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Abstract 

Materials Deforming Near their Ideal Strength 

by 

Matthew Peter Sherburne 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Berkeley 

Professor Daryl C. Chrzan, Chair 

 
In recent years it has been shown that it is possible to design materials 

with strengths approaching their theoretical ideal limit. This is an intriguing 
development; materials typically fail at stresses that are several orders of 
magnitude below their theoretical limits of strength. The development of 
engineering alloys with usable strengths near the ideal limit would have profound 
technological implications.  

 
The most common approach used to increase a material’s strength, is 

grain refinement. This method has been used to produce nanograined hollow 
nanospheres of CdS. Under nanoindentation these spheres show remarkable 
strength and deformation properties. The stresses and strains in the shells are 
studied with linear elastic finite element analyses and from this a failure criterion 
is developed. The stresses predicted by the failure criteria are 2.2  𝐺𝑃𝑎, which is 
very large for an inherently brittle material. We compare the failure stress to the 
calculated ideal strength for CdS, calculated using density functional theory. 
Comparing the stress predicted by the failure criteria to the ideal strength shows 
that the hallow nanospheres approach 70% of their ideal strength.   
 

In 2003 a new Ti, Nb based alloy “Gum Metal” was introduced by Toyota 
Research Corp. This alloy has strength approaching the ideal limit even in bulk 
form. Moreover, the material deforms in a novel fashion without the obvious 
participation of dislocations. A Ti-V alloy has been chosen to study the properties 
of this type of alloy. The BCC ideal yield surface is examined as a function of 
composition. Dislocation core structures are also examined as a function of 
composition. The results explain some experimental observations in this novel 
system.  
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Chapter 1 
 

Introduction 
 
1.1 Ideal Strength 

Historically, the strength of materials has been one of the most studied 
properties of materials, and is still a central topic in the study of materials. The 
strength obtainable by a material is generally limited by the presence of defect in 
the material. The presence of defects and their effect on material properties was 
not originally appreciated. When it was discovered that metals were crystalline, 
the first theory to attempt to describe the ideal strength of materials was 
developed by Frenkel [1]. Frenkel considered the ideal strength of a crystal, 
defects were not considered. The strength predictions of this theory were quickly 
shown to differ from experiments for bulk metals by a factor of 103 or more [2]. 
While Frenkel’s theory did not describe the strength of metals, this failure led to 
the identification of dislocations as mediators of plasticity by: Orowan [3], Polanyi 
[4] and Taylor [5]. Dislocation theory describes most aspects of the mechanical 
properties of bulk metals very well. With the understanding that defects controlled 
the mechanical behaviour of materials, the concept of ideal strength was not 
explored extensively for nearly 70 years.  
 
 A renewed interest in the ideal strength of materials has been generated 
by the rapid growth in computational materials science. This growth is due to 
developments in two areas that have allowed computers to become predictive 
tools for materials properties. First, high performance computers, are now widely 
available, in fact the processing power has essentially doubled every eighteen 
months, following Moore’s Law [6]. Increasing the processing power has also 
lead to an equally dramatic decrease in the price of computers. Second, 
extensive efforts have been expended to develop of computational software for 
the study of materials. Perhaps the most successful development has been that 
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of density functional theory [7,8]. Density functional theory replaces the many 
interacting electron problem with one in which the electron density 𝜌  (𝑟) is used 
to determine the ground state properties. In addition to the development of 
density functional theory, has been the development of accurate 
pseudopotentials from first principles, which require only the atomic number as 
input [9,10,11].  
 

With the ability to accurately predict the binding of atoms, it then became 
possible to predict the properties of materials from first principles. For example, 
the structural properties predicted by ab initio methods are typically found to 
agree with experimental results to within 1% to 10%. Properties such as, the 
elastic constants, magnetic, electrical and optical properties in the ground state 
are now calculable. However properties which are strongly dependent on the 
presence of defects and defect interactions, are still generally difficult to 
calculate. Defect calculation, such as the yield strength, require length scale of 
microns, which would require ∼ 10!" atoms. The size of this calculation exceeds 
what is possible with current computers. It is clear that ab inito techniques cannot 
be applied to all problems in materials science. However there is a vast array of 
problems that can be solved with first principles techniques.  

 
 The ideal strength of a material is defined as the stress required to cause 

a perfect defect free crystal to become mechanically unstable [12]. The simple 
models proposed by Frenkel [1], Polanyi [13] and Orowan [14] all attempted to 
use geometry or surface energies to estimate the ideal strength of a material. 
First principal calculations allows for the ideal strength of a materials to be 
explored with out the limitation of the models that had been used. In principle any 
solid would have an ideal strength determined solely by the chemical bonding 
and temperature. Exploring a materials ideal strength experimentally is difficult 
often with large scatter in the experimental results. The presence of defects in 
different configurations leads to the large scatter in the measured ideal strength. 
Reliable results have been obtained in experiments on whiskers [15,16] and by 
nanoindentation [17], where defects are absent from the material and therefore 
the ideal strength can be reached.  In the absences of generally reliable 
experiments ab inito has become the preferred method for examining the ideal 
strength.  

 
 Ideal strength is clearly of theoretical importance, but there should be no 

doubt that it is also important in materials that deform due to defects below the 
ideal strength. First, the ideal strength is an inherent property of the crystal 
lattice.  

 
Second, the ideal strength offers an upper bound to the strength that the 

material may obtain. There is a long history of processing materials to modify 
their mechanical strength, either by modifying the microstructure or introducing 



 3 

defects. No amount of processing will allow the material to have strength greater 
than the ideal strength. Thus the ideal strength gives a gage to tell how well any 
processing is performing in strengthening the material. 
 

Finally, there exists increasing interest in the ideal strength in practical 
applications, as the ideal strength is being approached as feature sizes reach 
into the nanometer range. With nanostructures being produced in a multitude of 
shapes: nano-wires [42 & Ref. there in], nano-dots [42 & Ref. there in], nano-
belts [42 & Ref. there in], nano-saws and nano-wheels [43] these should all 
approach the ideal strength. With the ability to produce such varied nano-
structures composed of a variety of elements and alloys and differing crystal 
structure, the ability to predict the ideal strength is becoming important for 
engineering design of nano structures.  
  

  First principle calculations are not limited to the study of the ideal strength 
and are applied to other topics in mechanical properties. The ideal strength is a 
convenient first step towards an understanding of the mechanical properties of a 
material. These calculations often offer insight into the most appropriate 
approach to study a material.   

 
In this dissertation two distinctly different materials systems that have 

been shown to approach a significant fraction of their ideal strength 
experimentally are considered; nano-grained hollow nano-spheres of cadmium 
sulfide CdS [23] and bulk Gum Metal, Ti-Nb based alloy, developed by Toyota 
Research Crop. [22]. It is shown that the CdS nano-grained nano-spheres 
approach (∼ 70%) of their calculated ideal strength under nanoindentation. Gum 
Metal has been shown to have a high strength (∼ 1.8𝐺𝑃𝑎  𝑎𝑡  77𝐾)  while 
displaying no work hardening characteristics. These properties of Gum Metal are 
obtained without the bulk motion of dislocations. Gum Metal was the first bulk 
metallic system that reached the ideal strength limit, but now Toyota Research 
Crop. has designed an alloy based on Fe that displays similar behaviour [24].  
Understanding the physics that allows Gum Metal bulk to reach the ideal strength 
limit might allow the principles to be generalized to other material systems.  

 
 In the case of CdS and more generally the II-VI alloys the mechanical 

properties have not been extensively explored as the uses of these materials 
have been mainly focused on optoelectronic applications. What work on the 
mechanical properties of the II-VI compounds has predominantly been focused 
on the cubic structure zinc blende. The interest in the zinc blende structure arises 
primarily do to the effects defects cause to optoelectronic properties and strain 
effects on the growth of thin films. The other common structural variant for the II-
VI compounds is wurtzite, which is a hexagonal structure. Wurtzite has been 
studied also to gain understanding on how the presence of defects affects the 
optoelectronic properties but not with the same intensity as in the zinc blende 
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structure. However, the interest in the mechanical properties of the wurtzite 
structure is starting to intensify, with the ability to grow the II-VI compounds in a 
controlled manner in an array of sizes and shapes. It is this ability to grow these 
compounds into unique sizes and shapes that lead to interest in these 
compounds for applications in nanoelectromechanical systems (NEMS). The 
ability to understand CdS can serve as a template to understand the mechanical 
properties of the other wurtzite based II-VI compounds. 
 

When Gum Metal, a BCC Ti-Nb based alloy, was introduced in 2003, it 
created excitement in the field of mechanical properties [22]. This excitement was 
generated because of its apparent deformation behaviour and its unusual 
properties and the ranges over which these properties persisted. Gum Metal 
shows a large elastic limit, high strength, and “Invar” and “Elinvar” properties [22]. 
These properties are only obtained after alloying in such a way that the valence 
electrons per atom ~4.2 and after substantial cold working, 90%, of the sample.  

 
Tensile test were performed on the samples and then characterized post 

deformation, the results, surprisingly, showed no signs of dislocation activity [22]. 
It was this lack of observable dislocations that led to the conclusion that Gum 
Metal deformed near its ideal strength [22]. This makes Gum Metal the first bulk 
metallic alloy to be governed by deformation at the ideal strength. The ability of 
Gum Metal to reach its ideal strength is the result of several factors; the phase 
stability, elastic anisotropy and how these affect the deformation processes.  

 
 For each topic a literature review is performed and introduced in the 

introduction of each chapter. This review is performed to give the reader context 
of the current state of the topic and a general understanding of how this work fits 
into the” field of study.  

