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Research and Applications
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ABSTRACT

Objective: Modern healthcare data reflect massive multi-level and multi-scale information collected over many

years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper

aims to study the time to disease onset and progression and identify the time-varying risk factors that drive

them.

Materials and Methods: We developed an algorithmic approach to phenotyping the incidence of diseases by

consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs).

We focused on defining events, event dates, and their censoring time, including relevant terms and existing

phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and

expert review. We applied our approach to phenotyping diabetes complications, including a composite cardio-

vascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB

study.

Results: We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and

40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There

were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction perform-

ance for each outcome was assessed, and our results are consistent with the prediction area under the ROC

(receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies.

Discussion and Conclusion: Our publicly available pipeline and platform enable streamlined curation of inci-

dence events, identification of time-varying risk factors underlying disease progression, and the definition of a
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relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to

study disease progression.

Key words: phenotyping, diabetes, diabetes complications, disease progression, electronic health records, time-to-event

LAY SUMMARY

A modern biobank-scale health care data linked with electronic health care records such as UK Biobank (UKB) provide

researchers with a tremendous opportunity to study disease progression and associated risk factors. To study disease pro-

gression, researchers often use time-to-event statistical analysis. However, time-to-event data are not readily available from

primary sources of healthcare data and require concerted efforts to create them. In this paper, we introduce modularized

procedures for systematically phenotyping time-to-event outcomes at large scale. We consistently and accurately curate bio-

marker trajectory data and define relevant disease outcomes and event times. Adapting our procedures to datasets from the

UKB study and using diabetes-related complications as examples, we curate trajectory data of diabetes risk factors and phe-

notype time to the onset of diabetes vascular complications (ie, cardiovascular complications, diabetic kidney disease, and

diabetic retinopathy). This allows us to assess the effects of several known risk factors for the onset of diabetes complica-

tions. A risk prediction analysis shows prediction accuracy consistent with the ones obtained from standard risk prediction

models using cohort studies.

INTRODUCTION

The paradigm of precision medicine has expanded the use of very

large, interoperable, and longitudinal cohorts. A key advantage of

many healthcare related datasets, whether primary care records,

claims data, or registry data,1 is their accumulation of patient infor-

mation over long periods of time.2 They offer an excellent resource

to longitudinally monitor clinical biomarkers whose fluctuations

might influence the progression of diseases. Rich and time-stamped

information stored in electronic health records (EHRs) make more

accurate and standardized phenotyping possible.3,4 Indeed, temporal

sequential data representations mined from EHRs have been demon-

strated to offer a more accurate phenotype classification than its

individual components.4,5 However, these studies modeled diseases

as discrete events (eg, cases vs controls). Deep time-to-event pheno-

typing requires more sophisticated analytics beyond the case–control

classification, and the incorporation of domain knowledge remains

critical.2,3,6,7 Our objective is to incorporate time to phenotype dis-

ease progression, use diabetes mellitus (DM) and its vascular com-

plication as an example, and provide an associated cohort definition

for time-to-event analysis in the UK Biobank (UKB) study.8,9

DM is a progressive disease associated with multiple risk factors,

such as hyperglycemia and elevated blood pressure. These risk fac-

tors help drive the incidence of complications, including cardiovas-

cular disease (CVD), diabetic kidney disease (DKD), diabetic

retinopathy (DR), and neuropathy.10–12 While a large number of

studies examined factors associated with the prevalence, or inci-

dence, of diabetes, fewer studies have used biobank-scale health care

datasets to examine the development of diabetes-related complica-

tions.13 A notable reason stems from the lack of a uniform pheno-

typing definition of diabetes and diabetes-related complications in

EHRs. UKB is one of the largest biobanks globally, with over

500 000 participants. The UKB continues to enhance links between

their information and the UK primary care EHR data.8,9 However,

researchers working with UKB-linked EHR data face significant

challenges, as these EHR systems are designed to collect patient

information for administration and management purposes, not for

analysis and research. For example, UKB EHR data are an amalga-

mation of different sources, recorded using different methods

(containing more than 500 000 terms to record information). Our

current contribution is to provide tools for quantifying disease inci-

dence and progression, in addition to relevant longitudinal bio-

markers, thus enabling more sophisticated time-to-event analysis.

We established diabetes and diabetes complication diagnoses by

systematically consolidating disparate sources of clinical data from

patient questionnaires, hospital records, death records, and primary

care data released by UKB. We focus on cardiovascular complica-

tions reflecting ischemic events and microvascular complications,

including DKD and DR. Furthermore, we phenotyped longitudinal

risk factors for the aforementioned complications. We documented

our phenotyping framework using an R package, bookdown, and

have made it publicly available as a short book, including code lists,

procedures, and implementations (https://dohyunkim116.github.io/

ukbiobank-phenotyping-book/). To demonstrate the utility of our

phenotyping framework, we assess its ability to reproduce known

associations of risk factors with DM complications using a prospec-

tive design and Cox proportional hazards models. In addition, we

build several DM complication prediction engines. Although this

paper focuses on UKB data, some of the controlled clinical terminol-

ogies used in UK EHR are applicable to US data sources. Therefore,

our work can benefit other large-scale data resources such as Elec-

tronic Medical Records and Genomics (eMERGE),14 BioVU,15 Mil-

lion Veteran Program,16 and All Of Us.17

MATERIALS AND METHODS

The UKB data resources
The UKB is a prospective cohort study with deep genetic and pheno-

typic data. Record linkage to Health Episode Statistics (England),

Patient Episode Database for Wales, and the Scottish Morbidity

Records (Scotland) was used to identify the date and cause of hospi-

tal admissions. Hospital admission records were available until Feb-

ruary 2018 for the full UKB cohort (noted as “UKB data”), whereas

linkage to primary care records was available for 45% of the UKB

cohort until the end of 2017 (noted as “UKB Primary Care data”).

