
UNIVERSITY OF CALIFORNIA,
IRVINE

A Multiple Compiler Approach for Improved Performance and Efficiency

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Aniket Shivam

Dissertation Committee:
Professor Alexander V. Veidenbaum, Chair

Professor Alexandru Nicolau
Professor Tony Givargis

2021



Portion of Chapter 4 © Springer Nature Switzerland AG 2019
All other materials © 2021 Aniket Shivam



DEDICATION

To my parents.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Loop Nest Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A Synergistic Compilation Approach . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Learning about the Impact of Optimizations on Performance . . . . . . . . . 5
1.4 Using Performance-Oriented Optimizations to Achieve Energy Efficiency . . 6
1.5 Tool for Compiler Researchers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 MCompiler - A Synergistic Compilation Framework 9
2.1 Loop Nest Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Compilation and Optimization Frameworks . . . . . . . . . . . . . . . . . . . 10
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Example 1: Intel’s icc performs the best . . . . . . . . . . . . . . . . 15
2.3.2 Example 2: GNU’s gcc performs the best . . . . . . . . . . . . . . . 16
2.3.3 Example 3: LLVM clang performs the best . . . . . . . . . . . . . . 16

2.4 Overall Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Loop Extraction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Optimization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Exploratory Search Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Synthesis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Using and Expanding the Framework . . . . . . . . . . . . . . . . . . . . . . 25

3 Evaluation of the Multiple Compiler Approach for Improved Performance 27
3.1 Benchmarks, Code Optimizers and Target Architecture . . . . . . . . . . . . 27
3.2 Comparing all Code Optimizers with the MCompiler . . . . . . . . . . . . . 29

iii



3.3 MCompiler with Exploratory Search . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Serial Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Auto-Parallelized Code . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 OpenMP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Predicting the Best Code Optimizer for the Loop Nests 39
4.1 Towards an Achievable Performance for Loop Nests . . . . . . . . . . . . . . 39
4.2 Experimental Methodology and Training the Machine Learning Models . . . 42

4.2.1 Collecting Hardware Performance Counters using Profiling . . . . . . 43
4.2.2 Most Suited Code Optimizer . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Random Decision Forest Classifier . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Machine Learning Model Configuration . . . . . . . . . . . . . . . . . 46
4.2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.6 Experimental Platforms and Data Collection . . . . . . . . . . . . . . 48

4.3 Evaluation of the Machine Learning Models . . . . . . . . . . . . . . . . . . 49
4.3.1 Predicting the Most Suited Code Optimizer for Serial Code . . . . . . 50
4.3.2 Predicting the Most Suited Code Optimizer for Auto-Parallelized Code 51
4.3.3 Overall Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . 52

4.4 An Explanation for why Hardware Performance Counters are good ML Features 53
4.5 A Framework for Improving Performance using Machine Learning Predictions 57

4.5.1 Collecting Hardware Performance Counters for the Loop Nests . . . . 59
4.6 Evaluation of the MCompiler with Machine Learning Prediction . . . . . . . 60

4.6.1 Serial Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.2 Auto-Parallelized Code . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Applying the Multiple Compiler Approach to Improve Energy Efficiency 65
5.1 Optimizing for Energy Efficiency on Modern Architectures . . . . . . . . . . 65
5.2 Impact of Performance-Oriented Loop Nest Optimizations on Energy Efficiency 67
5.3 Evaluation of Different Compilers in Terms of Energy Efficiency . . . . . . . 71

5.3.1 Loop Nests Optimized by Different Compilers . . . . . . . . . . . . . 72
5.3.2 Reduction in EDP when Selecting the Most Energy Efficient Version 73

5.4 Performance and Energy Consumption Implications of using Different Vector
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.1 Compiler’s Ability to Auto-Vectorize and Impact of Selecting the Best

Vector Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.2 Impact on Performance and Energy Consumption when Increasing the

Number of Active Cores . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 A Framework for Improving Energy Efficiency . . . . . . . . . . . . . . . . . 80
5.6 Evaluation of the MCompiler for Improving Energy Efficiency . . . . . . . . 82

5.6.1 Serial Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6.2 Auto-Parallelized Code . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



6 Prior Art 87

7 Conclusions and Future Directions 91

Bibliography 95

v



LIST OF FIGURES

Page

2.1 MCompiler Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 MCompiler Command Line Options . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Performance of individual Code Optimizers vs MCompiler on TSVC bench-
mark (top 50 loop nests). A value of 1 indicates the same performance as the
MCompiler , less than 1 means a slower performance than the MCompiler . . 29

3.2 MCompiler Speedup for Serial Benchmarks . . . . . . . . . . . . . . . . . . . 32
3.3 MCompiler Speedup for Auto-Parallelized Benchmarks . . . . . . . . . . . . 33
3.4 Distribution of best performing code per Code Optimizer. Breakdowns per

benchmarks suite showcase benefits of specialized code optimizers. . . . . . . 34
3.5 MCompiler Speedup for OpenMP Benchmarks . . . . . . . . . . . . . . . . . 35

4.1 Speedup of Predictions for Serial Code . . . . . . . . . . . . . . . . . . . . . 49
4.2 Confusion Matrix for Serial Code Predictions . . . . . . . . . . . . . . . . . . 50
4.3 Distribution of Predictions for Serial Code . . . . . . . . . . . . . . . . . . . 51
4.4 Speedup and Confusion Matrix of Predictions for Auto-Parallelized Code . . 52
4.5 Distribution of Predictions for Auto-Parallelized Code . . . . . . . . . . . . . 52
4.6 MCompiler Framework with Machine Learning Predictions . . . . . . . . . . 57
4.7 MCompiler + ML Predictions Performance for Serial and Auto-Parallelized

Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 EDP comparison between different compilers w.r.t. ICC for TSVC. Y-axis
is log scaled. Improvement in EDP means the factor of reduction in EDP
compared to the EDP of ICC generated code. . . . . . . . . . . . . . . . . . 70

5.2 Comparison of CPU Energy and Speedup between different Clang and ICC
for TSVC loop nests. Only cases with more than 10% EDP improvement are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Comparison of CPU Energy and Speedup between different GCC and ICC
for TSVC loop nests. Only cases with more than 10% EDP improvement are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 EDP comparison between different compilers w.r.t. ICC for Polybench. Y-
axis is log scaled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Comparison of CPU Energy, DRAM Energy and Speedup between Clang and
ICC for Polybench loop nests. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



5.6 Comparison of CPU Energy, DRAM Energy and Speedup between GCC and
ICC for Polybench loop nests. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Comparison of CPU Energy, DRAM Energy and Speedup between Polly and
ICC for Polybench loop nests. Y-axis is log scaled. . . . . . . . . . . . . . . 76

5.8 EDP comparison between different vector length w.r.t. ICC -Ofast for TSVC.
Y-axis is log scaled. Only cases that showed more than 10% EDP improvement
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.9 Variation in Average Runtime, Total Dynamic Energy Consumption and EDP
when running multiple copies of TSVC with different Vectorized versions. . . 79

5.10 MCompiler Framework for Improving Energy Efficiency . . . . . . . . . . . . 81
5.11 MCompiler EDP Improvement for Serial Benchmarks . . . . . . . . . . . . . 82
5.12 MCompiler EDP Improvement for Auto-Parallelized Benchmarks . . . . . . 83
5.13 Distribution of most energy efficient code per Code Optimizer. Breakdowns

per benchmarks suite showcase benefits of specialized code optimizers. . . . . 84

vii



LIST OF TABLES

Page

2.1 Sequence of LLVM’s Loop Transformation Passes at the highest optimization
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Compilers and Domain Specific Optimizers integrated in the MCompiler Frame-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Candidate Code Optimizers used for the ML Experiments. . . . . . . . . . . 44
4.2 Top Ranking ML Features for Serial Code Predictions. . . . . . . . . . . . . 55
4.3 Top Ranking ML Features for Auto-Parallelized Code Predictions. . . . . . . 56

5.1 Change in Maximum Core Frequency with different Vector Extensions for a
sixteen-core Intel® Xeon® Skylake Gold 6142 processor. . . . . . . . . . . . 69

viii



ACKNOWLEDGMENTS

I would like to thank my advisor Professor Alex Veidenbaum for his mentorship and for many
interesting discussions we had over the last few years. I would also like to thank Professor
Alex Nicolau for his guidance and support. Also, thanks to Professor Tony Givargis for
serving on the Advancement Committee and the Defense Committee.

I feel fortunate that I get to work with some great researchers and engineers over the course
of my graduate studies. I have high appreciation for Rosario Cammarota for being a mentor
and a friend, and also motivating me during the first few crucial years of my graduate studies.
I learned a lot from Michael Wolfe (NVIDIA) about being a good researcher and an even
better engineer. Seeing his passion for work, the ability to share his knowledge and his career
advice for me have been really helpful. Another source of inspiration has been David Kuck
(Intel) and seeing his continuous passion for research and a great career spanning more than
five decades. I would like to thank David Wong (Intel) for guidance over the course of the
internship. Finally, I would like to thank my mentors and managers at the Portland Group
(now NVIDIA HPC SDK) at NVIDIA, the Fast Kernels team at NVIDIA, the Performance
Tools group at Intel and the team at Advanced Processor Lab, Samsung Research America
for giving me valuable experience as part of my internships.

I consider myself fortunate to meet some really good people and forge some great friendships
over the last few years. Juan Besa, Hirak Kashyap and Neftali Watkinson have been wonder-
ful friends who enriched my life with their support, kindness and knowledge. Additionally,
I would like to thank my lab colleagues over the years for their support, collaboration and
valuable feedback.

Last but not least, I have great appreciation for my family and friends who gave me strength
throughout the course of my studies.

ix



VITA

Aniket Shivam

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2016
University of California, Irvine Irvine, CA

Bachelor of Technology in Computer Science and Engineering 2014
National Institute of Technology, Uttarakhand Uttarakhand, India

WORK EXPERIENCE

Deep Learning Performance Library Intern June–Sept 2020
NVIDIA Corporation Santa Clara, CA

Performance Tools Pathfinding Intern June–Sept 2019
Intel Corporation Austin, TX

Compiler Engineer (PGI OpenACC/GPGPU team) Intern June–Sept 2017
NVIDIA Corporation Hillsboro, OR

Compiler Engineer (PGI OpenACC/GPGPU team) Intern July–Sept 2016
NVIDIA Corporation Hillsboro, OR

Compiler Engineer (GPU Compiler team) Intern June–Sept 2015
Samsung Research America (SRA) Mountain View, CA

Teaching Assistant 2015–2021
University of California, Irvine Irvine, CA

x



SELECTED PUBLICATIONS

A Multiple Compiler Framework for Improved Perfor-
mance

2021

In submission.

Using Performance-Oriented Loop Nest Optimizations
to achieve Energy Efficiency

2021

In submission.

OpenACC Routine Directive Propagation using Inter-
procedural Analysis

2018

Workshop on Accelerator Programming Using Directives (WACCPD), SC

Towards an Achievable Performance for the Loop Nests 2018
Languages and Compilers for Parallel Computing (LCPC)

Load Balancing with Polygonal Partitions 2018
International Workshop on Polyhedral Compilation Techniques (IMPACT), HiPEAC

Using Hardware Counters To Predict Vectorization 2017
Languages and Compilers for Parallel Computing (LCPC)

Polygonal Iteration Space Partitioning 2016
Languages and Compilers for Parallel Computing (LCPC)

SOFTWARE

MCompiler
A Synergistic Compilation Framework

xi



ABSTRACT OF THE DISSERTATION

A Multiple Compiler Approach for Improved Performance and Efficiency

By

Aniket Shivam

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Alexander V. Veidenbaum, Chair

Production compilers have achieved a high level of maturity in terms of generating efficient

code. Compilers are embedded with numerous code optimization techniques, with special

focus on loop nest optimizations, that have been developed over the last four decades. The

code generated by any two production compilers can turn out to be very different based

on pros and cons of their respective Intermediate Representation (IR), implemented loop

transformations and their ordering, cost models used and even instruction selection (such

as vector instructions) and scheduling. The compilers also need to predict the behavior

of a multi-core processor which has complex pipelines, multiple functional units, complex

memory hierarchy, etc. on the overall performance. Hence, the performance of produced

code for a program segment by a given compiler may not necessarily be matched by other

compilers. Additionally, there is no way of knowing how close a compiler gets to optimal

performance or if there is any headroom for improvement.

The complexity and rigidity of the compilation process makes it very difficult to modify a

given compiler to improve the performance of generated code for every case where it couldn’t

produce the best possible code. Therefore, this thesis presents a compilation approach that

turns the differences between compilation processes and performance optimizations in each

compiler from a weakness to a strength. This approach is implemented as a novel compila-

xii



tion framework, the MCompiler . This meta-compilation framework allows different segments

of a program to be compiled using an ensemble of compilers/optimizers and combined into

a single executable. Utilizing the highest performing code for each segment, identified via

Exploratory Search, can lead to a significant overall improvement in performance. The frame-

work is shown to produce performance improvements for serial (including auto-vectorized

code), auto-parallelized and hand-optimized (using OpenMP) parallel code.

Next, this thesis explores the possibility of learning which compiler will produce the best code

for a segment. This is accomplished using Machine Learning. The Machine Learning models

learn about inherent characteristics of loop nests and then predict which code optimizer is the

most suited for each loop nest in an application. These Machine Learning models are then

incorporated into the MCompiler to predict the best code optimizer, during compilation,

for each code segment of the application. This feature allows the MCompiler to replace the

expensive Exploratory Search with Machine Learning predictions and still keep performance

very close to the Exploratory Search.

Finally, this thesis expands the compilation approach to achieve energy efficiency on mod-

ern architectures. Prior research has advocated both for and against the hypothesis that

optimizing for performance translates into optimizing for energy efficiency. No production

compiler optimizes for energy efficiency directly, expecting optimizing for performance to

translate into higher energy efficiency. Optimizing for performance is complex for recent

generations of processors and, with automatic DVFS management in these processors, op-

timizing for energy efficiency would add another level of complexity for compilers with no

guarantee of success. Using the MCompiler , this thesis shows how the performance-oriented

compiler optimizations can be used to achieve energy efficiency.

xiii



Chapter 1

Introduction

State-of-the-art compilers optimize applications for better performance on target architec-

tures. The developers and the users of applications trust the compilers to be able to generate

the most efficient code for the architecture of choice. Specially in the domain of High-

Performance Computing, and recently in other domains such as Computer Vision and Deep

Learning, a lot of attention is paid to getting the best out of target architecture. Application

developers are responsible to come up with efficient algorithms and source code. Once this

step is done, writing hand-optimized code or libraries for a target system is a possible option,

but the complexities are such that even these approaches cannot guarantee the absolute best

results. In addition to that, this requires massive efforts from developers to understand and

optimize for each applicable system and later to port these applications to newer architec-

tures and systems. Hence, more often than not, applications are written using the best

known algorithm and language features, but the rest is left to the compilers to optimize for

different architectures and systems.

Compiler optimizations are essential to reach an achievable performance for many applica-

tions. The means to reach the goal of producing high performance code may, and in most

1



cases, do differ between any two production compilers. Each may have their own flavor of

Intermediate Representation (IR), vary in implemented loop transformations and their or-

dering, and even differ in instruction selection (such as vector instructions) and scheduling.

Each compiler uses a specific, ordered set of optimization techniques and different profitabil-

ity models and can, therefore, generate code significantly different from other compilers. For

program segments, such as loop nests, the performance of generated code from a compiler

may either turn out to be better or worse compared to other compilers. And given the com-

plexity of the entire compilation/optimization process it is very difficult to modify a given

compiler so as to produce the best performing code for every case where it couldn’t match

a different compiler. Discrepancies in performance between compilers are not merely engi-

neering shortcomings that can be fixed in the next update. They are the unavoidable result

of many NP-Hard or NP-Complete problems encountered in the compilation/optimization

process[80, 129]. Compilers try to approximately solve NP-Hard problems efficiently and

effectively by using profitability models that are based on many assumptions. Compiler

writers try to find the optimal solutions, based on experimentation, that work well for a

large portion of target applications for their compiler, but not all. Therefore, it is quite ap-

parent why different compilers produce different results for a given program segment. This

calls for a strategy to harness the strengths of multiple compilers, while substituting the

weakness of individual compilers. Hence, this thesis presents a compilation approach that

will provide both the users of compilers and compiler writers a means to find best possible

solution for their target applications.

1.1 Loop Nest Optimizations

Optimizing loop nests, in particular, contributes significantly towards achieving better per-

formance. State-of-the-art architectures have multiple cores on a chip, where each core has

2



Single Instruction Multiple Data (SIMD), or vector, capabilities. These architectural fea-

tures provide opportunities for a compiler to expose parallelism in applications on multiple

levels, but with a caveat of additional complexity in the decision making for the compiler.

The code optimization techniques to auto-vectorize the loop nests [106, 4, 146], so as to

generate SIMD instructions, require careful analysis of data dependences, memory access

patterns, etc. Several auto-parallelization techniques [105, 90, 8, 92, 91, 93, 88, 21, 39, 100]

and directive based parallel programming models, such as OpenMP [104], have been devel-

oped to take advantage of multiple cores. In fact, most auto-parallelization implementations

in modern compilers, which take serial code as input, generate OpenMP code [68, 111, 113].

Key loop transformation techniques [15, 12, 146, 143, 16, 77] include Distribution, Fusion,

Interchange, Skewing, Tiling and Unrolling. Code optimizers apply a semantic-preserving

sequence of transformations to generate a better performing code, either serial or parallel.

But evaluating if a sequence of transformations is optimal is NP-Hard and the search for

the best sequence of transformations and their profitability is guided by heuristics and/or

approximate analytical models. Thus, a code optimizer may end up with a sub-optimal

result and different code optimizers may, for the same source code segment, generate code

with significant performance differences on the same architecture.

A major challenge in developing the heuristics and profitability models is predicting the

behavior of a multi-core processor which has complex pipelines, multiple functional units,

complex memory hierarchy, hardware data prefetching, etc. Parallelization of loop nests

involves further challenges for the code optimizers, since communication costs based on the

temporal and spatial data locality among iterations have an impact on the overall perfor-

mance. Evaluation studies [102, 134, 94, 54] have shown that state-of-the-art code optimizers

may miss out on opportunities to auto-vectorize and auto-parallelize the loop nests for mod-

ern architectures. For optimizing applications written in C, there are several compilers and

domain specific loop optimizers that perform auto-vectorization and, in some cases, auto-

3



parallelization of code. From a given code optimizer’s point of view, the sequence it used is

the best it could do but there is no way of knowing how close it gets to optimal performance

or if there is any headroom for improvement.

1.2 A Synergistic Compilation Approach

In this thesis a compiler framework, called the MCompiler , is presented and its design is

discussed in Chapter 2. The design allows each loop nest in the application to be optimized

by the best optimizer available for it. The MCompiler identifies loop nests in C applications,

optimizes the loop nests using different code optimizers, times each optimized code version

in execution of its complete application, and links the best performing code to generate

the complete application binary. This is referred to as the Exploratory Search method

of the MCompiler . The MCompiler currently incorporates code optimizers from Intel’s C

compiler, GNU GCC and LLVM Clang. In addition to these, two Polyhedral Model based

loop optimizers, Polly [56, 113] and Pluto [22, 111] are used, if applicable. The best loop

nest code selection allows the MCompiler to produce higher-performing code than the best of

the code optimizers in the framework. The MCompiler benefits from the entire compilation

process (loop transformations and optimizations, and code generation) implemented in each

of the code optimizers. The framework allows for easy integration of newer versions and

newer configurations of the available code optimizers as well as the addition of new code

optimizers.

The framework can be used to optimize applications, first, for serial execution with auto-

vectorization of loop nests. This optimizes loop nests for SIMD or vector code generation,

in addition to optimizing loop nests for data locality, memory hierarchy, etc. Second, the

framework can also target multi-core processors, by taking serial loop nest code as input

and auto-parallelizing those loop nests using the available code optimizers to generate multi-

4



threaded code. Auto-parallelized code is also optimized for SIMD execution within each

thread. In this case, the original loop nests are transformed such that loop iterations can be

reordered and scheduled for parallel execution across the multiple cores. Third, the frame-

work can target OpenMP applications, i.e., applications with OpenMP directives inserted

across sections of the code meant for parallel execution.