 
 In chapter 2 the work on CdS is presented. The crystal structure is 

considered with the relevance to the potential deformation modes. The two 
computational tools are applied to this study of CdS: first principles density 
functional theory and Finite Element Analysis (FEA). It is shown that large 
stresses and strains are obtained within the hollow nanospheres of CdS. A failure 
criterion is developed for the hollow nanospheres and it shows that large 
stresses occur at failure. The stresses are large enough to motive the study of 
the ideal strength of CdS.  

 
 In chapter 3 the work on energy surface of Gum Metal is discussed. The 
computational details are introduced and show how the energy surface for the 
BCC structure is calculated, with particular interest paid to the Bain path. It is 
shown that as the transition composition from BCC to HCP is approached the 
energy difference between the phase goes to zero. Then the Bain path of other 
BCC elemental solids are compared to those calculated for Gum Metal.  
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 In chapter 4 the dislocation core structure is calculated for a periodic array 
of screw dislocations is calculated, from first principles density functional theory. 
Continuum linear elasticity theory is used to derive a nonstandard definition of the 
dislocation core radius. This definition of a core radius depends only on elastic 
constants and the ideal strength. From the calculations of dislocation core 
structures it is shown that the cores spreading is significant and would allow 
cores of neighbouring dislocations to interact and overlap. This core overlap 
offers a possible explanation of the observed nanodisturbances. With a simple 
continuum linear elasticity analysis it is possible to calculate the dislocation 
density required to cause dislocations cores to interact on average. The highly 
anisotropic character in Gum Metal that appears as the transition from BCC to 
HCP is approached causes these properties to appear.  
 
 In this work first principle density functional theory and FEA calculations 
have been used to come to some understanding about the mechanical properties 
of different material classes. It should also be clear that with our ability to design 
and tailor materials the concept of ideal strength is going to be relevant in the 
future. Either with the ability to produce nano-scale structures or to tailor the bulk 
elastic properties it is becoming increasingly probable that first principle 
calculations offer an effective first step towards understanding mechanical 
properties. It has also been shown in that it is possible to couple the first principle 
calculations with the results of FEM to span large length scales. 
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Chapter 2 
 
 
Mechanical Properties of CdS Hollow  
Nanospheres 
 
 
2.1 Introduction 
 Recently much attention has been paid to the study of the binary 
tetrahedral semiconductors of zinc, cadmium and mercury chalcogenides. 
These binary II-VI compounds are wide-bandgap semiconductors and generally 
form in either the B3 (zincblende, cubic) or B4 (wurtzite, hexagonal) crystal 
structure, these structures can be seen in Figure 1. In both structures atoms are 
tetrahedrally bonded to four atoms of the other element. The II-VI B4 structures, 
based on Zn and Cd, all form with nearly the same 𝑐! 𝑎! ratio, while having 
melting points that can differ by up to 25%. This would seem to imply a significant 
difference in the bond strengths of the B4 structures.  
 

These wide-bandgap II-VI compounds are important in many areas of 
modern technology in particular high-performance opto-electronic devices such 
as light-emitting diodes (LEDs) and laser diodes (LDs) for their ability to operate 
in the ultraviolet and blue wavelengths range [25-32]. Additionally these 
compounds also find uses as transparent electrodes, pyroelectric and 
piezoelectric devices, optical pumping devices and for their catalytic properties. 
Interest in these applications has led to extensive efforts to study these materials 
both by experiment and computationally. With the majority of the interest being 
paid to the B3 structure, which can be attributed to the high symmetry and the 
relative simplicity of the ionic bonding [33] and that they are the dominant 
structure in the modern microelectronic industry.  The properties such as the 
band offset [34], structural and thermodynamic properties [35,36] help to clarify 
these properties by using ab initio density functional theory calculations [37]. 
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Similarly the properties have also been determined using the full potential 
linearized augmented plane wave method (FPLAPW) [38-40].   
 
 

 
 
Figure 2.1 (A) Hexagonal (wurtzite) crystal structure (B) cubic (zinc blende) 
crystal structures. These are the most common crystal structures observed in II-
VI compounds. 
 
 

In addition to the general interest in the compounds for the applications 
already listed above they offer the ability to produce a variety of unique 
nanostructures. Nanoscience is a relatively new and rapidly growing area of 
research. The first success of nanoscience, for the II-VI compounds, was the 
production of zero dimensional quantum dots of CdSe, which show strong 
dependence of the physical properties with the size of the particles. It is possible 
to grow nanostructures with a number of processes: solid-vapor deposition, 
lithography, laser ablation, sol-gel, and template-assisted and thermal 
evaporation methods. With these different processing routes it has been possible 
to develop a rich array of nanostructures from the II-VI compounds that form the 
B4 structure. The most common of these structures are the nanodots and 
nanowire, but with greater control over the growth it has been possible to 
produce nanostructures in the form of belts, saws and wheels. Of these 
structures the first to be grown was ZnS nanobelts grown by thermal evaporation 
[41]. Controlling the crystalline orientation is also possible by altering the 
conditions of synthesis, generally the 0001   𝑎𝑛𝑑   0110  are the observed facets. 
Growth of the nanosaws in these compounds is produced by the asymmetric 
growth due to surface termination induced growth [42], Spontaneous 
Polarization-induced Asymmetric (SPA) growth. SPA is a growth process, which 
is only observed in wurtzite nanostructures. Nanodot, nanobelt and nanosaw 
structures have been produced for all of the wurtzite II-VI compounds. While 
nanowheels have so far only been produced in in ZnSe [43].  
 

A) B)
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 With the development of these varied nanostructures and their possible 
applications in mechanical/structural applications a new interest has been 
spurred into their mechanical properties. The high melting point for these II-VI 
compounds, due to the high ionicity, makes them promising for applications in 
electromechanical coupling. With the shrinking in physical dimensions of the 
materials down to the nanometer length scales naturally leads to higher strength. 
Because of this increase in the strength there has been significant interest in the 
use of nano-grianed materials for structural applications [26-33]. Increasing the 
strength results from several different affects. As the volume of material shrinks 
the material is likely to have fewer defects in the interior of the grains than in a 
bulk sample. In addition to lower density of defects often found in nano-grained 
materials, the smaller grain size inhibits the motion of dislocations. The 
relationship, which describes the increase in strength do to grain size reduction, 
is the Hall-Petch relationship [44,45]. The increase in the yield strength varies as 
𝜎! ∝ 1 𝑑,   where 𝑑  is the average grain diameter. For these reasons 
nanocrystalline materials can have yield strengths that are ten times higher than 
the same material that is course grained.  
 

Nanoindentation experiments where performed on hollow CdS 
nanocrystalline, nanospheres and showed that in this configuration the material 
could withstand ≈ 8% effective strains.  This surprising result for an inherently 
brittle material is due to the fact that in this configuration the material has a 
structural hierarchy. 
 
 The structural hierarchy of these hollow nanospheres is a result of the 
multiple length scales that are present in each nanoparticle. These length scales 
arise from the grain size and the inner and outer radius of the individual 
nanoparticles. The production of the hollow nanoparticles relies on the Kirkendall 
effect [46], in this approach a solution of Cd nanoparticles has S added to the 
solution. The out diffusion rate of Cd is faster than the inward diffusion rate of S, 
thus leading to vacancies in the Cd sphere. These vacancies eventually cluster, 
resulting in a hollow sphere. It is possible to tailor the relevant length scales in 
the nanoparticles by applying a post growth anneal or etch to the nanospheres. 
By controlling these length scales it is possible to control the effective modulus 
for these particles. The ratio of the inner radius to the outer radius (𝑅! 𝑅!), for 
those nanoparticles for which indentation was performed on, had a value of 
approximately 0.74. Control of (𝑅!) can be obtained by an etch with HCL, thus 
giving control over the ratio of the radii. On average the grain size was 
determined to be 6− 8  𝑛𝑚  in the as grown condition. Grain size might be 
increased with an annealing step post growth. The crystal structure of the grains 
in the shell is wurtzite (hexagonal) pre and post indentation. 
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2.2 Computational Methods 
              

2.2.1 Finite Element Analysis 
 With in continuum linear elasticity theory, Hertzian model, it is possible to 
calculate the approximate stress and strain during indentation out to failure of the 
CdS shells. These results show that the observed stresses and strains in the 
shell during the experiment are large. This approach does not yield the actual 
stress and strain state experienced in the shell; nor does it yield the development 
of the stresses and strains in the CdS shell. In order to calculate the stress and 
strain states in the CdS shell and monitor the development of the stress and 
strain a more sophisticated model is required, since a Hertzian model is not 
applicable due to the large displacements. The method chosen in this work is 
Finite Element Analysis (FEA). More specifically, the FEA model was developed 
to describe the evolution of the stress state in the shell during the 
nanoindentation experiments, and predict the load versus displacement curves.  
 
