UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Framework for Opportunistic Abductive Strategies

Permalink
https://escholarship.org/uc/item/3bz8c4vy

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Johnson, Todd R.
Smith, Jack W.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3bz8c4v5
https://escholarship.org
http://www.cdlib.org/

A Framework for Opportunistic Abductive Strategies*

Todd R. Johnson

Laboratory for Artificial Intelligence Research
Dept. of Computer and Information Science
The Ohio State University
2036 Neil Avenue Mall
Columbus, Ohio 43210
Email: ty@cis.ohio-state.edu

Abstract

Any single algorithm for abduction requires specific kinds of
knowledge and ignores other kinds of knowledge. A knowl-
edge-based system that uses a single abductive method, is re-
stricted to using the knowledge required by that method. This
makes the system brittle, because the single fixed method can
only respond appropriately in a limited range of situations
and can only make use of a subset of the potentially relevant
knowledge. In this paper, we describe a framework from
which abduclive strategies can be opportunistically con-
structed to reflect the problem being solved and the knowl-
edge available 1o solve the problem. We also describe ABD-
Soar, a Soar-based implementation of the framework, and
demonstrate its behavior.

Introduction

Abduction, finding a best explanation for a set of data, is an
important part of many knowledge-based (KB) systems,
particularly those concemed with diagnosis. In recent years,
several different algorithms for doing abduction have been
devised. Any single algorithm for abduction, however, re-
quires specific kinds of knowledge and ignores other kinds
of knowledge. Hence, a KB system that uses a single abduc-
tive method, is restricted to using the knowledge required by
that method. This makes the system brittle, because the sin-
gle fixed method can only respond appropriately in a limited
range of situations and can only make use of a subset of the
potentially relevant knowledge. To remedy this we have en-
deavored to develop a framework from which abductive
strategies can be opportunistically constructed at run-time to
reflect the problem being solved and the knowledge avail-
able o solve the problem. In this paper, we present this
framework and describe ABD-Soar, an implementation of
the framework. We show how ABD-Soar can be made 1o be-
have like the abductive strategy used in Red (Josephson, et
al., 1987), a system for red cell antibody identification. Fi-
nally, we discuss the differences between ABD-Soar and 2
tools for abduction: Peirce (Punch 111, et al., 1990), and Mol-
e(Eshelman, 1988).

This work contributes both to our understanding of KB
systems and abduction. First, it illustrates how the problem-
solving capabilities of KB systems can be increased by us-
ing mechanisms that permit the use of all relevant knowl-
edge. ABD-Soar requires little domain knowledge to begin
solving a problem, but can easily make use of additional
knowledge to solve the problem better or faster. Second,
the framework can be used to provide a flexible abductive
problem-solving capability for KB systems. Third, ABD-
Soar gives Soar an abductive capabilily such that many sys-
tems wriltten in Soar can begin to solve abductive problems.

* This research is supported by National Heart Lung and Blood
Institute grant HL-38776, and National Library of Medicine grant
LM-04298.

760

Jack W. Smith

Division of Medical Informatics
The Ohio State University
571 Health Sciences Library
376 W. 10th Ave.
Columbus, Ohio 43210
Email: smith.30@magnus.ohio-state.edu

Fourth, the framework provides a very simple and general
mechanism for abduction that is capable of generating the
behavior of various fixed methods. Fifth, ABD-Soar can be
used to experiment with different abductive strategies, in-
cluding variations of existing strategies and combinations of
different kinds of strategies. Finally, the framework pro-
vides guidelines for building abductive systems because it
provides a theory of abduction and specifies the kinds of
knowledge needed to do abduction.

The Abductive Task

Most Artificial Intelligence research on abduction is con-
cemed with strategies for a type of abduction called hypoth-
esis assembly. In hypothesis assembly, a complete
explanation of the data must be formed by composing a
number of smaller explanations. For example, in medical di-
agnosis the data to be explained are the signs and symptoms
of the patient. If the patient has multiple diseases, the best
explanation for the data will consist of all of the diseases
present. Each disease might only explain a subset of the
data, but taken together they must explain all of the data.