The framework extracts loop nests from the applications’ source files into separate source

files as a function, together with any additional information needed. It then replaces loop

nests with a function call in the original source files. This allows for separate code optimizers

to focus on just the loop nests and also allows the framework to insert the best performing

code, i.e., linking object files to generate the executable.

Chapter 3 presents a study of the potential of the proposed approach. It optimizes each

extracted loop nest, or a consecutive set of loop nests, separately with all available code

optimization candidates. The performance of each optimized loop nest is measured as part

of the complete application execution. The best performing code for a loop nest is selected

for linking into the final executable. This step, referred to as Exploratory Search, shows that

the framework can indeed improve the resulting code’s performance.

1.3 Learning about the Impact of Optimizations on

Performance

The benefits of the proposed approach comes from the fact that different optimizers try to

solve a certain problem differently, i.e., optimizing a certain type of loop nest(s) in a unique

manner. Loop nests have different inherent characteristics based on memory access patterns,

types and counts of operations, presence of branches, etc. This leads to a research question:

can we get an insight into these inherent characteristics of the loop nest? If so, can this

5



learning be useful in predicting which optimizer will produce the best code for a loop nest?

The thesis presents Machine Learning (ML) based techniques to learn such inherent char-

acteristics and predict the most suited code optimizer for a given loop nest in Chapter 4.

The approach used in this thesis relies on the hardware performance counters collected for

a loop nest to learn about its inherent characteristics. Hardware performance counters cap-

ture intricate details about data movement across levels of caches, memory footprint, and

count and types of instructions retired that determine the performance of loop nests on an

architecture. These hardware performance counters are used as features/input to the ML

algorithms to predict the most suited code optimizer for the loop nests.

These ML models are then incorporated into the MCompiler and provides a substitute for the

expensive Exploratory Search step of the framework. The hardware performance counters

are collected from a single profile of the applications, i.e., the applications are compiled with

just one code optimizer and then executed ones. However, as with any prediction, it can lead

to a potential performance loss compared to search-based selection due prediction errors, i.e.,

when the ML model or classifier does not choose the best code optimizer. The results show

that by using well-trained ML models this potential loss in performance can be quite small.

1.4 Using Performance-Oriented Optimizations to Achieve

Energy Efficiency

Energy efficiency is a major issue for domains from embedded systems to Exascale com-

puting [71]. The goals for optimizing applications, in terms of energy or power, differ from

domain to domain and may even differ from user to user. Energy consumption for different

processors (even from the same architecture) is driven by dynamic parameters, such as Dy-

namic Voltage Frequency Scaling (DVFS). These parameters cannot be modeled while doing

6



static compilation, hence implementing energy efficiency driven compiler optimization may

provide no guaranteed results. In general, production compilers optimize for performance,

with various optimization levels with increasing aggressiveness towards generating better per-

formance, but no such optimization levels for better energy efficiency, and understandably

so.

Prior works [44, 149, 73, 75, 109, 137, 76, 151, 152, 53, 120, 138, 107, 55, 89, 52, 70] have

explored the impact of compilers and their optimizations on performance and energy con-

sumption for the CPU and memory, some focusing on loop nest transformations. However,

Chapter 5 of this thesis shows the overall impact of the sequence of loop nest transformations

implemented in several compilers on energy efficiency.

Then, the Exploratory Search method of the MCompiler is expanded to optimize applications

for better energy efficiency by choosing the most energy efficient version possible for each loop

nest. The results show that optimizations oriented towards performance improvement may

not have the same impact on energy consumption improvement and these differences vary

from loop nest to loop nest. Also, by using the Exploratory Search method, the MCompiler

is able to measure the impact of dynamic parameters before generating the optimized binary.

1.5 Tool for Compiler Researchers

The MCompiler framework can also serve as an important tool for compiler researchers

who regularly implement and test their optimization techniques and/or tweak analytical or

heuristic models to improve performance and/or efficiency for applications. The framework

design allows for adding new code optimizers and monitoring their performance on entire

application or just on particular hotspots.

The framework also allows for training new Machine Learning models and using them for

7



making predictions. Various flags are available for choosing the target architecture and

choosing particular optimizations such as auto-parallelization optimizations or enabling par-

ticular passes such as data prefetching pass. The framework also allows for running Hard-

ware Counter Collector independently, i.e., collect hardware performance counters for all the

hotspots in an application while disabling the ML predictions.

1.6 Contributions

Overall, this thesis makes the following contributions:

• It presents a meta-compilation framework that improves performance for C applications

for serial as well as parallel execution, including OpenMP applications.

• It shows that using the framework can achieve better performance over state-of-the-art

compilers.

• It demonstrates that prediction for the most suited code optimizer (serial as well as

parallel) for a loop nest can be accurately made using Machine Learning classifiers.

• It explores the impact of performance-oriented optimizations on energy efficiency and

then uses the framework to generate energy efficient version for applications.

• It provides an open source framework for researchers and compiler developers to analyze

and compare their code optimization techniques.

8



Chapter 2

MCompiler - A Synergistic

Compilation Framework

This chapter primarily presents the design of the framework that implements the multiple

compiler approach for improving performance. The chapter starts with an overview of the

prior art in the field of compilation and optimization frameworks. Then, it presents inter-

esting cases that justify the need for a multiple compiler approach. Finally, the details of

the MCompiler framework are presented and its benefits and flexibility are explained.

2.1 Loop Nest Optimizations

In the field of compilers, loop nest optimizations have been a focus for decades. The rea-

son being that the majority of the application execution time is spent in executing a set

of instructions repeatedly, i.e., the loop nests. Improvements in performance may come

from various avenues. These may include Loop Nest (or Iteration Space) Transforma-

tions [82, 106, 4, 45, 46, 15, 12, 146, 143, 16, 77, 117] such as Distribution, Fusion, In-

9



terchange, Skewing, Tiling [144, 145] and Unrolling. These transformations are performed

at the Intermediate Representation (IR) level. They try to optimize the code for data local-

ity and memory management. The order of these transformations and the correctness of the

profitability models for directing these transformations have significant impact on the perfor-

mance. Next step includes taking advantage of the architecture specific components such as

Vector/SIMD units and multi-core processors (with multi-level caches and shared memory).

This is accomplished using auto-vectorization techniques [105, 106, 4, 3, 146, 83, 77, 94], so

as to generate SIMD instructions, that require careful analysis of data dependences [118, 16],

memory access patterns, etc. For improving performance for multi-core processors several

auto-parallelization techniques [105, 90, 95, 6, 8, 59, 92, 91, 148, 74, 93, 88, 22, 21, 39, 100]

have been proposed. But due to the complexity of the applications and their source code,

compilers are not able to model the definite behavior of the loop nests/hotspots during com-

pilation. For such cases, hand-optimized code using directive based parallel programming

models, such as OpenMP [104], aid compilers in generating the high-performance machine

code and are allow for code portability. Other available options for hand-optimizing code that

are restrictive to specific architectures and compilers are using assembly-coded functions [66]

and specialized libraries [67].

2.2 Compilation and Optimization Frameworks

To solve the NP-Hard or NP-Complete problems encountered during the optimization pro-

cess, several compilation frameworks have been proposed. These include compilation frame-

works for program analysis and transformation such as LLVM [84], similar to GNU GCC and

Intel C/C++ compilers. LLVM uses a static sequence of loop transformations for optimizing

code for performance. Table 2.1 shows the sequence of loop transformations at the high-

est optimization setting (-O3). Few of these transformations are optional and need to be

10



switched on explicitly by the users. Many other compiler optimization passes are executed

in and around these loop transformations.

Loop Transformations
Include

Profitability
Models

Optional
Pass

Link-Time
Optimization

Pass
Rotate Loops
Loop Invariant Code Motion
Unswitch Loops
Loop Flatten Y Y
Recognize Loop Idioms
Delete Dead Loops Y
Loop Interchange Y Y Y
Unroll Loops Y Y
Loop Invariant Code Motion
Reroll Loops Y
Loop Versioning LICM Y
Loop Invariant Code Motion
Rotate Loops
Loop Distribution Y
Loop Vectorization Y Y
Loop Load Elimination
Loop Invariant Code Motion Y
Unswitch Loop
SLP Vectorizer Y
Loop Unroll-And-Jam Y Y
Unroll Loops Y Y
Loop Invariant Code Motion
Loop Sink
Loop Fusion Y

Table 2.1: Sequence of LLVM’s Loop Transformation Passes at the highest optimization
setting.

These order of transformations and their profitability models differ from one compiler to the

other. Compiler writers try to find the optimal solutions that work well for a large portion

of target applications for their compiler. That is why, different compilers produce different

results for a loop nest and hence, the entire application.

Several classes of code optimizers have been proposed in the past. Polaris [20] operated

11



on Fortran 77 programs and it’s IR is Fortran-oriented. SUIF [59] was a source-to-source

parallelizing compiler framework. PIPS [78] is a tool to implement and evaluate various in-

terprocedural compilation, parallelization, analysis and optimization techniques. Cetus [88]

is a source-to-source parallelizing compiler for C. Whereas, ROSE [119] provide tools for static

analysis, program optimization, arbitrary program transformation, domain-specific optimiza-

tions, complex loop optimizations, performance analysis, and cyber-security analysis.

There are several domain-specific compilation frameworks that have been proposed and show

significant performance improvement over traditional compilers and techniques. One such

domain is Polyhedral Model based optimizations [7, 47, 48]. Compilation frameworks built

on the concepts of the Polyhedral Model are Pluto [22, 111], Polly [56, 113], PoCC [115, 116,

112], CHiLL [33, 133], AlphaZ [150] and Tiramisu [13].

Recently, compilation frameworks for Deep Learning and Machine Learning, such as Ten-

sorFlow XLA [1] and Apache TVM [35], and for Tensor Algebra, such as TACO [79], have

been shown to improve performance of applications in their respective domains. MLIR [85]

is an extensible compiler infrastructure (based on LLVM) that aims to address software frag-

mentation, improve compilation for heterogeneous hardware, significantly reduce the cost of

building domain specific compilers.

Several programming models, such as OpenMP [104], aim to provide better performance by

allowing users to explicitly expose parallelism in the applications. For example, OmpSs [49]

extends OpenMP with new directives to support asynchronous parallelism and heterogeneity.

Whereas, Tapir/LLVM [124] compiles and optimizes Cilk programs to allow for efficient

parallel execution on shared-memory multicore machines.

Compilers provide several options and configurations that let users explore various configu-

rations that may suit their application the best, rather than the default setting embedded

into the compilers. In order to take advantage of these options and configurations, several it-

12



erative compilation [136, 5, 2, 115, 116, 36] and auto-tuning frameworks have been proposed

in the past that explore, search or predict good combinations of compiler flags to improve

performance. MilepostGCC [51] presents an auto-tuning framework that explores GCC and

its flags, and uses ML techniques to predict good combinations of compiler flags. Another

similar work, the OpenTuner framework [9], searches for the best performing compiler flag

combinations. There are few options [81, 132] available to control transformation orders at

finer granularity but require user assistance.

Production compilers also provide option for Interprocedural optimizations (IPO) [38, 24, 60],

sometimes also known as Whole Program Optimizations (WPO) or Link-Time Optimizations

(LTO), and Profile-guided Optimization (PGO) [34, 108]. IPO and LTO passes perform

several optimizations based on whole program analysis or interprocedural analysis and may

re-address loop nests’ optimization based on the new information. In case of LLVM, few loop

nest transformations are repeated in the Link-Time Optimization (LTO) phase, as mentioned

in Table 2.1, after analyzing the entire program and may help optimize the code further.

Whereas, PGO, for example, in the Intel compilers improves performance by reducing code

size, reducing branch mispredictions and reorganizing code layout to reduce instruction-cache

problems. Also, determine profitability of loop nests with small iteration counts [66].

Why a synergistic compilation framework could be helpful?

To take advantage of these several compilers and code optimizers, a unified and extensible

compilation framework that can incorporate these tools is one approach. The MCompiler

framework presented in this chapter targets different classes of compilers, code optimizers

and programming models in a single framework. MCompiler starts with using ROSE to

transform the application source code in a desired manner so as to facilitate an infrastruc-

ture that can combine optimized code from several optimizers in one single executable. Next,

it applies traditional compilers such as Intel’s icc, GNU’s gcc and LLVM clang to optimize

13



loop nests. It also applies two domain specific optimizers: Polly and Pluto (wherever appli-

cable). Polly is an extension to LLVM optimizer, that transforms LLVM IR to Polyhedral

representation to do transformations, and finally generates machine code using LLVM code

generator. Whereas, Pluto is a source-to-source optimizer that lowers the loop nests in a

Polyhedral representation and uses Polyhedral Model based code generators to generate op-

timized C code. Using these compilers/optimizers, the MCompiler can generate serial (with

SIMD/vector code) code and auto-parallelized code. Finally, MCompiler can also optimize

hand-parallelized programs written using OpenMP programming model and generate multi-

threaded programs. But, MCompiler can be extended to other domain specific optimizers

and auto-tuning frameworks.

2.3 Motivation

Let us start with three motivating examples that highlight the fact that different compilers

do perform different loop nest optimizations at highest optimization levels. This leads to

a difference in performance on the same architecture. The presented framework exploits

this fact to improve performance of applications. These examples also highlight that perfor-

mance improvements can be attributed to complex loop transformation techniques. In these

cases, even phase-ordering or changing flag combinations on a compiler may not help. The

performance improvement comes from specific loop transformation and auto-vectorization

techniques. The following three examples compare and analyze auto-vectorized code from

three compilers that produce the best performance in terms of execution time. Their per-

formance is compared on Intel Xeon Scalable Gold Skylake processor with AVX-512 vector

extensions. The three compilers are Intel’s icc, GNU’s gcc and LLVM clang. The three

loop nests are taken from Test Suite for Vectorizing Compilers (TSVC) by Callahan et al. [25]

and Maleki et al. [94].

14



2.3.1 Example 1: Intel’s icc performs the best

Listing 2.1: Example 1

1 for (int nl = 0; nl < 100*( ntimes/LEN2); nl++) { // Loop 1

2 for (int i = 1; i < LEN2; i++) { // Loop 2

3 for (int j = 1; j < LEN2; j++) { // Loop 3

4 aa[j][i] = aa[j-1][i] + cc[j][i];

5 }

6 for (int j = 1; j < LEN2; j++) { // Loop 4

7 bb[i][j] = bb[i-1][j] + cc[i][j];

8 }

9 }

10 }

Here icc performs 14.5x better than gcc and 12.9x better than clang. Listing 2.1 is loop nest

s2233 from the TSVC benchmark. icc distributes Loop 2, over Loop 3 and Loop 4, into two

separate loop nests. The first loop nest, Loop Nest 1, then consists of Loop 1 { Loop 2 {

Loop 3 } }. Second loop nest, Loop Nest 2, is Loop 1 { Loop 2 { Loop 4 } }. Next, in Loop

Nest 1, Loop 2 and Loop 3 were interchanged to provide sequential memory accesses. In

Loop Nest 2, the memory accesses are sequential already inside innermost loop. Therefore,

innermost loops in both loop nests were auto-vectorized. Finally, Loop 2 and Loop 4 were

completely unrolled as they were left with only 15 iteration after vectorization. Interestingly,

icc chose to use AVX and AVX-2 registers only and skip AVX-512 based on the cost model.

gcc on the other hand, did not distribute or interchange loops. It simply vectorized for AVX-

512 and then completely unrolled Loop 4 only. Lastly, clang followed gcc’s transformation

and added one more transformation on Loop 3, i.e., unroll by factor of 5. This one last

transformation from clang improved code performance over gcc. This example clearly

shows why different compilers perform so differently. The application and order of loop

transformations are primarily responsible for this contrast. These transformation and their

15



order may also be tightly embedded and fixed in most compilers, therefore they can’t be

controlled by flags or hints.

2.3.2 Example 2: GNU’s gcc performs the best

Listing 2.2: Example 2

1 for (int nl = 0; nl < 3* ntimes; nl++) {

2 for (int i = LEN - 2; i >= 0; i--) {

3 a[i+1] = a[i] + b[i];

4 }

5 }

In this example, gcc performs 6.1x better than icc and 5.3x better than clang. Listing

2.2 is loop nest s112 from the TSVC benchmark. gcc vectorized the innermost loop with

the factor of 16, array a is type float, therefore using AVX-512 registers. Followed by

unrolling the innermost loop by a factor of 16. The innermost loop can indeed be vectorized

since the only dependence present is an anti-dependence or write-after-read on a[i]. On the

other hand, icc decided against vectorization (vector width = 2, unrolled factor = 4) of the

innermost loop based on the cost model. Hence, it simply unrolled the innermost loop by

a factor of 2. This resulted in 6.1x performance loss compared to gcc. clang also decided

against vectorization and unrolled innermost loop by a factor of 4, hence lost an opportunity

for performance gain. This example showcases the importance of cost models for decision

making process for loop transformations and optimizations. The cost models used here were

the default ones at the highest optimization level. There are compiler flags available to the

users that can override these default cost models.

2.3.3 Example 3: LLVM clang performs the best

Listing 2.3: Example 3

16



1 for (int nl = 0; nl < ntimes; nl++) {

2 for (int i = 0; i < LEN; i++) {

3 a[i * inc] += b[i];

4 }

5 }

Here, clang performs 4.4x better than gcc and 3.8x better than icc. Listing 2.3 is loop

nest s171 from the TSVC benchmark. In this example, the innermost loop nest can only

be vectorized if variable inc has value 1. Otherwise, there could be flow-dependence and

anti-dependence on a[i * inc]. This variable comes in as a function argument, hence

compilers cannot resolve its value at compile-time. gcc decided to do no transformations or

optimizations for this loop, it just used AVX and AVX2 registers for scalar computations. icc

unrolled the innermost loop with a factor of 2. Interestingly, clang analyzed the peculiarity

here and added an additional branch inside the outermost loop to check the value of variable

inc. This branch checked if inc had value 1 at runtime, if so, the code executed is vectorized

for AVX-512 with vector width of 16, array a is type float. Also, clang unrolled, or

interleaved as they call it, this loop by a factor of 4. If the above mentioned branch fails

then the code executed is a loop unrolled by a factor of 4 with scalar operations. The value

of inc was indeed 1 in the benchmark, and hence clang produced higher performance than

the other two compilers. This example highlights the importance of handling edge or special

cases by the compiler to gain performance. Again, these details are not possible for users

to control by either flags or annotating code with hints. These are simply optimizations

embedded into the compiler.

2.4 Overall Framework Architecture

The overall architecture of the MCompiler framework and the technical details about the

individual phases of the framework are discussed in this section. Fig. 2.1 shows the structure

17



Figure 2.1: MCompiler Framework

of the MCompiler framework.

The first phase is Loop Extraction from C applications. The Extractor parses the source

files to find loop nests, extract those loop nests as functions into separate, independently

compilable files and replaces the loop nests with the corresponding function call in the base

source file. Base files are similar to the original source files but with loop nests replaced with

function calls. Whereas hotspot files are newly generated files which define the function

containing the loop body and supporting components to make them compile successfully.

The second phase is the Optimization phase. The Optimizer compiles each hotspot file with

the available code optimizers. Also, it compiles the base files and additional MCompiler

files, i.e., files added to support the functioning of the framework. For source-to-source code

optimizers, a default compiler is used to compile optimized hotspot files, the base files and

additional files.

The third phase is the Exploratory Search phase, where an application is executed to record

18



the execution times of the extracted loop nests. Executables generated for each code opti-

mizer are executed and reported execution times for the loop nests are collected.

The final phase is the Synthesis phase. Here, for each extracted loop nest, the collected loop

execution times from every code optimizer are compared and the best performing code/op-

timizer is selected, i.e., the optimized code that executes the loop body in the shortest time.

