
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Systematicity in a Recurrent Neural Network by Factorizing Syntax andSemantics

Permalink
https://escholarship.org/uc/item/3c0462ph

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors
Russin, Jacob
O’Reilly, Randall C.
Jo, Jason
et al.

Publication Date
2020
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3c0462ph
https://escholarship.org/uc/item/3c0462ph#author
https://escholarship.org
http://www.cdlib.org/


Systematicity in a Recurrent Neural Network by Factorizing Syntax and
Semantics

Jacob Russin (jlrussin@ucdavis.edu)
Department of Psychology

UC Davis

Jason Jo
MILA
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Abstract

Standard methods in deep learning fail to capture composi-
tional or systematic structure in their training data, as shown
by their inability to generalize outside of the training distribu-
tion. However, human learners readily generalize in this way,
e.g. by applying known grammatical rules to novel words. The
inductive biases that might underlie this powerful cognitive ca-
pacity remain unclear. Inspired by work in cognitive science
suggesting a functional distinction between systems for syn-
tactic and semantic processing, we implement a modification
to an existing deep learning architecture, imposing an analo-
gous separation. The resulting architecture substantially out-
performs standard recurrent networks on the SCAN dataset, a
compositional generalization task, without any additional su-
pervision. Our work suggests that separating syntactic from
semantic learning may be a useful heuristic for capturing com-
positional structure, and highlights the potential of using cog-
nitive principles to inform inductive biases in deep learning.

Keywords: compositional generalization; systematicity; deep
learning; inductive bias; SCAN dataset

Introduction
A crucial property underlying the power of human cognition
is its systematicity (Lake, Ullman, Tenenbaum, & Gershman,
2017; Fodor & Pylyshyn, 1988): known concepts can be
combined in novel ways according to systematic rules, allow-
ing the number of expressible combinations to grow exponen-
tially in the number of concepts that are learned. Recent work
has shown that standard algorithms in deep learning fail to
capture this important property: when tested on unseen com-
binations of known elements, standard models fail to gener-
alize (Lake & Baroni, 2018; Loula, Baroni, & Lake, 2018;
Bastings, Baroni, Weston, Cho, & Kiela, 2018). It has been
suggested that this failure represents a major deficiency of
current deep learning models, especially when they are com-
pared to human learners (Marcus, 2018; Lake et al., 2017;
Lake, Linzen, & Baroni, 2019).

A recently published dataset called SCAN (Lake & Ba-
roni, 2018) tests compositional generalization in a sequence-
to-sequence (seq2seq) setting by systematically holding out
of the training set all inputs containing a basic primitive verb
(“jump”), and testing on sequences containing that verb. Suc-
cess on this difficult problem requires models to generalize
knowledge gained about the other primitive verbs (“walk”,
“run” and “look”) to the novel verb “jump,” without having
seen “jump” in any but the most basic context (“jump” →
JUMP). It is trivial for human learners to generalize in this

way (e.g., if I tell you that “dax” is a verb, you can general-
ize its usage to all kinds of constructions, like “dax twice and
then dax again”, without even knowing what the word means)
(Lake & Baroni, 2018; Lake et al., 2019). However, powerful
recurrent seq2seq models perform surprisingly poorly on this
task (Lake & Baroni, 2018; Bastings et al., 2018).

From a statistical-learning perspective, this failure is quite
natural. The neural networks trained on the SCAN task fail
to generalize because they have memorized biases that do
indeed exist in the training set. Because “jump” has never
been seen with any adverb, it would not be irrational for a
learner to assume that “jump twice” is an invalid sentence in
this language. The SCAN task requires networks to make an
inferential leap about the entire structure of part of the dis-
tribution that they have not seen — that is, it requires them
to make an out-of-domain (o.o.d.) extrapolation (Marcus,
2018), rather than merely interpolate according to the as-
sumption that train and test data are independent and iden-
tically distributed (i.i.d.) (see left part of Figure 3). Seen an-
other way, the SCAN task and its analogues in human learn-
ing (e.g., “dax”), require models not to learn some of the cor-
relations that are actually present in the training data (Kriete,
Noelle, Cohen, & O’Reilly, 2013). To the extent that humans
can perform well on certain kinds of o.o.d. tests, they must
be utilizing inductive biases that are lacking in current deep
learning models (Battaglia et al., 2018).

