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Abstract

Experimental research suggests that at birth infants can dis-
criminate two languages if they belong to different rhythmic
classes, and by 4 months of age they can discriminate two lan-
guages within the same class provided they have been previ-
ously exposed to at least one of them. In this paper, we present
a novel application of speech technology tools to model lan-
guage discrimination, which may help to understand how in-
fants achieve high performance on this task. By combining
a Gaussian Mixture Model of the acoustic space and low-
dimensional representations of novel utterances with a model
of a habituation paradigm, we show that brief exposure to
French does not allow to discriminate between two previously
unheard languages with similar phonological properties, but
facilitates discrimination of two phonologically distant lan-
guages. The implications of these findings are discussed.
Keywords: language discrimination; speech; acoustics; com-
putational models; habituation

Introduction
When infants acquire their first language, they meet the
formidable challenge of dealing with massive variability and
ambiguity at all levels of acoustic and linguistic structure.
Infants growing up in a multilingual environment must face
an additional level of variability due to the presence of two
(or more) languages with independent yet partially overlap-
ping acoustic and structural properties. Although the task
may seem hard, a large number of studies show that the abil-
ity to discriminate spoken languages is present early on in
life (Mehler et al., 1988; Nazzi, Bertoncini, & Mehler, 1998;
Nazzi, Jusczyk, & Johnson, 2000; Bosch & Sebastian-Galles,
2001; Ramus, 2002; Byers-Heinlein, Burns, & Werker,
2010). For example, using a habituation paradigm, Mehler
et al. (1988) showed that French newborns, in spite of their
brief experience with language, are able to discriminate their
native language from a foreign one (in this case, Russian) as
evidenced by an increase in their arousal following a switch
from Russian to French utterances. This discrimination was
still observed when infants were presented with low-pass fil-
tered speech, and a preference for their native language was
suggested by an asymmetry in the arousal depending on the
language presented during habituation.

Further research extended these findings, supporting the
claim that newborns can distinguish any two unheard lan-
guages if they belong to different rhythmic classes, such as
Japanese and English, but that they fail to do so if they belong
to the same rhythmic class, e.g., English and Dutch (Nazzi et

al., 1998; Byers-Heinlein et al., 2010). These results point
at prosody as a strong cue for language discrimination at an
early developmental stage. However, languages often differ
in many other dimensions, such as their phonemic invento-
ries and phonotactic rules. These cues may become relevant
through further exposure to one or more languages and thus
facilitate their discrimination: by 4 to 5 months of age, both
monolingual and bilingual infants can discriminate two lan-
guages even within the same rhythmic class, such as Spanish
and Catalan, if they were exposed to at least one of them be-
fore (Nazzi et al., 2000; Bosch & Sebastian-Galles, 2001).

While these studies suggest that language distance plays an
important role, the specific acoustic features and mechanisms
that may allow language discrimination throughout the first
year of life, and the impact of prior exposure to one or more
languages, are not yet fully understood. In the present study
we explore how state-of-the-art speech technology tools can
help us understand this feat. As a first step in the application
of these novel techniques to the study of infant perception, we
propose the use of i-vectors, a method to represent any given
utterance as a pattern of deviations from a previously con-
structed background acoustic distribution, to implement an
unsupervised model of language discrimination. The i-vector
representation, in combination with discriminative classifiers,
was originally developed for automatic Speaker Recognition
(Dehak, Kenny, Dehak, Dumouchel, & Ouellet, 2010), and in
recent years has been adapted to Language Identification sys-
tems showing excellent performance (Martı́nez, Plchot, Bur-
get, Glembek, & Matějka, 2011). These models are typically
trained on large datasets containing many different speak-
ers/languages to capture all possible sources of variability.
Here, we simplify the model to represent the brief experi-
ence of an infant exposed to a single speaker of French, and
then test the system’s ability to discriminate new unheard ut-
terances of two languages that differ in many phonological
dimensions, such as rhythm, syllabic structure and phone-
mic repertoire (French and English), and two languages with
largely overlapping phonologies (Spanish and Catalan). As
most studies of language discrimination have made use of ha-
bituation paradigms, we also propose a computational model
of the habituation task, which will allow us to compare the
performance of our system with what has been observed in
young infants.
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The remainder of the paper unfolds as follows. We first
introduce the concept of Universal Background Model and
i-vector representation, discussing how these representations
can be adapted to model infants’ experience. Next, we
describe the datasets that we selected for the modeling of
the background space and the language discrimination tests.
Then, we present a model of the habituation task that uses
the extracted i-vectors as input, and two additional measures
of discriminability. Finally, the results are described and dis-
cussed with respect to current experimental data, followed by
a perspective on future work.