Finally, the default compiler links the selected object files for every loop nest file, plus the

object files generated by the default compiler for the base files. This step also requires linking

libraries that code optimizers may have used or taken support of for generating code for the

hotspot files.

For large applications, if -c flag is provided, i.e., compile to object files only, then just the

Extractor and the Optimizer are enabled. In such cases, the Exploratory Search Engine

and the Synthesizer are enabled only at link-time. The MCompiler framework handles flags

for macro definitions, paths to header files and libraries for linking, etc. similar to other

compilers.

2.5 Loop Extraction Phase

The loop extractor is implemented using ROSE, a source-to-source compiler infrastructure [119],

and is inspired by the loop extractor described in the work by Chen et. al. [37] that encap-

sulate loop nests into standalone executables.

The Extractor works in three phases. First, it traverses the abstract syntax tree (AST) and

locates the for loop nests that are eligible for extraction. Second, the extractor creates a new

file for this loop, adds necessary headers and macro definitions in the hotspot file, and also

adds extern declarations for global variables and global functions, as well as for functions

called in the scope of the loop body. It encloses the loop body in a function definition with

19



parameters being the variables and pointers to the data structures required by the loop

body in order to compile and run correctly. Third, in the base file’s AST it replaces the loop

body with a function call (with required arguments) and adds an extern declaration to this

function. Finally, it generates the modified base source file and the new hotspot files.

A sample hotspot file for the main kernel from Polybench’s Matrix Multiplication benchmark

is shown in listing 2.4.

Listing 2.4: Loop Nest extracted from Polybench’s Matrix Multiplication Benchmark

1 void gemm_kernel_gemm_line89(int* ni_primitive , int* nj_primitive , int*

nk_primitive , double* alpha_primitive , double* beta_primitive , double C

[2000][2300] , double A[2000][2600] , double B[2600][2300]){

2 int ni = *ni_primitive;

3 int nj = *nj_primitive;

4 int nk = *nk_primitive;

5 double alpha = *alpha_primitive;

6 double beta = *beta_primitive;

7 #pragma scop

8 for(int i = 0; i < ni; i++) {

9 for(int j = 0; j < nj; j++) {

10 C[i][j] *= beta;

11 }

12 for(int k = 0; k < nk; k++) {

13 for(int j = 0; j < nj; j++) {

14 C[i][j] += alpha * A[i][k] * B[k][j];

15 }

16 }

17 }

18 #pragma endscop

19 *ni_primitive = ni;

20 *nj_primitive = nj;

21 *nk_primitive = nk;

20



22 *alpha_primitive = alpha;

23 *beta_primitive = beta;

24 }

A function of the base file from which this kernel was extracted is shown in listing 2.5.

Listing 2.5: Loop Nest replaced by a Function Call for Polybench’s Matrix Multiplication

Benchmark

1 static void kernel_gemm(int ni ,int nj ,int nk ,double alpha ,double beta ,

double C[2000][2300] , double A[2000][2600] , double B[2600][2300])

2 {

3 int i;

4 int j;

5 int k;

6 // BLAS PARAMS TRANSA = ’N’ TRANSB = ’N’

7 // A is NIxNK , B is NKxNJ , C is NIxNJ

8 // C := alpha*A*B + beta*C,

9 extern void gemm_kernel_gemm_line89(int *ni ,int *nj ,int *nk ,double *

alpha ,double *beta ,double C[2000][2300] , double A[2000][2600] , double

B[2600][2300]);

10 gemm_kernel_gemm_line89 (&ni ,&nj ,&nk ,&alpha ,&beta ,C,A,B);

11 }

While traversing the AST for eligible loop nests, the extractor skips loop nests with irregular

control flow that hinders extraction, i.e., contains return and goto statements. Also, it skips

loop nests with calls to static functions and static variables since those properties hinder their

usage in the new hotspot files.

The extractor generates two versions for each hotspot file, where one version is instrumented

to collect the execution time for the loop nest. This version is used during the Exploratory

Search phase. The other version does not contain any instrumentation code and is used to

generate the final executable for the applications.

21



Function Definition enclosing the Loop Nests

The extractor generates the list of variables, with their data types, used inside the scope

of the loop body. All primitive data types (int, float, etc.) are passed by reference, as

well as the user-defined types such as arrays, structs and typedefs. The extractor also

does an optimization to maintain properties of the loop from the point of view of the code

optimizers. This optimization copies the function parameters of primitive types (passed by

reference) into local variables (with same names as original variables) before the loop body

and correspondingly copies the local variables into the function parameters at the end of

the loop body. This optimization prevents any change to loop body and is also critical to

performance since usage of pointers can prevent some code optimizations.

The extractor also annotates loop nests with pragma scop/endscop so as to aid source-

to-source Polyhedral optimizers, such as Pluto, in locating Static Control Parts (SCoP)[47,

48]. If the loop nest was indeed not a SCoP, then Polyhedral optimizers can’t optimize

them. The framework will recognize that in the Optimization Phase and discard Polyhedral

optimizers as a candidate for those loop nests. For loop nests with OpenMP directives, the

extractor moves the directives with loop body and sanitizes the clauses of variables that are

not present in the scope of the loop nest. For OpenMP for loops that are enclosed in a

omp parallel region, extracting the loop body with omp for directive doesn’t change the

behavior of the program. One issue with extracting OpenMP for loops that are enclosed

in a parallel region in such manner is that in the presence of threadprivate variables,

synthesizer encounters a link-time error because compilers may generate different symbols

for the same threadprivate variable.

22



2.6 Optimization Phase

The framework currently uses five candidate code optimizers: Intel’s icc, GNU’s gcc, LLVM

clang, LLVM based polyhedral loop optimizer Polly and source-to-source polyhedral loop

optimizer Pluto. icc is chosen as the default compiler because its performance is, on average,

the best of the compilers included, as the results show in Chapter 3. It is also used to

compile source files generated by a source-to-source loop optimizer, i.e., Pluto. Table 2.2

shows the flags used for optimizing loop nests for serial execution and parallel execution.

These flags also include target architecture specific flags to enable optimizations that can

generate better performing code on the specific architecture. For OpenMP applications,

flags from serial configuration are used in addition to the OpenMP flags. The optimizer can

Compiler Version Optimization Flags
Auto-

Parallelization
clang (LLVM) 10.0.0 -O3 -march=native No

gcc (GNU) 10.1.0 -Ofast -march=native No
icc (Intel) 19.1.0 -Ofast -xHost Yes (-parallel)
Domain
Specific

Optimizer
Version Optimization Flags

Auto-
Parallelization

pluto
(source-to-source)

+ icc
0.11.4 --tile Yes (--parallel)

polly (LLVM) 10.0.0
-polly-tiling

-polly-vectorizer=polly
Yes (-polly-parallel)

Table 2.2: Compilers and Domain Specific Optimizers integrated in the MCompiler Frame-
work.

compile hotspot files and base files in parallel. This is similar to -j option of Makefiles, but

here all candidate code optimizers are invoked in parallel to compile the source files. This

reduces the overall compilation time for the MCompiler framework. The optimizer generates

multiple executables of the application (with instrumentation code) where each executable

is completely compiled and linked by a candidate code optimizer.

23



2.7 Exploratory Search Phase

The Exploratory Search Engine invokes executables generated by the code optimizers one-

by-one and performs multiple runs for stable data, if requested. Exploratory Search Engine

at the end of each execution collects the information for each of the loop nests and forwards it

to the Synthesizer. For applications that need input through command line, the Exploratory

Search Engine runs the application with the input given to the MCompiler framework using

a --input flag.

2.8 Synthesis Phase

The synthesizer compares the collected execution times for each loop nest from different code

optimizers and chooses the code optimizer that performed the best as the most suited code

optimizer. For loop nests with no information, i.e., the code that was not executed during

Exploratory Search phase, the default compiler is used. The synthesizer then generates the

final executable that contains no instrumentation code. For an OpenMP application, the

synthesizer links OpenMP runtime libraries that are used by different compilers, e.g., icc

and clang use compatible OpenMP runtime libraries whereas gcc doesn’t. Therefore, for

example, if for an application MCompiler chooses a omp parallel for region from icc and

another from gcc, then the parallel regions will be executed by different OpenMP runtime

libraries. Static libraries specific to compilers are also linked to successfully generate the

final executable.

24



Figure 2.2: MCompiler Command Line Options

2.9 Using and Expanding the Framework

The MCompiler framework can also be used for testing and comparing optimization tech-

niques and/or cost models among compilers or versions of a individual compiler. Various

flags are available for choosing the target architecture and choosing particular optimiza-

tions such as auto-parallelization optimizations or enabling particular passes such as data

prefetching pass. The command line options for the MCompiler framework are shown in

Fig. 2.2.

The MCompiler framework allows for addition of code optimizers so as to give more options

for generating the optimized applications. In addition to that, the framework allows for

25



adding different combinations of compiler flags or code optimizer flags to optimize appli-

cations. This allows users to explore how different code optimizer flags impact the perfor-

mance of applications and use MCompiler framework to generate even better performing

executables. By its design the framework can also include auto-tuning frameworks, such as

domain-specific auto-tuner called OpenTuner [9], for optimizing applications.

26



Chapter 3

Evaluation of the Multiple Compiler

Approach for Improved Performance

This chapter describes the experimental methodology and presents the results and their

analysis demonstrating the effectiveness of the MCompiler framework.

3.1 Benchmarks, Code Optimizers and Target Archi-

tecture

Several different benchmark suites are used to evaluate the effectiveness of the MCompiler

framework. One is Test Suite for Vectorizing Compilers (TSVC) by Callahan et al. [25]

and Maleki et al. [94]. This benchmark was developed to assess the auto-vectorization

capabilities of compilers. Therefore, these loop nests are only used in the serial code related

experiments. The second benchmark suite used is Polybench [114]. This suite consists

of 30 benchmarks that perform numerical computations used in various domains, such as

linear algebra computations, image processing, physics simulation, etc. The benchmarks in

27



Polybench have been demonstrated to have performance gain on parallelization, therefore

these loop nests are used for auto-parallelized code experiments as well. The third benchmark

suite is NAS Benchmark Suite [14], especially NPB-ACC [147]. The fourth benchmark suite is

Parboil [131]. These benchmarks are used in serial code, auto-parallelized code and OpenMP

parallel code experiments. Lastly, a set of C benchmarks from SPEC OMP 2012 were used for

OpenMP experiments. The largest datasets were used for the results of these benchmarks,

for example, XL datasets were used for Polybench benchmarks and class A datasets were

used for NPB benchmarks. If the datasets can be specified at execution time (such as for

Parboil), then the smaller datasets were used for the Exploratory Search and evaluation was

done on the largest datasets. The train dataset was used for SPEC benchmarks during the

exploratory search phase, whereas the results are shown for ref dataset.

Table 2.2 showed the five code optimizers incorporated in the MCompiler framework. All

five optimizers are used for serial and OpenMP experiments. Of the five optimizers, only

three optimizers (icc, Polly and Pluto) can auto-parallelize the serial code and are used

for auto-parallelized code experiments. The baseline for performance comparison is icc

(-Ofast -xHost [-parallel]) compiled benchmarks for all experiments. icc was chosen

as the baseline because icc generated code performed better for more benchmarks than

other code optimizers as shown in Fig. 3.4. The source codes used for the baseline are the

original benchmark codes and not the modified source codes generated by the MCompiler ’s

Loop Extractor.

The target architecture for the experiments is a two-socket, sixteen-core Intel Skylake Xeon

Gold 6142 [43]. Each Xeon processor has 32KB L1 cache, 1MB L2 cache, 22MB L3 cache.

The Skylake architecture supports SIMD instruction set extensions, i.e., SSE, AVX, AVX2,

AVX-512CD and AVX-512F. CPU Hyper Threading (SMT) is turned off and cores are op-

erating at the maximum frequency. For the auto-parallelization and OpenMP experiments,

only one thread is mapped per core by setting the environment variables for OpenMP run-

28



Figure 3.1: Performance of individual Code Optimizers vs MCompiler on TSVC benchmark
(top 50 loop nests). A value of 1 indicates the same performance as the MCompiler , less
than 1 means a slower performance than the MCompiler .

times.

3.2 Comparing all Code Optimizers with the MCompiler

This section presents and analyzes the performance of loop nests optimized by all code op-

timizers individually and comparing them to the MCompiler ’s Exploratory Search. The

TSVC benchmark suite consists of 151 unique loop nests designed especially for evaluating

code optimizers. The original TSVC kernels were compiled by each code optimizer and the

loop nest execution times were collected for each. Note that these execution times are not

affected by the MCompiler Loop Nest Extractor. Hence, this study also allows for analyzing

the impact of Loop Nest extraction on optimizations and performance. Pluto is left out from

this evaluation, since it needed manual annotation of loop nests for locating Static Control

29



Parts (SCoP) in the original TSVC code. Pluto was also disabled inside MCompiler in this

experiment to be consistent in this particular case study. Only results for the top 50 loop

nests in terms of execution time are shown in Fig. 3.1 to allow better visualization. The per-

formance of individual code optimizers is shown against the MCompiler , i.e., the execution

time for MCompiler generated code is divided by the execution time of the individual code

optimizer’s generated code. Performance of less than 1 for a Code Optimizer indicates that

the MCompiler generated faster code. Performance of at least one code optimizer against

the MCompiler , ideally, must be equal to 1 for every loop nest. Overall, the results show that

code produced by the MCompiler is faster or equal for almost all loop nests, in many cases

significantly faster, than individual code optimizers. The MCompiler thus performed bet-

ter than each individual code optimizer, hence demonstrating the strength of the proposed

approach.

The results also show that icc performed better than other code optimizers, with the Ge-

ometric Mean performance of 0.83 w.r.t the MCompiler . It also has the fewest loop nests

that the MCompiler improved, compared to other optimizers. The gap in performance of

the best code optimizer versus the worst code optimizer can be large is some cases. For

example, for vdotr, that performs a reduction on a product of two vectors, MCompiler

picks icc generated code which is almost 12 times faster than clang and polly generated

code. In other cases there is not much difference between optimizers in the performance

of generated code. For example, for va, that performs a simple vector assignment, there

is around 11% difference between the generated code from the best code optimizer and the

worst code optimizer. Such examples demonstrate that for some loop nests that are either

simpler to optimize or don’t have much room for optimizations, most code optimizers are

able to generate similar, high-quality code in terms of performance. It is the cases where

the optimization space becomes quite large that the code optimizers start to show large

differences in the generated code and therefore large variations in performance.

30



There are 2 cases in Fig. 3.1 which are particularly interesting since the MCompiler frame-

work performance matches none of the code optimizers. There is S421 where the MCompiler

is performing better than all the code optimizers it used to optimizer loop nests. Then there

is S431 where the MCompiler is performing worse than all the code optimizers.

In S421, icc was chosen as the most suited code optimizer by the MCompiler . This case is

quite peculiar. icc assumed a dependence between two arrays, even though one of the arrays

was marked with the restrict keyword. Therefore, icc did not generate vectorized code in

this case. The MCompiler extracted the loop nest and used the extern definition of arrays

marked with the restrict keyword as information to resolve aliasing issue. Therefore, the

MCompiler generated vectorized code for the loop nest.

In S431, the MCompiler performance is worse than all the code optimizers. The reason is

that on extracting the loop nest, the value of variable k in a statement a[i] = a[i+k] +

b[i] is unknown as it is passed by reference. Therefore vectorized code couldn’t be generated.

The value of variable k can be computed to be zero using constant propagation and constant

folding and this information allows code optimizers to generate vectorized code for the loop

nest.

3.3 MCompiler with Exploratory Search

This section presents results of the exploratory search by the MCompiler for choosing the

most suited code optimizer for four benchmark suites: TSVC, Polybench, NAS Benchmark

Suite (NPB) and Parboil Benchmark Suite. Each application was executed 3 times for each

of the code optimizers and the median execution time was chosen for deciding the most

suited code optimizer.

31



Figure 3.2: MCompiler Speedup for Serial Benchmarks

3.3.1 Serial Code

The results are shown in Fig. 3.2. The benchmark labels show the benchmark suite that

a particular benchmark belongs to. The speedup across the 151 loop nests from TSVC is

1.31x over icc. As shown in Fig. 3.4, icc was chosen as the most suited code optimizer

for 43.7% of the loop nests, followed by Pluto (source-to-source optimizer, compiled with

icc) at 20.5%. In many of those 20.5% cases, loop tiling and automatically added #pragma

ivdep (hint for the compiler to ignore assumed vector dependencies) on the inner-most loop

from Pluto (followed by vector code generation from icc) provided better performance than

just icc itself.

The performance of the MCompiler for Polybench benchmarks is 1.92x (GeoMean) better

than icc. As expected, the two polyhedral model based optimizers were chosen as the most

32



Figure 3.3: MCompiler Speedup for Auto-Parallelized Benchmarks

suited code optimizer for 60% of the loop nests that dominate execution time of the main

kernels for Polybench benchmarks. icc was chosen as the most suited code optimizer for

21% of the kernel loop nests, with the remaining loop nests split between clang and gcc.

icc was chosen as the most suited code optimizer for 133 out of 261 (53%) loop nests from

NPB benchmarks (not counting loop nests such as array initialization loops). Similarly, icc

was chosen as the most suited code optimizer for 45% loop nests from Parboil benchmarks.

Overall the percentage of loop nests chosen from each code optimizer can be seen in Fig. 3.4.

For analysis shown in Fig. 3.4, trivial loop nests that perform tasks that do not test the

optimization capabilities of the code optimizers are removed. For example, loop nests that

are used to allocate dynamic memory, to perform array initialization, etc. It shows that

across all benchmarks, while icc dominates overall, 45% of loop nests are best optimized by

other code optimizers (with approximately equal distribution among them, except for gcc).

33



Figure 3.4: Distribution of best performing code per Code Optimizer. Breakdowns per
benchmarks suite showcase benefits of specialized code optimizers.

More details for specific cases are explained in section 3.3.4.

3.3.2 Auto-Parallelized Code

These experiments were performed with 32 threads for both the exploratory search phase

and evaluating the performance. The code optimizers optimized the loop nests with their

default setting for statically deciding the profitability of the parallel code and for choosing

the runtime settings, such as scheduling policies.

Benchmarks from Polybench, NPB-ACC and Parboil were used in these experiments. Poly-

34



Figure 3.5: MCompiler Speedup for OpenMP Benchmarks

bench was shown to have auto-parallelizable loop nests in previous works. NPB benchmarks

use either OpenMP or OpenACC parallel directives and therefore have potential for auto-

parallelization. The directives were removed from the source code prior to processing for

Auto-Parallelized code experiments.

The results in Fig. 3.3 show that the MCompiler improves performance over icc, by at

least 5%, for 28 out of 44 benchmarks. Several additional benchmarks have no change in

performance. Five have a significant performance loss, which is explained in section 3.3.4.

Overall the percentage of loop nests chosen from each code optimizer can be seen in Fig. 3.4.

Similar to the trend seen for serial code benchmarks, icc dominates for NPB benchamrks,

whereas polyhedral model based optimizers perform better for Polybench benchmarks.

35



3.3.3 OpenMP Code

The results are shown in Fig. 3.5. Loop nests that were not marked by OpenMP directives

were optimized by the MCompiler as serial loop nests. Much performance improvement is

not expected from OpenMP regions, since code optimizers lose flexibility to optimize the

OpenMP regions due to issues such as early outlining [19, 41] of code. The results show that

in a few cases high speedups can indeed be achieved using the MCompiler . The reason for

such performance gains is explained in section 3.3.4.

3.3.4 Analysis of Results

Analysis of the benchmarks that get slowdowns from the MCompiler , such as 3mm (serial and

parallel), deriche (serial and parallel), heat-3d (parallel), symm (parallel) from Polybench,

and SP (parallel) from NAS benchmark showed that the main reason for performance loss,

based on compiler generated reports, is the early outlining of loop nests into individual func-

tions. Early outlining hinders the interprocedural and alias analysis, and therefore compilers

may generate sub-optimal code for such loop nests. This issue is similar to the ones faced by

the OpenMP compilers [41] that outline OpenMP sections early in the compiler toolchain

and therefore inhibit compiler optimizations later in the process.