It has long been suggested that the human capacity for sys-
tematic generalization is linked to mechanisms for process-
ing syntax, and their functional separation from the mean-
ings of individual words (Chomsky, 1957; Fodor & Pylyshyn,
1988). Furthermore, recent work in cognitive and computa-
tional neuroscience suggests that human learners may factor-
ize knowledge about structure and content, and that this may
be important for their ability to generalize to novel combina-
tions (Behrens et al., 2018; Ranganath & Ritchey, 2012). In
this work, we take inspiration from these ideas and explore
operationalizing a separation between structure and content
as an inductive bias within a deep-learning attention mech-
anism (Bahdanau, Cho, & Bengio, 2015). The resulting ar-
chitecture, which we call Syntactic Attention, separates struc-
tural learning about the alignment of input words to target
actions (which can be seen as a rough analogue of syntax
in the seq2seq setting) from learning about the meanings of
individual words (in terms of their corresponding actions).
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Figure 1: Syntactic Attention architecture. Syntactic and se-
mantic information are maintained in separate streams. The
semantic stream is used to directly produce actions, and pro-
cesses words with a simple linear transformation, so that se-
quential information is not maintained. The syntactic stream
processes inputs with a recurrent neural network, allowing
it to capture temporal dependencies between words. This
stream determines the attention over semantic representations
at each time step during decoding.

The modified attention mechanism achieves substantially im-
proved compositional generalization performance over stan-
dard recurrent networks on the SCAN task.

An important contribution of this work is in showing how
changes in the connectivity of a network can shape its learn-
ing in order to develop a separation between structure and
content, without any direct manual imposition of this sepa-
ration per se. These changes act as an inductive bias or soft
constraint that only manifests itself through learning. Fur-
thermore, our model shows that attentional modulation can
provide a mechanism for structural representations to con-
trol processing in the content pathway, similar to how spatial
attention in the dorsal visual pathway can generically modu-
late object-recognition processing in the ventral visual stream
(O’Reilly, Wyatte, & Rohrlich, 2017). Thus, attentional mod-
ulation may be critical for enabling structure-sensitive pro-
cessing — a natural property of symbolic models — to be re-
alized in neural hardware. This provides a more purely neural
framework for achieving systematicity, compared to hybrid
approaches that combine symbolic and neural network mech-
anisms (e.g., Yi et al., 2018).

Model
The Syntactic Attention model improves the compositional
generalization capability of an existing attention mecha-
nism (Bahdanau et al., 2015) by implementing two separate
streams of information processing for syntax and semantics
(see Figure 1). In the seq2seq setting, we operationalize ‘se-
mantics’ to mean the information in each word in the input
that determines its meaning in terms of target outputs, and we
operationalize ‘syntax’ to mean the information contained in
the input sequence that should determine the structure of the
alignment of input to target words. We describe the mecha-
nisms of this separation and the other details of the model be-
low, following the notation of (Bahdanau et al., 2015), where
possible.

Factorizing Syntax and Semantics in Seq2seq
In the seq2seq setting, models must learn a mapping from
arbitrary-length sequences of inputs x = {x1,x2, ...,xTx} to
arbitrary-length sequences of outputs y = {y1,y2, ...,yTy}:
p(y|x). In the SCAN task, the inputs are a sequence of in-
structions, and the outputs are a sequence of actions. The
attention mechanism of Bahdanau et al. (2015) models the
conditional probability of each target action given the input
sequence and previous targets: p(yi|y1,y2, ...,yi−1,x). This
is accomplished by processing the instructions with a recur-
rent neural network (RNN) in an encoder. The outputs of this
RNN are used both for encoding individual words for sub-
sequent translation, and for determining their alignment to
actions during decoding.

The underlying assumption made by the Syntactic Atten-
tion architecture is that the dependence of target actions on
the input sequence can be separated into two independent fac-
tors. One factor, p(yi|x j), which we refer to as “semantics,”
models the conditional distribution from individual words in
the input to individual actions in the target. Note that, un-
like in the model of Bahdanau et al. (2015), these x j do not
contain any information about the other words in the input se-
quence because they are not processed with an RNN. They are
“semantic” in the sense that they contain the information rel-
evant to translating the instruction words into corresponding
actions. The other factor, p( j→ i|x,y1:i−1), which we refer
to as “syntax,” models the conditional probability that word j
in the input is relevant to word i in the action sequence, given
the entire set of instructions. This is the alignment of words
in the instructions to particular steps in the action sequence,
and is accomplished by computing the attention weights over
the instruction words at each step in the action sequence us-
ing encodings from an RNN. This factor is “syntactic” in the
sense that it must capture all of the temporal dependencies in
the instructions that are relevant to determining the serial or-
der of outputs (e.g., what should be done “twice”, etc.). The
crucial architectural assumption, then, is that any temporal
dependency between individual words in the instructions that
can be captured by an RNN should largely be relevant to their
alignment to words in the target sequence, and less relevant
to the meanings of individual words. We argue that this can
be seen as a factorization of syntax and semantics, because
the grammatical rules governing the composition of instruc-
tion words’ meanings (e.g., how adverbs modify verbs) must
be learned in a module that does not have access to those
meanings. This assumption will be made clearer in the model
description below.