Methods
Universal Background Model and i-vectors
The first step of the modeling consists in constructing a rep-
resentation of the acoustic space formed through the infant’s
exposure to a given linguistic environment, i.e., their “na-
tive” language. To model the distribution of speech features,
speech technologies typically use Gaussian Mixture Models
(GMM). With a sufficient number of mixture components,
GMMs can model any arbitrarily complex distribution. The
typical number of components for a Language Identification
(LID) system is around one thousand.

The parameters (weights, means and covariances) of the
model can be estimated by Maximum Likelihood using an
Expectation-Maximization algorithm (Bishop, 2006). A
GMM trained on a large database of several hundred hours
of speech containing many different speakers, languages and
other sources of variability, can be used to represent the over-
all feature distribution. In the context of speaker and lan-
guage recognition, this is called the Universal Background
Model (UBM). Evidently, young infants cannot count on such
a large and variable amount of data to build their representa-
tions of the acoustic space, however, nothing prevents UBMs
from being trained on a much smaller dataset. In the present
study, we train a small UBM with speech from one single
French speaker to represent the brief exposure that even a 4-
day-old infant may have already encountered.

Once the UBM has been trained, data-specific models rep-
resenting feature distributions of different utterances can be
derived from the UBM by Maximum a Posteriori (MAP)
adaptations. Usually, only the component means are shifted
during the adaptation. Using factor analysis, the adapta-
tion offset with respect to the UBM can be confined to a
low-dimensional subspace, called the Total Variability space.
If we denote by m the stacked vector of UBM component
means, the generative subspace model has the form:

µµµ = m+Tv,

where T is a low-rank matrix (Total Variability matrix) defin-
ing the bases for the subspace, and v is a hidden variable with
standard normal prior. As with the UBM, this subspace is
typically trained on a large number of speech recordings us-
ing EM algorithms (Dehak et al., 2010), but for the purpose
of our model it will be trained on the data of a single speaker.

Finally, given an utterance or any other segment of a speech
recording, the posterior distribution of the hidden variable can
be estimated. The MAP point estimate of this distribution is
conventionally called an i-vector, and can be used as a low-
dimensional fixed-length representation of the speech seg-
ment. In other words, any unheard utterance can be approx-
imated as a deviation from the background “native” model.
We propose to use this simple representation to model the in-
fant’s acoustic perception of previously unheard speech, com-
puting an i-vector for every utterance in our test dataset. The
advantage of this vectorial representation of speech is that a
measure of distance can be defined between any two utter-
ances.

In LID systems, the typical dimensionality of the subspace
is around 400. However, for our experiments, the i-vector
dimensionality is set to 200, and we use a UBM with 256
mixture components and diagonal covariance matrices. The
reason for such a small model is that the database we pro-
pose to use in order to model a brief exposure to French is
not large enough to robustly estimate all the parameters of
a conventional LID model. Furthermore, since our database
contains only a limited amount of variability (UBM trained
on one single speaker and language), it is unnecessary to in-
crease the number of dimensions.

