 
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1. ―Observed‖: PBEs are distributed as empirically observed across both age and geographical 

space, retaining both temporal and spatial trends. 

2. ―Spatially random‖: PBEs are distributed randomly across geographical space, but each age 

retains the number of PBEs observed. In other words, kindergarten-aged children are 

assigned more PBEs overall than high school-aged children because exemption rates for 

children entering kindergarten in California were much higher in 2014 than in the early 

2000s when current high school students would have been entering kindergarten.  

3. ―Spatially and temporally random‖: PBEs are distributed randomly across age and 

geographical space. The total number of PBEs in the population remains the same as in the 

other two scenarios, but no temporal or space trends are retained. 

Hypothesis 1: Due to assortative mixing by age and geographical proximity, the 

largest outbreaks should occur in the observed condition, followed by the spatially 

random condition, and then the spatially and temporally random condition. 

 

 The largest outbreaks should be observed in the observed condition due to clusters of 

children with PBEs operating as disease cores. 

Hypothesis 2: In the observed condition, the effective reproduction number—the 

average number of infections generated by a single infectious child—should 

continually increase as the number of infectious children with PBEs increases.  

 

Additionally, if unvaccinated children are playing important roles in measles 

transmission, there should be a spatial relationship between PBEs and measles cases. 

Hypothesis 3: Clusters of measles cases should overlap spatially with PBE clusters. 

 

Initially, I retain the same overall level of vaccination in the population in 2014 for all 

three of the PBE conditions. Regardless of spatial patterns in vaccine exemptions, lower 

vaccination coverage in the population would be expected to increase potential for disease spread 

(Anderson, May, and Anderson 1992; Anderson et al. 1992). To assess whether measles 
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incidence may be increasing in the U.S. because of loss of effective herd immunity due to spatial 

clusters of vaccine refusals, I then compare outbreak sizes in the observed condition with that in 

the spatially random condition at lower levels of vaccination. 

Hypothesis 4: Spatial clustering of PBEs in the observed condition allows outbreak 

sizes that are only generated in the spatially random condition at lower overall 

levels of vaccination coverage in the population. 

 

 

Data and Methods 

Population. This chapter again uses the synthetic population of youth ages 0-17 in 

California in 2014. The inclusion of children of all ages in the population, including those too 

young to be vaccinated and older children with higher overall vaccination rates, allows for a 

better estimation of the community-level risk of PBEs. Again, data from the Census, American 

Community Survey, and California Birth Master Files records was used to create a population 

representative of the age, race/ethnicity, parental education, and sibship size distributions of the 

2014 Californian population at the Census block-group level. Enrollment records from the 

California Department of Education, as well as data from the National Household Education 

Survey and Private School Universe Survey, were used to assign children to schools. 

Approximately 50% of the children ages 3-4 were assigned to licensed childcare consistent with 

data on enrollment and capacity in these centers available from the California Departments of 

Public Health and Social Services, respectively. Full details of the construction of demographic 

characteristics and school assignment for the population are provided in the previous chapter. 

Prevalence of PBEs. Vaccination status is assigned in the three separate PBE conditions 

described above as follows: 
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Observed. PBEs
116

 were assigned within schools and licensed childcare consistent with 

reported prevalence rates from the Immunization Branch of the California Department of Public 

Health as described in the previous chapter; siblings were given preference for the same 

vaccination status. Children aged less than 1 year were considered unvaccinated. As vaccination 

information is typically collected when a child enters licensed childcare, kindergarten, and the 

7
th

grade, I assign PBEs in other grades consistent with school-specific rates for the year the 

children would have entered kindergarten or 7
th

 grade. This maintains the observed state-wide 

percentages of PBEs across school grades. For schools without recorded data, PBEs were 

assigned the average rate by school type at the district level. Children younger than age 5 and not 

in licensed childcare were assigned PBEs at a rate consistent with childcare centers in the same 

county. 

Spatially Random. PBE assignments from the observed condition were randomly re-

shuffled within age. The overall number of PBEs for each age is the same as the observed 

condition, but assignment occurs randomly across schools and geographical space.  

Spatially and temporally random condition. PBEs were randomly shuffled through the 

entire population, removing both the spatial clustering and temporal trend in prevalence by age. 

Consistent with the observed and spatially random conditions, PBEs are not assigned to children 

less than 1 year of age. As discussed in the previous chapter, these children are assumed to be 

unvaccinated due to the CDC recommended vaccine schedule and ineligible for PBEs in the 

synthetic population. 

Network Structure Details of network structure and interaction are discussed at length in 

the previous chapter. For only the briefest review: Interaction was possible in six contact 
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 As discussed in Chapter I, children with PBEs may be entirely unimmunized or may only be missing one or two 

required vaccines; for this project, no assumptions are made about partial vaccination.  
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settings: households, childcare, schools, neighborhoods, malls, and physician offices. 