 Due to the new spherical symmetry of the CdS nanospheres the FEA 
model implemented in ANSYS is chosen to be as axisymmetric. The CdS shells 
are assumed to behave in a perfectly elastic and elastically isotropic manner, 
with (𝑌𝑜𝑢𝑛𝑔!𝑠𝑚𝑜𝑑𝑢𝑙𝑢𝑠  𝐸 = 46.3  𝐺𝑃𝑎  𝑎𝑛𝑑  𝑃𝑜𝑖𝑠𝑠𝑜𝑛!𝑠𝑟𝑎𝑡𝑖𝑜  𝜐 = 0.37) . CdS elastic 
constants are taken to be the Voigt average calculated from experimentally 
determined elastic constants [55]. The elastic constants that were used to 
describe the diamond indenter are 𝐸 = 1,200  𝐺𝑃𝑎  𝑎𝑛𝑑  𝜐 = 0.07 and the silicon 
substrate are 𝐸 = 107  𝐺𝑃𝑎  𝑎𝑛𝑑  𝜐 = 0.27. The indenter and substrate are also 
assumed to also be perfectly elastic and elastically isotropic. Plasticity is 
neglected in the FEA model. This assumption is unlikely to affect the results as 
plasticity is highly localized to a small volume in the interior of the shell. From 
Figure 2.2 a “tee” at the base of the sphere can be seen. This tee structure is 
believed to be residual surfactant, which remained from the growth process of the 
CdS shells. The residual material, which comprises the tee, is most likely 
trioctylphosphone oxide (TOPO) with a modulus of ( 𝐸 = 5  𝐺𝑃𝑎) . The tee 
hypothesis is supported by experimental evidence [23]. When the shells are 
subjected to an argon beam to etch “clean” the exterior they no longer stay in 
place during the indentation process. The presence of the TOPO allows the 
shells to stick in place on the substrate. The contact between the tee structure 
and both the substrate and shell are treated in the model. The friction coefficient 
is taken to 0.1 between all contacts. Nonlinear geometric effects are included in 
the model, to ensure that the model represents the stiffness of the sphere 
accurately. From Figure 2.2 the representation of each of the elements of the 
FEA model is shown. The top purple rectangular segment represents the 
diamond indenter, which is significantly larger than the CdS Shells tested. The 
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red rectangular structure is the silicon substrate. With the blue curved structure 
representing the CdS shell and the blue triangular structure being the residual 
TOPO.  In ANSYS the finite element mesh used to model the diamond indenter, 
silicon substrate and CdS shell were modeled using PLANE42 elements with the 
axisymmetric condition enforced. While for the TOPO the mesh that was used to 
model the tee were ANSYS PLANE82 elements.  
 
2.2.2 Ideal Strength and Internal Elastic Stability 
 
 The uniaxial ideal strength is computed by considering a fully relaxed unit 
cell, defined by three-lattice vectors 𝑎!!  (𝑖 = 1,2,3). A uniform distortion is applied 
to the unit cell so that a deformation occurs in the 𝑖!! direction along the 𝑗!! plane 
to a predefined engineering strain 𝜖!".  
  

  𝜖!" =
!
!
𝐷!" + 𝐷!"           (2.1) 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Mesh representations of the four 
elements in the FEA model. The purple rectangle 
is the diamond indenter, red rectangle represents 
the silicon substrate, the blue curved region is the 
CdS nanosphere and the blue triangle represents 
the residual TOPO. In ANSYS mesh PLANE42 is 
used to represent the indenter, substrate and CdS 
while PLANE82 is used to represent the triangular 
TOPO section.   
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The finite strain is defined as the symmetric part of the deformation tensor; 𝐷!" is 
the deformation tensor, which maps the un-deformed lattice vectors to the 
deformed lattice vectors given by 
 
           𝑎!! = 𝑎!! + 𝐷!"𝑎!!                                                (2.2) 
 

When the strain 𝜖!" is applied the resulting stress is not uniaxial, Poisson 
strains occur in the orthogonal directions to the applied strain. To relax the 
system the applied strain is held constant, then the five orthogonal strains are 
allowed to relax independently. The relaxation condition is met when the 
Hellmann-Feynman stresses are all less than 0.1  𝐺𝑃𝑎  [47]. Relaxation is 
implemented in MATLAB, using the Levenberg-Marquardt routine. When a 
relaxed structure is found, 𝜎!" is the stress, which corresponds to the applied 
uniaxial strain 𝜖!".  
 
 Along the loading path the first maximum that occurs on the stress-strain 
curve is generally the point that gives the ideal strength of the material. At this 
first maximum an instability occurs in the crystal. Examples of the instability are a 
phase transition (elastic instability [18]) or magnetic instability [19]. Because we 
can computationally find this instability does not mean that in a real material that 
it can be approached. Along the loading path instabilities may occur orthogonal to 
the designed path. These instabilities, in general, will not be present in the ideal 
strength calculations and therefore must be specifically searched for.  
 
 A procedure to examine the elastic stability was devised up by Morris et al. 
[20]. In this procedure the condition that must be met to ensure stability is, the 
minimum eigenvalue of the symmetric Wallace tensor (𝐵!"!)  [21] must be 
positive for the system to be stable. By monitoring the eigenvalue behavior of 
𝐵!"! at each of the incrementally applied strains it is possible to determine the 
presence of an orthogonal instability. Solving the stability condition from Morris et 
al. [20] is a straightforward proposal if time consuming, thus allowing the 
determination of the actual ideal strength of a material.  
 
2.2.2.1 Implementation 
 
 These calculations are carried out in the framework of first principles 
density functional theory (DFT) [7,8] using the local density approximation [48,49] 
within pseudopotential theory. In addition to the LDA calculations the generalized 
gradient approximation (GGA) as well as the projector augmented wave (PAW) 
were also used as a method to check the calculations. The results obtained from 
GGA and PAW calculations were found to be in good agreement with the LDA 
calculated values. Computationally the LDA approach resulted in faster 
computations therefore only the LDA calculations are reported here. 
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 The Vienna Ab initio Simulation Package (VASP) was used for 
calculations of the ideal strength and related elastic properties.  Interaction 
between the ions and electrons are described using ultra-soft Vanderbilt 
pseudopotentials (US-PP) [50]. The energy cutoff used in these calculations was 
60 Ry. In the hexagonal based wurtzite structure there are two ions of each type 
(two Cd and two S). These are tetrahedrally bonded so that four atoms of the 
other species surround each atom see Figure 2.1 (A).  K-points were generated 
using the Monkhorst-Pack scheme [51]. A grid of k-points of 11 x 11 x 9 was 
used for ideal strength calculations. Precision was set to high to ensure the 
stability of the calculation. The partial occupancy was determined by the 
tetrahedron method with Blöchl corrections. These settings led to a total energy 
that is converged to 1mRy per atom, with the cell remaining insulating throughout 
the computation. 
 
 

2.3 Failure Criteria 
 
 In the experiments the hollow nanopsheres of CdS were subjected to 
nanoindentation in a transmission electron microscope (TEM) [23]. In this 
experiment the diamond indenter is substantially larger than the individual 
nanoparticles, as is the silicon substrate on which the nanoparticles rest. The 
advantage to performing these experiments in situ is that they allow for the 
observation of deformation processes in real time. FEA allows for the qualitative 
interpretation of the in situ nanoindentation experimental results and the 
development of failure criteria.  
 
 In these experiments the nanospheres are compressed to failure. By 
examining the video of the compression and correlating this with the load 
experienced by the nanosphere it is possible to obtain an estimate of the average 
contact pressure. By treating the contact area as a circle it was shown that a 
contact pressure of 1  𝐺𝑃𝑎 was obtained just prior to failure [23]. The effective 
stress and strain can be computed at just prior to failure, these quantities are 
found to be 𝜎!""!#$!"# = 370𝑀𝑃𝑎, 𝜖!""!!#$%&! = 16.4% (typical values). An effective 
stiffness can be determined if the assumption is made that the load versus 
displacement behavior is nearly linear this results in an effective stiffness of 
2.3  𝐺𝑃𝑎 . These simple calculations lead to several observations. First the 
stresses, which are experienced in the CdS shell, are quite large. Second the 
strain to failure is also surprisingly large, for an inherently brittle material. While it 
is known that the yield stress increases as the grain diameter is decrease, Hall-
Petch behavior, the strain which a nano grained material can sustain tends to 
decrease.  
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 The FEA model was developed to explore the development of stresses 
and strains in the thickness of the shell as well as to examine the failure of the 
CdS nanospheres. From images of the spheres during nanoindentation it is 
possible to determine the sphere diameter as well as the thickness of the shell. 
Thickness could not be determined precisely therefore calculations assume an 
error of one average grain diameter, ±7  𝑛𝑚. The FEA model was first checked 
against the load versus displacement data from the experiments. In Figure 2.3 
the force vs. displacement for the nanoindentation of a CdS hollow nanosphere is 
shown.  This figure shows very good agreement between the experiment and the 
FEA model. The black dots represent the experimental data, while the darker 
blue line, which can be seen in the breaks between the black dots, is the 
predicted force vs. displacement behavior for a nanosphere of this diameter and 
with 𝑅! 𝑅! = 0.74. While the lite blue region represents the envelope of force vs. 
displacement if the error in determining the shell thickness is considered, ±7  𝑛𝑚. 
 

The FEA model was compared to multiple sets of experimentally 
generated force vs. displacement data. Below in Figure 2.4 in 16 panels the 
experimental force vs. displacement data is compared with the FEA model. From 
the panels in Figure 2.4 it can be seen that 13 of the 16 experiments are 
described well, particularly when the error in measuring the shell thickness is 
considered.  In two of the experiments the FEA model predicts the elastic 
modulus to be stiffer than the experimental result. This difference in stiffness can 
be explained by either the occurrence of plastic deformation or by the sphere 
slipping under the indenter or perhaps a preexisting flaw. In one of the 
comparisons the FEA model predicted a modulus lower than the experimental 
results this could be due to a larger error in measure this shell thickness. With the 
overall excellent agreement between the model and experiment the failure of the 
nanospheres could be considered.  
 