Most models of abduction can be described using four cri-
teria to dcll‘ ine the best explanation: coverage (the number of
explanata’ explained or covered by the explanation), belief
(some measure of plausibility), parsimony, and consistency
(Josephson and Goel, 1988). The models vary in their inter-
pretation of these criteria. For instance, parsimony can be
defined in terms of minimal cardinality, i.e., the fewest num-
ber of component hypotheses, or in terms of irredundant
covers, i.e., an explanation in which no proper subset of the
component hypotheses can explain the data. Belief is also
subject to different interpretations. Some models view the
most plausible explanation as that with the highest overall
plausibility. Other models view the most plausible explana-
tion to be that in which each component hypothesis is the
most plausible explanation for at least one datum (this has
been called best-for-some (Bylander, et al., 1988)). In gen-
eral, there is probably no single model of abduction appro-
priate for all abductive tasks. Ultimately, the goals of the
specific abductive task and characteristics of the task do-
main define what counts as a best explanation.

An analysis of the computational complexity of abduction
has shown that the problem is, in general, computationally
intractable (Allemang, et al., 1987). There are, however,
some conditions under which the problem is computational-
ly tractable. Bylander, et. al. writes:

Our primary conclusion is that very restrictive condi-
tions must be satisfied for abduction 1o be tractable:
determining the plausibility and explanatory cover-

I An explanatum is a datum to be explained. Explanata are all of
the data to be explained.

mailto:smith.30@magnus.ohio-state.edu

age of hypotheses must be tractable, there cannot be
substantial incompatibility and cancellation intcrac-
tions between hypotheses, and plausibility compari-
son between composite hypotheses must be logically
weak. Specific domains may escape some of these
requirements if composite hypotheses are guaranteed
to be small or if strong domain knowledge can rule
out most individual hypotheses. (Bylander et al.,
1988)

Thus, it is very unlikely that any single strategy for abduc-
tion is appropriate 10 all tasks. The efficient solution of most
real-world abduction problems requires the careful applica-
tion of domain knowledge to transform the problem into ei-
ther one that is tractable or one that is small enough so that
tractability concerns are unimportant. Hence, it is very im-
portant to build systems that can make use of all of the avail-
able knowledge when solving abductive problems.

Specifying Problem-Solving Methods

Before we describe the framework for abduction, we must
first explain how we are going to specify it. Here we address
this in the context of the general problem of specifying prob-
lem-solving methods.

One view of a problem-solving method is that it consists
of a set of operators (operations on data) with preconditions
and knowledge that indicates the order in which to apply
those operators. Since we desire an opportunistic system, we
need to be able to specify a set of operators without neces-
sarily specifying a complete ordering of those operators. An
opportunistic system works by enumerating possible opera-
tors to apply to the immediate situation and then selecting
one of those operators based on the current goal and situa-
tion. Furthermore, a flexible system must be capable of gen-
erating or using additional control knowledge. Thus, if a
system must decide between several operators, it must be
possible for the system to engage in complex problem-solv-
ing to determine which operator is best.

To achieve these results we have been using the problem-
space computational model (PSCM) (Newell, 1990) to spec-
ify methods. In the PSCM, all problem-solving is viewed as
search for a goal state in a problem-space. Knowledge about
when operators are applicable o a state can be specified in-
dependent of knowledge about which operator to select. Op-
erator sclection knowledge, called search conitrol
knowledge, is expressed in terms of preferences for or
against applicable operators. If at any time during the prob-
lem-solving the search control knowledge is insufficient to
indicate which operator to select, a subgoal is set up o gen-
erate additional knowledge so that a single operator can be
selected. This subgoal is achieved by searching another
problem-space. Operators can either be implemented by di-
rectly available knowledge or by using an operator-specific
problem-space. Implementation in a problem-space is simi-
lar to using a subfunction to implement an operator in lisp.

The Framework

The general abductive framework can be described by a sin-
gle problem-space its goal, the knowledge content of its
states, the initial state, operators, and search control knowl-
edge. Following the description of the problem-space, we
describe the minimal knowledge required to use the frame-
work.