Probabilities of contact in the home, school, neighborhood, and mall settings were adapted from 

an empirically calibrated influenza simulation (Chao et al. 2010) and were adjusted to reflect 

school, community, and neighborhood sizes in the synthetic population. Probabilities of 

physician contact were calibrated to reflect exposures in epidemiological accounts of measles 

transmission in California (Sugerman et al. 2010). Contact probabilities were age-structured; not 

accounting for the increased tendency of children to interact with others their own age 

(Cauchemez et al. 2011; Mossong et al. 2008; Wallinga, Edmunds, and Kretzschmar 1999) can 

lead to under-estimation of Reff (Mossong and Muller 2000) and less well-performing models of 

measles transmission (Schenzle 1984). 

Disease Transmission Model parameters were informed by epidemiological studies of 

measles transmission. First, probability of transmission given contact is age-structured to reflect 

variations in susceptibility (Top 1938). Second, the incubation period is set to 12 days and the 

infectious period is 2 days prior to and 1 day following the onset of symptoms, after which it is 

assumed the child is quarantined (Papania et al. 1999). Third, overall vaccine efficacy is set at 

96.9% (Davis et al. 1987), and, fourth, the probability of vaccine failure is modeled as an 

exponentially decreasing function of the number of exposures to an infectious individual.
117

 

Using parameters informed by epidemiological accounts allows a plausible simulation 

experiment; robustness checks show that when used with the network structure described above 

in a completely susceptible population, the chosen parameters successfully reproduce basic 

reproduction numbers typical for the measles (R0 = 12-18) (Anderson et al. 1992; Fine 1993). 

Epidemic trajectories can be influenced by the baseline reproduction numbers for a disease 
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 As discussed in the previous chapter, using a function in which risk of failure decreases exponentially with the 

number of exposures results in an overall vaccine efficacy rate more consistent with reported efficacy rates than if 

vaccine failure was set uniformly at 96.9% across exposures.  
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(Germann et al. 2006) making a realistic R0 an important foundation for examining effects of 

PBEs on Reff. An SEIR model using a daily time step over a 36-week period with 10 seeded 

infections was again used for the simulation. All results presented below were obtained using the 

same synthetic population and model parameters; variation was only introduced in assignment of 

PBEs, as described above. 

 

Results 

Measles outbreak sizes in the observed, spatially random, and spatially/temporally 

random conditions are presented in Figure 6.1. In each of the conditions, overall vaccination 

coverage in the population is 92.6%.
118

 First and foremost, as shown in Figure 6.1, serious 

epidemics, i.e. those with thousands of infections, occurred only in the observed condition. 

While both the spatially and spatially/temporally random conditions show a similar increase in 

outbreaks in the right tail of the distribution, the magnitude of the outbreaks is substantially 

lower than in the observed condition.  

This result is robust to the specific contact probabilities in the model; the previous 

chapter showed that eliminating contact in particular interaction locations still resulted in larger 

outbreaks when PBEs were distributed as observed rather than randomly (with the exception of 

completely prohibiting contact in schools, which is a burdensome intervention policy in real-

world settings (Germann et al. 2006)) and previous work has shown that increasing or decreasing 

contact in any interaction location (including households, schools, workplaces, and 

neighborhoods) is not sufficient to mitigate measles outbreaks when vaccine coverage is low 

(Liu et al. 2015). 
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 This includes children aged < 1 who are too young to be vaccinated and children assigned PBEs. 
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Figure 6.1 illustrates two important points about the potential for measles outbreaks. 

First, it is the spatial clustering of PBEs that contributes substantially to increased sizes of 

outbreaks, rather than just increasing rates of PBEs over time. If it were the overall time trend 

that most influenced outbreak sizes, the spatially random condition should show comparable 

outbreak sizes to those in the observed condition. Compared with the random conditions, the 

maximum outbreaks are more than ten times larger when PBEs are distributed as observed. 

Second, as shown in the middle 50% of the outbreak distribution (from the 25
th

 to 75
th

 

percentiles) in Figure 6.1, it is the spatially/temporally random condition that experiences the 

largest outbreaks. The absolute difference in average outbreak size between the 

temporally/spatially random condition and the observed and spatially random conditions within 

this segment of the distribution is approximately 5 cases. In regards to measles transmission, 5 

cases constitutes an epidemiological outbreak (Feiken et al. 2000; Markowitz et al. 1989).
119

 This 

provides mixed support for Hypothesis 1: while outbreaks above the 75
th

 percentile are 

substantially larger in the observed condition, more cases are generated initially in the 

spatially/temporally random condition. 

This result may be attributed to spatial pockets of unvaccinated children acting similarly 

to hubs in networks. Hubs are nodes with a disproportionately high number of ties compared to 

the remainder of the network, which affects the robustness of a network to failure (Albert, 

Albert, and Nakarado 2004; Albert, Jeong, and Barabási 2000; Barabási 2009). Previous research 

has demonstrated that networks with hubs are generally robust with regard to random removal of 

nodes; however, targeted removal or attacks on hubs can significantly impair the network and 

render it less robust (Callaway et al. 2000; Pastor-Satorras and Vespignani 2001a, 2001b; Wang 

and Chen 2002; Watts 2004). Introducing measles cases into the population through randomly 
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 Others define an outbreak as only 3 related cases (e.g. Clemmons et al. 2015) 
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selected children mirrors this: Reaching unvaccinated children facilitates measles transmission. 