From Figure 2.4 it can be seen that of the 13 experiments described well 
by the FEA model the FEA model models 9 out to the point of failure. While the 
failure mechanism was beyond the scope of this model, failure could be due to 
the presence of pre-existing cracks or other defects that are present.  As a 
general rule failure of brittle materials are governed by pre-existing flaws. From 
this analysis an overall trend is observed in the failure of the nanospheres. 
Statistically the nanospheres resist failure longer the larger their diameter 
becomes, while keeping the same overall ratio of radii 𝑅! 𝑅! = 0.74.   
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In developing the failure criteria it was useful to examine the evolution of 

the stresses and strains in the nanospheres as they were compressed. In Figure 
2.5 the development of the stresses and strains can be observed, for 
displacements of 10 , 20  and 30𝑛𝑚 . In the frame (A) of Figure 2.5 the 
development of the shear stress is mapped and can clearly be seen to have a 
maximum in the thickness of the nanosphere. While in the middle frame (B) of 
Figure 2.5 the evolution of the tensile stress is followed and can be seen to be a 
maximum at the inner surface of the nanosphere. It should be noted that the 
tensile stresses do not penetrate into the thickness of the shell and are in fact 
predominately limited to the inner surface of the shell. Finally in the right frame 
(C) the evolution of the shear strains are followed.  
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Figure 2.3 Load vs. Displacement of a CdS nanosphere 
black dots represent experimental data. Dark blue line is 
FEA model prediction with 𝑅! 𝑅! = 0.74⁄ . Lite blue band 
considers the error in shell thickness ±7  𝑛𝑚.  
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Figure 2.4 A Comparison of Force vs. Displacement of CdS nanosphere for 16 
different experimental results with the predicted FEA curves. The black dots 
represent experimental data. Dark blue line is FEA model prediction with 
𝑅! 𝑅! = 0.74. Lite blue band considers the error in shell thickness ±7  𝑛𝑚. 
 
 

A failure criteria could be developed based on either the shear or tensile 
stresses. With CdS being an inherently brittle material the first approach would 
be to develop the failure criteria in terms of the tensile stresses. For several 
reason the tensile stress is not the best choice to base the failure criteria on in 
this case. First the tensile stresses occur at the surface of the nanosphere, it is 
known that values obtained from an FEA model at surfaces are very sensitive to 
the mesh used to describe the material. It should also be noted from panels (A) 
and (B) in Figure 2.5 that the shear stresses sample a larger volume than the 
tensile stresses. The difference in the amount of volume sampled increases as 
the displacement increases. In addition to these reasons it should also be noted 
that if the tensile stresses cause a localized failure to the CdS nanosphere, this 
would serve to shed load to the interior thus intensifying the shear stress 
experienced by the shell. Finally an examination of the video of the failure of the 
nanospheres shows that they tend to fail in a manner that agrees with the 
maximum shear stress controlling failure. 
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Figure 2.5 FEA comparisons of stresses and strains generated during 
indentation, at 10, 20 and 30 nm displacement of the top of the shell. Panel (A) 
shows the shear stress development in the shell, while in panel (B) the tensile 
development is shown. Then in panel (C) the development of the shear strains is 
shown.  

 
For the above reasons the maximum shear stress was chosen as the 

bases of the failure criteria. In order to arrive at the maximum shear stress 
condition 21 different FEA geometries were used to sample possible different 
nanospherical diameters and 𝑅! 𝑅! . These geometries consisted of 𝑅! 𝑅! =
0.6, 0.7  𝑎𝑛𝑑  0.8  while the diameters of the nanospheres sampled are 
200, 250, 300, 400, 450  𝑎𝑛𝑑  500𝑛𝑚. For these geometries load versus maximum 
shear stress relationships could be explored. This relationship could then be 
used to determine the critical maximum shear stress, with a least square fit to the 
experimental data. The best fit was obtained for a shear stress of 2.2  𝐺𝑃𝑎. 

 
 
 
 
 
 
 
 

A)A) B)B) C)C)
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As stated earlier and can be observed in Figure 2.6 the trend is for the 
force required to cause failure to increases with increasing diameter. In Figure 
2.6 the black dots represent the experimental data for 33 nanospheres that were 
compressed to failure. The blue line represents the predicted failure force as a 
function of the diameter when 𝑅! 𝑅! = 0.74. The red triangles represent the 
predicted failure for experimentally determined shell diameters and 𝑅! 𝑅!, while 
the red vertical line represents the error in the ability to determine the value of 
𝑅! 𝑅!.  The FEA failure criteria based on the shear stress represents the actual 
failure of the nanospheres reasonable well.  
 

The failure criteria for a nanosphere of 450  𝑛𝑚 at a shear stress of 2.2  𝐺𝑃𝑎 
results in a shear stress which is approximately 8% of the bulk Young’s modulus 
computed by Voigt average [52,53] and shear strains which are approximately 
8%. The value of 8% compares favorable to the expected value for BCC 
materials where a stress of 10% of the Young’s modulus has been shown to give 
the ideal strength [20]. This shows that both the shear stresses and shear strains 
obtained in the thickness of the shell are rather larger. This suggests that the 
shear stresses reached in the interior of the shell approach the ideal strength. We 
therefore, calculated the ideal strength of CdS.  

 
 

2.4 Ground State and Elastic Constants 
  Prior to conducting an ideal strength calculation it is necessary to check 

the accuracy of the US-PP. The standard calculations used to check the 
accuracy is to calculate the materials’ constants in their ground state. By 
minimizing the total energy as a function of the lattice parameter the ground state 
configuration can be determined, to give the lattice parameters. Then by 
systematically changing the volume and measuring the changes in total energy it 
is possible to determine the materials’ elastic constants. Table 2.1 compares the 
calculated values in this work with the experimental and reference calculations. 
The calculations of the lattice constants are smaller than those determined by 
experiment ~1%  and the elastic constants agree with the experimentally 
determined elastic constants ~2.3%− 13.7%. These percent errors are typically 
of those that are found from LDA based calculations due to the over binding of 
the atoms, as can be seen from the smaller than expected lattice parameters.   

 
 
 
 
 
 
 
 



 18 

 

 
 
 
 
 
 
 
 
 
 
 

Table 2.1 Comparison of the calculated values with experimental data and 
other calculated values.  

 This 
calculation 

Reference 
work 

Experiments Error 

CdS     
𝒂𝟎(𝑨) 4.1 4.14 (Ref. 54) 4.14        (Ref. 55) -0.82% 
𝒄(𝑨) 6.6 6.75 (Ref. 54) 6.71        (Ref. 55) -0.75% 
𝑪𝟏𝟏 92.8  90.7GPa (Ref. 55) 2.31% 
𝑪𝟏𝟐 62.6  58.1GPa (Ref. 55) 7.74% 
𝑪𝟏𝟑 54.6  51.0GPa (Ref. 55) 7.06% 
𝑪𝟑𝟑 104.2  93.8GPa (Ref. 55) 11.09% 
𝑪𝟒𝟒 17.1  15.0GPa (Ref. 55) 13.70% 

Displacement (nm)
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 (µ
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Figure 2.6 Comparison experimental failures to the FEA 
based failure criteria. Black dots represent experimental 
failure, blue line the predicted failure with the average value 
of the inner/outer radii and the red triangles representing 
prediction for specific diameter and inner/outer, with the red 
bar being the error in the thickness.  
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2.5 Ideal Strength of CdS 
  In elemental hexagonal Cd dislocations on the Basal slip system {0001} 

plane and in the 1120  slip direction dominating dislocation activity. It would be 
expected that the Basal slip system would also operate in the wurtzite structure 
of CdS. Dislocations have been reported to operate in the Prismatic slip system 
composed of the {1100} plane and in the 1120  slip direction. This is consistent 
with the crystallography of wurtzite as these are the two most close-packed 
planes. For these reasons the ideal strength will calculated in these two systems.  
 

 

 
 

 

 

 
 

 
 

 

 

 

 
 

Figure 2.7 The heavy black lines outline the 
planes on which slip shown to be the easiest. 
These planes posses short Burgers vectors. 
(A) Basal slip system and (B) Prismatic slip 
system 

Figure 2.8 The heavy black lines 
outline the plane on which the 
displacement was applied. The 
displacement takes place in the 
direction of the Burgers vector.    
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From Figures 2.7 and 2.8 the three slip systems that were examined to 

determine the ideal strength of CdS are shown. Both of the slip systems shown in 
Figure 2.7 (Basal and Prismatic) yield quantitatively the same ideal strength 
~3.0  𝐺𝑃𝑎, shown on figure 2.9 as the blue line. This is not surprising as they both 
have the same Burgers vector. In the Basal plane the other variant of the slip 
system were also examined to confirm that the Basal planes behavior is isotropic 
as described by linear elasticity theory. In each direction on the Basal plane the 
ideal strength was found to have the same value. When the system with the 
Burgers vector <0001> was examined it had a significantly higher ideal strength 
than either of the other two slip systems considered. Its ideal strength is 
~9.75  𝐺𝑃𝑎, so it is more than three times stronger than the Basal plane. Again 
this seems reasonable as the Burgers vector is much longer in this direction and 
therefore should cost more energy to operate. One point that is interesting to 
note, is that the ideal strength occurs at the same engineering strain regardless 
of the slip system considered. This is similar to the observations of Morris et al. 
[20] who showed that for the BCC crystal structure the ideal strength was the 
same regardless of the slip system. Unlike Morris et al. work where both stress 
and strain are constant regardless of slip system here it would appear that only 
the strain to ideal strength might be a constant.  
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Figure 2.9 Comparison of the ideal strength for the Basal 
plane shear “Blue” and the Prismatic slip system. These 
are the two slip systems that have been reported as 
being active.  
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2.6 Conclusion 
 It is possible to design inherently brittle materials such as CdS to produce 
a material that has both very high strengths and able to sustain large strains. 
This was shown by way of considering the mechanical properties of CdS hollow 
nanospheres.  
 
 By using both FEA and first principles density functional calculations 
failure criteria has been developed for the CdS hollow nanospheres, which 
agrees well with experiments the failure criteria, was developed with the FEA 
model and predicts failure of the nanospheres at 2.2  𝐺𝑃𝑎. This relatively high 
value of the predicted failure stress is surprising, since the II-VI compounds are 
inherently brittle. To place a boundary on this failure stress the ideal strength of 
the material was calculated. Ideal strength was calculated for a series of slip 
systems and was shown to be isotropic and constant in those slip systems, which 
have a Burgers vector associated with the Basal plane. As might be expected the 
lowest of the ideal strengths appeared on the Basal plane and this was used to 
compare to the failure criteria.  Comparison of the ideal strength to the failure 
criteria shows that the CdS nanospheres reach ~70% of their ideal strength 
before failure occurs.  
 