We argue that i-vectors are reasonable as models of infants’
representation of languages for the following reasons: (1)
The entire pipeline (construction of UBM and i-vector extrac-
tion) only requires two skills, which have been documented
in infants: a good acoustic perception (Eimas, Siqueland,
Jusczyk, & Vigorito, 1971), and the ability of performing
statistical learning (Saffran, Aslin, & Neport, 1996; Maye,
Werker, & Gerken, 2002). (2) The learning algorithm is com-
pletely unsupervised, requiring no external information about
phonemes or words, nor any information about speaker iden-
tity, or number and properties of different languages. The
only linguistic hypotheses of this model are that utterances
are relevant units for performing language discrimination,
that they can be modelled through gaussian mixtures, and that
they can be segmented out of continuous speech.

Feature extraction A common representation of the acous-
tic features of a speech signal used in many speaker and lan-
guage identification systems are Mel-Frequency Cepstral Co-
efficients (MFCCs), which are based on a transform of the
power spectrum on a frequency scale that approximates hu-
man auditory perception. For our modeling purposes, these
features were calculated using the HTK Speech Recognition
Toolkit (Young et al., 2006) in 25 ms windows with a 10 ms
shift. We retained the first 7 coefficients (including C0, which
represents the energy) and added a measure of F0 (pitch)
computed with the Kaldi Toolkit (Povey et al., 2011).

In addition, Shifted Delta Coefficients (SDC, a stacked ver-
sion of delta coefficients calculated across several frames,
Torres-Carrasquillo et al., 2002) were included to capture the
temporal evolution of the MFCC-F0 features. The SDCs were
calculated using the usual 7-1-3-7 configuration, resulting in
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an approximation of the contour of the MFCC-F0 features
over a span of 200 ms. The resulting 64-dimensional MFCC-
F0-SDC vectors contain both spectral and prosodic informa-
tion presumed available to the human auditory system.

Materials
Training data In order to train the UBM to represent the
prior experience of an infant with a brief exposure to French,
we used a dataset of casual speech recorded from an adult
female French speaker selected from the Corpus of Inter-
actional Data (Bertrand et al., 2008). The selected dataset
is composed of 602 pre-segmented utterances with a mean
length of 2.54 seconds (min = 0.43 s, max = 9.01 s), giving a
total of approximately 25 minutes of clean speech. The orig-
inal recordings were downsampled to 16kHz.

Test data Similarly to previous experimental studies, to test
the discrimination of languages we recorded two proficient
bilingual speakers: a male French-English bilingual speaker
and a female Spanish-Catalan bilingual speaker. The use
of bilingual speakers for the test data aims at reducing any
sources of variability not due to the target languages. During
each recording session, the speakers read the first two chap-
ters of the book The Little Prince in one of their languages,
and immediately afterwards they were asked to discuss what
they had read. This procedure was then repeated for their sec-
ond language. All recordings for each speaker were done on
a single session.

The audio recordings were semi-automatically segmented
into utterances with a 300 ms silence threshold using the
speech analysis software Praat (Boersma & Weenink, 2014),
and subsequently downsampled to 16kHz. The resulting
dataset is composed of 319 utterances (French: 65, English:
75, Spanish: 99, Catalan: 80), with a mean length of 3.69
seconds (min = 2.00 s, max = 10.63 s).

Model of habituation task
Experimental studies of language discrimination in infants
use an habituation paradigm (Mehler et al., 1988; Nazzi et
al., 1998). In this paradigm, infants are presented with a set of
stimuli from one language (L1), and their arousal is measured
(in newborns, it is measured with a pacifier connected to a
pressure detector). After an initial increase, infants’ arousal
decreases, indicating habituation. When a threshold has been
reached, half of the infants continue with the same class of
stimuli, and the other half are switched to a second class (L2).
The difference of arousal after the switch in the two groups is
used as a measure of discrimination.