Randomly distributing exemptions throughout the population makes it easier for infections to 

reach unvaccinated children; however, those infected children are not connected to the 

significant numbers of unvaccinated children necessary for a large-scale outbreak. Spatial 

clustering of PBEs provides the opposite effect: it may be slightly more challenging initially to 

reach unvaccinated children, but, once a cluster is encountered, multiple infections in that area 

can provide a substantial boost to continued transmission overall.  

In other words, spatial clusters of PBEs may provide some initial protection against 

measles transmission; however, any initial protective effects are obliterated by the rapid 

reproduction of infections once a PBE cluster is reached. In practice, protective effects of spatial 

clustering of PBEs in the population are possibly compromised for this and two additional 

reasons: 1) the introduction of measles into the population may be likely to come from an 

unvaccinated individual who acquires an infection externally and then introduces directly into a 

cluster;
120

 and 2) measles infections do not need to originate in a PBE cluster to start an outbreak, 

only sustain minimal transmission until a cluster is reached. Models with 50 and 100 randomly 

seeded infections reinforce this point (Figure A1 in Appendix). While incidence is still slightly 

higher initially in the spatially/temporally random condition than the observed condition, as the 

number of seeded infections increases, so does the ability of the disease to reach pockets of 

unvaccinated children and the overall outbreak size. 

The dynamics of measles transmission over time in each of the three conditions is shown 

in Figure 6.2. Initially, in the first generation of measles transmission resulting from the 10 

seeded infections, each of the PBE conditions has approximately the same average Reff 
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 The 2008 San Diego measles outbreak was started by an intentionally unvaccinated child that acquired the 

disease on a family trip to Switzerland and then infected two siblings, two classmates at a charter elementary school, 

and four infants at a pediatrician‘s office (Sugerman et al. 2010). 
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(observed: 0.56
121

; spatially random: 0.61; temporally/spatially random: 0.64). Beginning in the 

3
rd

 generation, the average Reff begins to diverge. By the 5
th

 generation, the average Reff has 

exceeded the critical value of 1 in the observed condition, and remains at or above 1 among 

active transmissions for almost all of the remaining generations. In both the spatially and 

temporally/spatially random conditions, the average Reff never reaches 1. This indicates that even 

while transmission may be continuing, the outbreak is, on average, always in a state of decline. 

By the end of the 36-week period, measles transmission has ended in approximately 85% of 

trials in the observed condition and over 95% of trials in both random conditions. Not only is an 

outbreak more likely to be active at the end of the 36-week period when PBEs are spatially 

clustered as observed, but sustained epidemics (Reff ≥ 1) are only witnessed in this condition, 

generating the differences in outbreak sizes observed in Figure 6.1. 

Figure 6.3 presents evidence to support Hypothesis 2 that exempted children act as 

multiple transmitters when PBEs are spatially clustered. The average Reff steadily increases as the 

number of infectious children with PBEs increases only in the observed condition. In particular, 

when six or more of the infectious children have PBEs, the average Reff exceeds 1. The average 

Reff  never reaches 1 in the random conditions, even when multiple infectious children have 

PBEs. These results support that spatial clusters of children with vaccine exemptions constitute 

disease cores with increased likelihood of generating multiple subsequent infections. 

In the observed condition, an average of 68.7% of the secondary infections are 

unvaccinated—44.4% had PBEs while the remaining cases were infants (aged < 1 year). The 

overall percentage of unvaccinated infections in the simulation is slightly higher than that 

reported for measles outbreaks in the U.S. between 2000-2015, which found that 56.8% of 
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 This average Reff is very close to that observed for actual measles transmission in the U.S. from 2001-2011, 

estimated at 0.52 (95% CI: 0.44 – 0.60) (Blumberg et al. 2014) 
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infected cases were unvaccinated (Phadke et al. 2016). However, this is a conservative estimate 

as it excludes the 28.8% of cases that had ―unknown‖ or ―unvaccinated or unknown‖ status. 

Furthermore, 41.8% of confirmed unvaccinated cases had non-medical vaccine exemptions 

(Phadke et al. 2016), comparable to the 44.4% in the simulation. 

Unvaccinated children also constitute a significant proportion of infected cases in the 

random conditions. Cases in both the spatially and spatially/temporally randomly conditions 

involved similar proportions of unvaccinated children.
122

 It is not that lack of vaccination does 

not affect transmission when PBEs are distributed randomly; rather the lack of spatial clustering 

prevents the larger outbreaks present in the observed condition.  

