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Description of earthquake aftershock sequences using

prototype point patterns

Frederic Paik Schoenberg1 and Katherine E. Tranbarger1

Abstract

We introduce the use of prototype point patterns to characterize the behavior of a

typical aftershock sequence from the global Harvard earthquake catalog. These proto-

types are used not only for data description and summary but also to identify outliers

and to classify sequences into groups exhibiting similar aftershock behavior. We find

that a typical shallow earthquake of magnitude between 7.5 and 8.0 has five aftershocks

of magnitude at least 5.5, and these aftershocks are roughly evenly distributed in log-

time between 0.113 days and 2.0 years after the mainshock. The relative magnitudes

and distances from the mainshock for the typical aftershock sequence are characterized

as well.

Key words: distance metrics, earthquakes, clustering, point processes.

1 Department of Statistics, 8125 Math-Science Building, University of California, Los

Angeles, 90095-1554.
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1 Introduction.

A basic question in seismology is the following: what does the typical aftershock sequence

look like? That is, after the occurrence of an earthquake of a certain size, what is typically

observed in the vicinity of that earthquake, within a given period of time thereafter?

This question has been partially answered by the standard parametric models used to

describe earthquake occurrences, such as the widely-used epidemic-type aftershock sequence

(ETAS) model (Ogata 1988; Ogata 1998). Such models incorporate well-known parametric

forms for the decay in the conditional rate of aftershocks with time elapsed since a triggering

event, as well as the overall rate of earthquakes as a function of magnitude. The relation

governing the rate of aftershocks over time is known as the modified Omori law:

λ(t) =
K

(t + c)p
, (1)

where λ(t) is the average rate of earthquakes per unit time occurring around time t since

the mainshock, and K, c, and p are parameters (Utsu et al., 1995). The Gutenberg-Richter

(G-R) relation characterizing the distribution of earthquake magnitudes can be written in

the form:

log10 {1− F (M)} = a− bM, (2)

where F (M) is the cumulative distribution function at magnitude M , and a and b are

parameters. Several different measures of earthquake magnitude exist, and several variants

of the G-R law have been proposed, e.g. Kagan (1994), Main (1996), Jackson and Kagan

(1999), Kagan (1999), Utsu (1999), Vere-Jones et al. (2001), Kagan and Schoenberg (2001).

Alternatives to the modified Omori law have been suggested as well (see Section 12 of Utsu et
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al., 1995). In general, however, both of these forms (1) and (2) have been shown to fit rather

well to data and are commonly accepted at least as satisfactory first-order approximations

for many seismic catalogs.

In addressing the problem of characterizing the typical aftershock sequence, one may refer

to the parameter estimates in an ETAS model fitted to an earthquake catalog, for example,

and may obtain simulated aftershock sequences using this model. While the parametric

approach may be useful for simulating aftershock sequences, it begs the question of how to

characterize any one such sequence as typical, rather than an outlier. In addition, though

such parametric approaches may be useful, in many circumstances it may be desirable to

use purely non-parametric methods, and the aim here is the development and application

of such non-parametric tools. Further, while one may rather trivially obtain a smoothed

average of the point patterns to compute an estimate of the mean number of aftershocks

of a given size at a given distance in space and time from the mainshock, an alternative

characterization involving actual times, locations, and magnitudes of sample events in such

a typical aftershock sequence may be desirable. The effort to obtain such a characterization is

the primary motivation of the current paper, and the distance metrics employed are also used

to address various other elementary issues, such as the identification of atypical aftershock

sequences and the organization of mainshock-aftershock sequences into clusters based on

their aftershock properties.

The present work builds on the important contributions of Victor and Purpura (1997),

who introduced several useful distance metrics for point patterns. Here, we make use of

such distance metrics in introducing the notion of a prototype point pattern. Using the
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spike time distance of Victor and Purpura (1997) as an example, we illustrate the use of

prototypes for summarizing a catalog of aftershock sequences, for characterizing particular

sequences as typical or outliers, for comparing various collections of aftershock sequences,

and for organizing such collections into clusters.