 With the ability to create new and novel nanostructures from the II-VI 
compounds that form into the wurtzite it is worthwhile to study their mechanical 
properties. As a first step the ideal strength should be calculated for these 
compounds and check if this 0.15 engineering strain is universal to this material 
class.  
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Chapter 3 
 

 

Energy Surface for BCC Gum Metal 
 

3.1 Introduction to Gum Metal 
  Gum Metal is the first bulk metallic system that is known to approach its 

ideal strength. For conventional metallic systems the obtainable strength is 
orders of magnitude lower than the theoretical ideal strength. Many processing 
approaches have been employed to strength metals: alloying, heat treatment, 
cold working and these approaches still typically leave the metal significantly 
below their theoretical ideal strength. The origins of this inability to reach the ideal 
strength are due to the presence of defects in the material. In metallic systems 
the lowering of the strength generally results from the easy with which 
dislocations can propagate. In 2003 Toyota introduced a titanium-niobium-based 
alloy “Gum Metal” which has yield strength of the same magnitude as the 
theoretical ideal strength [22].  

  
  Initial interest in Gum Metal from the scientific community was due to its 

exceptional properties and proposed deformation processes. Gum Metal 
possesses both Invar and Elinvar properties over approximately  500!𝐶, while 
also being superplastic and superelastic. The possession of all of these 
properties in a single alloy led to significant research on the understanding of this 
material. In the initial paper by Saito et al. the proposed deformation process was 
dislocation free. The alloy has the BCC structure and is composed approximately 
of 75 mol% Ti, 25 mol% group Va (Nb, V) elements as well as group IVa element 
Ta and a varying amount of oxygen 0.7 mol% - 3.0 mol%.  This composition 
places the alloy near the BCC to HCP phase transition. At this composition the 
tetragonal shear modulus 𝐶! = !

!
(𝐶!! − 𝐶!") → 0 tends toward zero.  

 
  The mechanical deformation processes in Gum Metal have led to attempts 

to understanding these processes by both experimental and theoretical 
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approaches. It was originally proposed that dislocations were not present in the 
alloy [22]; this was supported when post deformation samples were examined 
and showed no significant dislocation presence. It has also been reported that 
the deformation process occurred without undergoing a phase transformation 
[22, 56]. It was shown in tensile tests that deformation occurred by what is called 
giant faulting, in which there is a shearing of the material that may be as large as 
500  𝑛𝑚, on a single plane. The giant faults occur on the plane of maximum shear 
stress, which in these experiments did not coincide with a slip system in the BCC 
structure [22]. Results from in-situ deformation X-ray diffraction experiments 
seems to indicate that during deformation Gum Metal undergoes a reversible 
phase transformation from the BCC to an orthorhombic structure [57]. However 
one the load is removed the orthorhombic structure is no longer observed and 
the observed orthorhombic structure maybe caused by phonons [74].  

 
  A tetragonal distortion when applied to the BCC structure can transform it 

into the face centered cubic (FCC) structure, as was originally shown by Bain in 
1924 [58]. Then a distortion of one of the lattice vectors would take this structure 
into an orthorhombic structure. Now with the introduction of first principle DFT 
electronic total energy structure calculations this path can be studied in ways that 
are not accessible to experiments. Extensive work has been done on examining 
the Bain path from the FCC to the BCC [59-66] structures but relatively little work 
has been performed on the BCC to FCC [59,60] the transformation of interest 
here. In the work on FCC crystals following the Bain path it was shown that a 
transition to the BCC structure is elastically unstable and similarly that for 
tantalum and tungsten the transformation to FCC is unstable.  

 
  This previous work shows that a stable BCC (FCC) structure is inherently 

unstable as a FCC (BCC) structural distortion. This does not preclude the 
existence of other metastable phases along the Bain path. In fact the transition 
from a minimum to a maximum in energy implies the existence of at least one 
other local minimum, along the Bain path past the maximum. Such local 
minimums have been found in aluminum by compression along the [001] at a 
𝑐 𝑎 = 0.567  and in iridium 𝑐 𝑎 = 0.577  [59]. These ratios are very close to the 
predicted minimum for the body centered tetragonal (BCT10) structure. This 
transition has been seen in other FCC solids and experimentally observed in 
mercury [67].  While for BCC structures, with 𝑐 𝑎 = 1, and the FCC structure is 
described by 𝑐 𝑎 = 2 , this structure has been observed experimentally in 
indium [67]. Along the Bain path there is an orthorhombic “magic strain” found by 
Boyer [68] that takes the BCC (FCC) lattice to another BCC (FCC) structure.  

 
  In this work it is shown that by mapping the Bain path of the different Ti-V 

approximate compositions the energy barrier between the BCC and FCC 
structure ceases to exist. Not represented on the energy surface but important 
because it is the compositionally driven phase transformation, it is shown that at 
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the transformation composition the energy barrier between the BCC and HCP 
phase goes to zero. In fact there is a large 𝑐 𝑎 that all possess the same energy. 
This means that at the Gum Metal composition the system is only slightly stable 
in the BCC structure.  
 

3.2 Computational Methods 
 
  In order to understand the energy surface associated with the Bain path 

and the associated phase transformation path first principles density functional 
theory (DFT) total energy calculations are employed. DFT was implemented in 
the Quantum Espresso Package [69]. With the Troullier-Martins type 
pseudopotential generated by the Fritz-Haber-Institute pseudopotential code [70]. 
Due to the compositional complexity of the alloy the virtual crystal approximation 
(VCA) was implemented to study Gum Metal. VCA is a mean field theory, in 
which each atom is a pseudo atom representing a mixture of the atoms in the 
system. In Gum Metal the VCA approximation is composed of Ti and V mixed to 
yield the desired electron per atom ratio, 𝑒 𝑎. The VCA approach has been 
applied to study the properties of ferroelectric systems [71] as well as 
semiconductor systems [72]. Application of VCA to study Gum Metal was first 
applied by Li et al. [73] to study the ideal strength and electronic structure of Gum 
Metal. A high energy cut off is used in these calculations to ensure that each 
distortion of the unit cell is well-represented 100  𝑅𝑦  (1360  𝑒𝑉); also because the 
difference in energy along the Bain path may also be small. Thirty-two special k-
points are used to describe the summation in the Brillouin zone and Fermi-Dirac 
smearing is implemented with a smearing of 0.02  𝑅𝑦.  

 
  The structure used for the majority of these calculations is a primitive unit 

cell. A two-atom cell was used to check the results and search for a stable 
orthorhombic structure. For each system (Gum Metal compositions, BCC 
elements) considered in this work the structure is first relaxed to ensure that the 
system starts from the ground state. Then to map out the energy surface the unit 
cell is distorted in the [001] direction and the angle between the lattice vectors is 
allowed to changed, thus allowing the mapping of the energy surface for each 
system. A typical distortion along the [001] direction can be from 2.7𝐴 to 4.7𝐴, the 
exact span of the distortion varied depending on the ground state lattice 
parameter. The angle through which the system is allowed to vary is defined by 
the cubic symmetry.  At each structure the total energy of the system is 
calculated without allowing the system to relax.  
 

3.3 Description of the Bain Path    
  
  A face-centered cubic unit cell can be used to describe the Bain path, from 

BCC to FCC and extended beyond this path,  
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where 𝑎! = 2𝑎 , which yields the FCC structure when 𝑐 = 𝑎!  and the BCC 
structure when 𝑐 = 𝑎! 2. The Bain path for the Ti25V75 composition is examined 
to in Figure 3.1 to demonstrate the extension of the Bain path. At this 
composition BCC is the equilibrium structure. In Figure 3.1 the energy along the 
Bain path is plotted versus the ratio of 𝑐 𝑎, where here 𝑎 is the equilibrium lattice 
constant. Note that the global minimum occurs at 𝑐 𝑎 = 1 which corresponds to 
the BCC structure and the maximum occurs at the 𝑐 𝑎 ≈ 1.25, this is the FCC 
structure and is elastically unstable. There is also a local minimum near 
𝑐 𝑎 ≈ 1.4; this minimum is expected from continuity as shown by Craievich et al. 
[62]. This minimum must be outside the traditional Bain path, BCC to FCC. The 
minimum at 𝑐 𝑎 = 1.4  is one variant of the BCT structure which can exists 
outside the traditional Bain path. The BCT structure that forms at 𝑐 𝑎 = 1.4 is a 
saddle point and would relax into one of the two available BCC variants.  There is 
another BCT structure that has been observed to occur along the extended Bain 
path under compression. Under compression the BCT10 structure has been 
observed experimental and in calculations of elemental BCC structures [59]. By 
changing the k-point mesh it is possible to check these results and this showed 
that the error in the total energy to be less than 0.2  𝑚𝑅𝑦 over the ratio of 𝑐 𝑎 
explored in this calculation. This approach was also checked against previously 
published work on tungsten and found to be in good agreement.  