In all conditions, infants aged less than 1 year account for a larger proportion of cases 

than would be expected given the age distribution in the population. As discussed in the previous 

chapter, infants less than 1 year of age account for 24.3% of the secondary infections when PBEs 

are spatially clustered. This comparable to the 25% of infections in children too young to be 

vaccinated reported in actual outbreaks (Papania et al. 1999; Sugerman et al. 2010).
123

 

 Figure 6.4 shows the spatial clusters of PBEs and measles cases in the synthetic 

population. As shown in Figure 6.4A, clusters of schools and childcare centers in the synthetic 

population with statistically significantly higher risk of PBEs compared to the overall population 

rate were concentrated in the northwestern region near the Oregon border, the inner central 

region near Lake Tahoe, and in some of the coastal urban cities, e.g. Santa Cruz, Santa Barbara, 

Santa Monica, and suburbs around San Diego (spatial clusters of reported PBEs in public 
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 The distribution of percent of unvaccinated cases in the observed condition is more skewed than that in the 

random conditions, and increases more sharply as the number of cases increases. In the top 10% of outbreaks in the 

observed condition, an average of 84.60% of cases are unvaccinated due to PBEs or age < 1 year. 
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 Both of these epidemiological accounts of measles outbreaks included children aged 0 to 15 months as the MMR 

vaccine is not recommended until ages 12-15 months. In the synthetic population, infants too young to be vaccinated 

are only those aged < 1 year. The simulation results presented here are percentage of secondary infections, and 

potentially underestimate the risk posed to infants by PBEs among older children. 



175 

 

kindergartens in 2014 are presented in Figure A2 in Appendix) . Figure 6.5C shows clusters of 

schools and childcare centers with statistically significantly higher risk of measles infections in 

the observed condition. There is a lack of infections in the northern and some central parts of the 

state, where PBEs tend to be very common. This is likely due to lack of overall population in 

those regions (Figure 6.4B shows population density of synthetic children in California). Spatial 

clusters of PBEs are particularly vulnerable to disease outbreaks in areas with higher 

concentrations of people, such as the densely population coastal areas around Malibu, Los 

Angeles, and in the suburbs above San Diego. This provides qualified support for Hypothesis 3: 

spatial clusters of PBEs and measles cases do show some overlap, but primarily in areas with 

higher population densities. 

 Finally, measles infections were simulated at varying levels of population vaccination 

with PBEs distributed spatially randomly. Figure 6.5 presents these results. With the observed 

92.6% vaccination coverage in the population, spatial clustering of PBEs allows maximum 

outbreak sizes comparable to those expected at approximately 90% vaccination coverage if PBEs 

are spatially random. This suggests that even when taking into account that PBEs are more 

common among younger children due to increasing exemption rates over time, spatial clustering 

alone lowers effectiveness of herd immunity in the population. Levels of population vaccination 

necessary for herd immunity are estimated to be between 92-96% (Anderson and May 1985); 

failing to maintain vaccination coverage at these levels locally allows disease outbreaks that 

create greater risk of disease transmission in the larger population. Although the absolute 

difference between 92.6% and 90% vaccination coverage may seem small, minor changes in 

coverage can generate large differences in epidemic sizes as shown more generally in Figure 6. 

These results provide support for Hypothesis 4 and indicate that PBEs clusters reduce 
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effectiveness of herd immunity. Even though overall vaccination levels in the population remain 

high, this alone is not sufficient to prevent serious outbreaks when there are spatial pockets of 

PBEs. 

 

Discussion 

 This simulation experiment examines the effects of spatial clustering of PBEs in 

California on potential for measles outbreaks. To the best of my knowledge, this is the first 

model of measles transmission that has been calibrated with (1) fine-grained locational data of 

focal points of interaction, (2) disease transmission parameters from epidemiological studies and 

(3) observed spatial and temporal distributions of non-medical vaccine exemptions. As the 

findings demonstrate, due to the non-linear nature of epidemics, the spatial patterns of reported 

PBE have a substantial impact on outbreak sizes beyond what one would expect given relatively 

low levels of exemptions in high-income places, such as California. Moreover, examination of 

counterfactual scenarios shows that neither the increasing rates of PBEs over time alone, nor 

their overall prevalence in the population can account for these effects.  

In particular, spatial pockets of children with high PBE rates may act as disease cores in 

the spread of vaccine-preventable illness. In these local areas, infected children are able to 

expose clusters of susceptible children and generate multiple subsequent infections. It is much 

harder for children outside these clusters to serve as multiple transmitters due to fewer 

susceptible, unvaccinated children in the local area. Therefore, the ability to infect multiple other 

children is a product not only of an individual‘s own behavior (lack of vaccination) but their 

network neighbors‘ decisions against vaccination as well. This is consistent with results of 

previous abstract simulation studies showing that clusters of anti-vaccine beliefs created through 
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social influence in networks increase the risk of disease outbreak (Eames 2009; Salathé and 

Bonhoeffer 2008). 