State Description: The state contains knowledge of expla-
nata, explanations and an indication of the explanata they
explain, knowledge about inconsistent or redundant objects,

761

information about whether an explanation is the only possi-
ble way to explain an explanatum, and knowledge about
whether the implications of a newly added object have been
processed. In addition, any other information necessary for
solving the problem can be kept in the state.

Initial State Schema: The initial state need contain only
the explanata. Additional information can be provided.

Desired State Schema: The desired state must meet 6 con-
ditions: 1) The explanation must be complete, i.e., all the ex-
planata must be explained. 2) The hypotheses in the
explanation must be at the desired level of detail for the
problem being solved. For example, in diagnosis a disease
hypothesis must be at a level of detail such that a therapy can
be recommended. 3) No part of the explanation can be re-
dundant. 4) No part of the explanation can be inconsistent.
5) All parts of the explanation must be certain. 6) All parts
of the explanation must be processed. That is, the implica-
tions of adding the object and its effect on the rest of the ex-
planation must have been considered.

There are 7 operators in the abductive space. The last 3
are used to determine the logical implications of adding an
object to the explanation. 1) Cover explanatum is proposed
for each explanatum that is not yet explained by a hypothesis
(the explanation is not yet complete). Its goal is to add to the
composite explanation one or more hypotheses that explain
the explanatum. 2) Resolve-redundancy is proposed when-
ever there are redundant objects in the explanation. Its goal
is to make the explanation irredundant. 3) Resolve-inconsis-
tency is proposed whenever there are inconsistent objects in
the explanation. Its goal is to make the explanation consis-
tent. 4) Determine-certainty object is proposed for each
uncertain object in the explanation. The operator is success-
fully applied when the object is deemed to be certain, or else
the object is deemed to be not present in the explanation. 5)
Determine-accounts-for hypothesis is proposed for each
new hypothesis. Its goal is to determine what explanata the
hypothesis can account for. 6) Mark-redundancies object
is proposed for each new object. Its goal is to indicate which
objects in the explanation are redundant with the newly add-
ed object. Hypotheses that offer to explain an identical ex-
planatum (or explanata) are considered redundant unless
other knowledge indicates that they are not. 7) Mark-incon-
sistencies object is proposed for each new object. Its goal is
to indicate which objects are logically inconsistent with (or
contradict) the newly added object.

Search control knowledge is specified as 1) Determine-
accounts-for is better than all other operators. 2) Resolve-re-
dundancy, resolve-inconsistency, and determine-certainty
are indifferent to each other. [Note that an order can still be
imposed on these operators by preferring one over another
for a particular domain.] 3) Mark-redundancies and mark-
inconsistencies are equal to one another and better than all
other operators except for determine-accounts-for.

This is the minimum search control needed to ensure cor-
rect operation of the abductive mechanism. However, this
search control only specifies a partial ordering of the opera-
tors. Any control decisions that can be based on domain-de-
pendent knowledge have been left unspecified. This allows
the designer of the system to add appropriate search control
for the task being done. For example, there is no knowledge
about what to do when multiple cover operators tie since this
decision can be based on domain-dependent knowledge.

To use the framework, a minimum of 6 kinds of knowl-
edge is required: (1) knowledge mapping each possible ex-
planatum to potential explanations (to implement cover); (2)
knowledge mapping an explanation to the explanata it can
explain (to implement determine-accounts-for); (3) knowl-

edge to determine the certainty of the explanations (to im-
plement determine-certainty); (4) knowledge about the
consistency of the model (to implement mark-inconsisten-
cies); (5) knowledge about redundant objects (to implement
mark-redundancies); and (6) additional search control
knowledge to sequence the operators.

As a result of the operators and search control, the basic
method is to pick an explanatum to cover, add one or more
explanations for that explanatum, determine what each new
explanation explains, and then pick another (unexplained)
explanatum to explain. This continues until all explanata are
explained. If at any time the model becomes inconsistent, re-
dundant, or uncertain, an operator is proposcd to resolve the
problem. At that ime, a decision must be made about wheth-
er to fix the problem or continue covering explanata.

