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An Efficient General-Purpose Mechanism for Data Gathering

with Accuracy Requirement in Wireless Sensor Networks

Ryo Sugihara∗ Andrew A. Chien∗†

Abstract

A generic objective for a sensor network application is the gathering of data from a

field of sensors. Because energy is often scarce in sensor networks, many techniques have

been proposed to reduce data size within the network. These techniques either ignore

the accuracy of the resulting data, or more often, provide no means for applications to

control the resulting accuracy. However in many cases, applications have a quantitative

requirement for sensor data accuracy, and the underlying system should meet that

efficiently. In this paper, we describe a distributed algorithm that approximates and

gathers data in an energy-efficient manner and strictly satisfies an application-provided

accuracy requirement. This approximation is based on a hybrid data representation

based on linear regression. A distinguishing feature of the proposed algorithm is that

it absolutely does not require any models on statistical properties of data and noise,

and needs only few general assumptions on sensor node topology. This feature enables

the algorithm to serve as a general-purpose mechanism that can be widely used in

many scenarios for data gathering-type applications. Simulation experiments with data

traces from real environmental data show that it leverages the accuracy requirement

to significantly reduce energy consumption.

1 Introduction

Sensor networks are a rapidly emerging research field in the academic and industrial world
because of their vast range of potential application. One of the most common forms of sensor
network applications is data gathering in which some data is sampled at a set of spatially dis-
tributed sensors and then collected together; perhaps at an uplink out of the sensor network.
Examples of data gathering sensor network applications include habitat monitoring[13], en-
vironmental monitoring[12], target localization[11], structural monitoring[19], and a coun-
tersniper system[15]. Sensor management[21] is also one of the data gathering applications
in a broader sense.

In general, applications desire fine data resolution (temporal and spatial) and high ac-
curacy, which require high data volume and high bandwidth, to enable their higher level
activities both within and without the network. On the other hand, sensor network systems
that hosts one or several applications should conserve scarce energy and bandwidth. One
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promising approach that resolves this conflict and supports both of these goals is to con-
struct a compact data representation, enabling efficient manipulation and communication
within the sensor networks. Techniques such as summarization, aggregation, approximation,
statistical prediction, and their combinations all fall within this general approach. These
methods each gain efficiency by representing only a portion of sensors and/or reducing the
accuracy of sensor data passed on.

Specifically, we are interested in the construction of a custom data representation which
meets an application’s accuracy goals. We also pursue efficiency to meet the sensor network
systems’ goal as well. Generally, there is a trade-off relationship between energy cost and
accuracy, as some papers point out[3, 17]. However, a significant difference of our approach
is that we guarantee to satisfy a quantitative accuracy requirement, which is explicitly given
by the application and the system is strictly required to meet.

In this paper, we first formulate the problem of data gathering with accuracy require-
ment. Then we propose a distributed algorithm for the problem which computes and uses
custom data representations to achieve a specified accuracy requirement and saves energy
by optimizing the representation to reduce communication cost. Our approach is a hy-
brid one, employing linear regression to compress data which is spatially close and thereby
potentially correlated, and using a separate explicit representation for data as needed to
satisfy the accuracy requirements. A distinguishing feature of the algorithm compared to
others[5, 18] is that it absolutely does not require any prior knowledge or assumed models
about the data’s statistical properties. We believe this generality enables the algorithm to
serve as a general-purpose mechanism that can be widely used in many scenarios for data
gathering-type applications.

We evaluate the performance of our distributed algorithm, comparing it to a naive data
gathering method, and also to a method analogous to “Distributed Regression”[6]. These
experiments show that the proposed algorithm can exploit the cost-accuracy trade-off effec-
tively, significantly reducing the size of representation, as well as the amount of communica-
tion in the sensor network.

Specific contributions of the paper include:

• formulation of an data gathering problem for sensor networks as a multiobjective op-
timization problem where application-specified accuracy requirement is a constraint,

• a distributed algorithm which computes a reasonable approximate solution to the prob-
lem using a custom hybrid data representation, without requiring any assumed models
on statistical properties of data, and

• an evaluation of the proposed distributed algorithm showing that it derives a custom
data representation while effectively exploiting the accuracy requirement for efficiency.