As such, spatial clustering of children with PBEs renders the population less robust to 

disease spread and decreases the effectiveness of herd immunity. While major measles outbreaks 

were still the exception when PBEs were spatially clustered, overall outbreak sizes were 

significantly higher than when PBEs were spatially and/or temporally random. Spatial clustering 

of PBEs creates outbreaks comparable to those expected with lower vaccination coverage in the 

population should PBEs be distributed randomly, even when temporal trends in increasing rates 

over time are retained. Separating the effects of spatial and temporal trends demonstrates that 

spatial concentration may be particularly concerning for increasing measles incidence. 

The results presented here are not intended to make a definitive statement on locations of 

spatial clusters of children lacking MMR vaccination or where measles outbreaks may be likely 

to occur in California, but are rather a more general illustration of unintended consequences of 

policies toward non-medical vaccine exemptions. This work is limited by lack of specific data on 

MMR vaccination among children with PBEs. Previous research has shown, however, that MMR 

coverage was relatively low among children with PBEs in California schools in 2009, 

particularly in schools with schools with high PBE rates (Buttenheim et al. 2015). Additionally, 

in the scenario presented here, measles transmission was allowed to continue to spread through 

the population unabated. When measles outbreaks occur in the real world, significant steps are 

taken to limit transmission through vaccination and quarantine programs.  
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Conclusion 

Increasing rates of PBEs and incidence of vaccine-preventable disease are creating 

serious debates over vaccine policies (Yang, Barraza, et al. 2015; Yang and Silverman 2015). As 

increasing measles incidence in the U.S. and results of this simulation experiment suggest, 

focusing efforts on maintaining overall levels of vaccination in the population are not sufficient 

to prevent disease transmission. Spatial pockets of unvaccinated children are threatening  to 

reverse the elimination of endemic measles transmission in the U.S. (Blumberg et al. 2015; 

Jansen et al. 2003; Omer et al. 2009; Papania et al. 2014). Voluntary vaccination programs allow 

for the creation of these partially vaccinated pockets of individuals that increase the risk of 

network-wide epidemics (Perisic and Bauch 2009). Modeling of STD transmission in networks 

mirroring properties of those observed in the real world demonstrated that preventive 

interventions were most effective when directly targeting individuals most active in the 

behaviors that led to disease transmission (Newman 2002). Debates surrounding vaccination 

policy and efforts to increase vaccination must recognize this discrepancy: population-wide 

protection against disease outbreaks depends not only on overall vaccine compliance, but on 

spatial locations of non-compliance. 
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Figures 

 

Figure 6.1: Simulated measles outbreak potential 

 

 
 
Note: Results averaged over 1000 trials.  

 

  



180 

 

Figure 6.2: Percent active trials and average Reff in active trials across case generations 
 

 
 
Note: Percent active trials shown by lines corresponding to the primary y-axis and average Reff in active trials 

shown by points and corresponds to secondary y-axis. Lines show the percentage of trials still active in each 

generation of measles transmission. Measles transmission ceases before the full 36-week period in most trials, 

regardless the distribution of PBEs; however, there are approximately twice as many active transmissions 

continuing through the end of the 36-week period when PBEs are distributed as observed, than in either random 

PBE condition. Mean Reff in active trials, plotted on the secondary y-axis, demonstrate that the average Reffis at or 

above the critical value of 1 in the observed PBE condition after approximately the 5
th

 generation of cases. 

Average Reffin the random PBE conditions fail to reach this critical value at any point across generations of cases. 

Error bars show 95% confidence interval around the mean; the confidence intervals widen in the last few 

generations due to the small number of active trials, particularly in the random conditions. On average, spatial 

clustering of children with PBEs allows longer continuous measles transmission and produces higher Reff after the 

first 4 generations of tranmission, which contribute to larger outbreak sizes than when PBEs are distributed 

randomly. 

 

  



181 

 

Figure 6.3: Effective reproduction number by number of infectious children with PBEs 

 

 
 
Note: Reff steadily increases with the number of infectious children with PBEs, surpassing the critical value of 1 

when there are six or more infectious children with PBEs. The same trend is not observed in either of the random 

conditions, and Reff never reaches 1. Reffis calculated by dividing the number of new infections by the number of 

infectious cases in a generation; numbers shown here are averaged across 1000 trials. The horizontal line marks the 

critical value of Reff = 1; values above 1 are needed to sustain the epidemic, while those below 1 indicate declining 

disease spread. 
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Figure 6.4: Locations of synthetic measles infections 

 

A 

 

B 

 

C 

 
 

Note: (A) Spatial clusters of schools and childcare centers in the synthetic population with statistically significantly 

higher relative risk of PBEs than in the overall population. (B) Population density of synthetic children. (C) Spatial 

clusters of schools and childcare centers with statistically significantly higher relative risk of measles infections 

when PBEs are distributed as observed (across 1000 trials). Not all clusters of children with PBEs overlap with areas 

of significantly higher risk of measles infections; those that do tend to be in areas with higher population density. 