Here, we will model this paradigm using an on-line cluster-
ing algorithm. In the habituation phase, the system gradually
incorporates data from one language (L1) until it reaches a
statistical threshold. In the test phase, as for infants, new ut-
terances of L1 (same condition) and L2 (switch condition) are
compared to the habituated model. The input of this model
consists of the i-vectors of the test utterances as extracted
by our previously trained system. To reduce spurious effects

caused by specific subsets of utterances, the habituation task
was run 100 times for each language pair using randomly se-
lected subsets in each trial.

Habituation phase The model starts with an initial set of
10 i-vectors {v1, ...,v10} of one language (L1) chosen ran-
domly from our dataset. Firstly, the centroid µ1 of this ini-
tial set (i.e., the mean i-vector) is computed, and the cosine
distance of each of the 10 composing vectors to the centroid
dc(vi,µ1) is calculated. Secondly, a new random set of 10 i-
vectors {v11, ...,v20} of the same language L1 is selected, and
their cosine distances to the initial centroid µ1 are calculated.
The distribution of distances of the initial and the second set
of vectors are then compared with a t-test.

If p ≤ 0.05, the two distributions are considered statisti-
cally different, that is, the model perceives a difference be-
tween the two sets of utterances, and therefore has not yet
reached habituation. In this case, the last set of vectors is
aggregated to the initial set and the centroid is recalculated,
µ2, as the mean i-vector of the whole set. Following the
same procedure, a new group of 10 i-vectors from L1 is se-
lected and their cosine distance to the new centroid dc(vi,µ2),
{i = 21, ...,30}, are calculated and compared through a t-test
to the distance of the previous 10 vectors to the new centroid
dc(vi,µ2), {i = 11, ...,20}. This procedure is repeated as long
as p≤ 0.05.

When p > 0.05 (defined as our saturation threshold), the
two distributions are not statistically different and the habit-
uation phase is therefore complete. As a final step, the last
group of vectors is aggregated to the previous set and a final
centroid is obtained, µF . The distance of the last 10 vectors
to µF is then calculated and retained for the test.

Test phase In this stage, a new set of 10 i-vectors vi is ran-
domly selected from the same language used in habituation
(L1, same condition) as well as 10 i-vectors u j from the sec-
ond language of the same bilingual speaker (L2, switch con-
dition). For each set of vectors, the cosine distance to µF is
calculated.

We finally perform two t-tests, one per condition, compar-
ing the distribution of distances of the new vectors of L1 or
L2 to the distribution of the last 10 habituation vectors. In
the same condition, as the new utterances belong to the same
language as those in habituation, the p-value of the t-test is
expected to remain above the saturation threshold, p > 0.05.
On the other hand, in the switch condition, the p-value will
depend on the overlap between the distribution of the habitu-
ation (L1) and L2: a p-value below the 0.05 threshold would
mean that the two distributions are significantly different, in-
dicating discrimination of the two languages, while p > 0.05
would indicate a lack of discrimination.

Discriminability measures

To quantify the discriminability of the languages indepen-
dently of our habituation-dishabituation model, we com-
puted the pairwise ABX discrimination score, a nonparamet-
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ric measure of category overlap. It consists in taking all pos-
sible ABX triplets of utterances from a language pair, where
A corresponds to an utterance of L1, B corresponds to an ut-
terance of L2, and X can be either L1 or L2. For each triplet,
X is classified as belonging to L1 or L2 based on whether the
cosine distance between X and A is smaller or greater than the
distance between X and B. The percentage of correct classi-
fications serves as an index of the discriminability between
the two languages. Additionally, we performed a Principal
Component Analysis (PCA) for each language pair as a way
of visualizing the variance and distance of the i-vectors that
compose each language.

Results
Habituation task
We ran the habituation model for both language pairs, and
within each pair we tested the model with both possible lan-
guages in the initial habituation phase. The average amount
of steps to reach habituation was similar for all languages
(French: 2.1, English: 1.8, Spanish: 1.7, Catalan: 1.7).