Another reason for slowdowns can be attributed to the presence of loop nests that have a

very short execution time and/or executed multiple times (in a while loop, for example),

and perform trivial tasks such as iterating through a linked list. For such loop nests, the

MCompiler extraction adds performance overheads. This problem can be solved in the

Extractor by automatically identifying trivial loop nests with low loop trip count. This is

subject of future work. For now, if users want to manually mark such trivial loop nests with

low loop trip count, they can add pragma MC skiploop directive.

36



Also, the baseline compiler, i.e. icc, analyzes the entire source file and can find more

opportunities for optimization, including single-file interprocedural optimizations such as

inlining.

Fig. 3.5 shows speedups for OpenMP benchmarks. It shows significant speedups for MCompiler

on 359.botsspar from SPEC OMP 2012, and histo and stencil from Parboil. The reason

for speedup in 359.botsspar is a loop nest with a computation similar to matrix multiplica-

tion that is enclosed in a function, that is called inside a omp task region. The MCompiler

optimized this particular loop nest as it do would for a serial loop nest and chose Polly

generated code for this loop nest. The reason for speedup in histo and stencil is that,

inside the OMP parallel for region, the inner most loop was vectorized and unrolled by

gcc better than the other code optimizers.

Key factors contributing to performance difference between code optimizers, other than their

loop transformations, are as follows. First, a difference in unroll factor, which leads to the

difference in type of vector instructions selected and also leads to more consecutive load/s-

tore of data. Second, generation of multi-variant code, which chooses the best code during

execution based on runtime analysis of dependences. Third, use of specialized libraries, such

as the vectorized math library.

3.4 Summary

This chapter presents and analyzes the performance improvements achieved by using the

MCompiler framework for serial (auto-vectorized) code, auto-parallelized code and hand-

optimized code.

The MCompiler framework improves the overall performance for applications over state-of-

the-art compiler (compiled at equivalent of -O3) by a geometric mean of 1.47x for serial,

37



auto-vectorized code and 2.00x for auto-parallelized code. Hand-optimized parallel appli-

cations (with OpenMP directives) are also improved by the MCompiler, with performance

improvement up to 1.74x.

38



Chapter 4

Predicting the Best Code Optimizer

for the Loop Nests

This chapter, first, presents the Machine Learning based techniques that learn about the

inherent characteristics of the loop nests and then predict the most suited code optimizer

for a given loop nest. Second, these ML models are then incorporated into the MCompiler

framework for predicting the most suited code optimizer for the loop nests and the results

are compared to the Exploratory Search step of the framework.

4.1 Towards an Achievable Performance for Loop Nests

Based on the exploration and evaluation of different compilation and optimization techniques

shown in the previous chapters, we know finding an optimal sequence of transformations is

a complex problem. Each code optimizer has a unique set of transformations for generating

and optimizing code for a program segment, specially loop nests. Additionally, code opti-

mizers have to decide the heuristics and profitability models for predicting the behavior of

39



a multi-core processor, which oftentimes has complex pipelines, multiple functional units,

complex memory hierarchy, hardware data prefetching, etc. Parallelization of loop nests in-

volves further challenges for the code optimizers. The impact on the performance stemming

from workload balancing and communication costs related to the temporal and spatial data

locality among iterations becomes increasing harder to model. Studies [102, 134, 94, 54] have

shown that state-of-the-art code optimizers may not auto-vectorize and auto-parallelize the

loop nests for modern architectures.

Loop nests have different inherent characteristics based on iteration count, data dependences,

memory access patterns, types and counts of operations, presence of branches, etc. Analyzing

and evaluating these characteristics of the loop nests is critical for the code optimizers’

transformations and cost models to make decisions. Few examples where these decisions

need to be made are as such. Evaluating if the reuse of the cached data can be improved

by interchanging the order of loops without violating the data dependences. Deciding if the

iteration count is large enough and/or data access patterns are such that the vectorized code

will produce better performance than scalar code. Vector instructions have different latency

and throughput than the scalar instructions for the same operation and this needs to be taken

into account for judging the profitability of vectorization. Loop Unrolling, for example, can

be beneficial but the optimal unrolling factor can differ on case by case basis. Unrolling

(with or without SIMD instructions) will benefit from less branch instructions and less loop

counter increments, and also more data reuse if the data is shared between iterations. But,

unrolled loops require more instruction decoding and will use more instruction cache (I-

cache). An optimal unrolling factor also depends on architectural features such as a Loop

Stream Decoder (LSD), that provides the processor with better µOp supply for small loops

that can be cached in the LSD buffer. Another example would be Loop Tiling, where

selecting the optimal tile sizes for L1-D cache, L2 cache and beyond for a given processor

can significantly improve the performance by improving data locality.

40



There are two research questions that stem from these observations:

• Can we learn about the inherent characteristics of the loop nests in terms of its behavior

on the architecture?

• Can we use this knowledge to predict which code optimizer (with its transformations

and cost models) would be the most beneficial for a loop nest?

This chapter presents use of Machine Learning (ML) algorithms to learn such inherent char-

acteristics and predict the most suited code optimizer for a given loop nest. Applying

Machine Learning models in compilers is continuously being explored by the research com-

munity [101, 129, 128, 2, 28, 134, 139, 51, 110, 130, 26, 9, 87, 140, 10, 126, 11, 97, 99, 98, 57].

Most of the previous work used Machine Learning in the domain of auto-tuning, auto-

vectorization, phase-ordering and parallelism runtime settings. This work is the first to

show the possibility of predicting the best code optimizer for loop nests. Machine Learning

models in these studies either used a mix of static features (collected from source code at

compile time) and dynamic features (collected from profiling) [42, 134, 139], or exclusively

used dynamic features [28, 110, 140, 10, 126]. The approach used here belongs to the latter

class and exclusively relies on hardware performance counters collected for a loop nest. Most

recent works exclusively use dynamic features for training Machine Learning models, since

models trained using dynamic features exclusively have been shown to learn more about

inherent code characteristics, making the use of static features redundant. Previous studies

have shown that hardware performance counters can successfully capture the characteristic

behavior of a loop nest [140, 126]. Hardware performance counters capture intricate details

about data movement across levels of caches, memory footprint, and count and types of

instructions retired that determine the performance of loop nests on an architecture.

For the work presented in this chapter, the best results were achieved using the hardware

performance counter data collected from profiling a serial minimally unoptimized version of

41



a loop nest. The reason for using the minimally unoptimized version of the loop nest is

that this version shows inherent code characteristics, i.e., generated code is an unoptimized

version without any complex code transformations. This version is similar across compilers

and therefore provides a good common baseline. Another advantage of using this version

is that the hardware performance counter data collected from one architecture can be used

as features for making Machine Learning predictions for another architecture. Although,

this still requires training new Machine Learning models for different architectures with

architecture specific most suited code optimizer as the target class.

The focus here is to consider state-of-the art code optimizers and then use Machine Learning

algorithms to make predictions for better, yet clearly achievable performance for the loop

nests using these code optimizers.

These ML models are incorporated into the MCompiler and provides a substitute for the

expensive Exploratory Search step of the framework. However, as with any prediction, it

can lead to a potential performance loss compared to search-based selection due prediction

errors, e.g., when the ML model or classifier does not choose the best code optimizer. The

results show that by using well-trained ML models this potential loss in performance can be

quite small.

4.2 Experimental Methodology and Training the Ma-

chine Learning Models

This sections describes the methodology for collecting data, transforming data for Machine

Learning models and finally training the Classification algorithms.

42



4.2.1 Collecting Hardware Performance Counters using Profiling

The features, i.e., the hardware performance counters used for the Machine Learning (ML)

models are collected by profiling loop nests using Intel’s VTune Amplifier. The code is gener-

ated from Intel’s ICC compiler to generate the executable that is then used for profiling. All

the loop optimizations are disabled during this compilation by using the -O1 flag. In addition

to that, the optimizations that are responsible for vector code generation and parallel code

generation are disabled too. The profiling information, therefore, provides an insight into the

characteristics of the loop nests while eliminating the influence of compiler transformations

and behavioral changes incurred from special architectural features of the underlying archi-

tecture. The performance counters that are collected include instruction-based (instruction

types and counts), CPU clock cycles-based (including stalls), memory-based (D-TLB, L1

cache, L2 cache, L3 cache).

Once the hardware performance counters are collected for the loop nests, dynamic instruc-

tion count is skipped as a feature and the rest of the hardware performance counters are

normalized in terms of per kilo instructions (PKI). Based on the analysis that is done for this

work, this allows the Machine Learning models to learn about the inherent characteristics

of the loop nests and not bias them towards characteristics such as loop trip count.

4.2.2 Most Suited Code Optimizer

To train the ML models, each feature vector is correlated with a target class. Since this work

focuses on using hardware performance counters as features to predict a code optimizer, ML

Classification algorithms are used with code optimizers being the target class.

To create the dataset, the loop nests are optimized with the candidate code optimizers and

then executed to record their performance in terms of wall clock time. The code optimizers

43



are configured to optimize the loop nests for the underlying architectures for which the ML

models are trained. These optimizations include the loop transformations and code genera-

tion optimizations for the specific architectures. For serial code experiments, transformations

for auto-vectorization are enabled. Whereas, for parallel code experiments, transformations

for auto-vectorization and auto-parallelization are enabled.

The most suited candidate for a loop nest on a particular architecture, i.e., the code optimizer

that produces the best performing code for the loop nests, is appended in the dataset as

the target class for that specific loop nest. The feature vector in the dataset remains same

across all experiments, just the target class differs based on the architecture the predictions

are made for and the purpose of the classifier.

In this work, 4 candidate code optimizers are considered, as shown in Table 4.1, including

Polly[56, 113], a Polyhedral Model based optimizer for LLVM. 2 out of those 4 optimizers

can perform auto-parallelization of the loop nests. The hardware performance counters are

collected using an executable generated by icc with flags -O1 -no-vec, in order to disable

all loop transformations, and disable vector code and parallel code generation.

Code Optimizer Optimization Flags
Auto-

Parallelization
clang (LLVM) -O3 -march=native No

gcc (GNU) -Ofast -march=native No
icc (Intel) -Ofast -xHost Yes (-parallel)

polly (LLVM)
-O3 -march=native -polly

-polly-vectorizer=stripmine
-polly-tiling

Yes (-polly-parallel)

Table 4.1: Candidate Code Optimizers used for the ML Experiments.

44



4.2.3 Random Decision Forest Classifier

Random Decision Forest (RF) [62, 23] is, for this work, the classification algorithm of

choice to predict the optimal compiler for the loop nests. RF performed better overall than

other classification algorithms such as Support Vector Machines (SVM), k-nearest neighbors

(KNN), Gradient Boosting Machine (GBM) [50] and AdaBoost [123] in terms of Classifica-

tion Accuracy and Area under the ROC Curve (AUC). RF have previously been shown to

be one of the best Supervised Learning algorithm for classification problems [27].

RF is a learning algorithm that builds on the principles behind Decision Trees. Generally, the

Decision Tree algorithm, learns from training data by building a structured and hierarchical

representation of the correlation between features and classes. Features represent the nodes

in the trees and classes are leaves at the deepest level. An optimal Decision Tree would

perfectly and accurately divide the data among the target classes. However, finding an

optimal tree is an NP-Complete problem [86], therefore heuristics such as greedy search are

needed.

Decision Trees suffer from several issues. The main one being a tendency towards overfitting,

that is, the tree loses generalization the deeper the tree goes, modeling the trend for training

data but be inaccurate for new instances. RF provides a better solution for overfitting and

classification bias by adding two stochastic steps to the Decision Tree Algorithm. From the

training dataset, RF creates a bootstrapped subset by stochastically choosing the instances

or features (with repeats allowed) that will be used for building the decision trees. This is

called Bootstrap Aggregating or Bagging. After creating the Bagged dataset, an arbitrary

number of decision trees are built using subsets of randomly chosen features. Each decision

tree accuracy is evaluated using the remaining instances that weren’t part of the Decision

Tree building phase.

Classification is achieved through a voting algorithm, where a target value is generated by

45



each Random Tree, the one with the highest number of trees will be the class assigned to

the new instance.

Since Random Forest is constantly evaluating the performance of the subsets of features, it is

easy to detect the ones that were used in the better performing trees. Therefore, it requires

little to no feature filtering before running the algorithm. This is useful when approaching

a new problem where the correlation between the input features and the output class is not

entirely known.

4.2.4 Machine Learning Model Configuration

The dataset, or the loop repository, is partitioned to create a training dataset and a validation

dataset. The training dataset is used to train and tune the ML models. The trained models

are evaluated on Accuracy and Area Under Curve (AUC). Whereas, the validation is a set

of unseen loop nests that are used to make predictions. The results reported in the following

sections in regards to the performance of the ML predictions as based on the loops from the

validation dataset. For training and evaluating the Machine Learning model, Orange[40] is

used.

The dataset is randomly partitioned into Training dataset (75%) and Validation dataset

(25%). Whereas, the validation dataset is a set of unseen loop nests that are used for

making the predictions. For serial code experiments, there are 209 instances (loop nests) in

the training dataset and 69 instances in the validation dataset. For auto-parallelized code

experiments, there are 147 instances in the training dataset and 49 instances in the validation

dataset. The predicted optimizer’s execution time as compared to that of the most suited

optimizer’s execution time will be same in case of correct predictions and higher in case of

mispredictions.

46



The ML experiments were repeated thrice in order to validate the results, i.e., the dataset

is randomly split, train new ML models and then make the predictions. The unique in-

stances from the three validation datasets are taken into the account for the measurements.

Therefore, the number of instances differ between similar experiments.

Serial Code

The dataset consists of hardware performance counters values for the loops and the most

suited optimizer for an architecture as the target. Later, the RF classifier is trained to make

the predictions. A Majority Classifier serves as the baseline to evaluate the trained model.

A Majority Classifier is a feature-agnostic classifier that determines the output for every

instance to be equal to the target that has most instances in the training set.

Auto-Parallelized Code

In this case, the dataset uses the same set of hardware performance counters as those used

to predict the most suited serial code optimizer. The model predicts the most suited code

optimizer for the loop using an RF classifier. Therefore, for the dataset the target is the

optimizer that produces the best performing auto-parallelized code for the loop nests.

4.2.5 Benchmarks

The first benchmark suite that is used for the experiment is Test Suite for Vectorizing

Compilers (TSVC) as used by Callahan et al.[25] and Maleki et al.[94] for their works.

This benchmark was developed to assess the auto-vectorization capabilities of compilers.

Therefore, those loop nests are only used in the serial code related experiments. The second

benchmark suite that is used for collecting the loop nests is Polybench[114]. This suite

47



consists of 30 benchmarks that perform numerical computations used in various domains such

as linear algebra computations, image processing, physics simulation, etc. Polybench is used

for experiments involving both serial and auto-parallelized code. The two largest datasets

from Polybench are used to create the ML dataset. Based on experience, the variance of

both the hardware performance counter values and the most suited code optimizer for the

loop nests across the two datasets, was enough to treat them as two different loop nests.

This variance can be attributed to two main reasons. First, a different set of optimizations

being performed by the optimizers based on the built-in analytical models/heuristics that

drive those optimizations, since properties like loop trip counts usually vary across datasets.

Second, the performance across datasets on an architecture with a memory hierarchy, where

the behavior of memory may change on one or more levels. This analysis was required to

prevent the ML algorithms from overfitting.

4.2.6 Experimental Platforms and Data Collection

For the experiments, two recent Intel architectures are used. The first architecture is a

four-core Intel Kaby Lake Core i7-7700K. This architecture supports Intel’s SSE, AVX and

AVX2 SIMD instruction set extensions. The second architecture is a two sixteen-core Intel

Skylake Xeon Gold 6142. The Skylake architecture supports two more SIMD instruction

set extensions, i.e., AVX-512CD and AVX-512F than the Kaby Lake architecture. For the

auto-parallelization related experiments, only one thread is mapped per core.

Dynamic instruction count is skipped as a feature and normalize the rest of the hardware

performance counters in terms of per kilo instructions (PKI). Loop nests that have low value

for crucial hardware performance counters such as instructions retired are also skipped. From

the experiments, two interesting correlations among hardware performance counters and the

characteristic behavior of the loop nests were observed. First, the hardware performance

48



counters values from Kaby Lake architecture (after disabling loop transformations and vector

code generation) were sufficient to get well trained ML model to make predictions for a similar

architecture like the Skylake architecture. Second, for predicting the most suited candidate

for serial code and for the auto-parallelized code for a loop nest, the same set of hardware

performance counters, collected from profiling a serial version, can be used to train the ML

model and achieve satisfactory results.

4.3 Evaluation of the Machine Learning Models

For evaluating the results, the speedup of ML predictions is calculated over candidate code

optimizers, i.e., the speedup obtained if the code optimizer recommended by the ML model

was used to optimize loop nests instead of a candidate code optimizer.

Over
Clang

Over
GCC

Over
ICC

Over
Polly

0.8

1

1.2

1.4

1.6

1.39 1.42

1.19
1.26

G
eo

M
ea

n
S
p
ee
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(a) Predictions against individual compilers on
Kaby Lake

Over
Clang

Over
GCC

Over
ICC

Over
Polly

0.8

1

1.2

1.4

1.6

1.34 1.37

1.1

1.35

G
eo

M
ea

n
S
p
ee
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(b) Predictions against individual compilers on
Skylake

Figure 4.1: Speedup of Predictions for Serial Code

49



Predicted

Actual

Clang GCC ICC Polly
Clang 5 0 13 7 25
GCC 1 0 13 2 16
ICC 2 0 96 2 100
Polly 2 0 15 14 31

10 0 137 25 172

(a) Confusion Matrix for Kaby Lake

Predicted

Actual

Clang GCC ICC Polly
Clang 4 4 14 1 23
GCC 4 10 11 3 28
ICC 4 5 68 4 81
Polly 0 5 8 15 28

12 24 101 23 160

(b) Confusion Matrix for Skylake

Figure 4.2: Confusion Matrix for Serial Code Predictions

4.3.1 Predicting the Most Suited Code Optimizer for Serial Code

Fig. 4.1a and Fig. 4.1b show the results for the performance gains from the predictions for

the Kaby Lake and Skylake architectures, respectively. These predicted gains can be viewed

as the achievable headroom for each compiler. On the validation dataset, RF classifier

predicted with an overall accuracy of 67% for Kaby Lake (with AUC as 0.71) and 61% for

Skylake (with AUC as 0.68) as shown in the confusion matrices in Fig. 4.2a and Fig. 4.2b

respectively.

In the confusion matrices, the main diagonal (in bold) represents the correct predictions,

whereas the values outside the matrices represents the sum of values in the corresponding

row or column. For example, the 67% overall accuracy for Kaby Lake is calculated as

(5+0+96+14)/172. The ‘Actual’ target refers to the correct target, i.e., the code optimizer

that produced the best performing code for the loop nests based on the comparative analysis,

whereas the ‘Predicted’ target refers to the ML recommended target/code optimizer. For

calculating the speedup of ML prediction over Clang, for example, the execution time of the

50



0 30 60 90 120 150 180

−0.75
−0.5
−0.25

0
0.25
0.5

0.75
1

1.25
1.5

Loop Nests

L
og

(S
p

ee
d
u
p
)

O
ve

r
IC

C

(a) Speedup over ICC for Kaby Lake

0 30 60 90 120 150

−0.5

−0.25

0

0.25

0.5

0.75

1

Loop Nests

L
og

(S
p

ee
d
u
p
)

O
ve

r
IC

C

(b) Speedup over ICC for Skylake

Figure 4.3: Distribution of Predictions for Serial Code

ML predicted code optimizer is compared with the execution time of Clang. This speedup is

calculated for all candidate code optimizers and for each loop nest in the validation dataset.