The remainder of the paper is organized as follows. In Section II, we formally define the
problem. In Section III, we present our distributed algorithm for computing custom data
representations. In Section IV, we evaluate the performance of the algorithm by simulation
on the real environmental data. Some of the related work is presented in Section V. Section
VI concludes the paper, pointing out some possible directions for future work.
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2 Problem Statement

In this section we define the problem of data gathering with accuracy requirement more con-
cretely. We first discuss what kind of accuracy requirements are suitable for sensor network
applications, and then define data gathering as a multiobjective optimization problem.

2.1 Definition of Accuracy Requirement

2.1.1 What is Accuracy?

We define two types of accuracy: measurement accuracy and system accuracy. Measurement
accuracy is the accuracy realized by measured data at each sensor. Each sampled data is
merely an estimate of the reality and it usually contains error due to noise, sensing capability,
faulty sensors, and so on. Measurement accuracy is out of the scope of this paper, since
we cannot improve it without making further assumptions on the statistical properties of
data, and we choose not to do that. In fact, a number of previous work[3, 18] make such
assumptions to improve measurement accuracy; typically by adding more samples while
assuming noise is independent and identically distributed. However, these assumptions are
often difficult to validate and can be a source of another inaccuracy when they are incorrect.

On the other hand, system accuracy is related to the post-processes after measurement.
Approximation and compression for the sake of efficiency can affect the system accuracy by
introducing errors. It may be more understandable to think it as “degree of fidelity to sensor
readings”. In other words, we can achieve perfect system accuracy if we collect all measured
data from sensors, but only with sacrificing the efficiency. In this paper, we will only focus
on the system accuracy and refer to it simply as the accuracy.

2.1.2 Accuracy Metrics

MSE (mean square error) is one of the most frequently used accuracy metrics in the literature
of modeling, approximation, and compression in sensor networks, due to its simplicity and
theoretical tractability. However, one problem with MSE is that it is not very sensitive to
outliers. Suppose a fire detection application that uses temperature sensors. We can imagine
two extreme cases having the same MSE. The first case is that the gathered data are error-
free1 for all sensor nodes except the one that contains a huge error and a fire is not detected
as a result. The other case is that the gathered data are slightly deviated from the sensor
readings for all nodes, and thus the fire is successfully detected. Even though they have the
same accuracy in terms of MSE, the quality (or practical significance) is totally different.

As an alternative metric, we propose maximum absolute deviation (MAD). Given mea-
sured data (v1, ..., vn) and its approximation (v̂1, ..., v̂n), MAD is defined as maxi{|v̂i − vi|}.
Different from MSE, MAD is sensitive to outliers. As seen in the above example of fire detec-
tion application, sensor network applications are often interested in deviating data points2.
Sometimes these deviating data points may reflect the events of applications’ interest, or

1With regard to system accuracy defined in 2.1. i.e. exactly same as the measured data.
2We will use the term “deviating data points” and avoid using “outliers”. It is because outliers imply as

if they are just a nuisance, whereas they may reflect interesting phenomena and should not be neglected.
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Sensor nodes are separated 

geographically into disjoint groups

Gateway sends data to remote host

Remote host Gateway

Leader Group

Leader nodes form a routing tree

that has the gateway as its root.

Sensor field

Sensor node Leader communicates with

all sensor nodes in the group

Figure 1: One common configuration of sensor network

they may be due to faulty sensors, which is also something applications need to know. These
are the reasons why we believe MSE is not always a good metric of accuracy, specifically in
the sensor networks context, and why we choose MAD instead.

2.2 Problem Definition

The ultimate goal of the problem is to construct and retrieve a data representation R that
yields v̂i, an approximation of vi (measured value of i-th sensor) for all i. Here we first
make some assumptions to define the problem space more specifically, and formulate it as a
multiobjective optimization problem with a constraint and objective functions.