In Section 2 we describe the dataset used, which is a collection of aftershock sequences

taken from the global Harvard catalog of earthquake occurrences. Section 3 briefly describes

the distance metrics for point processes established by Victor and Purpura (1997), before

formally introducing prototypes and discussing some of their properties. These prototypes

and distance metrics are used in Section 4 for the description of some key features in the

global earthquake dataset. Section 4 also addresses sorting the aftershocks into clusters based

on their proximity according to the selected Victor-Purpura distance metric, as well as an

assessment of the 3-dimensional prototype for simulations of the ETAS model. A discussion

of the results and suggestions for further work are presented in Section 5, followed by an

Appendix detailing the relationship between the spike time distance proposed by Victor and

Purpura (1997) and the integrated absolute difference between cumulative processes.

2 Global Earthquake Aftershock Data

Modern global earthquake catalogs containing detailed information about moderate and

large earthquakes have become available since 1977 (see Dziewonski et al. 2000; Frohlich and

Davis 1999; Sipkin et al. 2000, and references therein). Among these global catalogs, the

dataset that is most extensive and whose completeness properties are best understood is the

Harvard catalog (Dziewonski et al. 2000; Kagan 2003).
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The Harvard catalog contains estimates of the times, locations, sizes, and orientations

of earthquake focal mechanisms, for 19,822 earthquakes occurring between January 1, 1977

and March 1, 2003. Many of these are moderate to large earthquakes occurring at shallow

depths and pose major safety risks to humans and structures (Bolt 1993; Lay and Wallace

1995).

An earthquake’s location, time and size can be specified in different ways. We focus here

on centroid coordinates (the center of gravity for the seismic moment release) and centroid

times (estimated time of rupture of the centroid location) as measures of earthquake locations

and times. For earthquake sizes, we use the estimated moment magnitude mw, which is the

logarithm of the scalar seismic moment, the latter indicating the total energy released in the

earthquake.

One of the difficulties in analyzing and comparing aftershock sequences is the lack of a

clear distinction between a mainshock and an aftershock. There are at present no known

objective distinctions between the two types of events, other than their temporal ordering,

and no definitive way to distinguish “swarms” of earthquake mainshocks from ordinary

mainshock-aftershock sequences. In order to avoid subjectivity in our classifications, and

in order to address the central question of what one expects to observe following a given

mainshock (including both aftershocks and subsequent mainshocks), we define our aftershock

sequences simply as all events occurring within a given space-time window of a mainshock,

as described in the subsequent two paragraphs. Thus we do not distinguish here between

aftershocks and mainshock swarms.

We first define our collection of mainshocks whose aftershock activity we wish to analyze.
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In order to ensure that all such mainshocks are essentially comparable, we limit this collection

to shallow events only [those with depth less than 70km, following Kagan (2003)], and

to those with mw between 7.5 and 8.0. Further, in order to ensure the similarity of our

mainshocks with respect to prior activity, we remove from our collection of mainshocks

those earthquakes with any shallow events with either mw ≥ 7.5 within 200km and within

the preceding 2 years, or with mw ≥ 8.0 within 400km and within the preceding 4 years.

These spatial-temporal windows were set based on the proposed bounds of Molchan et al.

(1997) for ranges containing the bulk of earthquake aftershock activity.

For each of these mainshocks, we define its aftershocks to be all shallow earthquakes

greater than a lower cutoff magnitude of mw 5.5 occurring within 2 years and within a

distance of 100km of a mainshock. These windows are again based on the aftershock ranges

on p. 1223 of Molchan et al. (1997). The magnitude cutoff of 5.5 is based on the work of

Kagan (2003) and Kagan (2004), who showed that for earthquakes of smaller magnitudes the

completeness of the Harvard catalog is questionnable. Kagan (2003) showed that there may

also be serious misclassification and missing data problems in the first 0.133 days immediately

following a major earthquake, so we also restrict our aftershocks to only those occurring at

least 0.133 days after its associated mainshock.