Each record has an entry for a clinical term under the format of

either Read v2 or Read v3/CTV3. Although Read v2 or Read v3/
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CTV3 are the primary care healthcare concepts used in the UK,

Read v3/CTV3 is one of the core components of SNOMED-CT, an

international standard for recording information across healthcare

settings and a suite of designated standards for use in the United

States.

Outcome definitions
We ascertained DM and three primary DM macro- and microvascu-

lar complications: a composite CVD outcome (reflecting myocardial

infarction [MI], unstable angina [UA], ischemic stroke [IS], and per-

cutaneous coronary intervention [PCI]), DKD, and DR. For UKB

data, the outcome definitions were defined through sets of prede-

fined UKB fields mapping to different outcomes. The UKB fields

belonged to different classes of the fields, including UKB First

Occurrence fields, algorithmically defined fields, fields containing

ICD-10 codes, OPCS4 codes, self-reported illness codes, self-

reported operation codes and custom defined fields (Supplementary

Table S1). For UKB Primary Care data, the outcome definitions (for

DM, DKD, and DR only) were defined through code lists from

CALIBER and OpenCodelists mapping to different outcomes. We

further refined a list of terms defining the outcomes by manual

inspection and inputs from experts. Figure 1 details procedures iden-

tifying and refining candidate terms. A full list of codes and data

fields used to define a specific outcome is shown in Supplementary

Table S2 and Supplementary Text. We obtained the most up-to-date

information by using clinical terms directly from hospital admission,

death, and primary care records, even if the term was already cap-

tured by a First Occurrence field. DM was defined and categorized

into one of three types, Type 1, Type 2, and Uncertain. Detailed

descriptions of each condition can be found in the Supplementary

Text.

Phenotyping incidence events and cohort definition
Procedures

We used the following steps to phenotype DM and DM complica-

tions (Figure 2).

1. Generate a master event table. To capture events related to an

outcome from the “UKB data,” we first created a master event

table containing all available clinical event fields and associated

event dates,

a. first-occurrence outcome fields,

b. algorithmically defined outcome fields,

c. code event fields: ICD-10, OPCS4, self-reported condition,

and self-reported operation codes, and

d. custom fields (used for phenotyping of DR events).

2. Generate UKB outcome event table. Using the fields identified in

Supplementary Table S2, we searched the master event table to

generate a UKB event table that includes all events related to

each outcome.

3. Generate master primary care code dictionary and outcome-

specific code dictionary. To identify events related to an outcome

from the “UKB Primary Care data,” we created a master pri-

mary care code dictionary that combines Read v2, Read v3/

CTV3, and TPP Local term dictionaries. Using defined codes

and descriptions for an outcome, we searched the master code

dictionary to generate outcome-specific code dictionaries.

4. Generate primary care outcome event tables. Using the

outcome-specific dictionaries, we searched the “UKB Primary

Care data” to generate primary care outcome event tables,

which include all events related to each outcome.

5. Generate biomarker trajectory data. We extracted biomarker

measurements of subjects using the “UKB primary care data”

and the “UKB data.” We created trajectory data for biomarkers,

including glucose, HbA1c, urine albumin, urine creatinine, urine

albumin-to-creatinine ratio (uACR), serum creatinine, blood

pressure, total cholesterol (TC), high-density lipoproteins

(HDL), low-density lipoproteins (LDL), and triglycerides. The

terms and fields for these biomarkers can be found in Supple-

mentary Table S3. Using the curated trajectory data, we created

event tables capturing the occurrence of macroalbuminuria,

microalbuminuria, and prolonged low estimated glomerular fil-

tration rate (eGFR) events. These event tables were used to cap-

ture DKD events and refine the time-to-event table for DKD. We

further elaborate on the biomarker extraction step in the subsec-

tion Covariate and Biomarker Extraction.

6. Generate outcome event table. The event tables for DM, CVD,

DKD, and DR were created by merging the UKB outcome event

table generated in (2) and the primary care outcome event table

generated in (4). The first-occurrence event tables and risk set

exclusion event tables (Supplementary Table S2) associated with

certain outcomes were also created.

Figure 1. Flow chart to identify candidate terms for phenotyping (A) diabetes, (B) diabetic kidney disease (DKD), and (C) diabetic retinopathy (DR). CALIBER: cardi-

ovascular disease research using linked bespoke studies and electronic health records, https://www.ucl.ac.uk/health-informatics/research/caliber; Read v3

(CTV3): Clinical Terms Version 3; OpenSAFELY: a secure, transparent, open-source software platform for analysis of electronic health records.
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7. Generate an initial time-to-event table. Time-to-event tables for

CVD, DKD, and DR were created by merging the first occur-

rence DM event table, complication event tables and a demo-

graphics table which included censoring dates. An event status

was positive if a diabetes subject had an incidence of a certain

complication outcome before the censoring date; otherwise, a

subject was at risk. A subject’s censoring date was defined as the

earliest date among loss-to-follow-up date, showcase censoring

date (as indicated by reduced EHR data availability) and the

date of death (for a deceased participant). The fields used to

determine the censoring dates are described in Supplementary

Table S4.