Implementing the Framework: ABD-Soar

ABD-Soar is a Soar-based implementation of the abductive
framework. Soar is used because it directly supports the
PSCM; however, the framework does not absolutely require
Soar—other architectures that support PSCM-like function-
ality can also used. ABD-Soar supplies all of knowledge
specified in the framework: knowledge to propose the ab-
ductive operators and detect their successful application,
and the minimal search control specified in the framework.
This knowledge is encoded as a set of Soar productions that
can apply to any problem-space. This means that the com-
plete body of abductive knowledge can be brought to bear
during any problem-solving activity. ABD-Soar also pro-
vides default implementation knowledge for cover, resolve-
redundancy, and resolve-inconsistency and a default method
for generating additional search control knowledge.

The default knowledge for operator implementation is en-
coded in three problem-spaces with names identical to the
operators they implement: cover, resolve-redundancy, and
resolve-inconsistency. Cover generates possible explana-
tions and then applies knowledge to select one of the candi-
dates. The candidates are generated in response to an explain
operator that must be implemented using domain specific
knowledge. Resolve-redundancy and resolve-inconsistency
remove each redundant/inconsistent object until the expla-
nation is irredundant/consistent. If multiple irredundant/
consistent explanations are possible, then all are found and
the best one is used. This makes use of lookahead and the
evaluation function described below. Any explanation that
is an absolute essential (i.c., the only possible explanation
for an explanatum) will not be removed. Also, it is possible
to resolve a redundancy by explicitly indicating that partic-
ular redundant objects are not a problem.

The default method for generating additional search con-
trol knowledge is to use lookahead and an evaluation func-
tion to determine which operator to take when multiple
operators are applicable. This is implemented in two prob-
lem-spaces: find-best and evaluate-state. Find-best evalu-
ates each operator and selects the operator with the best
evaluation. To evaluate an operator find-best applies the op-
erator to a copy of the original state and then continues to do
problem-solving from that state until a state is found that can
be evaluated. The default evaluation function for evaluate-
state is a summation of the number of explanata left to ex-
plain, the number of explanations, the number of inconsis-
tent objects, the number of explanata explained by
inconsistent explanations, the number of redundant objects,
and the number of uncertain objects. The model with the
lowest evaluation is chosen as the best alternative.

ABD-Soar uses irredundant covers as the parsimony cri-

762

Red Cells
1 2 3 4
(r)1+ | (2)3+ | ()14 | (r5)14
0 J+] 0 0

Anti-K explains 2 and 13, ie, the 3+ and 14 on red cell 2
Auti-Fy¥explainsrl, of, and 15, ic, the 14 on red cells 1,3, and 4
Anti-Cexplains rl and rd, ie, the 1+ onred cells 1 and 3

Anti-N explains r4, ic, the 1+ on red cell 3

0 reactions do not need Lo be explained

Figure 1: Red cell antibody identification case

terion; however, when the default evaluation function is
used the system also uses minimal cardinality to choose be-
tween compeling composite explanations. The belief crite-
rion (by default) is best-for-some since the method attempts
10 pick the best explanation for a finding being covered. In
the absence of plausibility ratings, the evaluation function is
used to rate competing explanations for a finding and the
one with the best evaluation is selected.

To use ABD-Soar the designer of a system must provide
knowledge to implement explain and determine-accounts-
Jor. When necessary, knowledge must also be provided for
mark-inconsistencies, mark-redundancies, and determine-
certainty. Given just this knowledge and the built-in de-
faults, abductive problems can be solved. An example of the
behavior produced under these conditions is given below in
the section on demonstrating ABD-Soar.

Optionally, the designer can choose to add additional
search control knowledge and/or knowledge to override any
of the default knowledge. Adding knowledge beyond the
minimum requirements can greatly increase the efficiency
of the abductive system. ABD-Soar is completely open with
respect to the addition of new knowledge. Additional oper-
ators can be added to any space. New ways of implementing
existing operators can be added. Search control knowledge
can be added so that lookahead can be avoided. Further-
more, the additions can be made general so that they work
for all 1asks, or specific so that they only work for a single
task or problem. Every addition of knowledge will alter
problem-solving behavior. In this framework the available
knowledge shapes the strategy, unlike the traditional ap-
proach where strategies must be designed to use pre-speci-
fied kinds of knowledge.

