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ABSTRACT
Machine learning force field (ML-FF) has emerged as a potential promising approach to simulate various material phenomena for large
systems with ab initio accuracy. However, most ML-FFs have been used to study the phenomena relatively close to the equilibrium ground
states. In this work, we have studied a far from equilibrium system of liquid to crystal Si growth using ML-FF. We found that our ML-FF
based on ab initio decomposed atomic energy can reproduce all the aspects of ab initio simulated growth, from local energy fluctuations to
transition temperatures, to diffusion constant, and growth rates. We have also compared the growth simulation with the Stillinger–Weber
classical force field and found significant differences. A procedure is also provided to correct a systematic fitting bias in the ML-FF training
process, which exists in all training models, otherwise critical results like transition temperature will be wrong.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011163., s

INTRODUCTION

Machine learning force field (ML-FF) trained based on ab initio
quantum mechanics calculations has become a very active field
of research in recent years. It has potential to replace the classi-
cal empirical force field to simulate large scale material problems
with accuracy similar to that of ab initio calculations, as shown in
many types of developed ML-FFs, including water,1 TiO2,2 ZnO,3

Li3PO4,4 compounds,5 binary, ternary alloys,6 and metal–organic
frameworks.7 So far, ML-FFs have mostly been used to study the
phenomena relatively close to the equilibrium ground states, e.g., the
phonon spectrum, the anharmonic properties, and the solid phase
transition with relatively small distortions. One important beyond
equilibrium phenomenon is the crystal growth, e.g., from liquid
phase. During the growth, the local configuration {R} can change
dramatically, especially for covalent bonding systems like Si. It thus
provides a stringent test for ML-FF.

Not only melt Si growth has tremendous economic significance,
the process involving covalent bond breaking and formation, and
the phenomenon of step flow growth is also of great physical inter-
est. In the literature, Si crystal growth has been extensively studied

using empirical potentials like the Stillinger–Weber (SW) potential8

and Tersoff potential.9 While such potential fits well some macro-
scopic properties such as the phase transition temperature Tc, they
could also misrepresent the microscopic bond forming and breaking
processes since there is no direct experimental data to fit with. On
the other hand, it is too expensive to use density functional theory
(DFT) to simulate the crystal growth directly for large systems. Si is
one of the most studied systems in terms of ML-FF development.10,11

For example, Csányi et al. has developed a rather comprehensive
Si GAP potential for different ground state phases including crys-
tal and amorphous structures.12 Our previous single atom neural
network potential (SANNP) is also an ML-FF for amorphous Si.13

However, such ML-FF has not been used for crystal growth simula-
tions, and such simulations pose unique challenges. For example, we
found that it is essential to correct a systematic bias in almost all the
training models, otherwise critical results like transition temperature
will be wrong.

To study extended systems, most ML-FFs assume that the total
energy of the whole system is a sum of the local atomic energy Ei
of each atom “i,” which depends only on the local atomic configura-
tion {R} within a cut-off distance Rc surrounding this atom “i.” To
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build a ML-FF model, in most cases, the first step is to extract a set
of features from the atomic configuration {R}. Such features need to
be rotational and permutation invariant and also to be continuous
if an atom coming into or going out of the Rc.10 There are differ-
ent ways to extract such features or distant kernels, including the
atom-centered symmetry functions (ACSF),14 the smooth-overlap
of atomic positions (SOAP),15 the bispectrum of atomic neighbor
density functions,16 and the contracted moment tensors.17 After the
features are extracted, a ML approach is used to fit the ab initio cal-
culated data point. Different ML models can be used, such as all
connected dense neural network (DNN),14 Gaussian process regres-
sion,15 and linear regression.16,17 Theoretically, different features’ set
and ML models can be mutually combined, forming a large number
of models.