 

3.4 Calculation of the Energy Surface  
 
 It is clear from the previous section that metastable structures can be 
present along the extended Bain path. The energy surface is explored by 
applying an orthorhombic distortion, Eqn. 3.2, to the unit cell described by Eqn. 
3.1. From Eqn 3.2 we can see that of the energy of the unit cell is a function of, 
𝑬  (𝑽, 𝒓,∅), where 𝑽 is the volume of the unit cell.  
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         𝑥 = 𝑒 𝑟   cos 𝜃+2𝜋 3  
                                           𝑦   = 𝑒 𝑟   cos 𝜃−2𝜋 3                  (3.3) 

𝑧 = 𝑒 𝑟   cos 𝜃  
 

 
 

 
 
 
 
 
 
 

With Eqn 3.2 and Eqn 3.3 it is possible to map energy surface of a given 
BCC structure. On this surface there are three special cases which occur when 
𝜃 = 0, 2𝜋 3 ,−2𝜋 3 , under these conditions the orthorhombic structure 
transforms to the tetragonal structure, where the tetragonal axis lies in the x, y 
and z direction.  In Figure 3.2 the energy surface for Ti25V75 is shown. The three 
different BCC variants can clearly be seen as the low energy valleys, with the 
black lines showing the Bain path starting at the BCC structure extending past 
the FCC and through the saddle point. The FCC structure represents the highest 
point in the middle of the energy surface. All three of the possible Bain paths 
pass through the FCC structure. Following the Bain path over the FCC structure 
we find a metastable BCT structure, shown as white dots, on the energy surface 
for Ti25V75 composition. This saddle point is approximately 82 meV above the 
BCC ground state. It will be shown that as the composition approaches the BCC 
to HCP phase transition this barrier decreases to below the energy at room 
temperature.  

 

Figure 3.1 Bain path for Ti25V75 using density functional 
theory and k-points described in the text. The global 
minimum represent the BCC structure, the global maximum 
is the FCC structure while the local minimum is a tension 
formed BCT structure. 
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In Figure 3.3 the extended Bain path is plotted for four different 
compositions: Ti25V75, Ti50V50, Ti75V25 and Ti85V15. As the composition changes to 
be richer in Ti the composition of Gum Metal is approached. The composition of 
Ti75V25 has the approximate composition of Gum Metal. In this figure three of the 
four compositions (not Ti85V15 composition) yield an energy barrier greater than 
the energy at room temperature. From examining these plots it can be seen that 
as the composition approaches the Gum Metal composition that several different 
processes take place. The energy barrier along the Bain path decreases as the 
percent Ti in the composition increases. By the time the composition has reached 
Ti85V15 the energy barrier to reach the BCT metastable phase has essentially 
ceases to exist at room temperature.  The very small energy barrier on along the 
Bain path means that it would be easy to deform the structure as at room 
temperature a wide range of 𝑐 𝑎  values are degenerate in energy.  As the 
composition is changed the location of the BCT metastable phase shifts towards 
the BCC stable structure at 𝑐 𝑎 = 1 as the composition becomes richer in Ti. The 
location of the FCC peak also shifts towards the BCC structure. Additionally this 
is the composition at which the BCC and HCP structures become equal in 
energy. This means that the three phases BCC, FCC and HCP, are degenerate 
at the composition 85 mol% Ti. This means that Gum Metal is designed so that 
three phases are nearly degenerate in energy. The behavior alone the Bain path 
is summarized in Table 3.1. 

 
 

 
 
 

 
Figure 3.2 The energy surface of the Ti25V75 is presented. The three 
variants of the Bain path are shown with the black lines. The three 
minimum BCC structures are shown. The white dots are the BCT 
saddle points that occur under extension past the FCC structure.  
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Figure 3.3 In this figure the Bain paths for four different 
compositions are given. In the Ti25V75 composition there is 
a clear energy barrier in going from the BCC to BCT 
structure.  
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Table 3.1 Position of the BCT minimum with the related anisotropic factor and 
the relative differences in energy of the different phases present on the BCC 
energy surface. 

Composition 𝒄
𝒂
  @𝑩𝑪𝑻 𝑨 =

𝟐𝑪𝟒𝟒
𝑪𝟏𝟏 − 𝑪𝟏𝟐

 𝑬𝑩𝑪𝑪 − 𝑬𝑭𝑪𝑪  𝑬𝑩𝑪𝑪 − 𝑬𝑩𝑪𝑻  𝑬𝑭𝑪𝑪 − 𝑬𝑩𝑪𝑻  

Ti25V75 1.43 0.88 .136 eV .082 eV .054 eV 
Ti50V50 1.41 1.871 .075 eV .054 eV .020 eV 
Ti75V25 1.32 7.5 .026 eV .019 eV .004 eV 
Ti85V15 1.20 32 .007 eV .007 eV .0006 eV 

 

Figure 3.3, in which the Bain paths for four different variants are plots 
shows that as the composition of Gum Metal is reached the all energy barrier on 
this energy surface tend toward zero. This leads to the BCC structure only being 
slightly favored in energy over other possible structures. This also leads to the 
fact that an orthorhombic strain takes the system from one BCC structure to 
another BCC structure. This can be seen if the energy surface of Ti25V75 is 
considered and the energy surface of Ti85V15. Figure 3.4 shows the energy 
surface for the Ti25V75 composition plotted with energy contour every 25 meV 
starting at 25 meV out to .5 eV. 25 meV was selected as the energy steps for the 
contours to demonstrate the range over which the 𝑐 𝑎 ratio is degenerate. The 
energy barriers along the Bain path and for the orthorhombic path are shown with 
their respective energies in these figures.  
 
 In Figures 3.4 and 3.5 the same energy contours are plotted showing the 
remarkable difference in the energy surfaces. From examining the energy 
surface for the Ti85V15 composition a large section connecting the three different 
BCC structures can be seen to have an absence of contours. This lack of 
contours means that there is no energy barrier for transition between the initial 
BCC to FCC and the initial BCC to a BCC variant. It should also be noted that no 
matter the composition a stable BCT10 structure is never seen under 
compression.  
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Figure 3.4 Energy surface for Ti25V75 showing the relevant 
energy barriers. These energy barriers are significantly 
larger than the energy available at room temperature. 

 

 
Figure 3.5 Energy surface for Ti85V15 showing that no energy 
barriers are visible in these calculations. The energy 
contours are plotted so that the smallest energy contour is 
equal to the energy at room temperature.  
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Figure 3.6 Bain paths for seven elemental BCC 
structures. From an examination of these it is clear 
that Nb and V behave qualitatively the same, thus 
reinforcing that Ti-V is a good approaximate to Gum 
Metal. It seems like the anisotropic nature of a 
material determins how it will transform.  
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It is interesting to compare the Ti-V results to elemental BCC solids. In 
Figure 3.6 the Bain path for seven different BCC forming elements has been 
plotted. In this work we have opted to represent the composition of Gum Metal 
with the Ti-V approximate despite the fact that the composition of Gum Metal is 
much closer to Ti-Nb. By examining the Bain path for Nb and V shows that both 
of these elemental BCC structures behave in remarkably similar was. The Nb 
Bain path shows a slightly more pronounced BCT10 shoulder under compression 
and transition to the BCT tension structure. V and Nb have approximately the 
same energy scales, with in our ability to resolve, for the Bain path transitions. 
This would suggest a reason for why the choice of V as our approximate has 
worked so well.  
 

Of the seven Bain paths presented here five show the same general 
behavior, shoulder at the BCT10 structure and a barrier to the FCC transition. 
These five elemental BCC structures (Nb, V, W, Ta and Mo) all of low to no 
anisotropic character. The first three of the Gum Metal compositions examined 
(excluding Ti85V15) also have relatively low anisotropic character. The elemental 
BCC solids and these first three Gum Metal compositions behave qualitatively 
the same except for the lack of a shoulder in the Gum Metal compositions.  For 
the Gum Metal composition Ti85V15 the material becomes significantly anisotropic 
and the Bain path for this composition shows no barrier to transformations. Both 
Li and Na have high anisotropic factors and behave qualitatively the same as 
Ti85V15. This would seem to suggest that the anisotropic nature of the material 
has an impact on its transformation properties.  

 
3.5   Conclusion 

As the Gum Metal composition is approached the energy barriers 
essentially disappear, within the resolution of the calculations. By examining the 
extended Bain path and the energy surface that results from an orthorhombic 
distortion it can be seen that the over a large range of the ratio c/a all structures 
are essentially degenerate. It is also noted that at these compositions the HCP 
phase, which is not represented on the energy surface, is also degenerate with 
both the FCC and BCC structures.  

 
  Seven common elemental BCC structures are also examined and 

compared to the Gum Metal compositions. In this further justification of why the 
Ti-V approximate is so successful at representing Gum Metal. It is also 
interesting that elemental BCC structures with relatively low or even no 
anisotropic character behave similar qualitatively to the compositions less rich in 
Ti than Ti85V15, that also have a low anisotropic factor. While those elemental 
BCC structures with a high anisotropic character behave similar to the Ti85V15 
composition of the Ti-V approximate. This would seem to suggest that by driving 
a BCC structure to posses a large anisotropic factor it should be possible to 
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produce other metallic systems with similar transformation properties and 
perhaps similar mechanical properties. 
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Chapter 4 
 

 

 

Dislocation Core Structure in Gum 

Metal 
 

 

4.1 Introduction to Dislocations in Gum Metal 

 As has been previously mentioned Gum Metal possesses many 
interesting properties, and this, in turn, stimulated interest in the mechanical 
property scientific communities. These properties only develop fully after 
extensive cold working, 90% swaging. Counter intuitive examination of heavily 
swaging samples reveals few if any lattice dislocations. This lack of observable 
dislocations also extended to samples that had been tested in a tensile tested 
[22] post cold working. This led to the idea that Gum Metal deformed without the 
typical dislocation processes that are observed in metals. It should also be noted 
that during mechanical testing diffraction spots are observed for the face 
cantered orthorhombic structure. However once the load is removed the 
diffraction spots for the FCO phase are no longer present.   
 
 The elastic constant difference 𝐶!! − 𝐶!" plays a large role in the 
mechanical properties of BCC metals. For example, the ideal shear strength is 
proportional to 𝐶!! − 𝐶!". As the 𝐶!! − 𝐶!" → 0, the ideal strength of Gum Metal 
also approaches 0. In the original work on Gum Metal [22] it was proposed that 
these vanishing elastic constants led to the ideal strength being comparable to 
observed strengths. The vanishing of 𝐶!! − 𝐶!"  also leads to the material 
developing a strong anisotropic character as the composition of Gum Metal is 
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approached. The composition of Gum Metal places the material near the phase 
transition from BCC to HCP.  
 