8. Generate refined time-to-event table. Separately for each compli-

cation, we excluded participants from the time-to-event table if

a complication event occurred before the first documented evi-

dence of diabetes or after the censoring date. For each outcome,

we also used an associated exclusion event table generated in (5)

to exclude additional subjects in this risk set.

Additional exclusion considerations

Primary care data were only available for 45% of UKB participants.

For DKD and DR, we required subjects in the risk set to be repre-

sented in the primary care data, unless they had an outcome event

documented in hospital admissions or the death record. This is

because a large proportion of DKD and DR events were ascertained

using the primary care data and biomarker information, so we were

not confident that participants without linked primary care data did

not have complications. To preferentially capture diabetes-related

kidney disease as opposed to kidney diseases arising from a different

etiology, we required patients with events to have at least 5 years

between the first evidence of diabetes and the complication occur-

rence. We also required patients in the risk set to have at least 5

years of follow-up time since the first evidence of diabetes. Other

exclusion of conditions from the risk set was documented in Supple-

mentary Table S2.

A prospective study design and cohort definition

Using the developed phenotyping algorithm (Figure 2), we used a

prospective study design to assemble the cohort and estimate the

risks of known “risk” factors for DM complications (Figure 3). We

define the index date (time 0) as the UKB study initiation date and

follow the participants for the onset of macrovascular and microvas-

cular conditions. One alternative index date could be the date of

DM onset. In this manuscript, we assume the date of the first evi-

dence of DM from EHR is the true date of DM onset. However, one

may consider this date of DM onset unknown, which leads to differ-

ent censoring mechanisms for complication events, for example,

interval censoring. We briefly discuss this point in Supplementary

Text. The time-to-event outcome for patients who had events was

defined as the time between their index date and the date of their

first recorded outcome event. The time-to-event outcome for

patients in the risk set was defined as the time between the index

date and the censoring date. Participants who had the event were

excluded if the index date was not between the first evidence of

Figure 2. (A) Flowchart of outcome event table generation steps. UK Biobank (UKB) outcome event tables were generated by searching relevant outcome fields

from all UKB event tables. UKB event table combines all clinical event fields available from UKB assessment center data. Primary care outcome event tables

were generated by searching the outcome-specific codes from the primary care data. The outcome-specific code dictionary was generated by searching the full

dictionary for relevant codes and descriptions. The full dictionary is a combination of Read v2, Read v3, and TPP codes. We combined information from UKB out-

come event table, primary care outcome event table, and biomarker information to create a first-occurrence outcome event for each outcome. Numbers in labels

correspond to the steps in the Phenotyping procedure section. (B) Flowchart of time-to-event data generation steps. Time-to-event data for an outcome required

first occurrence outcome event table, diabetes first-occurrence event table and a dataset containing subjects’ study initiation dates (ie, index date) and censoring

dates. Time-to-event data were subject to filtering based on certain exclusion criteria for an outcome. ICD10: 10th revision of the International Statistical Classifi-

cation of Diseases; Read v3 (CTV3): Clinical Terms Version 3; OPCS4: Office of Population Censuses and Surveys (OPCS) Classification of Interventions and Proce-

dures version 4; TPP codes: TPP (https://tpp-uk.com/) is a data system supplier in UK and has their code lists. A list of TPP local codes that are present in the

current extract and their definitions can be found in Data Showcase Encoding 8708.

4 JAMIA Open, 2023, Vol. 6, No. 1

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data
https://tpp-uk.com/


diabetes and the date of complication event, while participants who

did not have the event were excluded if the first evidence of diabetes

was not before or within 6 months after the index date.

Covariate and biomarker extraction
Patients’ race/ethnicity, year and month of birth, sex, body mass

index (BMI), smoking status, and use of insulin, blood pressure low-

ering medication, or lipid-lowering medication were extracted from

surveys collected at a UKB assessment center. Educational attain-

ment was defined as the individual’s highest qualification, translated

to the International Standard Classification of Education (ISCED)

using the mappings in Ge et al.18 Physical activity was measured

using weekly Total Metabolic Equivalent Task (MET) minutes. The

Charlson Comorbidity Index (CCI) was generated using partici-

pants’ hospital admission records preceding their initiation into the

study.19,20 To demonstrate genetic data usage in conjunction with

our curated phenotypes, type 2 diabetes (T2D) polygenic risk scores

(PRS) were generated for all individuals of European ancestry using

the prepruned variants and weights from Mahajan et al,21 while

type 1 diabetes (T1D) PRS were generated for the same individuals

using the procedures from Sharp et al.22

We used two sources of information to extract biomarkers: meas-

ures from samples collected at participants’ visits to a UKB assessment

center, and from the primary care database. To extract the latter, we

reviewed clinical terms in UKB Resource 592. We used a keyword-

based search to identify relevant terms, and verified the code lists with

the list prepared by Denaxas et al.23 The eGFR measurements were

estimated from serum creatinine using the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI creatinine) equation.