Higher population densities likely increase the ability for the disease to spread between smaller clusters of children 

with PBEs in these areas. Maps were created using Spatial Scan Statistics (see Kulldorff 1999). 
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Figure 6.5: Spatial clustering of PBEs reduces effective herd immunity in population 
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Appendix 

Figure A6.1: Size of measles outbreaks with 50 (A) and 100 (B) randomly seeded infections 
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Figure A6.2: Clusters of kindergartens with statistically significantly higher relative risk of 

PBEs compared to the state-wide rate in kindergartens, 2014 

 

 
 

Note: Data from the California Department of Public Health. 
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Chapter 7: Summary and Conclusion 

Online articles on rising rates of vaccine refusals or outbreaks of vaccine preventable 

disease in the U.S. garner hundreds of comments. Debates rage over vaccine safety, suspicion of 

alternative motives in promoting vaccination, clear evidence for vaccines in preventing illness, 

and risks posed to others by unvaccinated children. Most of these discussions boil down to some 

variant on the following: should parents be able to refuse vaccines for their children? 

As mentioned in Chapter 1, many vaccine hesitant parents assert the right to make 

individual decisions for the health of their child (Reich 2016; Senier 2008). Currently, parents 

who file non-medical vaccine exemptions rather than meet school vaccine requirements are a 

relatively small minority. As long as most parents in the U.S. and other high income countries 

continue choosing to vaccinate, how much do we really need to be concerned about the small 

number of parents that do not? 

The problem with defining vaccine refusals as an individual parental choice is that when 

we look at the larger population we see that these decisions are isolated neither in determinants 

nor consequences. As discussed in Chapter 2, parents‘ perceptions of costs and benefits of 

vaccines are affected by many cultural forces beyond simple calculations of the efficacy of 

vaccines in preventing disease and risks associated with vaccine-preventable infections. Rather, 

how parents weigh these decisions depends on relationships with health professionals and others 

in their social networks. This renders vaccine decisions vulnerable to the social processes that 

create clustering in many other health outcomes. 

The interdependence of vaccine decisions form pockets of low immunization. In turn, the 

structure of our social networks and patterns of social behavior affect the ability of diseases to 

reach susceptible hosts. As individuals, we cannot see the ways in which our interactions and 
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decisions aggregate in the larger network. And for this reason it is very difficult to reduce 

vaccine decisions to individual prerogative and consequences. So where do these clusters of non-

medical vaccine exemptions form? And, more importantly, is the current level of clustering 

serious enough to influence how disease spreads? 

Interestingly, previous research shows that parents who seek non-medical exemptions do 

not tend to fit the traditional profile of relative disadvantage associated with unvaccinated 

children (Smith et al. 2004). Rather these parents tend to be non-Hispanic white, well educated, 

and relatively affluent (Atwell et al. 2013; Birnbaum et al. 2013; Richards et al. 2013; Safi et al. 

2012; Wei et al. 2009). Many hold alternative health beliefs (Gaudino and Robison 2012; Gellin 

et al. 2000; Reich 2016), and choose to send their children to private or charter schools (Brennan 

et al. 2016; Carrel and Bitterman 2015; Sobo 2015). 

Chapter 3 demonstrates that although many of these factors have the expected school-

level associations with PBEs in California, it is the percent non-Hispanic white children in the 

local area around the school that has the strongest association with clustering of PBEs across 

schools. Socio-economic status characteristics (SES), such as mother‘s level of education, have 

strong associations with PBEs within schools, but do not show substantial relationships to 

broader patterns of clustering. Although race/ethnicity is commonly seen as reflecting 

unmeasured effects of SES, these findings suggest that race/ethnicity can have effects on PBEs 

that are independent of SES. 

Sorting of parents into schools based on race/ethnicity, SES, and other local 

neighborhood characteristics, such the presence of alternative health practitioners, does explain 

some, but not all, of the spatial clustering of PBEs across public kindergartens in California. 
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How can the remaining clustering be accounted for? Certainly, one possible reason is that 

parents sort themselves based on another, unmeasured characteristic associated with PBE rates. 

More dynamic social processes could be at work as well. It could be that socio-

demographic characteristics matter not only in the local vicinity around a school, but also in the 

surrounding neighborhoods. In other words, both a school‘s characteristics and the 

characteristics of schools nearby affect the likelihood of PBEs.   

The influence from others could be more direct as well. Parents who refused to vaccinate 

their children could directly influence others around them to make similar choices. Qualitative 

studies of vaccine exemptions have shown that parents‘ social networks influence their decisions 

(Brunson 2013b, 2013a; Sobo 2015). This is consistent with other sociological studies 

demonstrating that diffusion of behaviors that require higher levels of commitment can create 

spatial pockets of adoptions (Centola and Macy 2007).  