As previously observed in infant experiments, the results
of 100 trials for each test (presented in Figure 1) show a dif-
ference in the pattern of discrimination of the two language
pairs. In the case of Spanish-Catalan (bottom panels), the p-
values of both the same condition and the switch condition
are significantly above the threshold value of p = 0.05, inde-
pendently of the language presented in habituation (Habitu-
ation:Spanish -bottom right panel- same: M = 0.48, SD =
0.26, switch: M = 0.40, SD = 0.26; Habituation:Catalan
-bottom left panel- same: M = 0.52, SD = 0.28, switch:
M = 0.54, SD = 0.27), suggesting a lack of discrimination of
these two languages. On the other hand, the second language
pair (French-English, top panels) presented an asymmetry in
the responses of the model to the switch condition, depending
on the language of habituation. When the system is habitu-
ated to English as L1 and then switches to French (top left
panel), the two languages are discriminated as indicated by
a decrease of the p-value below the threshold in the switch
condition (same: M = 0.49, SD = 0.29, switch: M = 0.012,
SD = 0.026). However, if the system is initially habituated
to French (top right panel), the switch to English is not de-
tected, with both conditions showing similar p-values (same:
M = 0.54, SD = 0.29, switch: M = 0.48, SD = 0.25). While
a similar behavior was observed in infant habituation experi-
ments (Mehler et al., 1988), additional analyses are required
to understand this asymmetry.

ABX and Principal Component Analysis
To further explore the different response patterns of our
model, we performed an ABX task for both language pairs
and all possible X categories (ABA, ABB). The results of this
test, shown in Table 1, present a similar pattern to the one ob-
served in the habituation task. In the case of Spanish-Catalan,
both ABA and ABB trials presented scores slightly above
chance level (50%), meaning that nearly half of the Spanish

Figure 1: Average p-values over 100 trials of the habituation
task for French-English discrimination (top) and Spanish-
Catalan discrimination (bottom). The x axis represents the
steps of the habituation and test phase, where 0 indicates the
step where the habituation threshold (p = 0.05) was reached.
Accordingly, step -1 represents one step before habituation,
and step 1 represents the test (dishabituation) phase.

utterances were incorrectly categorized as Catalan utterances
(and vice-versa). On the other hand, French-English trials
presented an asymmetry: a majority of English utterances
were correctly classified, while the classification of French
utterances remained near chance level. This means that the
distance between two given French utterances in the test set
is often larger than the distance between a French and an En-
glish utterance, pointing at a possible imbalance in the vari-
ance of the distributions of their i-vector representations.

Table 1: Summary of ABX results: Percentage of accuracy
for the distant language pair (A = English, B = French) and
the close language pair (A = Catalan, B = Spanish).

Language Pair X=A X=B
English (A) - French (B) 76% 46%
Catalan (A) - Spanish (B) 51% 57%

Finally, we performed a Principal Component Analysis on
both language pairs in order to visualize the distribution of
the utterances. A representation of the first two dimensions
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Figure 2: First two dimensions obtained through a Principal
Component Analysis of the i-vectors of Spanish and Catalan
utterances spoken by a bilingual speaker.

of the PCA for the Spanish-Catalan pair, shown in Figure 2,
revealed a high degree of overlap in the distribution of the
utterances of these two languages. On the contrary, the first
two dimensions of the French-English PCA, presented in Fig-
ure 3, show a higher separation between the two languages.
However, as suggested by the ABX score, the variance in
these two dimensions appears to be larger within French ut-
terances than within English utterances.

Together with the ABX results, this difference in the vari-
ance may explain the asymmetry observed in the habituation
task: when the model is habituated to English, the variance
of the i-vectors that are aggregated during this initial phase
remains small, allowing the system to detect a switch to the
second language. In other words, the within-language dis-
tance distribution is smaller than across-language. However
in the inverse case, when the model is initialized with French,
the variance of the habituation vectors is relatively large and
therefore the switch to English remains unnoticed.