Assumptions

Figure 1 shows the configuration of the sensor network assumed in the problem. Sensor
nodes are geographically separated into disjoint groups, each of which has a leader node.
To define the group, we can use any topology control methods such as [1, 20]3. One of the
group leaders acts as a gateway to the remote host, which is outside of the sensor field. The
gateway node communicates with the remote host via a wireless link.

Each node is static and knows its location in the global coordinate system. The leader
of each group knows the locations of all the member nodes, and the remote host knows the
locations of all nodes. Network topology is the same as “Cluster Tree Network” in ZigBee[22],
where every sensor in the group has a link with its leader and the leaders consist a multi-hop
routing tree rooted at the gateway. Each leader communicates with its parent and children
in the routing tree. Non-leader nodes communicate only with their own leader.

All sensor nodes are battery-driven and communication is a dominant factor of energy
consumption. The required energy for transmitting data is proportional to the size of data.

Constraints

The constraint is to satisfy the given accuracy requirement. As we discussed earlier, an
application specifies the accuracy requirement in the form of maximum tolerable MAD ε.
By using the notations introduced above, the constraint is described as ∀i, |v̂i − vi| ≤ ε.

3There is no restriction on the size of each group, but it should be larger than three for the proposed

algorithm to run more efficiently.
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Objective Functions

The objective function of the problem is energy efficiency. We define two different metrics
of efficiency: “size of data representation” and “amount of internal communication”. Both
of them are to be minimized. Size of data representation |R| is nearly proportional to
the energy consumed at the gateway node. Amount of internal communication is the total
communication within the network while constructing R. It is related to the total energy
consumed at all nodes. Note that these two metrics are not independent, but optimizing one
does not necessarily optimize the other.

3 Data Gathering with Accuracy Requirement

In the previous section, we have formulated the problem of data gathering with accuracy
requirement. However, it is an NP-hard problem even in a simpler version in which the
objective is to solely minimize the size of data representation[7]. It motivates us to consider
an approximation algorithm that yields reasonably good suboptimal solutions. In this sec-
tion, we describe one of such algorithms that is distributed and uses a custom hybrid data
representation based on linear regression.

3.1 Approach and Outline of the Algorithm

Figure 2 concisely shows the idea of our approach. As a medium of compacting the size
of data representation, we use a plane to approximate multiple data points located in two
dimensional space. The data points whose approximation errors fall within the accuracy
requirement are represented by this plane. Other “deviating” data points are explicitly
represented. The resulting data representation is a hybrid of those two.

A motivation for using planes is to capture spatially correlated structure, which is often
the case, in the simplest possible way. However, more importantly, spatial correlation is not
mandatory for the algorithm to work correctly. Even though the data points have no spatial
correlation, the accuracy requirement is still satisfied. Similarly, sensor grouping and routing
tree do not affect the correctness, either. All of them only affect the efficiency, depending
on the underlying statistical property of the field which we neither know nor assume.

The proposed distributed algorithm constructs this hybrid representation in an efficient
and scalable way. The outline is as follows. A regression plane is calculated at each group
to approximate the data points in the group. As the coefficients of the planes are forwarded
from the leaf groups toward the root, some of the planes may be combined together to a
single plane, to make more compact representation. The resulting coefficients are sent back
to each group to collect deviating data points, so that the representation can satisfy the
application-specified accuracy requirement.

In the rest of the section, first we briefly describe linear regression, and then the detail
of the algorithm follows.
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Figure 2: Illustration of our approach. In the proposed hybrid representation, data points
(xi, zi) are approximated by (xi, ẑi) except (x3, z3), which is a deviating data point and
represented explicitly.