In a previous work,13 we have introduced a single atom neu-
ral network potential (SANNP), with a new set of features based on
the localized function. One advantage of this II-III-body feature set
is the easiness to systematically increase the number of features by
increasing the number of localized functions in the pair and triangle
feature terms. We have used a DNN as our ML model. What dis-
tinguishes the SANNP from all the other models is that we directly
fitted the density functional theory (DFT) atomic energy Ei from our
ab initio calculations.18 This is achieved by representing the DFT
total energy as a spatial integration of a positive energy density, fol-
lowed by a Hirshfeld partitioning using isolated atom charges to
assign Ei for each atom. For the positive energy density, the kinetic
energy is written as an integral of 1

2 ∑i ∣∇ψi(r)∣2, where ψi is the
Kohn-Sham wave function, and the electrostatic energy is written
as a spatial sum of the square of the electric field. More details are
given in Ref. 18. The availability of Ei for each atom can significantly
simplify the ML fitting process, and it requires much less ab initio
calculations. Although atomic forces are also used in the fitting of
most ML-FF’s (including this work), but as it has been pointed out
in a recent study,19 relying only on the atomic forces and the total
energy of the supercell can cause major transferability issues, espe-
cially for heterogeneous systems where different parts of the system
can be allocated erroneous amounts of the total energy. This issue is
particularly relevant for the current study, where crystal Si and liq-
uid Si coexist in a supercell. Force is a derivative of the energy, not
the energy itself. Inferring atomic energy from its derivative is obvi-
ously not as direct as using the atomic energy itself. For phenomena
like phase transitions, the correct energy assignment is extremely
important.

Obtaining the relevant and sufficient DFT training data, espe-
cially for problems far from equilibrium, is not trivial. In general,
there are two strategies. One is to use intelligent ways to predict
the approximate trajectories of the problems to be studied, and then
to generate DFT data along those trajectories.20 Another way is to
generate the data in an iterative fashion. For example, to check the
validity of the trained force field during its molecular dynamics
(MD) simulation either by checking the variation of multiple mod-
els21,22 or by checking the variance in a Gaussian progress regression
model. Thus, either the needed data can be generated again in itera-
tions (active learning) or can be generated on-the-fly.23 All these are
good research topics. In the current study, we have adopted a simple
approach, to prepare sufficient ab initio data covering the physi-
cal environment by simulating sufficient numbers of temperatures
for solid Si. As we will show later, this approach provides enough

data to generate a good ML-FF for our problem. Ab initio molecular
dynamics (MD) for Si supercell is carried out by using PWmat pack-
age.24,25 We found that it is essential to correct a systematic bias in
almost all the training models, otherwise critical results like tran-
sition temperature will be wrong. Our resulting ML-FF is able to
reproduce all the aspects of ab initio simulated growth, from local
energy fluctuations to transition temperatures, to diffusion constant,
and growth rates. We have also compared the growth simulation
with the Stillinger–Weber classical force field. Our work has demon-
strated for the first time that crystal growth can be simulated using
ML-FF.

RESULTS AND DISCUSSION

In the current study, we have carried out ab initio NPT molecu-
lar dynamics (MD) calculations for Si at 500 K, 600 K, 700 K, 800 K,
850 K, 900 K, 950 K, 1 000 K, and 2000 K with 204 atom supercell
including solid, liquid, and solid–liquid coexist systems. For each
MD step, we have 204 atomic energies, so the dataset is large. In
total, we have about 300 000 cases (each case is defined as one atomic
energy, three forces, with its corresponding local atomic configura-
tion). A 300 000 case set for the individual atoms only corresponds
to about 3000 MD atomic configurations (more details in the Meth-
ods section). This is indeed rather small. As far as we know, some of
the traditional force field fitting involved hundreds of thousands of
MD steps. Figure S1 shows the energy distribution of Ei for different
temperatures within a range of 2 eV.