Investigation of these alternative social processes requires statistical models that examine 

dynamic, rather than static, effects across space. For this purpose, Chapter 4 uses a set of spatial 

econometric models designed to incorporate the underlying spatial processes that generate 

clustering in outcomes. Spatial heterogeneity in the effects of socio-demographic, neighborhood, 

and school characteristics on school PBE rates showed local variation that is usually missed in 

models that only estimate average effects. 

Spatial externalities occur when covariate characteristics of one school affect the PBE 

rates in other nearby schools. Percent non-Hispanic white in the local area around the school 

showed consistently significant, positive effects on PBE rates in nearby schools. Although 

mother‘s level of education and percent non-Hispanic white had similar direct effects on a 
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school‘s own PBE rate, mother‘s level of education did not show a significant effect on PBE 

rates nearby. 

Spatial diffusion is also an externality, but it occurs when PBE rates in neighboring 

schools directly influence one another. The best fitting spatial models showed that spillover 

between PBE rates in neighboring schools better represented the spatial clustering of PBEs than 

unmeasured covariates not included in the model. These findings suggest that dynamic social 

processes, such as diffusion, likely affect clusters of PBE clustering across schools. 

Future research is needed to examine why higher proportions of non-Hispanic white 

parents in the areas surrounding a school have such strong effects on clustering of PBEs. Effects 

of race/ethnicity independent those of SES and the indirect spillover effects would both be 

consistent with these parents playing a particularly important role in the diffusion of vaccine 

refusals through local social networks. Individual-level data on vaccine refusals and social 

networks could help determine if this was the case. 

As discussed in Chapter 2, parents do not evaluate costs and benefits associated with 

vaccines free from the influence of others around them. Spatially dependent processes can 

contribute to the formation of local cultures where alternative views toward vaccines become 

normative as more parents decide to exempt their children. Decreasing trust in healthcare 

institutions and physicians to provide the most reliable information on vaccine safety could have 

amplified these trends. 

The practical implication of the results in Chapters 3 & 4 is that preventing spatial 

pockets of children with vaccine exemptions from forming may require interventions that target 

parents‘ social networks rather than taking an individualistic approach. Although most 

intervention strategies are conducted at the individual level, reviews have revealed that this 
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approach is limited in its effectiveness (Sadaf et al. 2013). Perceived support for vaccination 

among family and friends affects decisions to vaccinate (Allen et al. 2010). Identifying where 

these spatial pockets of unvaccinated children are likely to occur and local concerns surrounding 

vaccines in those areas may help us craft more effective intervention strategies. 

Theoretically, Chapters 3 & 4 demonstrate that selection into particular schools and 

neighborhoods alone is not enough to explain spatial pockets of PBEs. While there is a tendency 

to assume that differences in outcomes across space is the result of compositional effects, these 

findings suggest a more dynamic process. Permissive policies toward non-medical vaccine 

exemptions allow the creation of spatial pockets of unvaccinated children to form through social 

interaction among parents. This is an important illustration of how feedback effects in micro-

level individual behaviors have the ability to reshape macro-level patterns. Here, social 

interaction serves as a transformational mechanism (Hedström and Swedberg 1996) that 

aggregates individual-level preferences into aggregate outcomes (Coleman 1986). 

Methodologically, the contribution of this research is in showing that spatial methods can 

be used to help identify sociological meaningful differences in the locations of vaccine 

exemptions over space. Others have also used these models to understand how low birth weights 

cluster over space (Morenoff 2003) and how crime rates and locations of homicides within a city 

result from spatial diffusion into neighboring areas (Baller et al. 2001; Cohen and Tita 1999). 

Although the data and methods used here do not allow us to directly test for diffusion, they 

illuminate larger spatial patterns and associations that are not visible in individual-level data. 

These findings suggest where it might be productive for future research to look for these 

mechanisms. 
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But how concerned should we be about current levels of vaccine exemptions and their 

locations? Recent epidemiological investigations of measles and pertussis have shown that 

unvaccinated children are not only at increased risk for infection themselves, but also increase 

the risk of disease transmission to others in the surrounding community (Atwell et al. 2013; 

Feiken et al. 2000; Imdad et al. 2013; Omer et al. 2008). Abstract simulation models also suggest 

that spatial clustering of vaccine refusals increases disease spread (Eames 2009; Liu et al. 2015; 

Salathé and Bonhoeffer 2008). 

It is reasonable to expect that the size and locations of clusters condition the level of 

consequences for disease spread. To my knowledge, no previous work has examined the risks of 

disease outbreak given the actual numbers and locations of vaccine exemptions. Yet, simulation 

experiments with empirically calibrated data on both the location of PBEs and local focal points 

of interaction are important for understanding potential macro-level consequences of real-world 

behaviors (Hedström and Åberg 2005). 

Schools have served as hotspots for measles transmission, including in highly vaccinated 

populations. The clustering of exemptions within schools and the amount of physical contact that 

occurs among children there may make these locations even more vulnerable to measles 

transmission. Contact in the community within larger clusters of exemptions may play an 

important role in spreading the disease between schools. 