Across both architectures, Intel compiler performs well on majority of the loop nests. There-

fore, the Majority Classifier predicted ICC with 58% overall accuracy for Kaby Lake and

50% overall accuracy for Skylake. The distribution of performance of the ML predictions

compared to ICC are shown in Fig. 4.3a and Fig. 4.3b. The maximum performance gain on

a loop nest was 27x, whereas the maximum slowdown was 0.2x.

4.3.2 Predicting the Most Suited Code Optimizer for Auto-Parallelized

Code

For the auto-parallelization experiments, there are only two candidates: ICC and Polly. The

RF classifier predicted with an overall accuracy of 85% for Kaby Lake (with AUC as 0.92)

and 72% for Skylake (with AUC as 0.76) as shown in Fig. 4.4c. Since the validation dataset

was well balanced for the two targets, the Majority Classifier produced an overall accuracy

of 64% for Kaby Lake and 50% for Skylake. The distribution of performance of the ML

51



Over
ICC

Over
Polly

1

1.2

1.4

1.6

1.8

1.46 1.51

G
eo

M
ea

n
S
p
ee
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(a) Predictions against
individual compilers

on Kaby Lake

Over
ICC

Over
Polly

1

1.2

1.4

1.6

1.8 1.71

1.3

G
eo

M
ea

n
S
p
ee
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(b) Predictions against
individual compilers

on Skylake

Predicted
ICC Polly

Actual
ICC 65 9 74
Polly 8 33 41

73 42 115

Predicted
ICC Polly

Actual
ICC 40 14 54
Polly 16 38 54

56 52 108

(c) Confusion Matrix for
Kaby Lake (top) and
Skylake (bottom)

Figure 4.4: Speedup and Confusion Matrix of Predictions for Auto-Parallelized Code

predictions, when compared to ICC, are shown in Fig. 4.5a and Fig. 4.5b. The maximum

gain on a loop nest was 91x whereas the maximum slowdown was 0.09x.

0 20 40 60 80 100 120
−1.25
−1

−0.75
−0.5
−0.25

0
0.25
0.5

0.75
1

1.25
1.5

1.75

Loop Nests

L
og

(S
p

ee
d
u
p
)

O
ve

r
IC

C

(a) Speedup over ICC for Kaby Lake

0 20 40 60 80 100
−1.25
−1

−0.75
−0.5
−0.25

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

Loop Nests

L
og

(S
p

ee
d
u
p
)

O
ve

r
IC

C

(b) Speedup over ICC for Skylake

Figure 4.5: Distribution of Predictions for Auto-Parallelized Code

4.3.3 Overall Analysis and Discussion

The performance gain from the ML predictions over the candidate code optimizers range

from 1.10x to 1.42x for the serial code and from 1.30x to 1.71x for the auto-parallelized code

52



across two multi-core architectures. Counters related to Cycles Per Instruction (CPI), D-

TLB, memory instructions, cache performance (L1, L2 and L3) and stall cycles were crucial

indicators of the inherent behavior of the loop nests.

On analyzing the validation datasets for serial code experiments, on an average for 95% of

the loop nests, there was at least 5% performance difference between the most suited code

optimizer and the worse suited code optimizer. For auto-parallelized code experiments, on

an average for 91.5% of the loop nests, there was at least 5% performance difference between

the most suited code optimizer and the worse suited code optimizer.

On the other hand, for the serial code experiments, for 68% of the loop nests, there was

at least 5% performance difference between the most suited code optimizer and the second

most suited code optimizer. That suggests that for the remaining 32% of the loop nests,

it would be harder to make a distinction between the most suited code optimizer and the

second one. Since the ML models’ overall accuracy are 67% for Kaby Lake and 61% for

Skylake, it can be inferred that they are doing very well on the loop nests that have a clear

distinction about the most suited code optimizer.

4.4 An Explanation for why Hardware Performance

Counters are good ML Features

Machine Learning algorithms learn from very complex selection and combination of features

to make decisions, as explained in section 4.2.3 for the algorithm used in this work. Most

helpful features for a Machine Learning algorithms are difficult to explain precisely, but un-

derstanding them can help infer their importance. Prior work that automatically generated

features from the compiler’s intermediate representation (IR) [87] has shown that Machine

Learning algorithms do learn from features that may not be intuitive even to an expert

53



compiler writer. The most important features for the Machine Learning classifier are listed

in Table 4.2 for serial code and in Table 4.3 for auto-parallelized code.

Some of the key reasons for why hardware performance counters as features are able to

capture the characteristic behavior of loop nests are as follows. First, instruction count and

stalls related to data movement such as load and store instructions retired, either scalar

or vector, characterize traffic effect from the TLBs, caches and RAM. Second, stall cycle

counters (for hardware resources) determine if the loop nest performance is limited by a

particular resource. Third, L1, L2 and L3 hit/miss counters determine the memory footprint

and provide information about the data access pattern. For example, the counters for a loop

nest with a stride-1 access pattern have lower L1 and/or L2 cache misses than a loop nest

with larger or non-linear strides. Stride-1 access also correlates with vectorizability. Also,

the hardware prefetchers are stride 1 or next line, resulting in further latency reduction.

Lastly, instructions per cycle retired for arithmetic operations on different data types such

as Floating Point (both single and double precision) or Integer provide information about

the throughput/latency of computations.

The code optimizers perform a set of optimizations/loop transformations that are based on

properties of the loop nest. For example, different code optimizers may choose to unroll

the innermost loop by different factor or just not unroll at all based its loop trip count and

memory access pattern. Such properties of the loop nests are captured by the hardware

counters. Similarly, a lot of cache misses at L1 and L2 level, may suggest transformations

like loop interchange or loop tiling can be beneficial. Another example would be if L1 and L2

have higher cache misses than L3, then loop interchange, if possible, could benefit towards

getting better performance. Transformations, such as unrolling, tiling and interchange, may

also lead to vector code generation that often has high impact on performance. So counters

do correlate with potentially beneficial transformations and one compiler may perform such

transformations or combinations thereof better than another.

54



Top 30 features for Serial Machine Learning Classifier
MEM LOAD RETIRED.L3 MISS PS
OFFCORE REQUESTS OUTSTANDING.CYCLES WITH DEMAND RFO
CYCLE ACTIVITY.STALLS L3 MISS
OFFCORE REQUESTS BUFFER.SQ FULL
CYCLE ACTIVITY.STALLS L1D MISS
MEM LOAD RETIRED.L3 HIT PS
L1D PEND MISS.PENDING
RS EVENTS.EMPTY CYCLES
OFFCORE REQUESTS OUTSTANDING.ALL DATA RD:cmask=4
L2 RQSTS.RFO HIT
FP ARITH INST RETIRED.SCALAR DOUBLE
DTLB STORE MISSES.WALK ACTIVE
CPU CLK UNHALTED.THREAD
MEM LOAD RETIRED.L1 MISS PS
CYCLE ACTIVITY.STALLS L2 MISS
FP ARITH INST RETIRED.SCALAR SINGLE
DTLB LOAD MISSES.WALK ACTIVE
UOPS DISPATCHED PORT.PORT 6
MEM LOAD RETIRED.L1 HIT PS
MEM INST RETIRED.ALL STORES PS
IDQ.MS UOPS
EXE ACTIVITY.1 PORTS UTIL
MEM INST RETIRED.STLB MISS LOADS PS
DTLB LOAD MISSES.STLB HIT
FRONTEND RETIRED.LATENCY GE 2 BUBBLES GE 1 PS
DSB2MITE SWITCHES.PENALTY CYCLES
CYCLE ACTIVITY.STALLS MEM ANY
DTLB STORE MISSES.STLB HIT
UOPS ISSUED.ANY
MEM LOAD RETIRED.L2 HIT PS

Table 4.2: Top Ranking ML Features for Serial Code Predictions.

55



Top 30 features for Auto-Parallel Machine Learning Classifier
CPU CLK UNHALTED.THREAD
IDQ.MITE UOPS
CYCLE ACTIVITY.STALLS L1D MISS
LD BLOCKS PARTIAL.ADDRESS ALIAS
RS EVENTS.EMPTY CYCLES
CYCLE ACTIVITY.STALLS MEM ANY
MEM INST RETIRED.STLB MISS LOADS PS
INST RETIRED.PREC DIST
UOPS EXECUTED.THREAD
IDQ.ALL MITE CYCLES ANY UOPS
L1D PEND MISS.FB FULL:cmask=1
EXE ACTIVITY.2 PORTS UTIL
DTLB LOAD MISSES.STLB HIT
CYCLE ACTIVITY.STALLS L2 MISS
IDQ.ALL DSB CYCLES 4 UOPS
MEM LOAD RETIRED.L3 MISS PS
CYCLE ACTIVITY.STALLS L3 MISS
EXE ACTIVITY.1 PORTS UTIL
FRONTEND RETIRED.DSB MISS PS
MEM LOAD RETIRED.L2 HIT PS
FP ARITH INST RETIRED.SCALAR DOUBLE
DTLB STORE MISSES.STLB HIT
MEM INST RETIRED.STLB MISS STORES PS
UOPS DISPATCHED PORT.PORT 5
EXE ACTIVITY.BOUND ON STORES
IDQ.MS UOPS
MEM LOAD RETIRED.L1 MISS PS
IDQ.DSB UOPS
INT MISC.RECOVERY CYCLES
L1D PEND MISS.PENDING

Table 4.3: Top Ranking ML Features for Auto-Parallelized Code Predictions.

56



4.5 A Framework for Improving Performance using Ma-

chine Learning Predictions

The framework for choosing the most suited code optimizer for loop nest using ML predic-

tion is shown in Fig. 4.6. The goal is to eliminate the time-consuming Exploratory Search

step of the framework and use the ML prediction to select the best code optimizers during

compilation. The ML predictions are used to predict the most suited code optimizer for

both serial, auto-vectorized code as well as auto-parallelized code.

Figure 4.6: MCompiler Framework with Machine Learning Predictions

The architecture of the MCompiler framework is modified in the following ways for ML

prediction of the most suited code optimizer for a loop nest. First, the Optimizer now

generates an executable that is compiled by the default compiler for serial execution with

-O1 optimization level. Second, the Exploratory Search Engine is replaced by the Hardware

Counter Collector for making ML predictions.

57



The Hardware Counter Collector executes the serial (-O1) code and collects hardware per-

formance counters for each loop nest. This is done only once using the default compiler,

in contrast to the exploratory search that has to run every compiler. As mentioned earlier,

using the -O1 version of the loop nest helps in preserving the inherent code characteristics,

since the generated code is not optimized using complex code transformations, and is similar

across compilers, therefore providing a good common baseline. If a loop nest is not executed

or the hardware performance counters are not present (e.g. for loop nests with very few

computations), the default compiler is chosen by the Synthesizer.

Next, the collected hardware performance counters for each loop nest are transformed into

the feature vector, i.e., the input to the ML classifier. These hardware performance counters

are also saved in a CSV file for future reference of the users. Third, the ML classifier makes

the prediction for the most suited code optimizer for a loop nest based on the feature vector.

The ML classifier is a trained ML model. There are two separately trained ML models,

one for serial code predictions while the other is for parallel code predictions. Finally, these

predictions from the ML classifier are forwarded to the Synthesizer, which uses the code

from the predicted optimizer and links the selected optimized loop object files and generates

the final executable for the application.

The MCompiler driver invokes the ML prediction part of the framework over the original

MCompiler flow with exploratory search if the --predict flag is set. The ML models are

trained and incorporated in the MCompiler framework using OpenCV’s Machine Learning

module [103].

58



4.5.1 Collecting Hardware Performance Counters for the Loop

Nests

The features, i.e., the hardware performance counters used for the Machine Learning models,

are collected by profiling loop nests using Intel’s VTune Amplifier, although other tools may

be used, e.g. Linux perf. The Intel compiler is used to generate the executable that is then

used for profiling. All loop optimizations are disabled during this compilation by using the

-O1 flag. In addition to that, the optimizations that are responsible for vector code gen-

eration and parallel code generation are disabled too. The profiling information, therefore,

provides an insight into the characteristics of the loop nests while eliminating the influence

of compiler transformations and behavioral changes incurred from special architectural fea-

tures of the underlying architecture. The performance counters that are collected include,

but not limited to, instruction-based (instruction types and counts) counters, CPU clock

cycles-based (including stalls) counters and memory-based (D-TLB, L1 cache, L2 cache, L3

cache) counters.

Once the hardware performance counters are collected for the loop nests, the dynamic in-

struction count is not used as a feature. The other hardware performance counters are

normalized in terms of per kilo instructions (PKI). Based on the analysis, this allows the

Machine Learning models to learn about the inherent characteristics of the loop nests and

not bias them towards characteristics such as loop trip count.

59



4.6 Evaluation of the MCompiler with Machine Learn-

ing Prediction

The training dataset for training the serial code classifier included loop nests from TSVC and

Polybench benchmark suites and had a total of 274 instances (loop nests). The loop nests

from NAS Parallel Benchmarks (NPB) were not included in the training dataset. Therefore,

the experimental results for the MCompiler performance with ML predictions are shown for

NPB benchmarks only.

The auto-parallelized code classifier was trained using the training dataset, which included

loop nests from Polybench benchmark suite and has 194 instances (loop nests). Again,

the experimental results for the MCompiler performance with ML prediction are shown for

NPB benchmarks only, since these loop nests were not used in training the ML model. The

reason for choosing benchmark suites such as Polybench and TSVC for creating the training

dataset was to expose the ML models to a diverse set of loop nests that exhibit different

characteristics. The specifics for creating the training datasets, characteristics of the training

dataset and evaluating the models are similar to this work.

The properties of the trained RF classifier are as follows. Maximum depth of the tree was

set at 25 after analyzing that the model was neither underfitting or overfitting on cross-

validation. The maximum sub-categories were set at 15. The minimum sample count at the

leaf node was set at 5. Lastly, the size of the randomly selected subset of features at each

tree node that are used to find the best split was set at 20.

The serial code classifier targets (e.g. most suited code optimizers) were clang, gcc, icc

and Polly. The auto-parallelized code classifier targets were icc and Polly.

The source-to-source code optimizer (Pluto) is left out as a target code optimizer since it

requires another compiler to generate code and creates noise for ML models in cases where

60



the performance benefits are not significant from the source-level transformations. In the

training dataset, the target for the instances with Pluto as the most suited code optimizer

were replaced by the second best code optimizer. The evaluation of ML models showed

that replacing Pluto as a target class improved both AUC and classification accuracy. The

reason why this strategy worked in improving the ML models is as follows. The lack of

enough instances in the training dataset with target class being Pluto, i.e., not enough loop

nests with best code optimizer being Pluto. As previously shown in Chapter 3, Fig. 3.4

(Distribution of best performing code per Code Optimizer). The training dataset is skewed

towards icc as the target class due to icc being chosen as the most suited code optimizer.

This leads to an unbalanced dataset where minority classes have a very small share of the

training instances and therefore are a major challenge for ML classifiers [141, 72, 142, 61].

Removing Pluto improved the share of other minority classes such as clang, gcc and Polly.

Hence, improving both performance measures, AUC and classification accuracy, significantly.

Since Polly optimizations/passes run along with the standard LLVM pass pipeline, Polly is

considered as the most suited code optimizer only when it shows at least 5% performance

improvement over clang. There are two reasons for setting a 5% performance improvement

threshold before attributing a loop nest to Polly over clang. First, from an ML point-of-

view, if there are two very similar loop nests (that will lie very close in a multi-dimensional

feature space), one has Polly as the target class whereas the other has clang, then a ML

algorithm will try to overfit in order to reduce the classification error, while the actual impact

on the performance will be quite minimal. Second, a 5% execution time difference could just

be a time variance between multiple runs, i.e., experimental error.

The ML models are not trained to predict the most suited code optimizer for the OpenMP

regions for primarily one reason: the code optimizers lose flexibility to optimize the OpenMP

regions as mentioned before.

61



(a) Serial Benchmarks (b) Auto-Parallelized Benchmarks

Figure 4.7: MCompiler + ML Predictions Performance for Serial and Auto-Parallelized
Benchmarks

4.6.1 Serial Code

The performance results for ML predictions are shown in Fig. 4.7a relative to the exploratory

search. The most predicted code optimizer was icc (45%), followed by clang (34%). The

GeoMean performance loss over the exploratory search is 4.3%.

The case with the highest performance loss compared to the Exploratory Search is the SP

benchmark where 72 predictions were made. In the predicted code optimizer for SP loop

62



nests, the distribution of clang increased to 43% compared to the Exploratory Search’s 16%.

Whereas, the distribution of gcc decreased to 12% from Exploratory Search’s 26%. This

would explain the drop in performance for SP compared to the Exploratory Search version.

4.6.2 Auto-Parallelized Code

The performance results for ML predictions are shown in Fig. 4.7b relative to the exploratory

search. The most predicted code optimizer was polly (60%) and the rest was icc (40%). For

BT and SP benchmarks, Polly was predicted as the most suited code optimizer for multiple

loop nests used in computing the right hand side (rhs), whereas icc was chosen as the most

suited code optimizer by the exploratory search for those loop nests. The mis-predictions

from the ML classifier were found to have a larger impact on performance when most of

the execution time is dominated by one or very few kernels. The effect of a mis-prediction

can thus be significantly magnified. One such case is the CG benchmark, where 60% of the

execution time is spent in one loop nest and polly was mis-predicted as the most suited code

optimizer for that loop nest instead of icc. Whereas the other loop nest that covered 37%

of the execution time was correctly predicted as polly. The impact of mis-predictions is, in

general, higher for auto-parallelized code as compared to serial code. Still, the Geometric

Mean of performance loss over the exploratory search is rather small - 10.5%.

4.7 Summary

This chapter shows that it is possible to learn about the inherent characteristics of the loop

nests by using the hardware performance counters as features for the Machine Learning

algorithms. These Machine Learning models are then used to predict which code optimizer

(with its transformations and cost models) would be the most beneficial for a loop nest.

63



The MCompiler framework is expanded to incorporate these Machine Learning models. The

use of Machine Learning prediction achieves performance very close to the exploratory search

for choosing the most suited code optimizer: within 5% for auto-vectorized code and within

11% for auto-parallelized code.

64



Chapter 5

Applying the Multiple Compiler

Approach to Improve Energy

Efficiency

In this chapter, first, the relationship between optimizing for performance using several

compiler and the improvement in energy efficiency is studied. Second, the Exploratory

Search method of the MCompiler is expanded to optimize applications for better energy

efficiency and its results are presented.

5.1 Optimizing for Energy Efficiency on Modern Ar-

chitectures

Compilers have traditionally focused on optimizing for performance. And optimizing for

performance on modern architectures oftentimes improves energy consumption too, although

by different factors [107, 52, 70, 30]. The goals for optimizing applications, in terms of

65



energy or power, differ from domain to domain and may even differ from user to user.

Energy consumption for different processors (even from the same architecture) is determined

by features, such as number of cores, and dynamic parameters, such as Dynamic Voltage

Frequency Scaling (DVFS). These dynamic parameters cannot be modeled while doing static

compilation, hence implementing energy efficiency driven compiler optimization may not

provide guaranteed results. Production compilers optimize for performance, with various

optimization levels focused towards generating better performance, but no such optimization

levels for better energy efficiency, and understandably so.

Prior work on optimizing applications for energy consumption using compilers falls into two

categories. First, prior work [44, 149, 73, 75, 109, 137, 76, 151, 152, 53, 120, 138, 107, 55, 89,

52, 70] that explored the impact of compiler optimizations on application execution times

and energy consumption for the CPU and memory, some focusing on loop nest transforma-

tions. Second, research [64, 122, 63, 31, 127, 96, 121] that explored improving the energy

consumption for applications by managing software and hardware knobs, such as Dynamic

Voltage Frequency Scaling (DVFS), active core counts, degree of parallelism, instruction set

selection, etc.