A three layer DNN model (shown in Fig. 1) is used, with the
number of nodes at these layers being 252, 80, and 40 respectively.
The DNN training is done with the tensor flow package using the
stochastic derivative and steepest decent optimization approach. A
Rc of 6.2 A is used to cast out a local atomic environment for each
atom, and 36 pair features, 216 three particle features are generated.
The formalism of piecewise cosine functions to construct features
(see details in the supplementary material) is almost as same as in
Ref. 13, except formula (6),

φ(k)α (Rml) =

⎧
⎪⎪
⎨
⎪⎪
⎩

[cos( Rml−Rk
α

hkα
π) + 1]/2,∣Rml − Rk

α∣ < hk
0, Otherwise,

where

Rk
α = 10

[logRinner+(α−1) log Router−log Rinner
Mk−1 ]

,

hkα = 2(Rk
α − R

k
α−1).

The so trained atomic energy compared with the original DFT
result is shown in Fig. 2(a) (note that the same trend is observed
for a validation dataset). The trained MAE of Ei is about 40 meV.
It should be mentioned that what we reported is for each individ-
ual atom energy Ei. If there is no systematic error (e.g., after the bias
correction as following), then if one uses the total energy error to
calculate the error per atom (like most literature in this field), then
the MAE will be 40 meV/sqrt(N_atom) ∼ =3 meV, as discussed in
our previous publication.13 This 3 meV error per atom is on par
with all the other force fields in this field,10–12 especially consider-
ing that our data contain a larger temperature range and different
phases.
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FIG. 1. (a) Schematic representation of
the neural network model used in fit-
ting Ei. (b) Piecewise cosine functions as
basis functions to construct the symme-
try functions.

However, the Ei(DNN)-Ei(DFT) as shown in Fig. 2(c) reveals a
systematic error. The Ei(DNN) at the higher DFT energy ends tends
to be too small, while the points at the lower DFT energy end tend
to be too large. As far as we know, this problem has not been dis-
cussed in previous literature perhaps because no individual atomic
energy Ei was used. Surprisingly, this turns out to be a common
feature of most of the fitting procedures, as long as the final result
will be linearly scaled by one fitting parameter (e.g., the last step is
a linear fitting). The last part of the fitting procedure in the linear
regression, Kernel Ridge regression, or DNN can all be expressed as
a minimization of the loss function,

T = ∑i[EDFT(i) −∑jWjfj(i)]2. (1)

Here, index “i” denotes different cases (the atoms), while fj(i) is
either the feature itself in the linear regression or the reference ker-
nel values in the Kernel Ridge regression or the output node value
in the last layer of a DNN model (where Wj is the weight to connect
the last layer output and the final energy node). Although, in DNN,
the fj(i) will be optimized by other parameters, but independently,
the T will also be optimized by the parameter Wj. Thus, taking the
minimization condition ∂T/∂Wj = 0, we can yield the following

results (see the supplementary material for details):

∑i ΔE(i)EDFT(i) = −∑i ΔE(i)
2. (2)

Here, ΔE(i) = Epred(i) − EDFT(i) is the error of the prediction,
and Epred(i) = ∑jWjfj(i). Since the right hand side of Eq. (2) is
always negative, this means the statistical average of ∆E(i) at dif-
ferent EDFT(i) energy range cannot be zero at all energy range, and
its average will be negative at larger EDFT(i) values, and positive at
smaller EDFT(i) regions, as shown in Figs. 2(a) and 2(c). This effect
is further amplified when the total energy of a system is obtained by
the summation of the atomic energy Esys = ∑i Epred(i). As shown
in the supplementary material, for Esys(j) and ΔEsys(j), we will have
∑j ΔEsys(j)EDFT,sys(j) = −Na∑j ΔEsys(j)

2, where Na is the number of
atoms. Note that if the total energy of the system is directly used in
the fitting, like in most of the other methods, then Eq. (2) will hold
with ΔE being the total energy ΔEsys; thus, the Na will not be there.
Thus, using atomic energy fitting exacerbates this bias problem for
the total energy of a system. This is demonstrated in Fig. 3(a), where
a 2 eV bias exists for the total energy of a 204 atom system. In this fit-
ting, the MAE for each atomic energy is 40 meV. Note ΔEsys2 equals
∑i ΔE(i)