 As shown in Table 3.1 the traditional anisotropic factor for cubic materials 
is given by 𝐴 = 2𝐶!! 𝐶!! − 𝐶!" . The traditional description of anisotropic factor 
does not provide direct insight to the behaviour of dislocations. For the material to 
approach its ideal strength dislocations must not be mobile before the ideal 
strength is reached. It has been shown by Li et al. [73] that it was possible to 
express an anisotropic factor in terms of dislocation parameters. Based on 
dislocation parameters the ratio that describes the relevant anisotropy of the 
material is 𝐾 𝐺 !!! , with 𝐾 being the elastic constant that determines the line 
tension of the dislocation and 𝐺 !!!  the elastic constant for shear along the 111  
direction, independent of shear plane. In this chapter the effects of the large 
anisotropic factor are examined in terms of its effect on the dislocation core 
structure and the appearance of nanodisturbances. As with the traditional 
anisotropic factor the anisotropic factor defined above yields 𝐾 𝐺 !!! = 1 for 
isotropic materials.  
 

4.2 Defining the Dislocation Core Radius 
 
 The dislocation core radius is necessary in the linear elastic description of 
dislocations since the continuum approximation fails at large strains. As the 
dislocation is approached the stresses and strains present in the material 
diverge. This divergence is avoided through the introduction of a core radius, 𝑟!. 
For distances further than 𝑟! from the core, elasticity theory works well. Distances 
nearer require a theory reflecting the atomic scale structure. The choice of the 
𝑟!   is ad hoc. Hirth and Lothe [2] proposed that the magnitude of the core radius 
be chosen so that the total energy of the dislocation is well represented by its 
elastic energy. This approach typically leads to a core radius with a magnitude, 
𝑏 4 ↔ 𝑏 3, with 𝑏 ≡ magnitude of Burgers vector.  
  
 While the choice of a core radius based of the total energy is a valid 
approach and in fact very useful for the study of dynamic properties of 
dislocations, however this is not the only possible choice. With our ability to 
compute the ideal strength of materials in the framework of DFT total energy 
approaches, another choice becomes obvious. The ideal strength is a material 
property. The stress obtained in a material can never exceed the idea strength.  
Stress fields from dislocations are well defined within continuum linear elasticity 
theory [2]. We can therefore, define the core radius as the point at which the 
stress from the dislocation equals the ideal strength, for equivalent loading 
conditions.  
 
 Start by considering a screw dislocation in an elastically isotropic material. 
Dislocations motion is determined by the shear stress; therefore, we can consider 



 36 

the shear stress of a dislocation at a distance 𝑟 from the dislocation singularity 
given by 𝐺𝑏 2𝜋𝑟 , with 𝐺 being the materials shear modulus and 𝑏 being the 
Burgers vector. Now the ideal shear strength of a material can be approximated 
as 𝐺 2𝜋 [1]. By equating these two expressions we can arrive at a definition for 
the core radius, 𝑟!"#$: 

𝑟!"#$ = 𝑏       (4.1) 
 
This yields a core radius that is similar in magnitude to the approach in which the 
core radius is selected to ensure a good representation of the total energy.   
 
 As was shown in Table 3.1, as we approach the composition of Gum 
Metal the material becomes increasingly anisotropic. This anisotropic character 
means that the elastic constants, which govern dislocation line tension, and 
those, that govern the ideal strength are no longer equal.  In materials with large 
anisotropy the dislocation core radius may be larger than 𝑏, which is the case in 
Gum Metal.  
 
 Now consider the specific case of a BCC material. Let 𝐾, which defines 
the line tension of the dislocation also represent the elastic constants which 
govern the shear stress, as was done by Li et al. [73]. In BCC materials Krenn et 
al. [17] showed that the ideal shear strength for shear in the 111  is governed by 
the shear modulus 𝐺 !!! . 𝐾 and 𝐺 !!!  are both functions of the elastic constants 
and expressions are given in eqn. 4.2 and 4.3.  
 

𝐾 = 𝐶!! − 𝐶!" 𝐶!!×
!!!!! !!!!!!!"!!!!"! !!"!!!!!!!!!!"!!!!!!!!!

! !!!!!!"!!!!! !!!!!!"!!!!!
                   (4.2) 

 
 
    𝐺 !!! = !!!! !!!!!!"

!!!!!!"!!!!!
                                                (4.3) 

 
While BCC materials are known to have a significant number of available slip 
systems Krenn et al. [17] showed that they all possessed nearly identical ideal 
shear strengths. It was also shown that the ideal shear strength of a BCC 
material is very closely approximated by 𝛾𝐺 !!! , with 𝛾 = 0.11 [17]. Substituting 
the elastic constant, which controls the dislocation line tension into the equation 
for the shear stress from a dislocation, we can arrive at an expression for the 
core radius in a screw dislocation.  
 

𝑟!"!" = 𝑏 !
!!"! !!!

     (4.4) 
 

It has also been shown that for screw dislocations in BCC metals that [73], 
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!
! !!!

∝ 𝐶!! − 𝐶!" !! !       (4.5) 
 
As we approach the BCC to HCP transition composition the quantity 𝐶!! −
𝐶!" → 0. This has interesting consequences when considering the eqn. 4.4 and 
eqn. 4.5: as the transition composition is approached the dislocation core radius 
increases in size and ultimately diverges at the transition composition. The 
unique set of properties in Gum Metal only appear after heavy cold working, as 
large as 90%  swaging, thus the dislocation density in this material can be 
expected to be large. This would seem to lead to a condition in Gum Metal in 
which no dislocation core is truly isolated from other dislocation cores as is 
generally assumed.  
 
 It is possible to make a simple geometric argument about the number of 
dislocations needed to cause the cores to overlap. By using the core radius to 
define the dislocations density, 𝜌!. Assume that a dislocation core has an area of 
𝜋𝑟!"#$!  and allow the dislocations to be uniformly dispersed; this leads to an 
expression for the critical density for dislocation core density 
 

 𝜌! =
!

!!!"#$! = !!"
!!

! !!!

!

!
        (4.6) 

   
If we use the elastic constants for the different compositions of the Ti-V 
approximates of Gum Metal it is possible to examine the critical dislocation 
density required for overlap to occur. In Figure 4.1 the critical dislocation density 
as a function of the composition, 𝑒 𝑎 (valence electron per atom), is plotted. 
Typically, the critical dislocation density required to obtain extensive overlap is 
not experimentally accessible. However as can be seen in Figure 4.1 as the 
composition approaches the BCC to HCP transition the critical density of 
dislocations needed to cause overlap might be attained through cold working.  
 

This means that the process by which Gum Metal is produced, cold 
worked 90%, might lead to an alloy that has both a large number of dislocations 
and the anisotropic character needed to have extended dislocation cores.   

 

4.3 Dislocation Core Structures 

 If the dislocation cores do diverge this might be observable in first 
principles total energy DFT based electronic structure calculations. To study the 
atomic scale structure of the dislocation cores the Quantum Espresso package 
[69] is employed within the VCA approximation to the Ti-V alloys. 
Pseudopotentials are of the Troullier-Martin type with a planewave energy cutoff 
of 100  𝑅𝑦.  Fermi-Dirac smearing is implemented with a smearing of 0.02  𝑅𝑦. A 
periodic supercell structure, each containing a dipole of screw dislocations, is 
used to study the core structure of the dislocations. The supercell contains 96 



 38 

atoms and is configured such that each core is in the easy configuration. The 
configuration of the supercell can be seen in Figure 4.2. The supercell structure 
is also designed to minimize the shear stresses on the dislocations, while the 
changes to the superlattice vectors used follows the method given in [75]. K-
points are generated using a Monkhorst-Pack scheme that is offset on a grid of 2 
x 1 x 8, which yields 8 distinct k-points. Total energies are converged to 
0.05  𝑚𝑅𝑦, with the forces on each atom below 0.5  𝑚𝑅𝑦 𝑎𝑢. 
 

 

 
 

 

 

 

 

In Figure 4.3 the relaxed core structures of three different Ti-V 
compositions are shown, Ti25V75, Ti50V50 and Ti75V25. Dislocation cores are shown 
using the standard differential displacement map approach developed by V. Vitek 
[76]. In this method the magnitude of the arrows connecting columns of atoms 
represent the relative displacement of the two columns of atoms normal to the 
page.  
 

Figure 4.1 Dislocation density required have core overlap. 
The density is plotted as a function of the electron per atom 
ratio for TiV alloys. The density tends to zero as the BCC 
to HCP transition is approached.  
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 The dislocation core structures for the Ti25V75 composition, Figure 4.3 (A), 
show very little displacement and what displacement exists is localized around to 
the dislocation cores, represented by the blue and red dots. This means that the 
dislocation core structures are compact. The behaviour in this composition is 
elastically isotropic and from Figure 4.2 we can see that the critical dislocation 
density to cause overlap would be 𝜌! ∼ 2.2×10!"𝑚!!. This density of dislocations 
is several orders of magnitude greater than that observed in the material.  
 
 In Figure 4.3 (B) the core structure for the Ti50V50 composition is shown. 
Note that in this composition the dislocation cores have started to spread. This 
spreading is mostly seen by the fact that the relative displacements are no longer 
confined to the columns of atoms immediately surrounding to the dislocation 
core. The spreading does not lead to an interaction between the dislocation cores 
in this composition, but the number of dislocations needed to cause overlap has 
decreased 𝜌! ∼ 2.0×10!"𝑚!!. 
 