In summary, we found an overall difference in the degree
of separation of the i-vectors of both language pairs, which
reflected in the behavior of our habituation-dishabituation
model. Spanish-Catalan utterances present largely overlap-
ping distributions, causing a lack of discrimination in the
habituation task, while French-English utterances have less
overlapping yet more asymmetrical distributions, producing
an equally asymmetric response of the system.

Discussion
In this paper we introduced a novel application of speech
technology tools to model language discrimination in infants.
Using a GMM-UBM trained on a small dataset of French
utterances, we represented the acoustic space of a mono-
lingual infant after a brief exposure to this language. To
test the system’s ability to discriminate languages, we mod-

Figure 3: First two dimensions obtained through a Principal
Component Analysis of the i-vectors of French and English
utterances spoken by a bilingual speaker.

elled the acoustic representation of novel utterances as a pat-
tern of shifts from the means of the UBM. Using this low-
dimensional representation, called i-vector, we constructed
a model of a habituation task similar to the experimental
paradigm often used to test discrimination in infants.

The behavior of our model in the habituation task resem-
bled that observed in previous experiments: our system, pre-
exposed to French, was unable to discriminate between two
previously unheard languages with highly similar phonolo-
gies (Spanish & Catalan), while it discriminated two phono-
logically distant languages (French & English). Interestingly,
just as reported in previous infant studies such as Mehler et
al. (1988), the ability to discriminate between French and
English depended on the language presented during habitu-
ation. When the system was initially habituated to the pre-
viously unheard language (English), it detected a switch to
the “native” language (French), but it failed at discriminat-
ing a switch to English when French was presented in ha-
bituation. Further analyses provided a potential explanation
for our model’s asymmetrical behavior: the variance of the i-
vector representations of French utterances is larger than that
of English utterances, causing the habituation model to create
a broad category for French which hinders the discrimination
of English. While in the context of infant studies this asym-
metry was regarded as a preference for the native language,
our modeling results suggest that the perceived acoustic vari-
ability might be responsible for this behavior, providing a new
perspective on this issue.

There are three possible explanations for the larger vari-
ance of French as compared to English in our test data. First
of all, this difference might be a characteristic of the specific
bilingual speaker that was recorded for this experiment. To
test this hypothesis, it would be necessary to repeat the test
with a different French-English speaker. If the same pattern

893



was observed, it would indicate that the difference does not
lie in the speaker but in the language. This could mean that,
overall, French speech is acoustically more variable than En-
glish. However, and more interestingly, it is also possible that
the difference was originated in the training of the Universal
Background Model and the Total Variability subspace: as our
system was pre-exposed only to French, the model may have
developed a larger sensitivity to acoustic differences present
in French speech than those in English speech, thus appearing
more variable. To discern these two possibilities, the model
could be re-trained using English as the background (i.e., “na-
tive”) language. If the larger variance is due to the sensi-
tivity of the model to its native language, then the asymme-
try should be inverted. The results of these future modeling
experiments may help us better understand the behavior ob-
served in infants.

In addition, this methodology can be applied to model lan-
guage discrimination in a variety of other cases. First, the
UBM and the TV subspace can be trained with different
languages and with varying amounts of data to investigate
the impact of language exposure on discrimination (e.g., the
model can be trained with a large dataset of Spanish speech
and then tested on its ability to discriminate Spanish from
Catalan). Second, the system could be trained with a bilin-
gual background to study how multilingualism affects the
construction of the acoustic space and consequently its ability
to discriminate languages. This bilingual background can be
composed of either monolingual speakers of two languages
or bilingual speakers, giving further insight into the impact
of different bilingual environments on the perceptual system.
Third, the acoustic features provided to the model can be
adapted (for example, by using filtered speech, or adding ad-
ditional prosodic information to the feature vectors) to ex-
plore the role of different cues in language discrimination.
The experimental data available to date provides a means of
evaluation for the models, which in turn may generate new
testable hypotheses that will help us better understand how
young infants achieve this task.
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