2
= 204 × 0.042 eV2, thus the right hand side of the above
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FIG. 2. The trained (without bias) atomic
energies (a) compared with the original
DFT result and (c) Ei(DNN)-Ei(DFT). The
trained (with bias) atomic energies (b)
compared with the original DFT result
and (d) Ei(DNN)-Ei(DFT). The DNN pre-
dicted forces (e) and their errors (f).

equation is −2042
× 0.042 = −66 eV2 (the extra 204 comes from

the Na factor shown above). According to Fig. 3(a), when EDFT ,sys(j)
changes 40 eV, we have a bias of about −2 eV; so, the left hand side
of the above equation equals to −2 × 40 = −80 eV2, roughly equal
to the right hand side, confirming our formula. We thus conclude
that this bias problem is a bigger problem in atomic energy fitting,
than the conventional total energy fitting, which has to be corrected
here.

To overcome such systematic bias, it is necessary to introduce a
parameter α in the loss function

T = ∑i[(1 + α)EDFT(i) −∑jWjfj(i)]2. (3)

One can first set an α (e.g., 0 at the beginning) to
carry out a fitting, and then from the fitted result, recalculate
α = −∑i E(i)EDFT(i)/∑i ∣EDFT(i)∣

2; then, add this ∆α on top of the
original α, and repeat this until ∆α = 0. Usually one or two itera-
tion will be enough to yield∑i ΔE(i)EDFT(i) = 0. The bias corrected
results are shown in Figs. 2(b) and 2(d), where α = 0.1 is obtained.

Note that, since the average atomic force is zero, there is no such
systematic error in force. The predicted forces and their errors are
shown in Figs. 2(e) and 2(f), and the MAE is about 0.1 eV/A.

It should be noted that this bias correction is not the same issue
of the regularization in the linear fitting.26 The regularization in lin-
ear fitting is to avoid over fitting when the variables f j(i) in Eq. (1)
are linearly dependent, or the number of independent sample size i
is too small. In our case, due to the large number of samples used in
Eq. (1), we do not have an over fitting problem. What we have is a
systematic bias problem.

This systematic error for Epot = ∑in cell E(i) of unit cell is
shown more dramatically in Figs. 3(a) and 3(b), where the low tem-
perature DNN energy is too large. This induces a systematic bias
for different phases in Fig. 3(a). Since the higher energy points are
at the liquid phase, an under estimation of their energies will lead
to a lower transition temperature Tc. The bias corrected results in
Fig. 3(b) can follow the DFT Epot values closely. We then proceeded
by simulating the crystal phase at 950 K and the liquid phase at
1500 K using both the SANNP and the DFT method for a 256 atom
supercell. Their resulting pair distribution functions are shown in
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FIG. 3. Comparison of NN and DFT
total energies, (a) without bias and (b)
with bias. The x-axis corresponds to the
images from different temperature MD
simulations of crystal growth. Pair distri-
bution functions of (c) crystal phase at
950 K and (d) liquid phase at 1500 K; the
inset of (b) is MSD of the liquid phase at
1500 K.

Figs. 3(c) and 3(d), respectively. One can see that there is practi-
cally no difference between the SANNP result and DFT results. In
the inset of Fig. 3(d), we also show the Si diffusion mean square dis-
placement as a function of time. A linear relationship is found, and
the curves for SANNP and DFT are also very close, indicating the
same diffusion constants.