3.2 Linear Regression

Linear regression is a common statistical technique to model distributed data points by
a simple linear equation expressed as f(x) = aTx′ where x′ = [xT 1]T . Given the data
set {xi, vi} (1 ≤ i ≤ n), where xi is the location and vi is the measured value of sensor
si, least squares estimator (LSE)[9] of the coefficient vector a is â = (HTH)−1HTv where
v = [v1 ... vn]T and H = [x′

1|...|x
′

n]T . For the sake of brevity, we assume two dimensional
space and x′

i = [xi yi 1]T . In this case, â is calculated by using the following matrix and
vector

HTH =




Sxx Sxy Sx

Syx Syy Sy

Sx Sy n



 , HTv = [Sxv Syv Sv]
T (1)

where Sx =
∑n

i xi, Sxy =
∑n

i xiyi and similarly for others.
One thing worth mentioning here is that all of the elements in these matrix and vector

can be updated in an incremental manner by adding/removing data points, since they are
simple linear and quadratic summations. Since HTH is symmetric, â is determined by nine
distinct values (six for HTH and three for HTv) in the above case, or generally d(d+1)

2
+ d

values when |x′| = d. We refer to these set of values as “SumSet”. By this fact, to obtain
a new regression plane by combining multiple ones, we only need the SumSet of each of
them, instead of each individual data point. We extensively use SumSet for communications
between groups during plane combination process, which we explain next.

3.3 Distributed Algorithm

The algorithm consists of three steps, all of which take place at the leader node of each
group. The first step, “linear regression with filtering”, calculates a plane that approximates
the data points in each group. It is executed individually at each group and the leaf groups
send the resulting planes to their parents. The second step, “combine planes”, attempts to
combine some of the planes into one to make the representation more compact. It is executed
only at non-leaf groups upon receiving the results from all of the child groups. At the end of
this step, the results are sent upwards and the parent group executes the same step. Those
results are also sent downwards to trigger child groups to execute the third step, “collect
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deviating data points”. In the third step, each group finds deviating data points and sends
them upwards to the root.

Here we explain each of these three steps in detail.

Linear Regression with Filtering

Locally at each group, the group leader collects all the data from its members and calculates
a plane that approximates them. Along with the calculation, deviating data points are
filtered out and reserved for separate, explicit representation.

The procedure is described by the following pseudocode:

Linear-Regression-with-Filtering

1 K ← {s1 . . sl} ✄ Sensors in the same group
2 repeat

3 fK ← Regression(K) ✄ Calculate regression plane
4 m← arg maxi |fK(xi)− vi| ✄ Find maximum deviating point
5 dm ← |fK(xm)− vm|
6 if dm > ε do ✄ ε: Application-specified error bound
7 K ← K\{sm} ✄ Filter out sm

8 until dm ≤ ε

The procedure starts with linear regression for all data points (line 1). On each iteration, the
point which deviates the most from the plane is identified (line 4). If the deviation is more
than ε (line 6), the error bound specified by the application, the point is filtered out (line
7) and the regression plane is recalculated for the rest of the data points. Iteration finishes
when all data points (except the ones already filtered out) deviate less than ε (line 8). In the
end, all data points except the excluded ones are approximated by the plane within error ε.

Note that this filtering process is redone later in the “collect deviating data points”
procedure, and so there is no problem if it is omitted here. Nevertheless, we include it here
in order to let the resulting plane reflect the trend of the majority so that it can get more
chance to be combined with adjacent ones in the “combine planes” procedure explained next.

Combine Planes

At each non-leaf group, upon receiving the planes (in the form of SumSet) from all children,
the group leader attempts to combine multiple planes into a single one to make the resulting
representation more compact. Figure 3 shows the idea.

The procedure is described by the following pseudocode:

7



Combine-Planes(G1 . . GN)

1 S ← {G1 . . GN} ✄ Children groups and myself
2 while S 6= φ do

3 T ← S ✄ T : Next subset of planes to be combined
4 repeat

5 fT ← Regression(T )
6 xT ← Centroid(T ) ✄ Centroid of group leaders in T

7 n← arg maxi |fi(xT )− fT (xT )| ✄ fi: Plane for group Gi

8 dn ← |fn(xT )− fT (xT )|
9 if dn > ε do

10 T ← T\{Gn} ✄ Eliminate Gn

11 until dn ≤ ε

12 S ← S\T ✄ Output T , continue for the remaining groups

The procedure repeatedly searches the subset of groups whose planes are “similar” and
combines those planes. First we calculate a regression plane by combining all planes from
child groups (line 5)4. Then one of the planes that deviates the most from the combined one
is eliminated in an iterative manner. In order to evaluate the distance between planes in a
computationally efficient yet practically sufficient way, we use the difference of values at the
centroid of group leaders (line 6, 7). For the plane that deviates the most, if the difference
is more than ε, it is eliminated from the subset T (line 10)5.