The approach used in this chapter falls in the first category and focuses on performance

and energy consumption of loop nests instead of entire applications. However, instead of

looking at the impact of specific loop nest transformations or specific compilers on energy

consumption, as studied in [149, 75, 138, 52], this chapter examines the overall impact of

the sequence of loop nest transformations in several compilers. Other prior works have also

looked at various optimization levels of a specific compiler [137, 70], auto-tuning frame-

works [53, 120, 138, 32] and at the influence of two compilers on energy consumption for

entire application [70]. Few previous studies [29, 58, 30, 18] have looked at energy consump-

tion of different vector lengths for manually vectorized codes for multi-core architectures,

but this chapter also studies the auto-vectorization capabilities of the compilers too.

66



Finally, the Exploratory Search method of the MCompiler is expanded to optimize appli-

cations for better energy efficiency by choosing the most energy efficient version possible

for each loop nest. The metrics for judging the energy efficiency for a loop nest is chosen

as Energy-Delay-Product (EDP). The results show that loop nest optimizations oriented

towards performance may not always have the same impact on energy consumption and

these differences vary from loop nest to loop nest. The Exploratory Search allows for the

architectural intricacies and dynamic parameters, such as DVFS, taken into account before

generating the optimized binary. It uses performance-oriented loop nest optimizations to

produce energy efficient code, in this case the end does justify the means.

5.2 Impact of Performance-Oriented Loop Nest Opti-

mizations on Energy Efficiency

This section presents a comparative study of state-of-the art compilers and studies the corre-

lation of loop nest optimizations in various compilers on performance and energy efficiency,

for Intel Skylake architecture. The results show that over a large diverse set of loop nests, if

we were to pick the most energy efficient version for each of the loop nests, optimized using

GNU GCC, LLVM Clang and a LLVM based domain specific optimizer (Polly), EDP can

be reduced by a GeoMean of 1.71x over the Intel compiler. EDP is an established metric

to analyze the trade-off between execution time and energy consumption, which takes into

account the trade-off between (slower) performance and (lower) energy consumption.

Results show that the quality of generated code from different compilers has a significant

impact on both execution times and energy. For instance, 79% of loop nests exhibit more

than 10% EDP difference for Intel compiler generated code compared to code from other

compilers. Also, results for 13% of the loop nests show that the best performing code

67



version (in terms of execution time) was not same as the most energy efficient version.

This demonstrates that performance oriented optimizations does not always entail energy

efficiency.

A processor core today includes the capability to process Single Instruction Multiple Data

(SIMD) or Vector instructions. Most modern processors support vector processing capabil-

ities, e.g. Intel AVX, ARM Neon, IBM VSU, AMD AVX, etc. Compilers attempt to au-

tomatically vectorize code for these processors as this improves performance. Another goal

of this work is to better understand the auto-vectorizing ability of the compilers. Vector

instructions are available with different vector lengths on recent Intel architectures (128-

bit, 256-bit and 512-bit). Some 256-bit (AVX-2) and 512-bit (AVX-512) instructions (e.g.

arithmetic operations) may cause the processor to run at different and reduced maximum

frequencies[65, 125]. Therefore, the maximum available vector length may not be the most

energy efficient choice. The results show that by choosing the right vector length for each of

the loop nests, rather than letting the compiler’s performance oriented cost models decide,

can reduce the EDP by a GeoMean of 1.39x. Even after processor reduces frequency for

large vectors to save energy, results show that in 15% of the loop nests the code with best

performing vector length was not same as the most energy efficient version.

Experimental Platform

The target architecture used is a two socket, sixteen-core Intel Skylake Xeon Gold 6142 @

2.6 GHz (with Turbo Boost @ 3.7GHz). Each Xeon processor has 32KB L1 cache, 1MB L2

cache, 22MB L3 cache. The Skylake architecture supports Intel’s SSE, AVX, AVX-2, AVX-

512CD and AVX-512F vector instruction set extensions. CPU Hyper Threading (SMT) is

turned off, cores are operating at the maximum frequency and C-state setting is adjusted so

as to reduce the leakage power from idle cores. An application was pinned to the last core of

the processor in the experiments. On this processor, ‘heavy’ AVX-2 (256-bits) and AVX-512

68



(512-bits) instructions may lower processor frequencies [65] but these changes are minimal

when there is only one active core on the processor, which is the case for the experiments

presented in the next section. Table 5.1 shows the variation in maximum core frequency on

using different vector extensions and additional reduction in maximum core frequency on

increasing number of active cores.

Vector
Extension

Base Core
Frequency (GHz)

# of Active Cores / Max
Core Frequency in
Turbo Mode (GHz)

1-2 3-4 5-8 9-12 13-16
Non-AVX 2.6 3.7 3.5 3.4 3.4 3.3

AVX-2 2.2 3.6 3.4 3.3 3.2 2.9
AVX-512 1.6 3.5 3.3 2.8 2.4 2.2

Table 5.1: Change in Maximum Core Frequency with different Vector Extensions for a
sixteen-core Intel® Xeon® Skylake Gold 6142 processor.

Compilers

With the flags mentioned in the table, compilers are allowed to use their cost models to

make the best decision for the target architecture. ICC with -Ofast -xHOST is the baseline

for all the experiments presented in this work. For the auto-vectorization experiments with

different vector lengths, flags are added to force the Intel compiler to generate vector code,

whenever possible, for a specific vector length. The analysis shows the energy efficiency of

ICC generated code for AVX-512 (512-bits), AVX-2 (256-bits) and the Scalar version with

respect to default ICC flags (-Ofast -xHOST). The default ICC flags allow the compiler to

have the freedom to choose between the AVX-512, AVX-2 or the Scalar version based on the

profitability predicted by the in-built cost models.

69



Figure 5.1: EDP comparison between different compilers w.r.t. ICC for TSVC. Y-axis is log
scaled. Improvement in EDP means the factor of reduction in EDP compared to the EDP
of ICC generated code.

Benchmarks

The benchmarks chosen for the evaluation present a wide variety of unique loop nests to test

compilation strategies. One is Test Suite for Vectorizing Compilers (TSVC) by Callahan

et al. [25].This benchmark contains 151 different loop nests that test loop transformation

and auto-vectorization capabilities of the compilers. The analysis shows the performance

and energy efficiency of Clang and GCC generated code for TSVC loop nests with respect

to ICC’s. TSVC is also the focus for this study of the energy efficiency of different vector

lengths. The second benchmark suite used is Polybench/C 4.1.This suite consists of 30

benchmarks that perform numerical computations used in various domains, such as linear

algebra computations, stencils, image processing, physics simulation, etc. This main kernels

(set of loop nests) of these benchmarks are commonly found in other popular benchmark

suites. For Polybench loop nests, the results from Polly (LLVM based domain specific loop

70



optimizer) are shown too in this comparative study. Polly is not suited for TSVC loop

nest, hence Polly results are only presented for Polybench related experiments. Overall, the

compilers are exposed to 181 unique loop nests with aim of exploring how well they optimize

loop nests and their impact on energy efficiency.

Figure 5.2: Comparison of CPU Energy and Speedup between different Clang and ICC for
TSVC loop nests. Only cases with more than 10% EDP improvement are shown.

5.3 Evaluation of Different Compilers in Terms of En-

ergy Efficiency

This section presents results for performance, CPU and DRAM energy, and Energy-Delay-

Product of the four compilers and analyzes the results.

71



Figure 5.3: Comparison of CPU Energy and Speedup between different GCC and ICC for
TSVC loop nests. Only cases with more than 10% EDP improvement are shown.

5.3.1 Loop Nests Optimized by Different Compilers

Data was collected from each compiler initially and then the relative change between com-

pilers was examined. This allowed us to observe and compare, first, how much performance

change for the same loop nest a different compiler may give and, second, if this change in

runtime also translates into change in energy consumption. The Intel compiler (icc) was

chosen as the baseline compiler because its performance was better than the other compilers

for 55% of the loop nests. The relative performance and energy consumption results for

clang and gcc against icc for TSVC are shown in Fig. 5.1, Fig. 5.2 and Fig. 5.3. Simi-

larly the results for clang, gcc and polly against icc for Polybench are shown in Fig. 5.4,

Fig. 5.5, Fig. 5.6 and Fig. 5.7.

72



Figure 5.4: EDP comparison between different compilers w.r.t. ICC for Polybench. Y-axis
is log scaled.

5.3.2 Reduction in EDP when Selecting the Most Energy Efficient

Version

The results in Fig. 5.1 and Fig. 5.4 show that if one were select the most energy efficient code

for each of the loop nest, EDP can be reduced by, GeoMean of, 1.4x for TSVC and 4.94x

for Polybench (1.71x combined) over the Intel compiler. TSVC loop nests that do not have

any DRAM access, unlike Polybench loop nests where doing cache and locality optimization

have a huge impact on performance and energy consumption for CPU and DRAM. Hence,

for Polybench there are large performance improvements when using a domain specific code

optimizer, i.e., Polly that specializes in doing optimizations such as Loop Tiling, Interchange

and Skewing that improve data locality and expose SIMD parallelism. For TSVC, certain

loop transformations and generating the best code by selecting the optimal unroll factor

and SIMD length have huge impact on performance. This shows the impact of loop nest

73



Figure 5.5: Comparison of CPU Energy, DRAM Energy and Speedup between Clang and
ICC for Polybench loop nests.

optimizations and the quality of code generation by different compilers on performance as

well the energy consumption for the modern processors. The change in EDP was more than

10% for 79% of the loop nests, when they were optimized by different compilers. For 13%

of the loop nests the best performing code version (in terms of execution time) was not

same as the most energy efficient version. Therefore, although most compilers are guided

by performance oriented optimization, they do have beneficial impact in terms of energy

efficiency for most but not all cases.

Analysis

This section presents the analysis of few interesting cases that show how differently each

compiler could optimize the same loop nest. In S241 (TSVC), icc performs loop distribu-

tion, scalar expansion, strip-mine by a factor of 64 and finally partially vectorize the loop

74



Figure 5.6: Comparison of CPU Energy, DRAM Energy and Speedup between GCC and
ICC for Polybench loop nests.

nest, whereas gcc and clang didn’t do those optimization to expose SIMD parallelism. In

S231 (TSVC), gcc do loop interchange to expose SIMD parallelism, whereas icc and clang

generated scalar code with loop unrolled by factor 2 and 4 respectively. In S252 (TSVC),

clang used optimizations such as scalar and array expansion to vectorize the inner most loop

nest, whereas other two compilers generated scalar code. In S423 and S424 (TSVC), gcc

unrolling the loop nests with a different factor than icc contributed to the improvements.

For correlation and covariance from Polybench, in both bases the main kernel had 3-4 loop

nests. icc was able to optimizes individual loop nest by using loop interchange, distribution,

etc. and generate vectorized code, whereas polly was able to fuse multiple loop nests which

improved locality and removed redundant operations. For floyd-warshall (Polybench), both

gcc and clang generated vectorized integer add and minimum instructions, whereas icc

performed loop interchange which inhibited generation of vectorized instructions.

75



Figure 5.7: Comparison of CPU Energy, DRAM Energy and Speedup between Polly and
ICC for Polybench loop nests. Y-axis is log scaled.

5.4 Performance and Energy Consumption Implications

of using Different Vector Extensions

This section examines the selection of the target vector extension and its impact on energy

efficiency.

5.4.1 Compiler’s Ability to Auto-Vectorize and Impact of Select-

ing the Best Vector Length

The impact of auto-vectorization techniques and vector code generation capabilities imple-

mented in the Intel compiler are analyzed here. Only results for icc are shown because more

loop nests optimized by icc had greater than 5% performance improvement from vectoriza-

76



Figure 5.8: EDP comparison between different vector length w.r.t. ICC -Ofast for TSVC.
Y-axis is log scaled. Only cases that showed more than 10% EDP improvement are shown.

tion over the non-vectorized version than in other compilers. icc was able to auto-vectorize

80% of the loop nests in TSVC with 5% or higher speedup, compared to 75% by gcc and

57% by clang. The relative improvements in EDP of auto-vectorized versions with different

vector lengths over default -Ofast version for icc are shown in Fig. 5.8.

The results in Fig. 5.8 show that if one were to select the most energy efficient vector length

for each of the loop nests, EDP can be reduced by, GeoMean of, 1.39x over the performance

oriented cost models of the compiler for picking a vector length. Compiler can choose an

incorrect vector length because of an incorrect prediction of profitability of auto-vectorizing

the loop nests, different behavior of memory hierarchy than expected by the compilers, etc.

The change in EDP was more than 10% for 63% of the loop nests, when selecting a different

vector length than what the compiler’s cost models decided. For 15% of the loop nests the

best performing code version (in terms of execution time) was not same as the most energy

efficient version. Therefore, emphasizing the previous observation that the best performing

77



vector length may not be the most energy efficient for all cases. Fig. 5.8 also shows how

large of a positive impact vectorization could have on energy efficiency when compared to

scalar code. AVX-512 versions improved energy efficiency by a factor of 9.7x (GeoMean)

over the scalar versions, whereas AVX-2 versions improved energy efficiency by a factor of

7.6x (GeoMean).

Analysis

In most cases, it is evident that using AVX-512 improves energy efficiency by a factor ranging

from 2 to 16 over AVX-2 (preferred by the default cost models in the compiler). For example,

in S112, the compiler’s cost models decided to not vectorize the loop nest, instead unrolled

the innermost loop nest by a factor of 2, whereas on forcing the compiler to generate AVX-

512 code lead to an EDP improvement by a factor of 16. In S352, compiler decided to use

AVX-2 instruction that required generation of vectorized stride-5 loads/gather instructions

which lead to inefficiency, whereas the scalar version would have been more beneficial in

terms of improving energy efficiency. In S4117, compiler deemed generating vectorized MOV

and FMA instructions for this loop nest as unprofitable compared to the scalar version,

but on forcing the generation of AVX-2 and AVX-512 instructions lead to energy efficiency

improvement of more than 14x. In S423 and S424, on forcing the compiler to vectorize,

compiler performs loop peeling to partially vectorize the loop nest, resulting in a small

improvement.

5.4.2 Impact on Performance and Energy Consumption when In-

creasing the Number of Active Cores

As mentioned in Table 5.1, on using longer vector extensions, there is a significant reduction

in maximum core frequency if the number of active cores is increased. To analyze the

78



impact of this frequency scaling on performance and energy consumption, this experiment

runs multiple copies of highly auto-vectorized TSVC benchmark simultaneously on different

cores, while scaling number of active cores/benchmark copies from 1 to 16.

Figure 5.9: Variation in Average Runtime, Total Dynamic Energy Consumption and EDP
when running multiple copies of TSVC with different Vectorized versions.

Fig. 5.9 presents execution times, dynamic energy consumption and EDP variance between

the default version (cost-model chosen vector length), AVX-2 and AVX-512 version of the

benchmark, while increasing number of active cores. The benchmark is auto-vectorized by

the Intel Compiler, so out of the 151 unique and consecutive loop nests at least 105 are

auto-vectorized by the compiler [140]. The maximum core frequency is 3.5 GHz and 2.2

GHz when running heavy AVX-512 instruction on 1 core and 16 cores respectively, that is

a 37% reduction. The average runtime per copy increases by 28% for the AVX-512 version

when increasing copies from 1 to 16. Whereas, the dynamic energy increases by 11.5x on

increasing copies from 1 to 16. Similarly for AVX-2, while the maximum core frequency

reduces by 19.5% on increasing copies from 1 to 16, the average runtime per copy increases

79



by 14%. Whereas, the dynamic energy increases by 13.4x on increasing copies from 1 to 16.

For single core, AVX-512 version performs better than the AVX-2 (by 1.05x) and default (by

1.06x) versions. Whereas in terms of energy efficiency, default version is more efficient than

AVX-2 (by 1.12x) and AVX-512 (by 1.07x) versions. AVX-512 version goes from being the

best performing version to worst performing version when scaling the number of active cores,

but remains the most energy efficient version (except for the single core setting) overall as

the max. core frequencies are significantly reduced.

5.5 A Framework for Improving Energy Efficiency

After analyzing the energy efficiency improvement seen in the previous sections, the same

idea is incorporated in the MCompiler framework. The framework for choosing the most

suited code optimizer for the loop nests using the Exploratory Search is extended to use the

energy efficiency metrics (EDP) as the selection criteria rather than the execution times as

previously shown in Chapter 2. The framework for improving the energy efficiency of the

applications is shown in Fig. 5.10. The MCompiler driver invokes this part of the framework,

if the --energy flag is set. The architecture of the MCompiler framework is modified in the

following ways for improving the energy efficiency.

The Extractor instruments the loop nest body with LIKWID [135] APIs. LIKWID uses the

RAPL interface [69, Chapter 14.9] to measure the consumed energy on the package (socket)

and DRAM level. The Extractor adds LIKWID MARKER INIT and LIKWID MARKER CLOSE

APIs at the beginning and the end of the program respectively, i.e., towards the begin-

ning and the end of the main function. Next, in the hotspot files, the Extractor adds

LIKWID MARKER START(<LOOP ID>) statement before the loop nest body and adds

LIKWID MARKER STOP(<LOOP ID>) statement after the loop nest body.

80



Figure 5.10: MCompiler Framework for Improving Energy Efficiency

The Optimizer compiles the hotspot files, for each of the available code optimizers, with

an additional macro definition -DLIKWID PERFMON. Then, the Exploratory Search Engine

generates an executable and runs the executables with likwid-perfctr -C <processor

ID> -g ENERGY, which pins the application to a particular processor or cores, and produces

the energy measurements (including Runtime, Energy and Power Consumption for both the

Package and DRAM). These measurements are stored as a CSV file for future reference of

the users.

The synthesizer calculates and compares the Energy-Delay-Product (EDP) for each loop

nest from different code optimizers and chooses the code optimizer that generated the most

energy efficient code, as the most suited code optimizer. For loop nests with no information,

i.e., the code that was not executed during Exploratory Search phase, the default compiler is

used. The synthesizer then generates the final executable that contains no instrumentation

code.

81



Figure 5.11: MCompiler EDP Improvement for Serial Benchmarks

The goal of adding this feature is to generate code that improves energy efficiency on intended

architectures and not just the execution times. Furthermore, this feature provides the users

with more information and insight about the application’s energy and power consumption.

5.6 Evaluation of the MCompiler for Improving En-

ergy Efficiency

This section presents results of the exploratory search by the MCompiler for choosing the

most energy efficient code optimizer for four benchmark suites: TSVC, Polybench, NAS

Benchmark Suite (NPB) and Parboil Benchmark Suite. Each application was executed 3

times for each of the code optimizers and the median EDP was chosen for deciding the most

suited code optimizer.

82



Figure 5.12: MCompiler EDP Improvement for Auto-Parallelized Benchmarks

Benchmarks, Code Optimizers and Target Architecture

The same four benchmark suites are chosen as the ones shown in Chapter. 3, where the

goal was to improve performance, here the goal is to improve energy efficiency. The same

five code optimizers, as previously shown in Chapter 2, Table 2.2 are incorporated in the

MCompiler framework here too. All five optimizers are used for serial experiments. Of the

five optimizers, only four optimizers (icc, Polly and Pluto) can auto-parallelize the serial

code and are used for auto-parallelized code experiments. The baseline for comparison is icc

(-Ofast -xHost [-parallel]) compiled benchmarks for all experiments. icc was chosen

as the baseline because icc generated code performed better for more benchmarks than

other code optimizers as shown in Fig. 5.13. The source codes used for the baseline are the

original benchmark codes and not the modified source codes generated by the MCompiler ’s

Loop Extractor.

83



Figure 5.13: Distribution of most energy efficient code per Code Optimizer. Breakdowns per
benchmarks suite showcase benefits of specialized code optimizers.

The target architecture for the experiments is a two-socket, sixteen-core Intel Skylake Xeon

Gold 6142 [43]. Each Xeon processor has 32KB L1 cache, 1MB L2 cache, 22MB L3 cache.

The Skylake architecture supports SIMD instruction set extensions, i.e., SSE, AVX, AVX2,

AVX-512CD and AVX-512F. CPU Hyper Threading (SMT) is turned off and cores are

operating at the maximum frequency (same as mentioned before in Table 5.1).