Thus defined, there are 49 observed mainshocks in all, each with an average of 5.47

aftershocks and a standard deviation of 4.3 aftershocks. The times of the aftershocks in each

sequence are shown in logarithmic scale in Figure 1. One sees that many (13.8%) of the

aftershocks occur within the first day after a mainshock, the majority (54.1%) within the

first 30 days, and most (86.2%) within the first year.
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Figure 2 shows a histogram of the relative times of the aftershocks. The solid curve

overlaid is the modified Omori law fitted to the data by maximum likelihood. The fitted

parameter estimates are K = 36.02 events/day, c = 0.5721 days, and p = 0.9870.

3 Point Process Distances and Prototypes

Given a collection {Xi; i = 1, 2, . . . , n} of point patterns, one may define its prototype as a

point pattern Y minimizing the sum

n∑
i=1

d(Xi, Y ), (3)

where d is some distance function, that is d(X, Y ) is the distance between the two point

patterns X and Y . Many choices of d are possible. The spike time distance, used successfully

in the description of neuron firings by Victor and Purpura (1997), defines d(X, Y ) as the

minimal cost needed to transform point pattern X into the pattern Y using a series of

elementary operations. These elementary operations include adding a point to X, which is

given some cost pa, deleting a point from X, which is given cost pd, and moving a point of X

by some amount of time ∆, which is given a cost of pt∆. Note that pa must equal pd in order

for d to be a symmetric distance function. Provided pa = pd and pa, pt ≥ 0, d is a well-defined

distance metric (Victor and Purpura, 1997). This spike time distance extends readily to the

case of multi-dimensional point patterns, where in addition to a cost pt associated with a

unit move in time, there may be, for instance, costs ps and pm associated with a unit move

in space or magnitude, respectively.

This spike time distance metric is not unlike the Earth Movers Distance (EMD) described

by Rubin et al. (2000) in that it measures the amount of movement necessary to transform
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one random collection into another. Computation of EMD is closely related to the solution of

Hitchcock (1941) to the classic transportation problem first discussed by Monge (1781) where

of interest was the best way to ship goods from suppliers to consumers while satisfying varying

levels of consumer demand. The key distinctions between spike time distance and EMD are

that the latter is typically used to determine the distance between histograms of observations

rather than the observations themselves, which are typically pixellated values recorded in

discrete time rather than points in continuous time, and that the spike time distance allows

the addition and deletion of points whereas EMD does not. Indeed, if addition and deletion

are not allowed (or equivalently, if the addition and deletion penalties are prohibitively large),

then the spike time distance is essentially the same as the integrated difference between the

cumulative functions associated with the two temporal point patterns (see Appendix).

Some problems of how to determine the spike time distance between two point patterns

and how to find the prototype for a collection of point patterns are discussed in Tranbarger

and Schoenberg (2004). We list here two key facts facilitating the solution to these problems.

The first is that the spike time distance between two temporal point patterns X and Y is

simply given by the sum of the penalties associated with adding or deleting points, plus

the sum
J∑

j=1
pt|x(j)− y(j)|, where {x(1), . . . , x(J)} and {y(1), . . . , y(J)} are the sorted remaining

points of X and Y , respectively. Hence for purely temporal point patterns, the problem of

determining which point of X gets moved to which point of Y is not an issue, and finding the

distance between X and Y simply amounts to deciding which points are added or deleted

and which are moved. For multi-dimensional point patterns, no such obvious shortcut exists,

however, but an algorithm that attempts all possible additions, deletions, and pairings of
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the points in X and Y is often not prohibitively slow. The second fact worth mentioning is

that, for a given collection of multi-dimensional point patterns, using the spike time distance,

there exists a prototype for which each coordinate of each point in the prototype is equal to

a coordinate of a point in one of the point patterns in the collection. Therefore one way of

finding a collection’s prototype is by searching over all combinations of coordinates of points

in the collection, or by using the step-wise approach suggested in Tranbarger and Schoenberg

(2004), which is the method used here.