Encoder
The encoder produces two separate vector representations for
each word in the input sequence. Unlike the previous atten-
tion model (Bahdanau et al., 2015), we separately extract the
semantic information from each word with a linear transfor-
mation:

m j =Wmx j (1)
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where Wm is a learned weight matrix that multiplies the one-
hot encodings {x1, ...,xTx}. This weight matrix Wm can be
thought of as extracting the information from the inputs that
will be relevant to translating individual words into their cor-
responding actions (e.g. ”jump”→ JUMP).

As in the previous attention mechanism (Bahdanau et al.,
2015), we use a bidirectional RNN (biRNN) to extract what
we now interpret as the syntactic information from each word
in the input sequence. The biRNN processes the (one-hot)
input vectors {x1, ...,xTx} and produces a hidden-state vector
for each word on the forward pass, (−→h1 , ...,

−−→
hTx), and a hidden-

state vector for each word on the backward pass, (←−h1 , ...,
←−−
hTx).

The syntactic information (or “annotations” (Bahdanau et al.,
2015)) of each word x j is determined by the two vectors−−→h j−1,
←−−h j+1 corresponding to the words surrounding it:

h j = [
−−→h j−1;←−−h j+1] (2)

In all experiments, we used a bidirectional Long Short-
Term Memory (LSTM) for this purpose. These representa-
tions h j differ from the previous model in that only the sur-
rounding words are used to infer the relevant syntactic infor-
mation about each input. Our motivation for doing this was to
encourage the encoder to rely on the role each word plays in
the input sentence. Note that because there is no sequence in-
formation in the semantic representations, all of the informa-
tion required to parse (i.e., align) the input sequence correctly
(e.g., phrase structure, modifying relationships, etc.) must be
encoded by the biRNN.

Decoder
The decoder models the conditional probability of each
target word given the input and the previous targets:
p(yi|y1,y2, ...,yi−1,x), where yi is the target action and x is
the whole instruction sequence. As in the previous model, we
use an RNN to determine an attention distribution over the
inputs at each time step (i.e., to align words in the input to
the current action). However, our decoder diverges from this
model in that the mapping from inputs to outputs is performed
from a weighted average of the semantic representations of
the input words:

di =
Tx

∑
j=1

αi jm j p(yi|y1,y2, ...,yi−1,x) = f (di) (3)

where f is parameterized by a linear function with a soft-
max nonlinearity, and the αi j are the weights determined by
the attention model. The softmax in f produces a distribu-
tion over the possible actions. We note again that the m j are
produced directly from corresponding x j, and do not depend
on the other inputs. The attention weights are computed by
a function measuring how well the syntactic information of
a given word in the input sequence aligns with the current
hidden state of the decoder RNN, si:

αi j =
exp(ei j)

∑
Tx
k=1 exp(eik)

ei j = a(si,h j) (4)

where ei j can be thought of as measuring the importance of
a given input word x j to the current action yi, and si is the
current hidden state of the decoder RNN. Bahdanau et al.
(2015) model the function a with a feedforward network, but
we choose to use a simple dot product:

a(si,h j) = si ·h j, (5)

relying on the end-to-end backpropagation during training to
allow the model to learn to make appropriate use of this func-
tion. Finally, the hidden state of the RNN is updated with the
same weighted combination of the syntactic representations
of the inputs:

si = g(si−1,ci) ci =
Tx

∑
j=1

αi jh j (6)

where g is the decoder RNN, si is the current hidden state,
and ci can be thought of as the information in the attended
words that can be used to determine what to attend to on the
next time step. Again, in all experiments an LSTM was used.