Demonstration of ABD-Soar

The problem-solving behavior of ABD-Soar changes ac-
cording to the task and the knowledge available to solve the
task. Here we describe the default behavior of the system
and show what knowledge must be added so the system will
behave similar to Red’s strategy for abduction. The first ex-
ample illustrates the system’s default behavior. The second
example illustrates behavior similar to that of Red.

Both of the examples use the red cell antibody identifica-
tion case shown in Figure 1. The details of the domain are
unimportant—only the knowledge of what each antibody
explains is necessary to understand the examgles. The cor-
rect answer for this case is anti-K and ant-Fy4.

Example 1: Default Behavior

To solve the case in Figure 1 using default behavior requires
a domain space with an initial state containing the reactions
(the explanata) and knowledge to implement explain for
each reaction and determine-accounts-for for each antibody.

Explain is implemented using a single production for each
reaction and explanation pair. These are of the form: if trying
to explain 1+ on cell 1 then consider Anti-Fy3, Determine-
accounts-for requires two productions for each antibody:
one to enumerate the reactions explained by the antibody
and one to detect that the operator has been applied. Overall,
the case consists of 31 productions.

A fragment of the system’s behavior is shown in Figure 2.
The numbers indicate the problem-solving sequence and are
used in the following description to indicate what part of the
figure is being discussed. Five cover operators (one for each
reaction) are applicable to the initial state. This leads to an
operator tie im (1) and the selection of find-best to
break the tie (2). Find-best evaluates each operator by apply-
ing it to a copy of the initial state of the domain space. The
figure shows a fragment of the lookahead process for cover
r2 (3). The domain space is selected (4) and cover r2 is ap-
plied to the state (5). The cover operator is implemented in
the cover space (6) by applying explain (7) which generates
a single explanation and then add (8) to add that explanation
to the model. Once anti-K is added, cover r2 has been suc-
cessfully implemented (9). Lookahead problem solving then
continues in the domain space by processing the newly add-
ed explanation (10) using four operators: determine-ac-
counts-for, mark-redundancies, mark-inconsistencies, and
new-to-processed. Their location is indicated with an ellipse
in the figure. Next, three cover operators can apply to the
current state so an operator tie impasse arises (11). This im-
passe is resolved using lookahead (not shown) resulting in
the selection of cover r4. This reaction is explained using
anti-Fy® which, when processed (12), results in a model that
satisfies the abductive criteria. At this point the state is eval-
uated (13) and the result of the evaluation is returned to the
find-best space (14). The system then repeats this process
with the remaining cover operators (15-18). In this example,
all of the cover operators evaluate to 2. This means that no
matter which finding is picked o cover first, the resulting
explanation will be equally good. Based on these evalua-
tions find-best generales indifferent preferences for each of
the cover operators (19). This allows the system to choose a
cover operator at random. In this run, the system decides to
cover the 1+ on red cell 1 (20). This reaction can be ex-
plained by anti-Fy@ or anti-C, so the system uses lookahead
to rate each explanation (not shown). Anti-Fy? results in a
better evaluation since it explains more than anti-C, so anti-
Fy4 is added to the model and processed (21). Next the sys-
tem randomly chooses to cover the 3+ on red cell 2 (22).
Anti-K is the only antibody that will explain this reaction, so
itis added to the model and processed (23). This results in a
best explanation that satisfies all of the abductive criteria so
the system halts. A total of 1038 decision cycles were re-
quired to solve the problem. A decision cycle corresponds to
the selection of a goal, problem-space, state, or operator.

This example illustrates how lookahead can be used to
generate knowledge about what to do when the designer of
the system does not or cannot supply that knowledge. How-
ever, lookahead is quite expensive so it is desirable to add
additional knowledge whenever possible. The next example
illustrates how the addition of some simple search control
knowledge can greatly decrease the number of decision cy-
cles needed to solve the problem.