For serial experiment measurements (including running the Exploratory Search Engine), the

applications are pinned to the last core of the second processor. For the auto-parallelization

experiment measurements (including running the Exploratory Search Engine), only 16 cores

of the second processor are used and just one thread is mapped per core by setting the

84



environment variables for OpenMP runtimes.

5.6.1 Serial Code

The results for the Exploratory Search for improving energy efficiency are shown in Fig. 5.11.

The benchmark labels show the benchmark suite that a particular benchmark belongs to.

The EDP improvement across the 151 loop nests from TSVC is 2.0x over icc. As shown

in Fig. 5.13, icc was chosen as the most suited code optimizer for 39% of the loop nests,

followed by gcc at 24.5%. This is a deviation from the distribution in the Exploratory Search

for performance improvement, where icc and gcc were chosen 44% and 20% of the times

respectively.

As expected, the two polyhedral model based optimizers were chosen as the most energy

efficient code optimizer for 72% of the loop nests that dominate execution time of the main

kernels for Polybench benchmarks. These optimizers improved performance by huge margin

in a few cases and that also lead to similar improvement in energy consumption. The

percentage of loop nests chosen from each code optimizer can be seen in Fig. 5.13.

Overall, the MCompiler improves EDP for serial benchmarks from four different suites by

GeoMean of 2.77x.

5.6.2 Auto-Parallelized Code

These experiments were performed with 16 threads for both the exploratory search phase

and measuring EDP of the optimized executables. The code optimizers optimized the loop

nests with their default setting for statically deciding the profitability of the parallel code and

for choosing the runtime settings, such as scheduling policies. Benchmarks from Polybench,

NPB-ACC and Parboil were used in these experiments.

85



The benchmarks that showed large loss in performance with the MCompiler , also show

similar trend for EDP. Yet, the MCompiler improves EDP for auto-parallelized benchmarks

from four different suites by GeoMean of 3.37x.

5.7 Summary

This chapter shows the impact of different compilers and their performance driven optimiza-

tions on energy efficiency for the loop nests. The exploratory analysis shows that there is

potential for compilers to optimize and generate code for loop nests differently, if the goal

was to improve the energy efficiency of the processor. Also, the impact of using different

vector extensions on performance and energy efficiency is studied.

Based on this exploration, the Exploratory Search method of the MCompiler is expanded

to optimize applications for better energy efficiency by choosing the most energy efficient

version possible for each loop nest. The MCompiler framework improves the overall energy

efficiency for applications over state-of-the-art compiler (compiled at equivalent of -O3) by

a geometric mean of 2.77x for auto-vectorized code and 3.37x for auto-parallelized code.

86



Chapter 6

Prior Art

This chapter discusses recent related works that have tried to improve performance using

a compilation framework, apply Machine Learning to achieve better performance or used a

compilation framework to improve energy efficiency of the applications.

Compilation Frameworks and Tools

The OptiScope infrastructure by Moseley et. al. [102] performed function-level and loop-level

quantitative comparisons of application compiled by different compilers and/or optimization

settings. Similar to the analysis showed in this thesis, they looked at the impact of interaction

of optimization techniques for complex target architectures. But their tool performed binary

analysis with the goal of assisting compiler developers in discovering new opportunities and

evaluate changes.

The work by Fursin et. al. [51], called Milepost GCC, presents an iterative compilation

and auto-tuning framework that predicts good combinations of compiler flags to improve

execution time. Their tool explores gcc and its flags and uses ML techniques to predict

87



good optimizations based on program features.

Another similar work, the OpenTuner framework by Ansel et. al. [9], searches for the best

performing GCC/G++ flag combinations for C/C++ applications, in addition to searching

configurations for Halide and other domain specific applications. Both Milepost GCC and

OpenTuner frameworks explore different combinations of code optimizer flags that has been

extensively studied.

MiCOMP, proposed by Ashouri et. al. [10], performs phase ordering of the optimizations

in LLVM’s highest optimization level using optimization sub-sequences and machine learn-

ing. They cluster the optimization passes of LLVM into different clusters and predict the

speedup of a complete sequence of these clusters of optimizations. The iterative compila-

tion performed using these sub-sequences outperforms the default sequence of optimization

passes enabled at optimization levels such as -O3.

In this thesis, the results are presented with applications optimized using the most influential

or recommended flag combinations, for improving performance, from each code optimizer.

By its design the framework can also include auto-tuning and iterative compilation [115,

116, 36] frameworks, such as the MilepostGCC, OpenTuner and MiCOMP, for optimizing

applications.

Applying Machine Learning to Compiler Optimizations and Frameworks

Most prior work in the area of applying ML to the compilation process has been done

in order to perform auto-tuning [11] of the applications. Other prior works that have

addressed challenges in compiler optimizations using Machine Learning have focused on

auto-vectorization [130, 140] and on scalability and scheduling configurations for the paral-

lelism [17, 139, 134].

88



Tournavitis et. al.[134] use a mix of static and dynamic features to develop a platform-

agnostic, profiling-based parallelism detection method for sequential applications. Their

method requires user’s approval for parallelization decisions that cannot be proven conclu-

sively. They use ML models to judge the profitability on parallelization and to select the

scheduling policy. In contrast, the MCompiler uses just the dynamic features to train ML

models and let the ML models choose the most suited candidate that can generate a prof-

itable auto-parallelized code. In future, these mechanisms can be incorporated into the

MCompiler to predict number of threads and select the scheduling policy as well. Stock et.

al. [130] developed a ML-based performance model to guide SIMD compiler optimizations

for vectorizing tensor contraction computations. Watkinson et. al. [140] use ML models to

predict opportunities for auto-vectorization and its profitability across multiple compilers

and architectures. However, this thesis explores the use of ML on a coarser level on kernels

from a variety of computations to predict an optimizer that can generate an efficient serial

code, which includes auto-vectorized code, as well as parallel code.

NeuroVectorizer [57] proposed an approach for handling loop vectorization and an end-to-end

solution using deep reinforcement learning (RL). It finds two vectorization parameters via

RL, the loop unrolling factor and the interleaving factor. Similarly, Vemal [99] uses Imitation

Learning to produce a vectorization scheme that is better than the heuristics implemented

in the LLVM compiler. One can also incorporate tools like NeuroVectorizer and Vemal into

the MCompiler and potentially obtain additional speedups.

Using Compilation Framework to improve Energy Efficiency

The work by Wang et. al. [138] performed energy auto-tuning using polyhedral model based

tools such as PoCC [112]. They tried to understand the correlation between performance

and energy consumptions for optimized serial, including auto-vectorized code, and auto-

parallelized code. Jager et. al. [70] present a comparative study between gcc and icc

89



generated code in terms of energy consumption. Whereas, the work by Georgiou et. al. [52]

show that performing fewer of the optimizations passes available at LLVM’s standard op-

timization levels, such as -O2, while preserving their original ordering, significant savings

can be achieved in both execution time and energy consumption. They technique generate

multiple optimization configurations by removing the last transformation flag of the current

optimization configuration and select the most best configuration based on the execution

results. These findings and improvements are similar to the ones shown in this thesis for the

purpose of improving the energy efficiency, and such tools can easily be incorporated into

the MCompiler .

90



Chapter 7

Conclusions and Future Directions

The goal of this thesis was to synthesize multiple compilation and optimization techniques

into a single compilation framework. The implemented framework, called the MCompiler ,

harnesses the strengths of multiple compilers, while substituting the weakness of individual

compilers. It can optimize applications for different objectives. These objective can range

from improving the performance of serial (auto-vectorized) codes, auto-parallelized codes

or hand-parallelized codes to improving the energy efficiency for such codes on modern

architectures. Through the use of Exploratory Search and Machine Learning algorithms,

the framework optimizes application hotspots for achieving better performance and energy

efficiency over state-of-the-art compilers.

The need for a multiple compiler approach is discussed in Chapter 2 and the design of the

MCompiler framework is presented. The framework incorporates optimized loop nest code

- serial code, auto-parallelized code or OpenMP code - from a collection of state-of-the-

art code optimizers to generate a single executable. The framework can be used with a

exploratory search to choose the most suited code optimizer for the loop nests. Exploratory

Search results, presented in Chapter 3, showed that the MCompiler with five code optimizers

91



can significantly improve application performance. The framework benefits from the ability

of different code optimizers to apply different sequences of loop nest transformations and use

their in-built heuristics and cost-models to make decisions in order to produce most suited

code for the underlying architecture. MCompiler framework is designed to be extendable

with more code optimizers, optimizer flag combinations and more features. It can also

be used as a tool for compiler researchers to incorporate and analyze the performance of

their code optimization techniques and compare to other code optimizers. Even though

the code optimizers have the capability of performing similar set of loop transformation

techniques, they can produce optimized versions of the code that have significant difference

in performance. This shows that state-of-the-art code optimizers miss out on opportunities

for producing efficient code and the multiple compiler approach can help towards identifying

those opportunities and making improvements in order to achieve better performance.

In Chapter 4, this thesis explored the possibility of learning about the inherent characteristics

of the loop nests, in terms of its behavior on the architecture, that can be detected from

the hardware performance counters. Results shows that these inherent characteristics of the

loop nests can be successfully captured using Machine Learning algorithms. These Machine

Learning models are then used to predict which code optimizer (with its transformations

and cost models) would be the most beneficial for a loop nest. The MCompiler framework

is expanded to incorporate these Machine Learning models and to replace the exploratory

search with an efficient Machine Learning based prediction for the most suited code optimizer

for a loop nest. The results show that the Machine Learning models can predict the most

suited code optimizer with a small performance loss compared to the Exploratory Search.

Finally, in Chapter 5, this thesis explored the impact of different compilers and their perfor-

mance driven optimizations on energy efficiency for the loop nests. The exploratory analysis

shows that there is potential for compilers to optimize and generate code for loop nests

differently, if the goal was to improve the energy efficiency of the processor. Based on this

92



exploration, the Exploratory Search method of the MCompiler is expanded to optimize ap-

plications for better energy efficiency by choosing the most energy efficient version possible

for each loop nest. The framework is able to measure the impact of various architectural

intricacies and dynamic parameters, such as accounting for DVFS changes, before generating

the optimized binary.

Future Directions

The multiple compiler approach presented and analyzed in this thesis has shown promising

results and highlighted the strengths of various optimization techniques currently imple-

mented in the state-of-the-art compilers and domain-specific optimizers. With increasing

complexities of modern architectures, the task for compiler optimizations to achieve the op-

timal performance and/or efficiency on these architectures is only going to become more

complex. Expecting a single compiler to utilize the target architecture to its fullest potential

for a variety of applications is wishful thinking. With the continuous rise in newer domain-

specific languages and domain-specific accelerators, compilers and compiler optimizations

are going in the direction of becoming fine-grained and precise. But even then, there will

remain a need to explore various optimizations, techniques and configurations to achieve the

best performance or the best energy efficiency on an architecture for any given application.

The MCompiler is designed to be flexible and extendable. This thesis shows how the frame-

work can be extended to incorporate Machine Learning models and optimize for different

metrics such as energy efficiency. In the near future, the framework can be improved in

following ways:

• Perform optimizations to the source code before extracting the hotspots in order to

provide compilers with more information while optimizing hotspot files.

• Add heuristics or Machine Learning techniques to predict most suited runtime config-

93



uration for the hotspots such as degree of parallelism or hardware knob settings.

• Apply exploration of fine grained options per compiler.

94



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson,
M. Toussaint, and C. Williams. Using machine learning to focus iterative optimization.
In International Symposium on Code Generation and Optimization (CGO’06), pages
11 pp.–305, 2006.

[3] R. Allen and S. Johnson. Compiling c for vectorization, parallelization, and inline
expansion. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, PLDI ’88, page 241–249, New York, NY, USA,
1988. Association for Computing Machinery.

[4] R. Allen and K. Kennedy. Automatic translation of fortran programs to vector form.
ACM Trans. Program. Lang. Syst., 9(4):491–542, Oct. 1987.

[5] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Subramanian,
L. Torczon, and T. Waterman. Finding Effective Compilation Sequences. In Proceed-
ings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, LCTES ’04, page 231–239, New York, NY, USA, 2004.
Association for Computing Machinery.

[6] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation
for distributed memory machines. In Proceedings of the ACM SIGPLAN 1993 Confer-
ence on Programming Language Design and Implementation, PLDI ’93, page 126–138,
New York, NY, USA, 1993. Association for Computing Machinery.

[7] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings of the
Third ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), Williamsburg, Virginia, USA, April 21-24, 1991, pages 39–50, 1991.

95



[8] J. M. Anderson and M. S. Lam. Global Optimizations for Parallelism and Locality on
Scalable Parallel Machines. SIGPLAN Not., 28(6):112–125, June 1993.

[9] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly, and
S. Amarasinghe. Opentuner: An extensible framework for program autotuning. In 2014
23rd International Conference on Parallel Architecture and Compilation Techniques
(PACT), pages 303–315, 2014.

[10] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J. Cavazos.
MiCOMP: Mitigating the compiler phase-ordering problem using optimization sub-
sequences and machine learning. ACM Transactions on Architecture and Code Opti-
mization (TACO), 14(3):29, 2017.

[11] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. A Survey on
Compiler Autotuning Using Machine Learning. ACM Comput. Surv., 51(5), Sept.
2018.

[12] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Comput. Surv., 26(4):345–420, Dec. 1994.

[13] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast
and portable code. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2019, page 193–205. IEEE Press, 2019.

[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel benchmarks summary
and preliminary results. In Supercomputing ’91:Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, pages 158–165, Nov 1991.

[15] U. K. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[16] U. K. Banerjee. Dependence Analysis. Kluwer Academic Publishers, Norwell, MA,
USA, 1996.

[17] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski, and M. Schulz.
A regression-based approach to scalability prediction. In Proceedings of the 22nd annual
international conference on Supercomputing, pages 368–377. ACM, 2008.

[18] A. Barredo, J. M. Cebrian, M. Valero, M. Casas, and M. Moreto. Efficiency analysis of
modern vector architectures: vector alu sizes, core counts and clock frequencies. The
Journal of Supercomputing, pages 1–20, 2019.

[19] A. Bataev, A. Bokhanko, and J. Cownie. Towards OpenMP support in LLVM. In
2013 European LLVM Conference, 2013.

96



[20] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The Next Gener-
ation in Parallelizing Compilers. In International Workshop on Languages and Com-
pilers for Parallel Computing, pages 10–1. Springer-Verlag, Berlin/Heidelberg, 1994.

[21] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and
P. Sadayappan. Automatic transformations for communication-minimized paralleliza-
tion and locality optimization in the polyhedral model. In International Conference
on Compiler Construction, pages 132–146. Springer, 2008.

[22] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
101–113, 2008.

[23] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[24] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural Constant
Propagation. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Con-
struction, SIGPLAN ’86, page 152–161, New York, NY, USA, 1986. Association for
Computing Machinery.

[25] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and
results. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, Super-
computing ’88, pages 98–105, Los Alamitos, CA, USA, 1988. IEEE Computer Society
Press.

[26] R. Cammarota, L. A. Beni, A. Nicolau, and A. V. Veidenbaum. Optimizing program
performance via similarity, using a feature-agnostic approach. In Advanced Parallel
Processing Technologies, pages 199–213, Berlin, Heidelberg, 2013. Springer.

[27] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd International Conference on Machine Learn-
ing, ICML ’06, page 161–168, New York, NY, USA, 2006. Association for Computing
Machinery.

[28] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and O. Temam. Rapidly
selecting good compiler optimizations using performance counters. In International
Symposium on Code Generation and Optimization (CGO’07), pages 185–197. IEEE,
2007.

[29] J. M. Cebrian, M. Jahre, and L. Natvig. Parvec: vectorizing the parsec benchmark
suite. Computing, 97(11):1077–1100, 2015.

[30] J. M. Cebrian, L. Natvig, and M. Jahre. Scalability Analysis of AVX-512 Extensions.
The Journal of Supercomputing, pages 1–16, 2019.

97



[31] J. M. Cebrián, L. Natvig, and J. C. Meyer. Improving energy efficiency through paral-
lelization and vectorization on intel core i5 and i7 processors. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, pages 675–684, Nov
2012.

[32] M. Chadha and M. Gerndt. Modelling DVFS and UFS for Region-Based Energy Aware
Tuning of HPC Applications. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 805–814, 2019.

[33] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing high-level loop
transformations. Technical report, Citeseer, 2008.

[34] D. Chen, T. Moseley, and D. X. Li. AutoFDO: Automatic feedback-directed optimiza-
tion for warehouse-scale applications. In 2016 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 12–23, 2016.

[35] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An automated end-to-
end optimizing compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 578–594, Carlsbad, CA, Oct.
2018. USENIX Association.

[36] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and C. Wu. Eval-
uating Iterative Optimization across 1000 Datasets. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’10, page 448–459, New York, NY, USA, 2010. Association for Computing Machinery.

[37] Z. Chen, Z. Gong, J. J. Szaday, D. C. Wong, D. Padua, A. Nicolau, A. V. Veidenbaum,
N. Watkinson, Z. Sura, S. Maleki, J. Torrellas, and G. DeJong. Lore: A loop repository
for the evaluation of compilers. In 2017 IEEE International Symposium on Workload
Characterization (IISWC), pages 219–228, 2017.

[38] K. D. Cooper and K. Kennedy. Efficient Computation of Flow Insensitive Interpro-
cedural Summary Information. In Proceedings of the 1984 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’84, page 247–258, New York, NY, USA, 1984.
Association for Computing Machinery.

[39] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic Parallelization. Springer
Science & Business Media, 2012.

[40] J. Demšar and et. al. Orange: data mining toolbox in python. The Journal of Machine
Learning Research, 14(1):2349–2353, 2013.

[41] J. Doerfert and H. Finkel. Compiler optimizations for openmp. In International Work-
shop on OpenMP, pages 113–127. Springer, 2018.

[42] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M. F. O’Boyle. Portable com-
piler optimisation across embedded programs and microarchitectures using machine

98



learning. In 2009 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 78–88, 2009.

[43] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler,
D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,
M. Zink, E. Cecchet, S. Kar, and P. Mishra. The design and operation of CloudLab.
In Proceedings of the USENIX Annual Technical Conference (ATC), pages 1–14, July
2019.

[44] G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Memory system
energy: Influence of hardware-software optimizations. In ISLPED’00: Proceedings
of the 2000 International Symposium on Low Power Electronics and Design (Cat.
No.00TH8514), pages 244–246, July 2000.

[45] P. Feautrier. Array expansion. In In ACM Int. Conf. on Supercomputing, pages 429–
441, 1988.

[46] P. Feautrier. Dataflow Analysis of Array and Scalar References. International Journal
of Parallel Programming, 20, 1991.

[47] P. Feautrier. Some efficient solutions to the affine scheduling problem. I. One-
dimensional time. International Journal of Parallel Programming, 21(5):313–347, 1992.

[48] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Mul-
tidimensional time. International Journal of Parallel Programming, 21(6):389–420,
1992.

[49] A. Fernández, V. Beltran, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta.
Task-based programming with ompss and its application. In European Conference on
Parallel Processing, pages 601–612. Springer, 2014.

[50] J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics, 29:1189–1232, 2000.

[51] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namolaru,
E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, et al. Milepost GCC: Machine
learning enabled self-tuning compiler. International journal of parallel programming,
39(3):296–327, 2011.

[52] K. Georgiou, C. Blackmore, S. Xavier-de Souza, and K. Eder. Less is more: Exploiting
the standard compiler optimization levels for better performance and energy consump-
tion. In Proceedings of the 21st International Workshop on Software and Compilers for
Embedded Systems, SCOPES ’18, pages 35–42, New York, NY, USA, 2018. Association
for Computing Machinery.

[53] S. V. Gheorghita, H. Corporaal, and T. Basten. Iterative compilation for energy
reduction. J. Embedded Comput., 1(4):509–520, Dec. 2005.

99



[54] Z. Gong, Z. Chen, J. Szaday, D. Wong, Z. Sura, N. Watkinson, S. Maleki, D. Padua,
A. Veidenbaum, A. Nicolau, and J. Torrellas. An empirical study of the effect of
source-level loop transformations on compiler stability. Proc. ACM Program. Lang.,
2(OOPSLA):126:1–126:29, Oct. 2018.