Statistical analysis
A landmark method was used to ascertain the known risk factors

prior to the index date, including glycemic measures, blood pres-

sures, and lipid measures. Specifically, we computed averages and

estimates of variability of these biomarker measurements. We

imputed the summary statistics of biomarker (eg, CV) measurements

to obtain a more complete dataset for the primary analysis. Other

imputed baseline covariates included sex, self-reported ethnicity, age

at initiation date, smoking status, BMI, self-reported medication sta-

tus for insulin, blood pressure drugs, and cholesterol drugs, CCI,

ISCED level (greater than level 2 or not), and MET. We used the

“UKB data” field number 21000 to broadly recategorize self-

reported ethnicity into four groups: Asian, Black, Other, and White

(Supplementary Table S5). Each variable was imputed using either

predictive mean matching or model prediction procedure based on

the variable’s distribution. A predictive mean matching procedure

was adopted if the variable was categorical, integer-valued or if its

distribution was skewed, as recommended by miceRanger R pack-

age.24 Otherwise, we used the model prediction procedure. Five

imputed datasets were generated.

For our primary analysis, we implemented a pooled step-wise

variable selection method25 for the Cox proportional hazards model

to simultaneously analyze imputed data and select important varia-

bles contributing to the incidence of diabetes complications. Our

base model includes sex and age, which were not subject to variable

selection. Additional covariates were then added, including smoking

status, BMI, self-reported medication status (insulin, blood pressure,

and cholesterol drug), CCI, ISCED level, MET, PRS (type 1 and

type 2 in European ancestry), and summary statistics of biomarker

trajectories. Sensitivity analysis was conducted among the T2D

cohort. We report hazard ratios with 95% confidence intervals. All

analyses were performed using R version 4.0.2.

Furthermore, we conducted a risk prediction analysis. Using

five imputed datasets, we split the data into training and valida-

tion sets in a 2 to 1 ratio, performed pooled step-wise variable

selection on the training set, and computed risk scores using the

validation set for each imputed dataset. Average risk scores (com-

puted across imputed datasets) were used to assess the prognostic

performances measured by the area under the receiver operating

characteristic curve (AUC). The Kaplan–Meier (KM) curves com-

paring high- and low-risk groups with respect to median risk

scores were also created for multivariable pooled step analysis.

Finally, we sought to use non-European participants as an external

validation cohort to evaluate prediction performance (PRS scores

were not included).

Figure 3. A prospective study design and landmark analysis. The index date is defined as the UKB study initiation date. The blue-shaded area is the landmark

period, that is, from the first date of participants’ primary care records to 6 months after the index date. We extract time-invariant and time-varying longitudinal

measures of biomarkers from this period. In our study design, the first occurrence of DM Dx is required to be in the landmark period. The yellow-shaded area rep-

resents the follow-up period from the index date. We require the incidence of DM complications (ie, DKD, CVD, and DR) to be in this period. The baseline period

up-to-6 months after the index date, during which participants’ information was collected through UKB’s assessment center. To preferentially capture diabetes-

related kidney disease as opposed to kidney diseases arising from a different etiology, we required patients with events to have at least 5 years between the first

evidence of diabetes and the complication occurrence. We also required patients in the risk set to have at least 5 years of follow-up time since the first evidence

of diabetes. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; DM: diabetes mellitus; Dx: diagnosis; X: event happened. j repre-

sents a censored event.

JAMIA Open, 2023, Vol. 6, No. 1 5

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad006#supplementary-data


RESULTS

Phenotyping DM, DKD, and DR required the use of primary care

code lists. We initially identified 1083 terms related to diabetes

(Figure 1A) from CALIBER and OpenCodelists resources. Addi-

tional diabetes-related keywords were searched among Read v2 and

Read v3/CTV3 dictionaries, and additional potential terms were

gathered by including all “child codes” of several Read v2 “parent

codes”. After excluding terms that did not occur at all in the “UKB

Primary Care data,” 1049 eligible terms remained. Of these, 596

terms were retained after 454 terms and keywords were excluded by

expert review because they lacked relevance to a diabetes diagnosis.

We obtained 8 additional terms that mapped directly to an included

term (either Read v2 to Read v3/CTV3, or vice versa), for a total of

604 terms. We split terms into two categories: (1) 312 codes suffi-

cient to classify patients as having DM, and (2) 292 codes which

were used only in the assignment of the first incidence date of the

diabetes phenotype, for those patients who had codes from the first

category. For DKD, 363 eligible terms were reviewed, of which 313

were retained (Figure 1B). Ninety-two of these terms were used to

define the incident event of DKD, while 221 were used to exclude

individuals from the risk set of DKD. For DR, 907 eligible terms

were reviewed, of which 650 were retained. Eighty-one of these

terms were used to define incident events of DR, while 569 were

used to exclude individuals from the risk set of DR (Figure 1C).

Cohort characteristics
Using the “UKB data” and the “primary care data,” we identified a

total of 49 049 diabetes participants (Figure 4) who were catego-

rized into either T1D, T2D, or “uncertain” (Supplementary Text).

Among them, 1023 were T1D patients, and 40 193 were T2D

patients. A total of 23 833 diabetes subjects had linked primary care

records. Among them, 428 were T1D patients and 20 181 were T2D

(Table 1).

The incidence rates for CVD, DKD, and DR in our cohort were

estimated to be 16.3, 46.2, and 71.8 in 1000-person-years, respec-

tively. There were 18 030 diabetes patients (74% T2D patients) in

the CVD cohort and 3237 of them were identified to have developed

CVD events after the diagnosis of diabetes. Among diabetes

patients, 7302 patients (76% T2D patients) were in the DKD cohort

and 3113 of them had DKD events. There were 8898 diabetes

patients (80% T2D patients) in the DR cohort and 4922 of them

developed DR.