After finishing this procedure, SumSet for the combined plane that contains the current
group is sent upward to its parent for further attempts of combination. All the other com-
bined planes are finalized at this point, and their coefficients are sent both upwards to the
root (to be a part of the representation) and downwards (to collect deviating data points).

1G

2G

3G

4G

5G

{(f1, 1), (f2, 2), (f3, 3), (f4, 4), (f5, 5), ...}R = 

{(fa, 1, 2, 5), (fb, 3, 4), ...}R = 

Representation

before combining planes

Representation

after combining planes
(Parent)

Leader node

Non-leader node

Figure 3: Combine planes. Each fi is a representation of the plane, namely a list of coeffi-
cients, for group Gi. fa and fb are the ones for combined planes.

4This new plane can be calculated efficiently using the SumSet uploaded from each group.
5The elimination threshold does not need to be ε, but it is rather for simplicity. The optimal threshold

value, or the optimal combination of planes, depend on data’s statistical properties and group configuration,

and finding them requires an exhaustive search. Note that the accuracy requirement is satisfied even for this

presumably suboptimal criteria, because of “collect deviating data points” procedure.
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Collect Deviating Data Points

At each group, after the plane for the group is finalized, the deviating data points that
cannot be approximated by the plane within the error bound are collected. This procedure
is triggered by receiving the coefficients, and consists of a simple iteration shown below:

Collect-Deviating-Data-Points

1 D ← φ ✄ D: Set of deviating data points in the group
2 for i← 1 to l do ✄ For each data point
3 di ← |f

′

K(xi)− vi| ✄ Re-calculate the deviation with the new plane f ′

K

4 if di > ε do

5 D ← D ∪ {vi} ✄ Add vi to the set of deviating data points

After this procedure, the set of deviating data points D is sent upwards to the root.

3.4 Further Optimization

The proposed algorithm uses messages passed back and force between group leaders, trying to
combine planes for more compact representation. However, it may not be efficient when the
accuracy requirement is extremely tight that most of the data points cannot be approximated
by the planes. To circumvent this problem, one idea is to give up fitting a plane when it
represents only a small number of data points in the group6. For such “poor-fit” groups, all
the data points are sent up to the root, just like treating all as deviating data points.

In this optimized version, “linear regression with filtering” procedure is followed by the
step of deciding if the group is poor-fit or not. “Combine planes” procedure is skipped for
poor-fit groups. By these modifications, we can remove exchange of SumSet and coefficients
for poor-fit groups. It is expected to reduce the total amount of internal communication in
case of tight accuracy requirement, without adversely affecting the size of data representation.

4 Evaluation

To evaluate the efficiency of the proposed algorithm, namely how well it exploits the cost-
accuracy trade-off in realistic environments, and also to show it satisfies an accuracy require-
ment, we perform simulation experiments using actual environmental data traces.

4.1 Simulation Details

We use the data excerpted from “SMEX02 SSM/I Brightness Temperature Data, Iowa”,
publicly available from [16]. This data set provides brightness temperature data obtained by
the Special Sensor Microwave/Imagery (SSM/I) satellite. For simulation experiments, we
assume a sensor is located at each measured location in the data set. 155 sensor nodes are
geographically divided into 16 groups and the node closest to the gravitational center of the

6In the experiment, we arbitrarily chose four as the threshold. Note that it should be at least three since

any three points in three-dimensional space determine a plane.
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Figure 4: Visualization of proposed data representation. Small dots are measured data and
approximated by the planes. Large dots are deviating data points and represented explicitly.
The representation is more complex in the tight accuracy requirement (left) than in the loose
one (right).

nodes in the group is chosen as the leader. Each group contains 7-10 sensor nodes. We also
determine the multihop routing tree and its root node as the gateway to the remote host.