Simulations
SCAN task
The SCAN1 task was specifically designed to test composi-
tional generalization (see figure 2). In the task, sequences of
commands (e.g., “jump twice”) must be mapped to sequences
of actions (e.g., JUMP JUMP), and is generated from a simple
finite phrase-structure grammar that includes things like ad-
verbs and conjunctions (Lake & Baroni, 2018). The splits of
the dataset include: 1) Simple split, where training and test-
ing data are split randomly, 2) Length split, where training
includes only shorter sequences, and 3) Add primitive split,
where a primitive command (e.g., “turn left” or “jump”) is
held out of the training set, except in its most basic form (e.g.,
“jump”→ JUMP).

Here we focus on the most difficult problem in the SCAN
dataset, the add-jump split, where “jump” is held out of the
training set. The best test accuracy reported in the original pa-
per (Lake & Baroni, 2018), using basic seq2seq models, was
1.2%. More recent work has tested other kinds of seq2seq
models, including Gated Recurrent Units (GRU) augmented
with attention (Bastings et al., 2018), convolutional neu-
ral networks (CNNs) (Dessı̀ & Baroni, 2019), meta-seq2seq
(Lake, 2019), and a novel architecture (Li, Zhao, Wang, &
Hestness, 2019). Here, we compare the Syntactic Attention
model to the best previously reported results.

Implementation details
Train and test sets were kept as they were in the original
dataset, but following Bastings et al. (2018), we used early
stopping by validating on a 20% held out sample of the train-
ing set. All reported results are from runs of 200,000 itera-
tions with a batch size of 1. Unless stated otherwise, each

1The SCAN task can be downloaded at
https://github.com/brendenlake/SCAN
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Figure 2: Examples from the SCAN dataset. Details about the detaset can be found in (Lake & Baroni, 2018). Figure reproduced
from (Lake & Baroni, 2018).

architecture was trained 5 times with different random seeds
for initialization, to measure variability in results. All exper-
iments were implemented in PyTorch. Our best model used
LSTMs, with 2 layers and 200 hidden units in the encoder,
and 1 layer and 400 hidden units in the decoder, and 120-
dimensional vectors for the semantic representations, m j. The
model included a dropout rate of 0.5, and was optimized us-
ing an Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001.

Results
The Syntactic Attention model improves compositional gen-
eralization performance on the standard seq2seq SCAN
dataset (see table 1). The table shows results (mean test accu-
racy (%)± standard deviation) on the test splits of the dataset.
Syntactic Attention is compared to the previous best models,
which were a CNN (Dessı̀ & Baroni, 2019), and GRUs aug-
mented with an attention mechanism (+ attn), which either in-
cluded or did not include a dependency (- dep) in the decoder
on the previous action (Bastings et al., 2018). Transformers
(Vaswani et al., 2017) were not included in our experiments,
but have been shown to suffer similar problems with compo-
sitional generalization on the SCAN dataset (Keysers et al.,
2020).

The best model from the hyperparameter search showed
strong compositional generalization performance, attaining a
mean accuracy of 91.1% (median = 98.5%) on the test set of
the add-jump split. However, as in Dessı̀ and Baroni (2019),
we found that our model showed variance across initializa-
tion seeds. For this reason, we ran the best model 25 times
on the add-jump split to get a more accurate assessment of
performance. These results were highly skewed, with a mean
accuracy of 78.4 % but a median of 91.0 %. Overall, this
represents an improvement over the best previously reported
results from standard seq2seq models in this task (Bastings et
al., 2018; Dessı̀ & Baroni, 2019).

Recently, Lake (2019) showed that a meta-learning archi-
tecture using an external memory achieves 99.95% accuracy
on a meta-seq2seq version of the SCAN task. In this version,
models are trained to learn how to generalize systematically
across a number of variants of a compositional seq2seq prob-
lem. Here, we focus on the standard seq2seq version, which
limits the model to one training set.

We also report the newer results of Li et al. (2019), which
was work done concurrently with ours using a very similar
approach. These results are very consistent with our own,
and, taken together, lend support to the idea that separating
mechanisms for learning syntactic information from mecha-
nisms for learning the meanings of individual words can en-
courage systematicity in neural networks.

Additional experiments
To test our hypothesis that compositional generalization re-
quires a separation between syntax (i.e., sequential informa-
tion used for alignment), and semantics (i.e., the mapping
from individual instruction words to individual actions), we
conducted two more experiments:

• Sequential semantics. An additional biLSTM was used
to process the semantics of the sentence: m j = [−→m j;←−m j],
where −→m j and ←−m j are the vectors produced for the input
word x j by a biLSTM on the forward and backward passes,
respectively. These m j replace those generated by the sim-
ple linear layer in the Syntactic Attention model (in equa-
tion (1)).