The median age at study initiation was 61 across all cohorts.

Diabetes patients who developed CVD were generally older than

those who did not (63 vs 60 years old), more likely to be an ever

smoker (58% vs 48%), fewer hours of exercise (21 vs 24 h/week),

higher baseline SBP, HbA1c, glucose, triglycerides, and uACR meas-

ures. Note that many biomarkers (eg, cholesterol, HDL, and LDL)

were within normal or close to normal range, indicating the UKB

Figure 4. Flowchart of cohort curation for diabetes and diabetes complications. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinop-

athy; DM: diabetes mellitus; PCI: percutaneous coronary intervention.
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Table 1. Cohort characteristics

CVD cohorta DKD cohortb DR cohortc

Overall No CVD CVD Overall No DKD DKD Overall No DR DR

n¼ 18 030 n¼ 14 793 n¼ 3237 Pc n¼ 7302 n¼ 4189 n¼ 3113 Pc n¼ 8898 n¼ 3976 n¼ 4922 Pc

Ethnicity (%) .003 <.001 .012

White 87 86 88 89 88 89 89 90 89

Asian 7 7 7 7 7 6 7 6 7

Black 4 4 3 3 2 3 2 2 3

Other 2 3 2 2 2 2 2 2 2

European (%) 61 61 60 .130 63 63 62 .494 63 64 62 .089

Primary care subjects (%) 48 49 46 .009 78 100 49 <.001 83 100 70 <.001

Sex (% males) 59 57 71 <.001 63 64 63 .350 61 60 62 .167

Age (years) 61 (54, 65) 60 (54, 65) 63 (58, 67) <.001 61 (55, 66) 59 (53, 64) 64 (60, 67) <.001 61 (55, 65) 60 (54, 65) 62 (56, 66) <.001

BMI males (kg/m2) 30 (27, 33) 30 (27, 33) 31 (28, 34) <.001 30 (27, 34) 30 (27, 33) 31 (28, 35) <.001 30 (27, 34) 30 (28, 34) 30 (27, 34) .741

BMI females (kg/m2) 31 (27, 36) 31 (27, 36) 32 (28, 37) <.001 32 (28, 37) 31 (27, 36) 33 (29, 38) <.001 32 (28, 37) 32 (27, 36) 32 (28, 37) .027

Ever smoked (%) 50 48 58 <.001 54 51 59 <.001 54 53 55 .092

Smoking pack years 24 (14, 39) 23 (13, 36) 32 (18, 48) <.001 27 (15, 42) 24 (14, 38) 31 (18, 48) <.001 27 (16, 42) 26 (15, 40) 28 (16, 44) .030

CCI (%) <.001 <.001 <.001

0 63 66 47 53 65 37 57 62 53

1 24 23 28 24 21 29 24 21 27

2 8 7 14 12 9 16 10 9 11

3 3 3 6 6 4 9 5 4 5

4 1 1 3 2 1 5 2 2 2

�5 1 1 3 2 1 4 2 2 2

MET (h/week) 23 (10, 51) 24 (10, 51) 21 (8, 49) <.001 23 (9, 51) 25 (10, 54) 19 (7, 45) <.001 23 (9, 51) 23 (9, 52) 22 (8, 50) .113

ISCED level >2 (%) 59 61 52 <.001 56 61 48 <.001 57 58 57 .401

DM type (%) <.001 <.001 <.001

Type 1 4 4 2 3 4 1 2 2 3

Type 2 74 74 73 76 79 73 80 83 78

Uncertain 23 22 25 21 17 26 18 15 19

Insulin (%) 20 18 27 <.001 22 15 30 <.001 18 9.3 26 <.001

BP medication (%) 60 57 71 <.001 62 50 79 <.001 62 57 66 <.001

Cholesterol medication (%) 71 70 76 <.001 74 66 83 <.001 73 67 78 <.001

T1D PRS (tertile) .744 .341 .348

1 30 30 31 31 31 32 31 31 32

2 32 32 31 32 33 31 33 34 32

3 38 38 38 37 36 37 36 35 36

(continued)
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Table 1. continued

CVD cohorta DKD cohortb DR cohortc

Overall No CVD CVD Overall No DKD DKD Overall No DR DR

n¼ 18 030 n¼ 14 793 n¼ 3237 Pc n¼ 7302 n¼ 4189 n¼ 3113 Pc n¼ 8898 n¼ 3976 n¼ 4922 Pc

T2D PRS (tertile) .075 .007 .002

1 18 18 18 18 19 17 17 18 16

2 30 31 28 31 32 29 32 32 31

3 52 51 54 51 49 54 51 49 53

SBP (mmHg) 139 (130, 148) 138 (130, 148) 142 (132, 152) <.001 138 (129, 147) 136 (128, 145) 140 (131, 150) <.001 138 (130, 147) 138 (130, 146) 139 (130, 147) <.001

DBP (mmHg) 82 (76, 87) 82 (77, 87) 81 (75, 87) <.001 81 (76, 86) 82 (77, 86) 80 (74, 86) <.001 82 (77, 86) 82 (77, 87) 81 (76, 86) <.001