As noted in Victor and Purpura (1997), one of the main difficulties inherent in metric

analyses of point patterns is that of determining the penalties for adding, deleting, and

moving points. Note that only the relative values of these parameters are relevant for the

determination of the prototype. The ratio of the adding/deleting penalty pa to the moving

penalty pt can have a large impact on the resulting prototypes.

In general, the prototype contains a point t if an aftershock is present near time t in a

fraction of at least pa/(pa + pd) of the mainshocks in the dataset. Indeed, if a given point

pattern has no aftershock in the interval (t− pa/pt, t + pa/pt) after the mainshock, then the

occurrence of a point in the prototype at time t results in an increase by an amount pa in

the distance from this point pattern to the prototype. On the other hand, for each sequence

with an aftershock near time t after the mainshock, the lack of a point near time t in the

prototype causes the distance from the point pattern to the prototype to increase by the

amount pd. The prototype will contain a point at t if it is more economical to do so; ignoring

moving penalties for the moment this means if (n− nt)pa ≤ ntpd, where nt is the number of

sequences with an aftershock near time t after the mainshock. It follows that the prototype
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will contain only those points where the fraction (nt/n) of point patterns in the dataset that

contain nearby points is at least pa/(pa + pd).

The fact above can be helpful in determining appropriate values of pa and pd. If pa = pd,

then the above ratio is 1/2, but it may be of interest to include points in the prototype

even though nearby points may occur in less than half the point patterns in the dataset. If

one desires that the prototype Y should represent all aftershocks occurring in at least some

proportion p of the aftershock sequences in the dataset, then one may set the ratio of pa

to pd to p/(1 − p). The prototype may still be defined as before, i.e. as the point pattern

Y minimizing the sum
∑
i

d(Xi, Y ); the fact that the function d is no longer symmetric and

thus not a proper distance function is immaterial.

Alternatively, if a symmetric distance function is desired, then the prototype can contain

no more points than the median number of points in the collection. If one seeks a prototype

that is typical in terms of its length, then the moving penalties must be chosen to be miniscule

in order to ensure that the prototype’s length is close or equal to the median length of the

point patterns.

In addition to the determination of prototypes, the (possibly non-symmetric) distance

function d can also be used for identification of outliers or clusters. We propose classifying

certain individual earthquake sequences as outliers if their distance from the prototype is

unusually large. Further, subgroups of earthquake sequences can be classified into clusters

based on the principle of minimizing the total distance from the earthquake sequences to

their respective cluster prototypes. Note that for determining clusters and distances to the

prototype, tiny moving penalties are no longer required and in fact comparably-sized adding
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and moving penalties are preferable; these issues are discussed further in Tranbarger and

Schoenberg (2004).

4 Results.

4.1 Prototypes of the Harvard Aftershock data

Figure 3 shows the times of events in the prototype for the dataset of aftershock times

described in Section 2. One may interpret the prototype in Fig. 3 roughly as representing

the times of the collection of aftershocks occurring in the majority of aftershock sequences.

For the dataset considered, the times since the mainshock were recorded on a logarithmic

scale, as they are shown in Fig. 1. The distance function thus assigns more weight to a move

of one hour for a point occurring near the time of the mainshock than for a point occurring

long after its mainshock. As noted in the previous Section, only the relative values of the

penalty parameters matter in determining the prototype, so hereafter we fix the adding

penalty pa to unity. The prototype shown in Fig. 3 was made using a symmetric distance

function (pa = pd = 1) and a small moving penalty pt of 1/15. Note that the prototype has

five points, which is equivalent to the median number of aftershocks in the Harvard dataset.

The prototype in Figure 3 may be said to represent a typical aftershock sequence in this

dataset.