[55] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. Static Analysis
of Energy Consumption for LLVM IR Programs. In Proceedings of the 18th Interna-
tional Workshop on Software and Compilers for Embedded Systems, SCOPES ’15, page
12–21, New York, NY, USA, 2015. Association for Computing Machinery.

[56] T. Grosser, A. Groesslinger, and C. Lengauer. Polly - Performing Polyhedral Op-
timizations on a Low-level Intermediate Representation. Parallel Processing Letters,
22(04), 2012.

[57] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and I. Stoica. NeuroVec-
torizer: End-to-End Vectorization with Deep Reinforcement Learning. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Optimiza-
tion, CGO 2020, pages 242–255, New York, NY, USA, 2020. Association for Computing
Machinery.

[58] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson. Fine-Grain Power Breakdown
of Modern Out-of-Order Cores and Its Implications on Skylake-Based Systems. ACM
Trans. Archit. Code Optim., 13(4), Dec. 2016.

[59] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, E. Bugnion, and
M. Lam. Maximizing multiprocessor performance with the SUIF compiler. Computer,
29(12):84–89, 1996.

[60] M. W. Hall and K. Kennedy. Efficient Call Graph Analysis. ACM Lett. Program.
Lang. Syst., 1(3):227–242, Sept. 1992.

[61] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[62] T. K. Ho. Random decision forests. In Document analysis and recognition, 1995.,
proceedings of the third international conference on, volume 1, pages 278–282. IEEE,
1995.

[63] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.
Dynamic Knobs for Responsive Power-Aware Computing. In Proceedings of the Six-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, page 199–212, New York, NY, USA, 2011.
Association for Computing Machinery.

[64] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic voltage/frequency
scheduling for energy reduction in microprocessors. In ISLPED’01: Proceedings of
the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat.
No.01TH8581), pages 275–278, 2001.

100



[65] Intel® Xeon® Processor Scalable Family: Specification Update, October 2020.

[66] Intel® C++ Compiler Classic Developer Guide and Reference.

[67] Intel® oneAPI Math Kernel Library.

[68] Automatic Parallelization with Intel®Compilers, August 2018.

[69] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B,
3C & 3D): System Programming Guide, January 2019.

[70] A. Jäger, J.-P. Lehr, and C. Bischof. The influence of two modern compiler infrastruc-
tures on the energy consumption of the hpcg benchmark. Computer Science - Research
and Development, May 2018.

[71] W. Jalby, D. Kuck, A. D. Malony, M. Masella, A. Mazouz, and M. Popov. The long
and winding road toward efficient high-performance computing. Proceedings of the
IEEE, 106(11):1985–2003, Nov 2018.

[72] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study.
Intelligent data analysis, 6(5):429–449, 2002.

[73] I. Kadayif, M. Kandemir, and M. Karakoy. An energy saving strategy based on adap-
tive loop parallelization. In Proceedings of the 39th Annual Design Automation Con-
ference, DAC ’02, pages 195–200, New York, NY, USA, 2002. ACM.

[74] M. Kandemir, A. Choudhary, J. Ramanujam, and M. Kandaswamy. A unified frame-
work for optimizing locality, parallelism, and communication in out-of-core computa-
tions. IEEE Transactions on Parallel and Distributed Systems, 11(7):648–668, 2000.

[75] M. Kandemir, N. Vijaykrishnan, and M. J. I. and. Influence of compiler optimizations
on system power. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
9(6):801–804, Dec 2001.

[76] M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Compiler Optimizations for Low
Power Systems, pages 191–210. Springer US, Boston, MA, 2002.

[77] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[78] R. Keryell, R. K. (presenting, C. Ancourt, B. Creusillet, F. Coelho, P. Jouvelot, and
F. Irigoin. PIPS: a Workbench for Building Interprocedural Parallelizers, Compilers
and Optimizers. Technical report, 1996.

[79] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. The tensor algebra
compiler. Proc. ACM Program. Lang., 1(OOPSLA):77:1–77:29, Oct. 2017.

[80] U. Kremer. Optimal and near – optimal solutions for hard compilation problems.
Parallel Processing Letters, 7(04):371–378, 1997.

101



[81] M. Kruse and H. Finkel. User-directed loop-transformations in clang. In 2018
IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC), pages 49–58, 2018.

[82] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs
and compiler optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’81, page 207–218, New York,
NY, USA, 1981. Association for Computing Machinery.

[83] S. Larsen and S. Amarasinghe. Exploiting superword level parallelism with multimedia
instruction sets. In Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation, PLDI ’00, page 145–156, New York, NY,
USA, 2000. Association for Computing Machinery.

[84] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04, 20-24 March 2004, San Jose, CA, USA,
pages 75–88, 2004.

[85] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko. Mlir: Scaling compiler infrastructure for
domain specific computation. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 2–14, 2021.

[86] H. Laurent and R. L. Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

[87] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation for machine
learning–based optimising compilation. ACM Trans. Archit. Code Optim., 11(1), Feb.
2014.

[88] S.-I. Lee, T. A. Johnson, and R. Eigenmann. Cetus – an extensible compiler infras-
tructure for source-to-source transformation. In L. Rauchwerger, editor, Languages and
Compilers for Parallel Computing, pages 539–553, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[89] E. A. León, I. Karlin, R. E. Grant, and M. Dosanjh. Program optimizations: The
interplay between power, performance, and energy. Parallel Computing, 58:56 – 75,
2016.

[90] W. Li and K. Pingali. A singular loop transformation framework based on non-singular
matrices. In International Workshop on Languages and Compilers for Parallel Com-
puting, pages 391–405. Springer, 1992.

[91] A. W. Lim, G. I. Cheong, and M. S. Lam. An Affine Partitioning Algorithm to
Maximize Parallelism and Minimize Communication. In Proceedings of the 13th In-
ternational Conference on Supercomputing, ICS ’99, pages 228–237, New York, NY,
USA, 1999. ACM.

102



[92] A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchronization
with Affine Partitions. Parallel Comput., 24(3-4):445–475, May 1998.

[93] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and Array Contraction Across
Arbitrarily Nested Loops Using Affine Partitioning. In Proceedings of the Eighth ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, PPoPP
’01, pages 103–112, New York, NY, USA, 2001. ACM.

[94] S. Maleki, Y. Gao, M. J. Garzar´n, T. Wong, and D. A. Padua. An evaluation of
vectorizing compilers. In 2011 International Conference on Parallel Architectures and
Compilation Techniques, pages 372–382, Oct 2011.

[95] D. Maydan, S. Amarsinghe, and M. Lam. Data dependence and data-flow analysis of
arrays. In International Workshop on Languages and Compilers for Parallel Comput-
ing, pages 434–448. Springer, 1992.

[96] A. Mazouz, D. C. Wong, D. Kuck, and W. Jalby. Power-constrained optimal quality
for high performance servers. In Proceedings of the 47th International Conference on
Parallel Processing Companion, ICPP ’18, pages 38:1–38:10, New York, NY, USA,
2018. ACM.

[97] C. Mendis, A. Jain, P. Jain, and S. Amarasinghe. Revec: Program rejuvenation
through revectorization. In Proceedings of the 28th International Conference on Com-
piler Construction (CC), CC 2019, pages 29–41, New York, NY, USA, 2019. ACM.

[98] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin. Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks. In K. Chaud-
huri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning (ICML), volume 97 of Proceedings of Machine Learning Research,
pages 4505–4515, Long Beach, California, USA, Jun 2019. PMLR.

[99] C. Mendis, C. Yang, Y. Pu, S. Amarasinghe, and M. Carbin. Compiler auto-
vectorization with imitation learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS), pages 14598–14609. Curran Associates, Inc., Dec 2019.

[100] S. P. Midkiff. Automatic parallelization: an overview of fundamental compiler tech-
niques. Synthesis Lectures on Computer Architecture, 7(1):1–169, 2012.

[101] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic
production of compiler heuristics. In Proceedings of the 10th International Conference
on Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’02, pages
41–50, London, UK, UK, 2002. Springer-Verlag.

[102] T. Moseley, D. Grunwald, and R. Peri. Optiscope: Performance accountability for op-
timizing compilers. In Proceedings of the 7th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO ’09, pages 254–264, Washington,
DC, USA, 2009. IEEE Computer Society.

103



[103] OpenCV (Open Source Computer Vision Library), Version 4.0.0. https://opencv.

org, November 2018.

[104] The OpenMP Application Programming Interface, Version 5.0. https://www.openmp.
org/, November 2018.

[105] Padua, Kuck, and Lawrie. High-speed multiprocessors and compilation techniques.
IEEE Transactions on Computers, C-29(9):763–776, Sept 1980.

[106] D. A. Padua and M. Wolfe. Advanced Compiler Optimizations for Supercomputers.
Commun. ACM, 29(12):1184–1201, 1986.

[107] J. Pallister, S. J. Hollis, and J. Bennett. Identifying compiler options to minimize
energy consumption for embedded platforms. The Computer Journal, 58(1):95–109,
2015.

[108] M. Panchenko, R. Auler, B. Nell, and G. Ottoni. BOLT: A Practical Binary Optimizer
for Data Centers and Beyond. In Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2019, page 2–14. IEEE Press,
2019.

[109] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,
A. Vandercappelle, and P. G. Kjeldsberg. Data and memory optimization techniques
for embedded systems. ACM Trans. Des. Autom. Electron. Syst., 6(2):149–206, Apr.
2001.

[110] E. Park, L. Pouchet, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive modeling
in a polyhedral optimization space. In International Symposium on Code Generation
and Optimization (CGO 2011), pages 119–129, 2011.

[111] PLUTO: An automatic parallelizer and locality optimizer for affine loop nests, 2015.

[112] PoCC: The Polyhedral Compiler Collection.

[113] Polly: LLVM Framework for High-Level Loop and Data-Locality Optimizations.

[114] PolyBench/C 4.1. http://web.cse.ohio-state.edu/~pouchet.2/software/

polybench/, 2015.

[115] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the
polyhedral model: Part ii, multidimensional time. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’08, page 90–100, New York, NY, USA, 2008. Association for Computing Machinery.

[116] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayap-
pan. Combined iterative and model-driven optimization in an automatic parallelization
framework. In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, page 1–11, USA,
2010. IEEE Computer Society.

104

https://opencv.org
https://opencv.org
https://www.openmp.org/
https://www.openmp.org/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/


[117] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,
and N. Vasilache. Loop Transformations: Convexity, Pruning and Optimization. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’11, page 549–562, New York, NY, USA, 2011.
Association for Computing Machinery.

[118] W. Pugh and D. Wonnacott. Eliminating False Data Dependences Using the Omega
Test. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Lan-
guage Design and Implementation, PLDI ’92, pages 140–151, New York, NY, USA,
1992. ACM.

[119] D. Quinlan. Rose: Compiler support for object-oriented frameworks. Parallel Process-
ing Letters, 10:215–226, 2000.

[120] S. F. Rahman, J. Guo, and Q. Yi. Automated empirical tuning of scientific codes for
performance and power consumption. In Proceedings of the 6th International Confer-
ence on High Performance and Embedded Architectures and Compilers, pages 107–116.
ACM, 2011.

[121] S. Ramesh, S. Perarnau, S. Bhalachandra, A. D. Malony, and P. Beckman. Under-
standing the Impact of Dynamic Power Capping on Application Progress. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
793–804, 2019.

[122] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H. Hsu, and
U. Kremer. Energy-conscious Compilation Based on Voltage Scaling. In Proceedings
of the Joint Conference on Languages, Compilers and Tools for Embedded Systems:
Software and Compilers for Embedded Systems, LCTES/SCOPES ’02, pages 2–11,
New York, NY, USA, 2002. ACM.

[123] R. E. Schapire. A Brief Introduction to Boosting. In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, page
1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[124] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding fork-join par-
allelism into llvm’s intermediate representation. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’17, page 249–265, New York, NY, USA, 2017. Association for Computing Machinery.

[125] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg. Energy Efficiency
Features of the Intel Skylake-SP Processor and Their Impact on Performance. In 2019
International Conference on High Performance Computing Simulation (HPCS), pages
399–406, 2019.

[126] A. Shivam, N. Watkinson, A. Nicolau, D. Padua, and A. V. Veidenbaum. Towards
an achievable performance for the loop nests. In M. Hall and H. Sundar, editors,
Languages and Compilers for Parallel Computing, pages 70–77, Cham, 2019. Springer
International Publishing.

105



[127] S. Sridharan, G. Gupta, and G. S. Sohi. Holistic Run-Time Parallelism Management for
Time and Energy Efficiency. In Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS ’13, page 337–348, New York,
NY, USA, 2013. Association for Computing Machinery.

[128] M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised clas-
sification. In Proceedings of the International Symposium on Code Generation and
Optimization, CGO ’05, pages 123–134, Washington, DC, USA, 2005. IEEE Computer
Society.

[129] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta optimization:
Improving compiler heuristics with machine learning. In Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming Language Design and Implementation, PLDI
’03, pages 77–90, New York, NY, USA, 2003. Association for Computing Machinery.

[130] K. Stock, L.-N. Pouchet, and P. Sadayappan. Using machine learning to improve
automatic vectorization. ACM Transactions on Architecture and Code Optimization
(TACO), 8(4):50, 2012.

[131] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,
and W.-m. W. Hwu. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance Computing, 127,
2012.

[132] S. F. X. Thiago Teixeira, C. Ancourt, D. Padua, and W. Gropp. Locus: A system and
a language for program optimization. In 2019 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 217–228, 2019.

[133] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable auto-
tuning framework for compiler optimization. In 2009 IEEE International Symposium
on Parallel Distributed Processing, pages 1–12, 2009.

[134] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards a holistic approach
to auto-parallelization: Integrating profile-driven parallelism detection and machine-
learning based mapping. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages 177–187, New
York, NY, USA, 2009. ACM.

[135] J. Treibig, G. Hager, and G. Wellein. LIKWID: A Lightweight Performance-Oriented
Tool Suite for x86 Multicore Environments. In 2010 39th International Conference on
Parallel Processing Workshops, pages 207–216, Sep. 2010.

[136] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August. Compiler
Optimization-Space Exploration. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO ’03, page 204–215, USA, 2003. IEEE Computer Society.

106



[137] M. Valluri and L. K. John. Is Compiling for Performance == Compiling for Power?,
pages 101–115. Springer US, Boston, MA, 2001.

[138] W. Wang, J. Cavazos, and A. Porterfield. Energy auto-tuning using the polyhedral
approach. In S. Rajopadhye and S. Verdoolaege, editors, Proceedings of the 4th In-
ternational Workshop on Polyhedral Compilation Techniques, Vienna, Austria, Jan
2014.

[139] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores: A machine learning
based approach. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’09, pages 75–84, New York, NY, USA,
2009. ACM.

[140] N. Watkinson, A. Shivam, Z. Chen, A. Veidenbaum, A. Nicolau, and Z. Gong. Using
hardware counters to predict vectorization. In L. Rauchwerger, editor, Languages and
Compilers for Parallel Computing, pages 3–16, Cham, 2019. Springer International
Publishing.

[141] G. M. Weiss and F. Provost. The effect of class distribution on classifier learning: an
empirical study. 2001.

[142] G. M. Weiss and F. Provost. Learning when training data are costly: The effect of class
distribution on tree induction. Journal of artificial intelligence research, 19:315–354,
2003.

[143] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining loop transformations consid-
ering caches and scheduling. In Proceedings of the 29th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, MICRO 29, page 274–286, USA, 1996. IEEE
Computer Society.

[144] M. Wolfe. Iteration Space Tiling for Memory Hierarchies. In Proceedings of the Third
SIAM Conference on Parallel Processing for Scientific Computing, pages 357–361,
Philadelphia, PA, USA, 1989. SIAM.

[145] M. Wolfe. More Iteration Space Tiling. In SC ’89, pages 655–664, New York, NY,
USA, 1989. ACM.

[146] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[147] R. Xu, X. Tian, S. Chandrasekaran, Y. Yan, and B. Chapman. NAS Parallel Bench-
marks for GPGPUs Using a Directive-Based Programming Model. In J. Brodman and
P. Tu, editors, Languages and Compilers for Parallel Computing, pages 67–81, Cham,
2015. Springer International Publishing.

[148] J. Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

107



[149] H. Yang, G. R. Gao, A. Marquez, G. Cai, and Z. Hu. Power and energy impact by
loop transformations. In In Proceedings of the Workshop on Compilers and Operating
Systems for Low Power 2001, Parallel Architecture and Compilation Techniques, 2000.

[150] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye. Alphaz: A system
for design space exploration in the polyhedral model. In International Workshop on
Languages and Compilers for Parallel Computing, pages 17–31. Springer, 2012.

[151] J. Zambreno, M. T. Kandemir, and A. Choudhary. Enhancing compiler techniques
for memory energy optimizations. In A. Sangiovanni-Vincentelli and J. Sifakis, ed-
itors, Embedded Software, pages 364–381, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[152] Y. Zhu, G. Magklis, M. L. Scott, C. Ding, and D. H. Albonesi. The energy impact of
aggressive loop fusion. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’04, pages 153–164, Washington,
DC, USA, 2004. IEEE Computer Society.

108


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Loop Nest Optimizations
	A Synergistic Compilation Approach
	Learning about the Impact of Optimizations on Performance
	Using Performance-Oriented Optimizations to Achieve Energy Efficiency
	Tool for Compiler Researchers
	Contributions

	MCompiler - A Synergistic Compilation Framework
	Loop Nest Optimizations
	Compilation and Optimization Frameworks
	Motivation
	Example 1: Intel's icc performs the best
	Example 2: GNU's gcc performs the best
	Example 3: LLVM clang performs the best

	Overall Framework Architecture
	Loop Extraction Phase
	Optimization Phase
	Exploratory Search Phase
	Synthesis Phase
	Using and Expanding the Framework

	Evaluation of the Multiple Compiler Approach for Improved Performance
	Benchmarks, Code Optimizers and Target Architecture
	Comparing all Code Optimizers with the MCompiler
	MCompiler with Exploratory Search
	Serial Code
	Auto-Parallelized Code
	OpenMP Code
	Analysis of Results

	Summary

	Predicting the Best Code Optimizer for the Loop Nests
	Towards an Achievable Performance for Loop Nests
	Experimental Methodology and Training the Machine Learning Models
	Collecting Hardware Performance Counters using Profiling
	Most Suited Code Optimizer
	Random Decision Forest Classifier
	Machine Learning Model Configuration
	Benchmarks
	Experimental Platforms and Data Collection

	Evaluation of the Machine Learning Models
	Predicting the Most Suited Code Optimizer for Serial Code
	Predicting the Most Suited Code Optimizer for Auto-Parallelized Code
	Overall Analysis and Discussion

	An Explanation for why Hardware Performance Counters are good ML Features
	A Framework for Improving Performance using Machine Learning Predictions
	Collecting Hardware Performance Counters for the Loop Nests

	Evaluation of the MCompiler with Machine Learning Prediction
	Serial Code
	Auto-Parallelized Code

	Summary

	Applying the Multiple Compiler Approach to Improve Energy Efficiency
	Optimizing for Energy Efficiency on Modern Architectures
	Impact of Performance-Oriented Loop Nest Optimizations on Energy Efficiency
	Evaluation of Different Compilers in Terms of Energy Efficiency
	Loop Nests Optimized by Different Compilers
	Reduction in EDP when Selecting the Most Energy Efficient Version

	Performance and Energy Consumption Implications of using Different Vector Extensions
	Compiler's Ability to Auto-Vectorize and Impact of Selecting the Best Vector Length
	Impact on Performance and Energy Consumption when Increasing the Number of Active Cores

	A Framework for Improving Energy Efficiency
	Evaluation of the MCompiler for Improving Energy Efficiency
	Serial Code
	Auto-Parallelized Code

	Summary

	Prior Art
	Conclusions and Future Directions
	Bibliography