Chol (mmol/l) 4.6 (4.0, 5.3) 4.6 (4.0, 5.3) 4.6 (4.0, 5.2) .014 4.6 (4.1, 5.2) 4.8 (4.2, 5.4) 4.4 (3.8, 5.0) <.001 4.7 (4.1, 5.3) 4.8 (4.3, 5.5) 4.6 (4.0, 5.2) <.001

Trig (mmol/l) 1.8 (1.3, 2.5) 1.8 (1.2, 2.5) 1.9 (1.3, 2.7) <.001 1.8 (1.3, 2.6) 1.7 (1.3, 2.5) 2.0 (1.4, 2.8) <.001 1.9 (1.3, 2.6) 1.9 (1.3, 2.6) 1.9 (1.3, 2.6) .774

HDLc (mmol/l) 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) 1.1 (1.0, 1.3) <.001 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) 1.1 (1.0, 1.3) <.001 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) .001

LDLc (mmol/l) 2.7 (2.2, 3.2) 2.7 (2.2, 3.2) 2.6 (2.2, 3.1) .009 2.6 (2.2, 3.2) 2.7 (2.3, 3.3) 2.5 (2.1, 3.0) <.001 2.7 (2.2, 3.2) 2.8 (2.3, 3.3) 2.6 (2.1, 3.1) <.001

HbA1c (mmol/mol) 51 (44, 61) 51 (44, 60) 54 (46, 65) <.001 52 (45, 62) 51 (43, 60) 54 (47, 64) <.001 52 (44, 61) 49 (42, 57) 55 (47, 64) <.001

Glucose (mmol/l) 7.0 (5.6, 9.4) 6.9 (5.5, 9.2) 7.4 (5.7, 10.1) <.001 7.1 (5.7, 9.5) 6.9 (5.6, 9.1) 7.5 (5.8, 10.1) <.001 7.2 (5.8, 9.5) 6.7 (5.5, 8.6) 7.7 (6.1, 10.2) <.001

eGFR (ml/min/1.73 m2) 87.8 (75.5, 96.9) 88.4 (76.5, 97.4) 84.3 (70.7, 94.4) <.001 83.4 (74.1, 93.1) 87.4 (79.8, 95.7) 75.3 (66.0, 86.8) <.001 83.0 (72.3, 93.5) 82.9 (73.0, 93.3) 83.1 (71.5, 93.8) .730

loguACR (log[g/mmol]) 0.2 (�0.4, 0.9) 0.1 (�0.4, 0.8) 0.5 (�0.2, 1.5) <.001 0.0 (�0.5, 0.7) �0.3 (�0.7, 0.1) 0.7 (�0.1, 2.0) <.001 0.2 (�0.4, 0.9) 0.1 (�0.5, 0.7) 0.2 (�0.4, 1.0) <.001

Incidence rate2 16.31 (15.76–16.88) 46.22 (44.61–47.88) 71.79 (69.8–73.83)

CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; ISCED: International Standard Classification of Education, dichotomous variable, 1 if ISCED level

was greater than 2 and 0 otherwise; Ever smoked, dichotomous variable, 1 if a subject has ever smoked and 0 otherwise; MET: metabolic equivalents to resting state (h/week); BMI: body mass index (kg/m2); CCI: Charlson Comor-

bidity Index; Chol: total cholesterol (mmol/l); Trig: triglycerides (mmol/l); HDLc: high-density lipoprotein cholesterol (mmol/l); LDLc: low-density lipoprotein cholesterol (mmol/dl); SBP: systolic blood pressure (mm Hg); DBP, dia-

stolic blood pressure (mm Hg); eGFR: estimated glomerular filtration rate (ml/min/1.73 m2); uACR: urine albumin to creatinine ratio (g/mmol).
aMedian (IQR) or percent or incidence rate (95% confidence interval); bPer 1000 persons per year; cPearson’s Chi-squared test or Wilcoxon rank sum test.
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cohort represents a relatively healthy population.26 Interestingly,

T2D PRS tertiles are significantly associated with DKD and DR but

not CVD. In the CVD cohort, 27% versus 18% of the patients who

did versus did not develop CVD events reported insulin usage; while

in DKD and DR cohorts, the proportions were 30% versus 15%

and 26% versus 9.3%, respectively. In general, participants with

DM complications tend to have higher proportions of medication

usage. Among three conditions, DKD patients have the highest insu-

lin, blood pressure, and cholesterol medication usage. Results are

consistent with the literature that DKD patients have more comor-

bidities.13,27 Hyperglycemia is the leading risk factor for DR13 as

indicated by significantly higher baseline mean HbA1c and glucose

measures (Table 1).

Risk of incidence of diabetes complications in the UKB

study
Table 2 shows selected risk factors and their association with the

onset of CVD, DKD, and DR in the diabetes (T1D and T2D) cohort.

Pooled step-wise variable selection identified different sets of risk

factors associated with each complication. Age, male sex, CCI, aver-

age SBP, and average glucose were adversely associated with all

three DM complications. Cigarette smoking, plasma cholesterol,

and uACR are known risk factors for CVD,28 and they were

adversely associated with the development of CVD in our analysis.

Evidence from prior research supports that risk factor variability

predicts the development of diabetes complications29,30 in addition

to their mean levels. For CVD, consistent with prior research, SBP,

HDLc, and uACR variability were associated with an increased risk

of CVD.31 Higher HDLc was reported protective of CVD onset (HR

0.70, CI: 0.60–0.83).32 Both mean and variability of uACR were

associated with the development of DKD. Interestingly, for DR,

both mean and glucose variability were selected as associated risk

factors.30,33,34 T2D PRS was selected for DR and was estimated to

increase the risk of developing DR (HR¼1.04, CI: 1.01–1.08).