Figure 4 shows a histogram of the distances from each of the point patterns to the

prototype in Fig. 3, using moving penalty pt, adding penalty pa, and deleting penalty pd all

equal to unity. One sees that there are three outliers with abnormally large distances to
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the prototype of over 10, while by contrast, most of the other aftershock sequences have a

distance to the prototype of 9 or less. Collectively the mean distance is 5.7 and the standard

deviation is approximately 2.4.

Figure 5 shows the five aftershock sequences closest to the prototype, in terms of the

spike time distance described in Section 3, with all penalties set to unity. Several of the

point patterns are strikingly similar to the prototype. Interestingly, two of the five closest

to the prototype lie in the Santa Cruz Islands. Figure 6 shows the five outlier sequences, i.e.

those with greatest distance from the prototype, again with unit penalties. Not surprisingly,

these include sequences containing many large aftershocks, such as the New Ireland 2000 and

Kermadec Island 1986 aftershock sequences. These are the only two point patterns whose

distances from the prototype are greater than 12, and these two aftershock sequences are

highly atypical in the number and configuration of the sizeable aftershocks they contain.

As noted in Section 3, the distance function used to define a prototype may contain

penalties not only for aligning the times of points, but also for aligning their magnitudes and

spatial distances from their corresponding mainshocks. Using moving penalties for log-time-

since-mainshock, spatial distance from mainshock, and magnitude relative to mainshock

magnitude, one obtains a time-space-magnitude prototype for the 49 aftershock sequences;

this three-dimensional prototype is depicted in Figure 7. Of note is the prototype’s relatively

large aftershock around time 77 days after the mainshock. Among the other four aftershocks,

there is a slight, gradual decline in the relative moment magnitudes of the aftershocks as the

temporal and spatial distances from the mainshock increase.

There is no guarantee that the times of the aftershocks in the one-dimensional prototype
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of Figure 3 will be identical to those of the three-dimensional prototype in Figure 7. Indeed,

the two sets of times are not equivalent, though the differences are far from dramatic.

4.2 Division of earthquake sequences into clusters

Given a distance function such as the spike time distance with appropriate penalty parame-

ters, one may subdivide the earthquake sequences into clusters, so that within each cluster,

each point pattern is optimally close to the prototype of its cluster. That is, one may divide

the point patterns into k clusters so that the sum of the distances from the sequences to

their cluster prototypes is minimized.

Obviously, when each aftershock sequence is its own cluster this sum is zero, so a par-

simonious choice of k is required. Of the 49 aftershock sequences in the Harvard catalog,

three contained no aftershocks at all. Figure 8 shows the division of the other 46 aftershock

sequences in the Harvard catalog into k = 2 clusters. A monothetic agglomerative method

(see Späth, 1980) is well suited to the task of dividing the point patterns into groups, as such

a method is able to assign point patterns into clusters without computationally intensive in-

termediate calculations of three-dimensional prototypes. The assignment shown in Figure 8

proceeded through each of the 46 point patterns in order from most aftershock activity to

least. At each step, the aftershock sequence of interest was paired with the aftershock se-

quence minimizing the standardized sum of spike time distances along the time, magnitude,

and distance axes. Once two point patterns were matched in this way, they were replaced in

the algorithm with their cluster’s prototype. This allows any future point pattern of interest

to be assigned to a cluster based on its distance to the prototype of a previously formed



Schoenberg and Tranbarger. Prototype point patterns. 14

cluster, or to an individual aftershock sequence that has not been assigned to a cluster. At

each stage, the number of clusters present is reduced by one until all sequences are assigned

to one of only two clusters.

As can be seen from Figure 8, there is some geographic clustering present in the results

of clustering the aftershock sequences into two groups based on prototypes of aftershock

activity. For instance, most (though not all) of the mainshocks in the Southern Indonesian

seismic zone have aftershocks belonging to cluster one (circles), whereas the earthquakes in

Northern Indonesia and those along the South American plate all tend to fall in cluster two

(asterisks). The vast majority of the shallow mainshocks in the Harvard catalog occur in

subduction zones along major plate boundaries, but several of the exceptions (e.g. India,

Turkey) have aftershock activity placing them in cluster one.