Yet, the simulation experiments presented in Chapter 5 show the opposite results. A 

greater percentage of measles cases occur in schools when PBEs are not spatially clustered. 

When PBEs are spatially clustered, however, charter schools become particularly important 

settings for measles transmission due to higher average PBE rates. Similarly, contact within 
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households plays a much bigger role in measles transmission when siblings share vaccination 

status. 

Surprisingly, contact within neighborhoods and malls were not responsible for large 

percentages of measles infections nor did they appear to serve as the most important channels for 

measles transmission between schools. Contact within physician offices generated more 

infections than these locations, and disproportionately affected children too young to be 

vaccinated. Prohibiting contact in all interaction focal points did show some initial effects in 

reducing the number of infections. However, only eliminating contact in schools was sufficient 

to prevent large outbreaks entirely. 

Even though a larger percentage of infections occurred in schools when PBEs were not 

spatially clustered, a larger number of total infections were transmitted in schools when PBEs 

were allowed to cluster spatially as observed in the population. Could the spatial clustering of 

vaccine exemptions in particular be to blame for increasing measles incidence in the U.S.?  

Chapter 6 demonstrates that maximum measles outbreak sizes were 10 times larger 

when PBEs were spatially clustered than when PBEs were assigned at random. Surprisingly, 

spatial clustering of PBEs reduced the number of cases in smaller outbreaks. In other words, 

spatial clustering of exemptions appears to provide some initial slight protection against measles 

infections because it is more difficult for the disease to find unvaccinated children. Once the 

disease reaches one unvaccinated child, however, the search becomes much easier and many 

more unvaccinated children can be infected nearby. 

This is because spatial pockets of unvaccinated children serve as disease cores in measles 

transmission. Within these areas, contagious children are able to generate many subsequent 

infections, which increase the effective reproduction number of the disease. This boost in 



193 

 

transmission allows infections to spread outside these clusters and into the larger community. 

This lowers the effectiveness of protection against disease spread provided by herd immunity, 

even when overall vaccination coverage is high in the population. 

These findings emphasize that it is the spatial clustering of vaccine exemptions rather 

than their overall prevalence in the population that most affects potential measles outbreaks. 

Parents making these decisions should be made aware of the collective consequences of 

seemingly individual decisions. The ability to accurately perceive disease risk has important 

implications for social behavior in networks (Bauch and Bhattacharyya 2012).  

Policies that allow easy access to non-medical vaccine exemptions can increase their 

prevalence and allow these spatial pockets to form. Findings from Chapter 5 in particular 

remind us that the pairing of school choice and the ability of parents to refuse vaccines magnify 

the risk of vaccine-preventable disease transmission in charter schools. Offering incentives 

(Buttenheim and Asch 2013) or resources to schools to keep exemption rates low can also help 

prevent large disease outbreaks in these locations. 

Theoretically, results from Chapters 5 & 6 contribute to our awareness of the strength of 

strong ties in creating disease cores that are able to increase disease spread in populations with 

high overall rates of vaccination. The tendency for children with non-medical exemptions to be 

located in the same households and schools means that frequent social interaction between 

unvaccinated children is likely to occur via strong ties. In other words, if weak ties provide 

bridges for diseases to travel into new areas of the network, strong ties can supply pockets of 

susceptible children to fuel a few initial cases into large outbreaks. 

Understanding that pockets of unvaccinated children can function as disease cores also 

highlights the threat that non-medical exemptions pose to the ability to maintain non-endemic 
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status for measles in the U.S. As foreshadowed in Chapter 2, clusters of unvaccinated children 

can have two different effects on network robustness to disease spread. When the disease is 

introduced randomly and most children are vaccinated, the network is more robust to small 

outbreaks. Yet, non-random introduction of a disease, or the ability of the disease to quickly 

reach clusters of unvaccinated children, has the opposite effect—the network is less robust and 

outbreak sizes increase. This distinction helps us look past blanket views that all clustering 

necessarily has negative effects on disease spread. This can inform future research that 

investigates how the size of spatial clusters specifically affects outbreaks. 

Using simulation experiments that combine empirical data on locations of children, 

vaccine exemptions, and interaction points in the local community with epidemiological models 

of disease spread allow sociological insight into how social networks shape biological contagion. 

These models allow specification of counterfactual scenarios that are not able to be observed in 

the real world. At the same time, the model‘s empirical grounding improves our ability to use the 

findings to inform real world puzzles. 

Much attention has been given to potential threats to public health posed by increasing 

rates of non-medical vaccine exemptions. As a whole, this project maps out the concrete ways in 

which parents‘ vaccination decisions contribute to collective health outcomes. My findings 

illustrate how our social networks shape both the contexts in which we make health decisions 

and the patterns of physical contact through which disease travels. This intersection of social 

behavior and biological contagion shapes both perceptions of vaccine-preventable disease risk 

and how actual risks of infections accumulate in the community. Although parents may perceive 

vaccine decisions for their children as personal and individualistic, they are fundamentally 

communal and collective in their consequences. 
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