When we restricted the analysis to T2D subjects, most of the same

variables were selected with similar hazard ratios and P values (Sup-

plementary Table S6). We note that the estimated effects’ directions

of TC and LDL are protective. The possible explanation is partici-

pants with DKD and DR tend to have lower TC and LDL levels

Table 2. Risk factors associated with the onset of cardiovascular disease, diabetic kidney disease, and diabetic retinopathy for those with

European ancestry within the diabetes cohort

CVD (1937/9064)a DKD (1945/2650)a DR (3063/2544)a

Risk factor HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age 1.05 (1.04–1.06) <.001 1.05 (1.04–1.06) <.001 1.01 (1.01–1.02) <.001

Sex 2.02 (1.80–2.25) <.001 0.96 (0.86–1.06) .418 1.05 (0.98–1.13) .183

ISCED 0.81 (0.74–0.89) <.001

Ever smoked 1.26 (1.15–1.39) <.001 1.21 (1.09–1.34) <.001

MET 0.94 (0.89–1.00) .038 0.96 (0.92–1.00) .03

PRS 1.04 (1.01–1.08) .025

BMI 1.03 (1.02–1.04) <.001 1.03 (1.02–1.04) <.001

CCI 1.26 (1.22–1.30) <.001 1.14 (1.10–1.18) <.001 1.04 (1.01–1.07) .006

CV SBP 1.08 (1.04–1.13) <.001

CV DBP 0.92 (0.88–0.97) .004 0.96 (0.92–0.99) .015

CV glucose 1.08 (1.03–1.14) .004

CV HDLc 1.10 (1.05–1.16) <.001 1.04 (1.00–1.09) .048

CV eGFR 1.08 (1.02–1.14) .009

CV UACR 1.05 (1.00–1.11) .032 1.21 (1.14–1.29) <.001

Mean SBP 1.01 (1.01–1.02) <.001 1.01 (1.00–1.01) <.001 1.01 (1.00–1.01) <.001

Mean DBP 0.97 (0.97–0.98) <.001 0.99 (0.98–0.99) <.001

Mean glucose 1.03 (1.01–1.04) <.001 1.03 (1.01–1.05) <.001 1.04 (1.03–1.06) <.001

Mean Chol. 1.10 (1.04–1.15) <.001 0.83 (0.78–0.88) <.001

Mean Trig. 1.08 (1.03–1.14) .004

Mean HDLc 0.70 (0.60–0.83) <.001

Mean LDLc 0.84 (0.80–0.89) <.001

Mean eGFR 0.98 (0.97–0.98) <.001

Mean UACR 1.05 (1.01–1.08) .007 1.27 (1.16–1.40) <.001

Note: We employed the Cox proportional hazards model and a pooled step-wise variable selection procedure to simultaneously analyze imputed data and select

important variables that are associated with major diabetes complications outcomes. Our base model included sex, and age, which were not subject to variable

selection. Additionally, we included smoking status, BMI, self-reported medication status (insulin, blood pressure, and cholesterol drug), CCI, ISCED level, MET,

polygenic risk scores (type 1 and type 2), and summary statistics of biomarker trajectories including average and CV of SBP, DBP, LDLc, HDLc, total cholesterol,

glucose, eGFR and urine ACR levels. The variables that were not selected do not appear in this table. The values of MET, average of urine ACR levels, CV of all

biomarker levels, and type 1 and type 2 polygenic risk scores were standardized.

CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy; eGFR: estimated glomerular filtration rate; ISCED: International Stand-

ard Classification of Education, dichotomous variable, 1 if ISCED level was greater than 2 and 0 otherwise; Smoked, dichotomous variable, 1 if a subject has ever

smoked and 0 otherwise; MET: metabolic equivalents to resting state (h/week); BMI: body mass index (kg/m2); CCI: Charlson Comorbidity Index; CV, coefficient

of variation; Chol: total cholesterol (mmol/l); Trig: triglycerides (mmol/l); HDLc: high-density lipoprotein cholesterol (mmol/l); LDLc: low-density lipoprotein

cholesterol (mmol/dl); SBP: systolic blood pressure (mm Hg); DBP: diastolic blood pressure (mm Hg); eGFR: estimated glomerular filtration rate (ml/min/

1.73 m2); uACR: urine albumin to creatinine ratio (g/mmol); PRS: type 2 diabetes polygenic risk score.
aNumber of cases and controls that were included in the model.
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than those who do not have the condition, potentially due to a

higher proportion using cholesterol-lowering medication.

The risk prediction performance of each outcome was assessed

using validation data. Prediction performance was measured by

AUC (Figure 5). Among the major complication outcomes, DKD

showed the highest AUC (0.86, 95% CI: 0.84–0.88), followed by

CVD (0.73, 95% CI: 0.71–0.75) and DR (0.64, 95% CI: 0.62–

0.67). These results are consistent with the prediction AUC of stand-

ard risk prediction models using cohort studies, suggesting some

equivalence in EHR.35 Supplementary Table S7 shows the selected

variables using the pooled step variable selection procedure with a

training dataset for each outcome. The AUCs for these models

applied to non-European participants were similar (Supplementary

Figure S3). The KM curves comparing the probability of developing

major diabetes complications between low- and high-risk groups

(with respect to a median risk score) are shown in Figure 6. For each

outcome, the high-risk group showed a significantly higher probabil-

ity of progressing to develop DM complications than the low-risk

group. The KM curves of the other outcomes can be found in Sup-

plementary Figure S1.