For the purpose of studying crystal growth, it is crucial to
have accurate modeling of the atomic energies associated with
liquid/solid interfaces. Since it is difficult to pinpoint individ-
ual energy barrier in such a complex situation, the energy pro-
file changing with time can be used as a good test for different
models. We have constructed a 204 atom supercell, with a crys-
tal Si slab exposing two (111) surfaces. Each (111) surface has
a step, facilitating a step-flow growth kinetics.15 We have chosen
three Si atoms [19th, 114th, and 137th atom in Fig. 4(a)], which
represent solid, liquid, and transition from liquid to solid situa-
tions. We first carry out a DFT MD simulation. We then calcu-
late the atomic energies surrounding this atom defined as Eloc(t)
= ∑i Ei(t) exp(−|Ri(t)−Ri0(t)∣2/a2

)/∑i exp(−|Ri(t)−Ri0(t)∣2/a2
),

where Ei(t) is the atomic energy either calculated from DFT or from
the model prediction, and i0 is the center atom index (the 19th,
114th, and 137th atoms). We have chosen a = 4.2 A to include the
first nearest neighbor in the above summation. The DFT atomic tra-
jectory R(t) is used to evaluate the local energy for different models.
For clarity, a 200 fs width Gaussian convolution is first applied to
Eloc(t) to yield a smoother local energy curve E’loc(t), which is shown
in Figs. 4(b) and 4(c) (the original energy curves without Gaussian
broadening are shown in Fig. S2). In both Fig. 4(b) and Fig. S2,
the SANNP result follows the DFT values closely, with almost no

difference between each other. On the other hand, the results of SW
potential show significant difference from the DFT results. Such a
different energy profile could lead to different microscopic behavior,
barrier height, and growth mechanism.

To check the validity of the ML-FF, another more challenging
way is to carry out a ML-FF MD, and then check the DFT result
on the ML-FF trajectory. This is mostly to check whether the ML-
FF MD remains in the region of its original fitting validity. The test
result along a segment of the ML_FF NPT MD trajectory with 2000
steps is shown in Fig. S3. We can see that the DFT agrees with the
ML-FF results well, indicating that the ML-FF MD is good.

To evaluate the growth rate, we first need to calculate the solid
to liquid transition temperature Tc. While the experimental transi-
tion temperature is at 1600 K, it is well known that the local den-
sity approximation (LDA) and generalized gradient approximation
(GGA) predict much lower Tc.27–29 The Tc can be derived from
Gibbs free energy calculation,27,29 or can be simulated directly from
a solid/liquid coexistent equilibrium system using an NVE ensem-
ble.30 We have first used a 204 atom supercell to carry out such
NVE calculations. The resulting temperature variation with time
is shown in Figs. 5(a) and 5(b) for DFT and SANNP, respectively.
The equilibrium system have both crystal Si and liquid Si and the
pressure is close to zero. Both DFT and SANNP yield a Tc around
1090 K ± 20 K. It is surprising that this Tc value is lower than
the previously calculated Si crystal/liquid transition temperature
using LDA.27 This value is about 1350 K, estimated based on crystal
and liquid free energy calculations.27 We note that the solid/liquid
coexistence calculation is a simpler procedure compared to free
energy calculations (e.g., using thermodynamic integration).27 One
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FIG. 4. (a) Supercell structure of a crystal
Si slab with (111) surfaces, local energy
Eloc(t) of DFT vs (b) NN and (c) SW
potential.

possible cause is the k-points used. In our simulation, we have used
Gamma point for both liquid and solid phases. This might lead to
relatively under estimation of the liquid phase energy, which leads
to smaller transition temperature. Future investigations are needed
to clarify this point. However, here, we are more interested in know-
ing whether the ML-FF can reproduce the DFT results, regardless
of the k-points used. So, the possible small error caused by the
use of Gamma point should not affect our evaluation for the qual-
ity of the ML-FF model. We have used the same procedure for
DFT and SANNP methods, which yields the same result, and the
so obtained transition temperature can be readily used in crystal
growth simulations since the same structure setup is used.