Example 2: Red-like Abduction

Red uses two heuristics to help prune the search space: (1)
The system prefers to cover stronger reactions before weak-
er reactions. If reactions are cqual, then one can be selected

763

Domaifi Space
5
Covarl A
143+ 1+ 14 143+ 141
1+ =K
(3
L]
Cover
] L]
Eoplain 1 Add K
143 1+] 1434141] 14341414
1+ 1+ Sy

Figure 2: Default behavior of ABD-Soar

at random to cover; and (2) Whenever muluple antibodies
can explain the same reaction, the antibodies are ordered ac-
cording to plausibility and the one with the highest plausibil-
ity is used. If multiple antibodies have the same plausibility,
then one is selected at random. This knowledge can be added
to ABD-Soar by rating antibodies with a plausibility and by
adding three scarch control rules: ID1) If r; >r; then cover
r1 is better than cover ry. ID2) If r; is equal to r then cover
rj is indifferent to cover rp 1D3) If a; has a higher plausibil-
ity than a3 for explaining a reaction then a; is a better expla-
nation than a3. Since it has not been specified that equally
plausible antibodies are indifferent, the system will do loo-
kahead to differentiate between them.

As a result of this knowledge, the system solves the case
in 23 decision cycles (versus 1038 for example 1). First the
system decides, because of ID1, to cover the 3+ on red cell
2. It does this using anti-K, the only antibody that explains
the 3+. Next, because of ID2 the system randomly selects
the 1+ reaction on red cell 1 to explain. This can be ex-
plained using either anti-Fy? or anti-C, but anti-Fy2 is more
plausible so, because of ID3, anti-Fy? is selected.

This example illustrates how small changes to search con-
trol knowledge can radically alter the behavior of the sys-
tem. The system in this example exhibits behavior very
much like Red. Furthermore, whenever the search control is
inappropriate, the system can fall back on the default knowl-
edge to make progress.

Comparison to Other Tools

Peirce

Peirce is a tool built to do hypothesis assembly (Punch I1I, et
al., 1990). It provides a control mechanism, called sponsors
and selectors (Brown and Chandrasekaran, 1989), to encode
search control knowledge for sequencing and achieving its
abductlive goals in a somewhat flexible manner. Flexible
subgoal sequencing is accomplished by using knowledge
about the applicability of subgoals to the current situation
(sponsors) and knowledge about how to choose a subgoal to

pursue based on the applicability of all the subgoals (selec-
tors).

Because of the generality of its goal/subgoal hierarchy
and its control mechanism, Peirce can be used to encode
many different strategies for abduction. However, it ulu-
mately restricts flexibility by limiting the knowledge that a
Peirce-based system can use. First, there is no way to gen-
erate additional search control knowledge in Peirce at run-
time. There is also no way to add new goals or methods at
run-time. This is not a problem in ABD-Soar because any
subgoal or impasse can be resolved using the complete pro-
cessing power of the PSCM. Thus, search control knowl-
edge, evaluation knowled%e. or operators for a problem-
space can be generated just like any other kind of knowledge
in ABD-Soar. The second limitation is that control knowl-
edge is limited in Peirce because methods are encoded as
opaque lisp functions. Thus, once a method is invoked it is
no longer controlled by Peirce. This makes monitoring of
problem-solving progress difficult if not impossible for
Peirce. It can also be difficult to look at the local state of the
methods since the local variables of a lisp function cannot be
seen from outside the function. This is not a problem for
ABD-Soar because it is meant to be used within Soar, where
all "methods” are implemented within the architecture as
problem-spaces whose states are accessible by knowledge
associated with any problem-space. Finally, the goal/sub-
goal structure in ABD-Soar is much finer grained than the
one used in Peirce. This means that the abductive strategy
can be controlled at a finer level of detail in ABD-Soar.

Mole and Cover-and-Differentiate

Cover-and-differentiate (McDermott, 1988) is a method for
a form of abduction. It is implemented in Mole (Eshelman,
1988), a tool for building cover-and-differentiate systems.
McDemmott defines its method as 1) Determine the events
that potentially explain the symptoms. 2) If there is more
than one candidate explanation for any event, then identify
information that will differentiate the candidates by ruling
out an explanatory connection, ruling out an explanatory
event, confirming an explanatory event, or preferring one
explanatory connection over another. 3) Get this informa-
tion and apply it (in any order). 4) If step 3 uncovers new
symptoms, go to step 1(McDermott, 1988).