DISCUSSION

In this paper, we provide a framework to showcase phenotyping for

the study of disease progression using UKB data. We focus on the

definition of events, curation of event dates, and their censoring

time. We provide a pipeline to phenotype cardiovascular and micro-

vascular complications after the diagnosis of diabetes. We use diabe-

tes complications as an example because their phenotyping is

heterogeneous, as diabetes disease progression is due to hyperglyce-

mia exposures and many other risk exposures.13 Beyond phenotyp-

ing diabetes complications, we also curated traditional risk factors

longitudinally. Our pipeline enables streamlined calculation of the

incidence event rate, time-varying risk factors underlying disease

progression, and time-to-event analyses. Using curated phenotypes,

we assessed the effects of known risk factors for DM complications.

Existing algorithmic definitions provide rules and procedures to phe-

notype a disease of interest. However, a consistent and organized

framework to produce all necessary data ingredients is lacking. This

step is the bottleneck in applying certain algorithmic definitions for

phenotyping. Our platform comprehensively produces data ingre-

dients in a consistent and modular way to allow the efficient appli-

cation of specific phenotyping algorithms. Using diabetes and its

complications as an example, we show how the platform can gener-

ate needed data ingredients from UKB-provided resources, including

predefined fields associated with diseases and linked primary care

data. In contrast, Eastwood et al applied sequential, multi-level rules

to self-report and nurse interview data to identify subjects with indi-

cations of diabetes.36

Our analysis results are consistent with Pittsburgh Epidemiology

of Diabetes Complications (EDC) Study and EDIC study where a

similar definition of CVD phenotype was employed.37 They

Figure 5. Comparison of prediction performance of risk scores as measured by area under the receiver operating characteristic (ROC) curve (AUC). “n.case/n.con-

trol” refers to the number of cases and controls included in the validation data. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinop-

athy; HS: hemorrhagic stroke; IS: ischemic stroke; MI: myocardial infarction; PCI: percutaneous coronary intervention; ST: stroke; UA: unstable angina.
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reported that accounting for other risk factors, higher DBP is protec-

tive against developing CVD, although with a modest hazard ratio

(ie, HR¼0.97, CI: 0.97–0.98, P value <.001). Similar observations

were reported before.31 In our analysis, uACR strongly predicts

future DKD. Indeed, albuminuria is the most prominent symptom of

essentially all kidney diseases.38 Interestingly, we reported that

uACR is an independent risk factor for the onset of CVD. It indi-

cates that any degree of albuminuria is a risk factor for CVD events

in individuals with DM; the risk increases with the uACR, starting

well below the microalbuminuria cutoff. Screening for albuminuria

can identify people at high risk for CVD events.39

We applied strict filtering criteria to filter patients in the risk set.

This means computed incidence rates should be interpreted in the con-

text of subjects with primary care data available (DR and DKD) and

without prior conditions. These exclusion criteria may be removed

according to studies’ needs. CVD outcomes were mostly curated from

hospital records; to keep a larger sample size, we did not require all

the participants to have primary care data. Thus, fewer repeated

measures of biomarkers were involved in capturing their variability.

Although we focused on macrovascular and microvascular events as

diabetes complications, the definitions can be used broadly. We pri-

marily considered right censoring. However, when definitive disease

ascertainment is unavailable, both time-to-event outcomes and covari-

ates are subject to complex censoring mechanisms. In the Supplemen-

tary Materials, we discussed other types of censoring mechanisms (left

censoring and interval censoring).

Our approach has a few limitations. We used an indirect method

to evaluate event definitions rather than an independent “gold”

standard, for example, chart review. The phenotypes created and

evaluated in this manuscript are predominantly diabetes and CVDs

related. Experienced clinicians in our team provided valuable input

for each phenotyping pipeline to maximize the information

extracted from EHRs and minimize the risk of mischaracterizing

patients’ disease onset and progression. Disease or syndrome’s phe-

notypes are often represented by hundreds of terms. As such, while

the method described in our manuscript yields robust results for the

phenotype use cases presented here, additional conditions or terms

may still be necessary to refine the phenotypes. Users should incor-

porate them when seeing fit. Further research is required to ascertain

other disease statuses. Finally, an important contributor to variabil-

ity in risk factors is the effect of changes in dosing or types of medi-

cations, which are often adapted to biomarker levels. As DM

management typically requires many medications, it is particularly

relevant to capture changes in medications over time accurately. We

defer appropriately capturing and incorporating medication use into

future research.

CONCLUSION

We provide a unique resource to showcase time-to-event outcome

phenotyping for the study of disease progression using UKB data.

Figure 6. Kaplan–Meier (KM) curves comparing the probability of developing major diabetes complication outcomes between low- and high-risk groups among

European validation cohort of diabetes subjects. Individuals were assigned to high-risk group if their risk scores were greater than the median risk score and to

low-risk group if otherwise. CVD: cardiovascular disease; DKD: diabetic kidney disease; DR: diabetic retinopathy.
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Our phenotyping framework, detailed terms curated, and analysis

code are all publicly available to facilitate reproducibility and

transparency.
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