One of the main differences between the aftershock sequences in cluster one (circles)

and those in cluster two (asterisks) seems to be that the distances from the mainshock

are much more evenly dispersed between 0 and 100 km from the mainshock source for the

aftershocks in cluster one, whereas in cluster two the vast majority of the aftershocks occur

between 40 and 80 km from the mainshock. Another key distinction is that cluster two

tends to have mainshocks with more aftershock activity observed compared with cluster

one. Indeed, the difference between the aftershock activities in different regions may be due

to differing geological characteristics, or instead may simply be due to differential detection

rates of aftershocks in different regions. While the Harvard catalog is perhaps the world’s

best dataset in terms of completeness, it may nevertheless have serious missing data issues,

particularly in regions far from major subduction zones (Kagan, 2003).
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4.3 Prototype of the ETAS model

In addition to providing useful summaries of aftershock datasets, prototypes can also be

used to summarize models for aftershock sequences. For instance, one may obtain a typical

realization of the ETAS model of Ogata (1998) by simulating the model many times, and

determining the prototype of these simulated ETAS processes.

Figure 9 shows the prototype applied to data simulated according to the ETAS model,

but with mainshocks identical to those in our subset of the Harvard catalog, described in

Section 2. That is, for each of the 49 mainshocks, we simulated its aftershocks according to

the ETAS model of Ogata (1998), using the fitted parameters in Ogata (1998). The ETAS

model specifies the conditional intensity (see Daley and Vere-Jones, 2003) of points around

time t and location x:

λ(t,x) = µ(x) +

t∫
0

∫
x

m1∫
m0

g(t− t′, ||x− x′||, m′)dN(m′,x′, t′)

= µ(x, y) +
∑

i:ti<t

g(t− ti, ||x− xi||, mi), (4)

with the aftershock triggering density g specified as

g(t, x, y,m) =
K0exp{α(m−m0)}
(t + c)p(x2 + y2 + d)q

, (5)

in agreement with the modified Omori law (1). The parameters used in the simulations are

those fitted by Ogata (1998) to Central and Western Honshu Island earthquakes of magnitude

at least 5.5 (µ = 6.69 × 10−5, κ = 3.42 × 10−4, c = 3.19 × 10−3, α = 0.955, p = 0.944,

d = 9.55 × 10−3, q = 1.506). As with the Harvard and W. Honshu datasets, we limit

our attention to simulated aftershocks of magnitude at least 5.5. The ETAS model does not

specify the magnitude distribution of the simulated events, as these magnitudes are ordinarily
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assumed to be separable with respect to the rest of the process (Ogata, 1998), though

this assumption is invalidated in Schoenberg (2003). Here, we simply take the simulated

aftershock magnitudes to be sampled with replacement from the empirical distribution of

aftershock magnitudes from our subsample of the Harvard dataset described in Section 2.

The ETAS model predicts somewhat fewer aftershocks, on average, than exist in the Har-

vard catalog, and this difference is easily detected in the comparison of the ETAS prototype

in Figure 9, which has only three points, with the prototype of the Harvard aftershocks in

Figure 7, which has five points. The difference between the simulated ETAS processes and

the observed Harvard aftershocks could well be due to particularities in the Central and

Western Honshu aftershocks used to determine the fitted parameters. Indeed, the simulated

ETAS processes contained a median of just three points, and the spatial distances of the

points in the simulated ETAS prototype from the mainshock are much smaller than the cor-

responding distances in the prototype for the Harvard catalog. Note that in the simulated

ETAS catalog, the slight increase in the magnitudes of the points with time since mainshock

is entirely coincidental, since the magnitudes of the simulated points are simply sampled

at random from the empirical distribution of aftershock magnitudes. Indeed, we generated

other iterations of the simulated ETAS catalog, and in subsequent simulations such a trend

did not persist, though the other features of the prototype were the same, including the

small number of points.