The performance of the proposed algorithm is compared to the naive method, in which
all sensors send their own data to the root along the routing tree without any sophisticated
data processing. We also evaluate “Regression only (w/o plane combination)” method that
employs only linear regression and neither combines planes nor collects deviated data points.
Since the accuracy is not controllable in this method, we obtained the resulting accuracy
from the produced representation. We chose this method as one of the references since it is
equivalent to what “Distributed Regression”[6] yields, which will be discussed later.

The metrics of the efficiency are the size of data representation and the amount of internal
communication, as discussed in section 2.2. On evaluating the size of data representation,
each of the integer values contained in the representation, which include ID of groups and
sensors, are assumed to be 2 bytes. Other non-integer values are assumed to be 4 bytes
for each. As for the amount of internal communication, we used “byte.length” as the unit,
where 1 byte.length is equivalent to transmitting 1 byte to 1 unit length.

4.2 Results and Discussion

Figure 4 is a visualization of the resulting representation for two different accuracy require-
ments. When the requirement is tight (Fig.4, left), there are more planes used and larger
number of explicitly represented data points, compared to the case of loose requirement
(Fig.4, right). All approximated data points successfully satisfy the specified accuracy re-
quirement.

Figure 5 shows the size of data representation when varying accuracy requirements. The
size is constant in the naive method regardless of varying accuracy requirements. The pro-
posed method is comparable to that when the absolute accuracy is needed (ε = 0), but it
exhibits a significant reduction of size as the accuracy requirement gets looser. “Regression
only (w/o plane combination)” appears as a point, which is located on ε = 1.70, since the

10



0.0 0.5 1.0 1.5 2.0

0

200

400

600

800

1000

1200

Naive

S
iz

e 
o
f 

re
p

re
se

n
ta

ti
o

n
 (

b
y
te

)

Regression only

(w/o plane combination)

Proposed

Accuracy requirement (Error bound    )εAccuracy requirement (Error bound    )ε

Figure 5: Size of data representation for vary-
ing accuracy requirements.

0.0 0.5 1.0 1.5 2.0

0

200

400

600

800

1000

1200

1400

Naive

In
te

rn
al

 c
o

m
m

u
n

ic
at

io
n

 (
b

y
te

.l
en

g
th

)

Regression only

(w/o plane combination)

(w/o optimization)

Accuracy requirement (Error bound    )εAccuracy requirement (Error bound    )ε

Proposed
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for varying accuracy requirements.

accuracy is not explicitly controllable in this method. For the data traces used for this
simulation, the size of data representation by the regression-only method is larger than the
one by the proposed algorithm with the equivalent accuracy requirement. This difference is
mainly due to the redundancy among the regression planes since the regression-only method
does not combine planes even if fewer number of planes could approximate the data points
equally well.

Figure 6 shows the amount of internal communication. The naive method is shown as
a flat line again by the same reason as above. Similarly as the size of data representation,
the proposed method exhibited a reduction for looser requirements. However, it is very
close to the naive method when the accuracy requirement is tight. In fact, as shown in the
figure, it is worse than the naive method if the optimization described in section 3.4 are not
applied. “Regression only (w/o plane combination)” is shown as a point again, but required
only a small amount of internal communication, since it only needs one-pass to construct a
representation, whereas the proposed method requires two-pass.