This method and Mole, in particular, have several limita-
tions from a flexibility perspective. First, the method is ex-
tremely rigid—it specifies a specific fixed sequence of
actions for solving the problem. Hence the search control
knowledge is pre-specified and cannot be altered or extend-
ed. Second, the “grain-size” of the actions are quite large.
For example, all possible explanations for every finding
must be enumerated in a single step. This eliminates all
methods that decompose the problem into a number of
smaller problems. This, in turn, means that knowledge about
what to cover first (something that can increase the efficien-
cy of problem-solving) cannot be used by the method. Third,
all possible candidate explanations must be statically pre-
enumerated—Mole does not allow the candidates to be gen-
erated or constructed at run-time. Finally, the method is
most applicable when there is only a single fault—the meth-
od is not designed for hypothesis assembly.

Limitations
ABD-Soar has two limitations. First, to use ABD-Soar, a

system builder must be well acquainted with Soar. Second,
the current version of ABD-Soar does not use Soar’s built-

764

in leaming mechanism. This is because the low level repre-
sentation of annotated models we used causes Soar to leam
overgeneral productions. This can be solved by using a dif-
ferent representation for annotated models. Such a version
of ABD-Soar is being planned.

Conclusion

ABD-Soar implements an extremely general framework for
building abductive systems. It can use a wide range of
knowledge and alter its behavior based on that knowledge.
Instead of programming a method for abduction, a system
builder can give the system the knowledge available to solve
the problem and the system will behave appropriately. In the
absence of specific knowledge the system can fall back to
default knowledge to make progress, however slowly.
Along with its flexibility and generality, ABD-Soar pro-
vides guidance for building systems and acquiring knowl-
edge because it provides a theory that specifies specific
kinds of domain and search control knowledge.

Acknowledgments

We thank B. Chandrasckaran, John Josephson, and Kathy
Johnson and the AIM research group for their assistance and
comments on this paper and the work it reports. We also
thank the members of the Soar community for their intellec-
tual and technical support.

References

Allemang, D, Tanner, M., Bylander, T., &Josephson, J.
R. 1987. On the Computational Complexity of Hypothesis
Assembly. In Procs. of the Tenth International Joint Confer-
ence on Artificial Intelligence, :1112-1117. Milan, ltaly.

Brown, D. C., &Chandrasekaran, B. 1989. Design
Problem Solving : Knowledge Structures and Control Strat-
egies. San Mateo, CA: Morgan Kaufmann Publishers.

Bylander, T., Allemang, D., Tanner, M. C., &Joseph-
son, J. R. 1988. Some results concerning the computational
complexity of abduction (Technical Report #88-TB-COM-
PLEXITY). Laboratory for Artificial Intelligence Research,
Dept. of Cptr. & Information Science, The Ohio State Univ.

Eshelman, L. 1988. MOLE: A knowledge-acquisition
tool for cover-and-differentiate systems. In S. Marcus
(Eds.), Automating Knowledge Acquisition for Expert Sys-
tems (37-80). Kluwer Academic Publishers.

Josephson, J., Chandrasekaran, B., Smith, J., & Tanner,
M. 1987. A mechanism for forming composite explanatory
hypotheses. IEEE Transactions on Systems, Man, and Cy-
bernetics, 17(3):445-454.

Josephson, J. R., &Goel, A. 1988. Tractable Abduction
(Technical Report) The Ohio State University, Laboratory
for Antificial Intelligence Research.

McDermott, J. 1988. Preliminary steps toward a taxon-
omy of problem-solving methods. In S. Marcus (Eds.), Au-
tomating Knowledge Acquisition for Expert Systems (225-
256). Kluwer Academic Publishers.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge: Harvard University Press.

Punch III, W. F., Tanner, M. C., Josephson, J. R.,
&Smith, J. W. 1990. Peirce: A tool for experimenting with
abduction. IEEE Expert, 5(5):34-44.

	cogsci_1991_760-764