It is important to note that the simulated ETAS catalog was generated with the parame-

ters specified by Ogata (1998), who estimated these parameters by fitting them by maximum

likelihood to the Honshu catalog. The differences between the prototype of the simulated
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ETAS catalog and that of the Harvard catalog are most likely attributable to the some-

what atypical features of the Honshu dataset, such as the unusually low occurrance rate of

aftershocks, and the fact that these Honshu aftershocks are distributed abnormally tightly,

spatially, around the mainshocks.

5 Discussion.

In addressing the motivating question given in Section 1, the prototype in Figure 7 may be

described as a typical aftershock sequence for a shallow mainshock of magnitude 7.5 to 8.0.

That is, among such mainshocks with no major precursory events of similar magnitude within

the previous few years, a typical aftershock sequence contains five aftershocks of magnitude

at least 5.5, and these aftershocks are roughly evenly distributed in log-time between 0.113

days and 2.0 years after the mainshock.

However, the selection of this prototype is to some extent dependent upon the rather

arbitrary choice of penalties in the multi-dimensional version of the spike time distance

function. If the ratios of the moving penalties are changed, then the space-time-magnitude

locations of the points in the prototype will change somewhat, and if the penalties are

increased sufficiently relative to the adding/deleting penalty pa, then the prototype will

contain fewer points than the median point pattern length of five. It should also be noted

that the three-dimensional prototypes we constructed were computed based on the step-wise

approximation technique described in Tranbarger and Schoenberg (2004), and hence may

not be exact.

In addition, the Harvard catalog has several problems, including time and location errors,
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completion problems, and other issues, and although these are relatively minor compared to

other earthquake catalogs, they are far from negligible (Dziewonski et al., 2000; Kagan, 2003).

In particular, in the period immediately following a mainshock [0 to 0.133 days according

to Kagan (2003)], it is extremely difficult for seismometers to distinguish between small

aftershocks and repeated shaking due to the seismic waves emitted from the mainshock.

We have omitted such seismicity entirely from our analysis, but one may argue that we

have neglected important aftershock activity from our prototypes as a result. In particular,

differential detection rates in different seismic zones could have a strong influence on the

results of grouping the aftershock sequences into clusters. In addition, in this analysis we have

merged aftershock sequences from different fault types in determining the overall prototype

for the Harvard catalog. If aftershock sequences in these different zones are so disparate that

the aftershock sequences are essentially incomparable, then the meaning and interpretability

of the prototype may be questioned, and further study may be necessary to determine the

prototypes for each relevant grouping of seismic zones.

We have shown how prototypes may be used as summaries not only of point pattern

datasets but of models, and have included as an illustration a characterization of the proto-

type of the ETAS model, which may be compared to the prototype of the Harvard dataset.

As noted in the previous Section, however, differences between the two prototypes may be

due to unusual aspects of the Honshu dataset to which the parameters in the ETAS model

were fitted. The magnitude cutoffs used by Ogata (1998) are essentially the same as those

used in our analysis of the Harvard catalog. However, in both cases it should be noted

that the lower magnitude cutoff is a critical component of the analysis. If aftershocks below
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moment magnitude 5.5 are included, the resulting simulated ETAS processes and Harvard

aftershock sequences will have substantially more events, as will the resulting prototypes of

the two catalogs.

The spike time distance attributed to Victor and Purpura (1997) is only one of many

possible distance metrics for point patterns, and indeed several others are proposed in Victor

and Purpura (1997). In introducing the notion of a prototype, we have focused on the spike

time distance here because of its simplicity and interpretability. The investigation of results

using other types of distance functions and the robustness of these results to choice of distance

function are important subjects for future research.

6 Appendix.

Suppose X and Y are two temporal point patterns on [0, T ] such that X contains points

x1, . . . , xm and Y contains points y1, . . . , yn, with m ≤ n. Viewing X(t) = max{i : xi ≤ t}

and Y (t) = max{i : yi ≤ t} as functions, we may investigate conventional distances between

the two point patterns as in the following result.