• Syntax-action. Syntactic information was allowed to di-
rectly influence the output at each time step in the decoder:
p(yi|y1,y2, ...,yi−1,x)= f ([di;ci]), where again f is param-
eterized with a linear function and a softmax output non-
linearity.

The results of the additional experiments (mean test accu-
racy (%) ± standard deviations) are shown in table 2. These
results partially confirmed our hypothesis: performance on
the add-jump test set was worse when the strict separation be-
tween syntax and semantics was violated by allowing sequen-
tial information to be processed in the semantic stream. In the
sequential semantics experiment, the model performed com-
parably on the simple split (99.3 %) but performed worse on
the compositional split even though we augmented its learn-
ing capacity by replacing a simple linear transformation with
an RNN. This result suggests that this increase in capacity,
which corresponded to a violation of the factorization as-
sumption, allowed the model to memorize regularities in the
dataset that prohibited systematic generalization during test-
ing.

112



Table 1: Compositional generalization results. The Syntactic Attention model achieves an improvement on the compositional
generalization tasks of the SCAN dataset in the standard seq2seq setting, compared to the standard models (Bastings et al.,
2018; Dessı̀ & Baroni, 2019). Recent results from another novel architecture (Li et al., 2019), developed concurrently using
very similar principles, are also reported. Star* indicates average of 25 runs with random initializations. Others are averages of
5 runs.

Model Simple Length Add turn left Add jump
GRU + attn (Bastings et al., 2018) 100.0 ± 0.0 18.1 ± 1.1 59.1 ± 16.8 12.5 ± 6.6
GRU + attn - dep (Bastings et al., 2018) 100.0 ± 0.0 17.8 ± 1.7 90.8 ± 3.6 0.7 ± 0.4
CNN (Dessı̀ & Baroni, 2019) 100.0 ± 0.0 - - 69.2 ± 8.2
Li et al. (2019) 99.9 ± 0.0 20.3 ± 1.1 99.7 ± 0.4 98.8 ± 1.4
Syntactic Attention 100.0 ± 0.0 15.2 ± 0.7 99.9 ± 0.16 78.4* ± 27.4

However, syntax-action, which included sequential infor-
mation produced by a biLSTM (in the syntactic stream) in the
final production of actions, maintained good compositional
generalization performance. We hypothesize that this was be-
cause in this setup, it was easier for the model to learn to use
the semantic information to directly translate actions, so it
largely ignored the syntactic information. This experiment
suggests that the separation between syntax and semantics
does not have to be perfectly strict, as long as non-sequential
semantic representations are available for direct translation.

Table 2: Results of additional experiments. Again star* indi-
cates average of 25 runs with random initializations.

Model Add turn left Add jump
Sequential semantics 99.4 ± 1.1 42.3 ± 32.7
Syntax-action 98.2 ± 2.2 88.7 ± 14.2
Syntactic Attention 99.9 ± 0.16 78.4* ± 27.4

Related work
The principles of systematicity and compositionality have
recently regained the attention of deep learning researchers
(Bahdanau et al., 2019; Lake et al., 2017; Lake & Baroni,
2018; Battaglia et al., 2018). In particular, these issues have
been explored in the visual-question answering (VQA) set-
ting (Andreas, Rohrbach, Darrell, & Klein, 2016; Hudson &
Manning, 2018; Yi et al., 2018). Many of the successful mod-
els in this setting learn hand-coded operations (Andreas et al.,
2016), use highly specialized components (Hudson & Man-
ning, 2018), or use additional supervision (Yi et al., 2018).
In contrast, our model uses standard recurrent networks and
simply imposes the additional constraint that mechanisms for
syntax and semantics are separated.

Some of the recent research on compositionality in ma-
chine learning has had a special focus on the use of attention.
For example, in the Compositional Attention Network, built
for VQA, a strict separation is maintained between the repre-
sentations used to encode images and the representations used
to encode questions (Hudson & Manning, 2018). This sepa-
ration is enforced by restricting them to interact only through

attention distributions. Our model utilizes a similar restric-
tion, reinforcing the idea that compositionality is enhanced
when information from different modules are only allowed to
interact through discrete probability distributions.