 In the final composition examined, Ti75V25, the core structure is shown in 
Figure 4.3 (C). At this composition it is clear that the dislocation cores have 
spread. Every column of atoms in the supercell now experiences some 
displacements. The displacements from each of the dislocation cores interact 
with each other making it difficult to identify the individual cores. Further 
examination of the dislocation structure shows that the cores have not moved 
from their original positions. While the spreading is what is expected from our 
elasticity theory model, as the elastic constant 𝐶!! − 𝐶!" → 0, this structure is 
very difficult to analyse. It is possible that the observed structure is dependent on 
the path of relaxation and therefore not the global minimum. However it is clear 
that this relaxed structure is at least stable locally. For this composition the critical 
density of dislocations for overlap to occur has decreased substantially to 

Figure 4.2  Supercell used for the computation of the 
dislocation core structures. Each cell contains 96 atoms with 
two screw dislocations both in the easy core configurations.  
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𝜌! ∼ 9.0×10!"𝑚!! , which is two orders of magnitude lower than the other 
compositions examined. These two facts, the spreading of the dislocation cores 
and the lower dislocation density required for overlap, might explain the lack of 
observed dislocations post deformation.  
 

From Figure 4.3 it is clear that the dislocation cores spread as the 
composition is moved towards the BCC to HCP transition composition. This 
confirms that the dislocations spread with increasing 𝐾 𝐺 !!!  and near the 
transformation composition it becomes difficult to distinguish between individual 
dislocations. In an attempt to understand the dislocation structure, the ideal 
strength definition for dislocation cores is applied to the dislocation structures. In 
Figure 4.4 the contours representing the extent of the dislocation cores are drawn 
in using continuum linear elasticity theory. The plotted contours indicate the 
location at which the maximum shear stress in the 111  predicted in linear 
elasticity theory is equal to the ideal strength in the   111 . The stress is calculated 
following the method outlined by Daw [77], in which the Fourier series are used to 
express the distortion tensor and then the elastic energy is minimized with 
respect to the Fourier components of the distortion tensor. In order for this 
approach to be applicable the displacement field associated with the dislocations 
must have the correct singularity. 
 

In Figure 4.4 (A) the core structure for the Ti25V75 is presented. This 
material can be considered to be elastically isotropic (A= 0.88,𝐾 𝐺 !!! = 1.00). 
The cores in this composition are observed to be compact and centred on the 
dislocation; the cores also display the D3 point symmetry, which is commonly 
found in BCC transition metals [78]. While it is clear that the dislocation cores do 
not interact in this composition, it is also clear that the differential displacement 
map show the greatest displacement between neighbouring dislocations. Figure 
4.4 (B) shows the core structure of the composition of Ti80V20. This composition is 
near the transition composition of Ti88V12. In this composition the material 
becomes anisotropic (𝐴 = 12.5,𝐾 𝐺 !!! = 1.71)  . In this figure it is clear that the 
core region connects neighbouring dislocations and covers the majority of the 
supercell.  

 
From the examination of the differential displacement maps and the new 

definition of the core radius it is clear that as the material becomes more 
elastically anisotropic the dislocation properties change. As the extent of 
dislocation cores spreading increases this allows the dislocations cores to 
interact thus making large portions of the material exists at the ideal strength. 
This interaction also implies that the atomic displacements, shown by the 
differential displacement maps, become much more complex.   
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A)

B)

C)

Figure 4.3 Comparison of screw dislocation core 
structures for three different compositions. A) show 

the relaxed core structure for Ti25V75, which is clearly 
isotropic in nature. B) shows the relaxed core structure 
for Ti50V50 which does not show much spreading of the 

dislocation cores. Final C) which is the relaxed core 
structure for composition Ti75V25 clear show interaction 
between the dislocation cores. Every column of atoms 

in this structure experiences some displacements. 
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Figure 4.4 Extent of the dislocation cores of screw 
dislocations determined by the ideal strength and 
elasticty of the materials. A) Ti25V75 (isotropic) material 
shows little spreading of the cores. While in B) Ti80V20 
show substantial spread and interaction between the 
cores.    
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The mechanical properties of Gum Metal could be governed by the 
spreading of the dislocation cores. It would be expected that as the material has 
a stress applied the dislocation cores would increase in extent, thus lowering 
further the number of dislocation required to have overlapping cores. As was 
shown in Figure 4.1 at the Gum Metal composition the critical density of 
dislocations needed for the cores to interact is relatively low. Thus it might be 
expected that a material with these properties would fail in an “ideal” slip manner. 
This “ideal” slip would not be limited to slip systems and instead fail in the 
direction of maximum shear. The observed giant faults [22] would seem to 
behave in this manner. The giant faults do not correspond to any of the normal 
BCC slip systems and instead slip on the plane of maximum shear stress.  
 

4.4 Nanodisturbances 
 The lack of observed dislocations does not mean the lack of atomic 
displacements as was observed by the relaxed core structures. In 2006 Gutkin et 
al. [78] reported the observation of what was termed nanodisturbances. 
Successful attempts were made to describe nanodisturbances with fractional 
Burgers vectors. By examining the atomic scale structure of the dislocation 
supercells it is possible to interpret the nanodisturbances as a result of the 
overlapping of dislocation cores. In Figure 4.5 (A) the [111] plane is projected 
from the dislocation supercell calculations for both the Ti25V75 (Top) and Ti80V20 
(Bottom) and in Figure 4.5 (B) the Ti80V20 is presented but in a manner that 
allows for the identification of the nanodisturbance. From Figure 4.5 (A) we can 
compare the structures of the two compositions and observe that for the Ti25V75 
the rows of atoms are straight, while in the Ti80V20 the rows of atoms are display 
a distortion. In Figure 4.5 (B) the dislocations are denoted by the red squares. 
The nanodisturbance occurs on the 110  plane, shown with arrows, and the 
effects can be observed on the 111  plane. Here the yellow lines lie along rows 
of atoms and shows clear disturbance in the lattice structure. The yellow lines on 
the figure show how the planes do not meet up.  The black lines correspond to 
the yellow line displayed on the plane; they have been shown to the side to allow 
easier viewing of the displacement.  
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4.5 Extension to other BCC Materials 

 It is possible and in some cases advantages to define the dislocation core 
in terms of the materials ideal strength. This approach allows for the definition of 
the core radius by properties that are simply calculated, the ideal strength and 
the elastic constants. Because of the relative easy of this approach it is 
worthwhile to determine if any of the typical elemental BCC structures posses 
elastic constants that would result in the spreading of the dislocation cores. In 

Figure 4.5  Show is a (111) view of the structure 
for a Ti25V75 and Ti80V20 compositions. In the 
Ti80V20 composition a disrubtion in the atomic 
planes is observed. This is made clear in the 
lower frame with the yellow lines showning the 
discontinueity on the plane and the black lines 
showing the discontinueity more clearly.This 
discontiniuty has the same charcateristics as a 
“nanodisturbance”. 
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Table 4 the elemental BCC structures are compared to the VCA Ti-V 
approximate.  
 

Table 4.1 Elastic anisotropy comparisons for elemental BCC solids with the Ti-V 
VCA approximate for Gum Metal. 

 𝐶!!(𝐺𝑃𝑎) 𝐶!"(𝐺𝑃𝑎) 𝐶!!(𝐺𝑃𝑎) 𝐼𝑑𝑒𝑎𝑙  𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ   
            (𝐺𝑃𝑎)  

𝐾 𝐺 !!!  𝑟! 𝑏 

Li (Ref. 79) 15.3 11.9 13.29 0.263 1.36 1.97 

Na (Ref. 

79) 
9.7 8.3 5.8 0.11 1.4 2.1 

K (Ref. 79) 4.4 3.8 2.6 0.046 1.4 2.1 

Cr (Ref. 2) 350 57 101 14 1.0 1.5 

Fe (Ref. 2) 242 146 112 6.52 1.06 1.53 

Mo (Ref. 2) 460 176 110 14.2 1.00 1.45 

Nb (Ref. 2) 246 134 28 4.6 1.00 1.5 

Ta (Ref. 2) 267 161 82 6.6 1.00 1.5 

V (Ref. 2) 288 119 42 7.0 1.00 1.5 

W (Ref. 2) 521 201 160 17.6 1.00 1.45 

Ti25V75 230 149 36 4.3 1.00 1.4 

Ti80V20 139 131 47 0.60 1.7 2.4 

Ti85V15 132 129 48 0.25 2.5 3.7 

Ti90V10 126 127 49 -0.062 Imaginary Imaginary 

 

 From Table 4.1 it can be seen that the alkali metals have the largest 
predicted cores, with magnitudes that approach that seen in Ti80V20. While the 
transition metals have narrower predicted cores, the cores in Fe do spread the 
most. This might help explain how Toyota Research Corp. recently introduced an 
Fe based alloy with similar properties to Gum Metal. From the results presented 
in Table 4 for Gum Metal it is clear that alloying can be used to drastically change 
the dislocation core structure. Therefore it might be possible to alloy the 
elemental BCC structures to yield similar results.  
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4.5 Conclusion 
  

 The core radius has been redefined as a material property. This 
redefinition only depends on knowledge of the elastic constants and the ideal 
strength of a material. This definition would seem to be most useful in describing 
the properties of highly anisotropic materials, such as Gum Metal and perhaps 
the alkali metals as well as perhaps the new Fe alloy introduced by Toyota [24]. 
From Eqn. 4.5 it can be seen that the screw dislocation core spreading should 
scale as 𝐶!! − 𝐶!" !!!.  
 
 Along with this definition of the core radius being a material property it also 
allows for an accurate measurement of the core spreading. The interaction of the 
dislocation cores leads to several interesting possibilities. The first of these is that 
as the interaction increases between the cores it is seen that on the (110) planes 
nanodisturbances are observed which seem to agree with those observed in 
experimental work [78]. In the processing of Gum Metal the cold working could 
lead to a situation in which the majority of the material may be considered to be 
with in a core radius and this may explain the observed giant fault resulting from 
tensile tests [22].  
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