Furthermore, we found that the Tc sensitively depends on the
super cell size (see the supplementary material for details) and k-
point sampling. When the calculation is repeated with a 1088 atom
cell, the Tc further drops to about 930 K ± 10 K [shown in Fig. 5(c)].
This indicates that the small cell size has imposed a periodic con-
straint on the liquid phase (before the long range Si–Si order has
fully subsided), which has increased the liquid phase energy (hence
higher Tc).

We note that there are many previous theoretical work for
Si solid–liquid transition temperature Tc.27–29,31,32 For example,
recently, Jinnouchi et al.31 have used on-the-fly machine learning
force field to carry out a long DFT accuracy MD to calculate the

FIG. 5. Temperature variation with time for (a) DFT, (b) DNN simulations of 204 atoms/cell, and (c) DNN simulations of 1088 atoms/cell.
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FIG. 6. The growth of Z length with time using both the DFT and SANPP models.

free energy difference between the solid and liquid phase through a
thermodynamic perturbation theory integration scheme. Their cal-
culated Tc under LDA XC functional is 1207 K, about 100 K higher
than our result of the 208 atom supercell. Their result is based on a
128 atom supercell. Thus, such a Tc difference could be caused by the
supercell size difference besides the difference in k-point sampling.
In the literature, different groups also reported different Tc with a
scatter of about 100 K.27–29,31,32 Overall, we believe that the use of a
larger supercell with ML-FF like the SANNP is important.

It is worth pointing out that correcting such bias is important,
otherwise, one cannot reproduce the same DFT phase transition
temperature, for the systematic error of Ei. As a simple mathemati-
cal proof provided above, the bias correction is simply a fitting issue
between the DFT data and the fitted data point, so this has nothing
to do with the DFT calculation method and accuracy. A good fit-
ting procedure should regenerate the DFT data points without bias.
We believe this is an important issue the community needs to know,
because the previous studies do not fit heavily to the energy (since
only total energy is used), and previously not many phase transi-
tions are studied using ML-FF. Such systematic bias more apparently
appears in such phase transition studies.

To compare the growth rate at different temperatures between
DFT and SANPP, we have used the 204 atom cell, carried out MD
simulation at constant pressure and temperature (NPT) with T being

700 K, 900 K and 1250 K, and close to zero pressure. Figure 6 shows
the growth with time using both the DFT and SANPP models. Here,
we have used the cell z-direction length Z in the NPT simulation
as an indicator of the amount of crystal Si. For Si, the liquid phase
has a smaller volume; so, an increase of z-direction length means
more crystal Si. We see that the crystal growth curves (700 K and
900 K) for DFT and SANNP are similar, as well as the melting curve
(1250 K).

Finally, we have simulated the growth of a Si crystal using the
large 1088 atom supercell under the SANNP model. Two (111) sur-
faces are exposed, and both have a step on the surface. Fig. S4 shows
its structures during growth. The growth curves for different ΔT = T
− Tc are shown in Fig. 7(a). We have used the extended common
neighbor analysis method33 in Ovito software package34 to classify
each Si atom as belonging to liquid or crystal. Simulations up to
100 ps are executed. We see that the crystal begins to grow when
ΔT is below −50 K. The same supercell setup is simulated with SW
force field, and the results are shown in Fig. 7(b). Although our
current simulation does not have sufficient statistics to provide accu-
rate growth rate vs ΔT dependence, we can see that in both SANNP
and SW models, the growth rate is roughly proportional to ΔT when
|ΔT| is smaller than 200 K. We do note that the trends for NN
and SW are different. At -50 K, the crystal growth in NN is much
(about 4 times) faster than that of SW. While in SW, the growth
rate increases from −50 K to −300 K, while in NN, the maximum
growth rate happens around −150 K, and then the growth decreases
from −150 K to −300 K, possibly due to kinetic hindrance. This
indicates that the balance between kinetics (the diffusion and reac-
tion barrier) and thermodynamics (the Gibbs free energy drive to
form crystals) for NN and SW is different. This also shows why it is
useful to have a more accurate NN potential, especially to represent
the kinetic process more accurately. To give an order of magnitude,
the step growth coefficient defined as β = G/|ΔT| (where G is the
growth rate) is 0.16 m/(sK) for the SANNP result, and 0.09 m/(sK)
for the SW result. The SW result is slightly smaller than the values
reported in Ref. 35. However, as shown in Ref. 35, this rate sensitively
depends on the supercell size, which might explain the difference.
Interestingly, our SANNP growth rate coefficient is about 1/2 larger
than the result of SW. Also interestingly, when ΔT is smaller than
−200 K, the growth rate seems to decrease again. This is probably
a consequence of the competition between the free energy driving