The results from the meta-seq2seq version of the SCAN
task (Lake, 2019) suggest that meta-learning may be a viable
approach to inducing compositionality in neural networks.
Humans have ample opportunity through a long developmen-
tal trajectory to meta-learn the inductive biases that could fa-
cilitate compositional generalization, so this is a promising
alternative to the work discussed here. However, a key dif-
ference in the particular implementation used in that study is
that the additional training episodes explicitly demarcate the
primitive verbs by permuting their meanings across episodes.
In our work, the training is restricted to a single episode in
which no such permutation occurs.

The work of Li et al. (2019) was done concurrently with
ours; although their presentation is framed slightly differ-
ently, we believe very similar principles have motivated their
model. There are few differences with our architecture, but
their improved results on the SCAN task may be due to their
use of additive noise during training. Future work will ex-
plore the exact differences with their model and analyze the
important factors contributing to differences in results.

Finally, we note that the experiments presented here are
limited to the SCAN dataset, which may not completely cap-
ture the kinds of compositional generalization that humans
regularly manifest. This may be important, as recent work has
shown that the extent to which models can generalize outside
of their training distribution can depend heavily on the kind
of environments in which they are trained (Hill et al., 2020).
Recent work has experimented with other compositional gen-
eralization problems that may be more realistic (Lake, 2019;
Keysers et al., 2020). Future work will identify whether the
principles developed in this paper can aid generalization per-
formance in these other settings.

Discussion
The Syntactic Attention model was designed to incorporate
principles from cognitive science and neuroscience as induc-
tive biases into a neural network architecture: the mecha-
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nisms for learning rule-like or syntactic information are sepa-
rated (or factorized (Behrens et al., 2018)) from mechanisms
for learning semantic information. Our experiments confirm
that this simple organizational principle encourages system-
aticity in recurrent neural networks in the seq2seq setting, as
shown by the substantial improvement in the model’s perfor-
mance on the compositional generalization tasks in the SCAN
dataset.

The model makes the assumption that the meanings of in-
dividual words should be independent of their alignment to
actions in the target sequence (i.e., the attention weight ap-
plied to each word at each step in the action sequence). To
this end, two separate encodings are produced for the words
in the input: semantic representations in which each word
is not influenced by other words in the sentence, and syn-
tactic representations which are produced by an RNN that
could capture temporal dependencies in the input sequence
(e.g., modifying relationships, grammatical roles). The syn-
tactic system alone has access to the sequential information in
the inputs, but is constrained to influence actions through an
attention mechanism only (see Figure 1). These constraints
ensure that learning about the meanings of individual words
happens independently of learning about the structured rela-
tionships between words. This encourages systematic gener-
alization because, even if a word has only been encountered
in a single context (e.g., “jump” in the add-jump split), as long
as its syntactic role is known (e.g., that it is a verb that can be
modified by adverbs such as “twice”), it can be used in many
other constructions that follow the rules for that syntactic role.
Additional experiments confirmed this intuition, showing that
when sequential information is allowed to be processed by the
semantic system (sequential semantics), systematic general-
ization performance is substantially reduced.

The paradigmatic example of systematicity is a symbolic
system in which representational content (e.g., the value of
a variable stored in memory) is maintained separately from
the computations that are performed on that content. This
separation ensures that the manipulation of the content stored
in variables can be completely independent of the content it-
self, and will therefore generalize to arbitrary elements. Our
model implements an analogous separation, but in a purely
neural architecture that does not rely on hand-coded rules
or additional supervision. In this way, it can be seen as
transforming a difficult out-of-domain (o.o.d.) generaliza-
tion problem into two separate i.i.d. generalization problems
— one where the individual meanings of words are learned,
and one where how words are used (e.g., how adverbs mod-
ify verbs) is learned (see Figure 3). This may be a useful
approach to encouraging systematicity in neural networks,
which are very good at i.i.d. generalization but generally fail
when presented with o.o.d. problems.

Our work shows that a strict separation between syntax and
semantics can be useful for encouraging systematicity and al-
lowing for compositional generalization. It is unlikely that the
human brain has such a strict separation, but our work builds

Figure 3: Illustration of the transformation of an out-of-
domain (o.o.d.) generalization problem into two independent,
identically distributed (i.i.d.) generalization problems. This
transformation is accomplished by the Syntactic Attention
model without hand-coding grammatical rules or supervising
with additional information such as parts-of-speech tags.

on related ideas in neuroscience (Behrens et al., 2018) and
suggests a useful framework for investigating whether a simi-
lar principle may be at work in the human brain. Future work
will explore this principle in other settings, e.g. with trans-
former models (Vaswani et al., 2017), and investigate other
ways in which such a separation can be softened while main-
taining good compositional generalization performance.
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