Note that the results shown here are only valid for this particular data set and particular
sensor configurations. Since we do not make any assumptions on statistical properties of
data and/or noise, and neither we do not have any strong restrictions about the sensor
grouping and routing topology, different data set and different sensor configuration may yield
significantly different results. For example, if the simulation were done on a totally random
data set with no spatial correlation, the proposed algorithm probably cannot exploit the
accuracy requirements effectively for efficiency, since we implicitly expect data to have some
spatial correlation when we fit planes. However, such data cannot be gathered efficiently in
any ways, and we claim the proposed algorithm to achieve reasonably good performance in
any common cases in sensor network applications.
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5 Related Work

The idea of using linear regression to generate efficient data representations has been intro-
duced to sensor networks by Guestrin et al.[6], who propose a distributed algorithm of spatial
data modeling. Their approach views accuracy as a side effect of how well the linear regres-
sion works, and in effect they cannot explicitly control accuracy. In contrast, in our problem
definition, an application-specified accuracy requirement must be met in any cases, and the
proposed algorithm realizes this. Some of the earliest work in data fusion protocols[8, 10]
are also different from our work in this capability of explicit control of accuracy, though they
share the idea with our work to conserve and/or balance energy consumption by gathering
data to fusion centers where data compression possibly takes place.

There is a variety of previous work addressing approximation and summarization of data
in sensor networks. For example, Considine et al.[4] propose an approximated aggregation
algorithm in the presence of node/link failure. Shrivastava et al.[14] propose an efficient
technique which obtains approximate quantiles such as the median, which usually require
the collection of all data for the exact value. They also did a theoretical analysis and
gave an upper bound to the approximation error. However, many of the studies focus
on approximating aggregated data via operators such as SUM, AVG, and MIN/MAX. In
contrast, our work focuses on controlled accuracy in representing the entire data set.

Adaptive sampling in the context of field estimation is also analogous to our work.
Backcasting[18] is one of the algorithms that first collects small subset of data to get rough
estimate of the field and then refines it by activating additional sensor nodes to achieve a
target accuracy. However, it assumes zero-mean Gaussian noise and focuses on a limited
class of field that contains a certain type of boundaries inside. Our work is more widely ap-
plicable since we have no assumption on noise and no limitation on the characteristics of the
field. Fidelity driven sampling[2] is also similar to our work in requiring no prior knowledge
about data and achieving explicitly specified accuracy goal, but they assume mobile sensor
nodes that they can maneuver for the purpose of obtaining higher resolution from a certain
area in the field.

Some of approximation and summarization schemes conserve energy by estimating the
sensor values and thereby reduce the need for communication. In the BBQ system, Desh-
pande et al.[5] propose a centralized scheme that uses a statistical model in a central server
to reduce the needed sensor network activity. In an extreme case, a query could be answered
without any access to sensor nodes. As with our scheme, BBQ meets application-specified
accuracy requirements, however, based on the validity of the statistical model. Boulis et
al.[3] take a similar approach, but in a distributed manner in which each node constructs a
statistical model. In both schemes, the accuracy of the results depends intimately on the
validity of the statistical model itself. On the other hand, our standpoint is that it is unre-
alistic that we can assume and validate statistical models which strictly satisfy the specified
accuracy requirement in any situations. Thus we chose not to assume such models in the
proposed algorithm.
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6 Conclusion and Future Work

We have formulated data gathering problem with accuracy requirement and presented a
distributed algorithm. The proposed algorithm accepts an application-specified accuracy
requirement and computes a compact data representation for spatially distributed sensor
data to meet that requirement. Our simulation experiments using real environmental data
set demonstrate that the algorithm meets the accuracy requirements, and does so efficiently
in terms of the size of data representation and the amount of internal communication. The
algorithm exhibits good characteristics in efficiently exploiting the cost-accuracy trade-off.
Since we don’t need any assumptions on statistical properties of data, we believe the al-
gorithm can serve as a general-purpose mechanism for data gathering-type sensor network
applications.

Possible future work includes further evaluation of the proposed algorithm for a range of
realistic environments and data sets. Examples of possible broadening include more detailed
analysis of efficiency by taking into account the communication overhead and hardware
characteristics. It may also contain the reconsideration of efficiency metrics, such as the
balance of energy consumption among the nodes. Another possible direction includes the
improving fault resilience of the algorithm in case of communication failure and node failure.
We can borrow robust algorithms for constructing groups and routing tree, but we need to
more carefully design the algorithm to deal with failures in a graceful manner.
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