FIG. 7. Growth curve (with error bars) of
number of crystal atoms for different ΔT,
(a) NN, and (b) SW potential.
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force for crystal growth and the Si mobility to overcome the kinetic
barriers.

It is worth noting that, in the above, we have compared
our SANNP simulation with SW simulation, rather than other
machine learning force fields (ML_FF). There are many ML_FFs for
Si.11,12,36,37 However, different ML_FFs have been developed for dif-
ferent purposes, with their own selected training datasets for those
special purposes. We thus believe it is difficult to compare them
directly here. Indeed, one use of ML_FF is to develop it on-the-flight
for a given task at hand, instead of a general purpose force field for
all situations.

In summary, we have shown that SANNP can be used to sim-
ulate the melt Si growth with accuracy and behavior similar to
those of direct DFT simulations. We found that the SANNP can
reproduce DFT pair distribution function, Si diffusion constant,
local atomic energy fluctuation, the transition temperature, and the
growth rates. SANNP results also show significant difference from
the SW results. We have also proposed a way to correct the system-
atic bias error in all the ML-FF trainings. Such a correction is impor-
tant in order to reproduce the DFT results when there is a phase
transition.

METHODS
DFT calculations to get Ei/Fi dataset

All DFT calculations are performed by using the PWmat
package20,21 with SG15 non-conserving pseudo-potential.38 The
exchange-correlation energy is described by local density approxi-
mation (LDA).39,40 The kinetic energy cutoff of electron plane wave
functions is 50 Ryd. The structural relaxations are performed by
using the conjugated gradient method, and the convergence thresh-
old is set to be 10−4 eV in energy and 0.05 eV Å−1 in force. The
Brillouin zone is sampled by only Gamma point for both liquid
and solid phases in the AIMD calculations, since supercells includ-
ing 204 Si atoms are constructed with relative lager (>10 Ang) cell
constants.

The ab initio NPT molecular dynamics (MD) calculations are
carried out for Si at 500 K, 600 K, 700 K, 800 K, 850 K, 900 K, 950 K,
1000 K, and 2000 K with 204 atoms supercell including solid, liquid,
and solid–liquid coexist systems. For the system we calculated, the
atomic energy decomposition step to get Ei takes about 1/3 of the
computational time. These 300 000 DFT Ei and Fi cases are obtained
from above 3000 NPT molecular dynamics snapshots (each snapshot
is taken every 10 or 20 MD steps and also called a frame). These have
1000 frames from 800 K to 2000 K including all 204 atoms in the cell
for Ei and Fi training, and 2000 frames from 500 K, 600 K, 700 K,
850 K, 900 K, 950 K, and 1000 K including only about 50 interfacial
atoms to improve Ei training performance.

Training process of ANNs

We first trained the DNN model with the atomic energy Ei only.
After the energy loss function is stabilized, the atomic forces are then
included in the training (the force training is 20 times more expen-
sive). A weight ratio of 0.9/0.1 is used on the atomic energy vs atom
force loss function (when energy is in unit of eV and force is in unit
of eV/Ang).

SUPPLEMENTARY MATERIAL

See the supplementary material for some detail math processing
and data about atomic energy Ei.

PES.zip: program used to generate the ML potential and also its
forces for use in MD calculations.
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