Theorem 1.

T∫
0

|X(t)− Y (t)|dt =
m∑

i=1

|xi − yi|+
n∑

i=m+1

(T − yi). (6)

Proof.

Let ai = max{xi, yi}, for i = 1, . . . ,m. Let ai = T for i = m+1, m+2, . . . , n, and a0 = 0.

Similarly let bi = min{xi, yi}, for i = 1, . . . ,m. Let bi = yi for i = m + 1, m + 2, . . . , n,

and b0 = 0.
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Let ci,j = yj if ai = xi, and ci,j = xj if ai = yi. Thus ci,i = bi, for i = 1, . . . ,m. (In the

case where xi = yi = ai, the value of ci,j is irrelevant.)

With this notation, we may write

T∫
0

|X(t)− Y (t)|dt =
m∑

i=0

ai+1∫
ai

|X(t)− Y (t)|dt

=
n∑

i=1

∑
j≥i:ci,j≤ai

(ai −max{ci,j, ai−1})

=
m∑

i=1

[(ai − ai−1) + (ai−1 − ai−2) + . . . + (ai−k − ci,i)] +
n∑

i=m+1

(T − ci,i).

=
m∑

i=1

(ai − bi) +
n∑

i=m+1

(T − bi). 2

Recall that, assuming the addition penalty pa is equivalent to the penalty for deletion,

the spike time distance between X and Y is pa(n + m − 2J) +
J∑

j=1
pt|x(j) − y(j)|, where

{x(1), . . . , x(J)} and {y(1), . . . , y(J)} are the sorted points of X and Y , respectively, that are not

added or deleted (Tranbarger and Schoenberg, 2004). Therefore an immediate consequence

of the Theorem above is that if the two sequences X and Y have the same length, i.e. if

m = n, and if pa = pd = ∞ so that no points may be added or deleted, then the integrated

absolute difference between the two processes X and Y is proportional to the total spike

time distance between the two point patterns, and the proportionality constant is simply

the moving penalty, pt. Hence if pt is very small compared to the addition/deletion penalty, so

that addition and deletion are essentially not permitted, then the total distance between two

point patterns of equal length is simply pt times the integrated absolute difference between

the two processes.
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Figure 1: Aftershock times.
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Figure 2: Fit of modified Omori law to global aftershock data.
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Figure 5: Five aftershock sequences closest to prototype.
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Figure 6: Five aftershock sequences furthest from prototype.



Schoenberg and Tranbarger. Prototype point patterns. 30

0
2
0

4
0

6
0

8
0

1
0
0

time since mainshock (days)

d
is

ta
n
c
e
 f
ro

m
 m

a
in

s
h
o
c
k
 (

k
m

)

0.5 5 50 500

| | | |

Figure 7: Prototype time-space-magnitude aftershock sequence. The circle sizes indicate the

relative size of the aftershock: the relative values of mw for the prototype points (listed in

order of time since mainshock) are 76.5%, 76.0%, 76.0%, 78.5%, and 74.4% of the main-

shock magnitude. The adding/deleting penalty used is 1.0, and the moving penalties are

0.01, 0.0003, and 0.3, respectively, for the log-time-since-mainshock, spatial distance from

mainshock, and moment magnitude relative to that of the mainshock. These were chosen so

that maximal moves in each coordinate are given roughly equivalent weight in the distance

function.



Schoenberg and Tranbarger. Prototype point patterns. 31

Figure 8: Clusters of mainshocks, based on distances to temporal, spatial, and magnitude

prototypes.
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Figure 9: Prototype of simulated ETAS processes, with mainshocks identical to those in the

Harvard dataset. Parameters used are those fitted to data in Ogata (1998), and aftershock

magnitudes are sampled from the Harvard aftershock data. The adding/deleting and moving

penalties in the spike time distance function are the same as those used in the construction of

the 3-dimensional prototype for the Harvard catalog (pt = 0.01, ps = 0.0003, and pm = 0.3).




