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OCCURRING IN NUCLEAR FISSION* 

Y. Boneh, t J. P. Bl'ocldt and W. D. Myers 
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Latvre:hce·Berkeley Laboratory 
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ABSTRACT 

A microscopic method of calculating the damping of collective motion 

into intrinsic excitation is described. The methods used to solve the static 

and time dependent Schrodinger equation are given in detail and the numerical 

accuracy of the method is discussed. A particular example, the excitation of 

neutron levels in the fission of 236u, is used to illustrate the approach. 

A number of problems are mentioned and suggestions are made as to how the 

work can be improved and extended. 

a o 
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INTRODUCTION 

One of the often observed features of atomic nuclei is the damping of 

large scale collective motion into intrinsic excitation. 1(An excellent list 

of references related to the work described here is contained in Ref. 2.) 

The fact that dipole and quadrupole vibrations are heavily damped while ro-

tations seem to be unaffected indicates that the damping is associated with 

changes in shape of the nuclear density distribution. (Low lying quadrupole 

vibrations in even nuclei are an exception. Such vibrations are undamped 

simply because their energy is so low that they lie in a region near the 

ground state characterized by zero single particle level density.) The 

evaporation of neutrons from the separating fragments in nuclear fission is 

another indication that collective motion has been converted to internal 

excitation. The origin1of this energy has usually been associated with vibra

tions of the separating nuclei as a consequence of their deformation at 

scission. 3 This view is now being questioned because microscopic calcula

tions2'4 (like those described here) have shown that considerable internal 

excitation is to be expected at an earlier stage in the fission process 

during the descent from saddle to scission. Macroscopic considerations 

(based on classical kinetic theory) motivated by this work also support the 

conclusion that the fission process is highly damped. 5-8 In fact, a whole new 

picture of fission dynamics seems to be emerging. 

While the familiar phenomena just mentioned give clear indications of 

the importance of nuclear damping none of them is quite so dramatic 

as that seen in the collisions of very heavy ions (Refs. 12-42 of our 

Ref. 2). The so-called "deep inelastic" processes seen in reactions such 

as Kr on Bi are characterized by almost total damping of the relative 

n o-· 0 r, - ~ 
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motion of the colliding nuclei. The separating fragments seem to have 

started from rest and have only the energy gained from Coulomb repulsion. 

Efforts to understand the damping of nuclear collective motion in 

terms of a classical hydrodynamic viscosity have not been very successful. 

Calculations have shown that the measured asymptotic kinetic energy re

lease in fission9' 10 is only compatible with a relatively small viscosity 

coefficient while the "deep inelastic" processes in heavy-ion reactions 

seem to require a large value. Another problem is that the tangential 

motion seems to be weakly damped in grazing heavy-ion collisions while the 

radial motion is heavily damped. This seems to indicate once again that 

the observed damping is majnly associated with changes in shape rather 

than momentum transfer between parts of the nuclear fluid moving at dif-

ferent velocities. The idea of a hydrodynamic viscosity is also question

able on fundamental grounds. Such a damping mechanism requires that the 

constituent particles have a rather short mean-free-path which seems to 

be incompatible with the fact that many nuclear phenomena are consistent 

with a completely independent particle model. 

One way to determine the importance of the "single-particle" damping 

of collective motion into intrinsic states is simply to calculate the ex-

citation produced in a system of independent particles when the shape of 

the potential well is changed as a function of time. A number of such 

studies have been performed2' 4 and more are in progress. 11 (Current 

emphasis is on Time ~ependent gartree-!ock and the need for self consist-

12'"'14) r· th. h. h · · · f R f 1s d 16 · ency. n 1s paper, w 1c 1s a cont1nua t1on o e s . an , we 

want to describe a particularly simple approach and some preliminary appli

cations that have been made to the fission of 236u. 
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The method of solution of the time dependent Schrodinger equation in 

terms of a fixed basis is first discussed and then the sequence of shapes 

chosen for the potential well is described. Then we tell how the potential 

is generated and go on to discuss the various collective and internal ex-

citation energies that are observed and their interpretation. 

METHOD OF SOLUTION 

The procedures used here to solve the Schrodinger equation are quite 

standard. Our method is the same as that which is described so well in 

Ref. 17. We repeat that description in the first part of this section for 

completeness and so that some misprints in the original reference 

can be corrected. We did not include either spin-orbit coupling or 

residual interactions of any kind in the preliminary calculations that are 

described here. Some discussion of the influence of residual interactions 

is contained in a later section. 

The Static Part of the Schrodinger Equation 

At a given time t = t 0, the static part of the Schrodinger equation 

for the ith single particle wave function ~i is: 

JC. (t = t 0) ~- = E.~ .. 
l 1 1 1 

(1) 

Expanding ~ in terms of a set of finite basis wave furtctions cpa 

lji. = ~ a(i)cp 
l a=l a a 

(2) 

and inserting into Eq. (1) we get: 

"11' ~{ (i).'rh - E N (i) rh 
~. L a ~ - . ~ a ~ . 

1 a=l a a 1 a=l a a 

* Multiplying this equation from the left by cp
8 

and integrating yields: 

~ (<t> I JC • I cj> ) a ( i) = E; a ( ~) 
· 8 1 a a ... J..l a 

(3) 

n 0 0 
... 
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Equation (3) can be written in the form B.aCi) = E.aCi), where elements 
1 1 

of the matrix B. are: 
1 

This matrix equation can be solved by numerical diagonalization of the,, 

matrix B .. As solutions we obtain values of the energies E. and expansion 
1 1 

coefficients a(i). 
a 

For basis wave functions $ , axially symmetric harmonic oscillator a 

wave functions have been chosen. In cylindrical coordinates (p,z,$): 

where: 

and: 

= In ,n ,A) z p 

cpn (z) 
z 

= c~w /h)~ exp(-s2/2)h (s) z n z 

'¥~ (p) 
p 

1< A 
= (2~w1/h) 

2 exp( -n/2)g (n) 
. np 

-1< . 
= (Zrr) 2 exp(iA$) 

1< s = (~w /h) 2
Z z 

1< 1< 
n2 = c~wl/h)2p 

hn(s) = (Znn!rr~)-~ Hn(s) 

g~(n) = (n !/ (n+A) ! ) ~ nA/ZL~(n) 

(4) 

where H (s) and LA(n) are the ordinary Hermite and Laguerre polynomials, n n 
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respectively. 

The recursion relations for the polynomials h and gA are: n n 
1 

hn+l (~) = { icn+l)} -~ ~hn(<)- (n~l) "hn-1 m. (5) 

g~+l (n) = (Zn+A+l-n) · ~ gA(n) _ r_ (n+A)n · ] ~ gA _ (n) 
[ (n+l) (n+A+l)] 2 n Lcn+l) (n+A+l) n 1 

Now, the matrix elements BSa' can be calculated using the basis wave 

functions from Eq. (4). In the present model the spin-orbit force and the 

residual interactions are not included and the hamiltonian X is simply a 

sum of the kinetic energy T plus the assumed single particle potential 

v = V(p,z) = V(s,n). 

The kinetic energy matrix elements can be calculated analytically, and 

the only nonvanishing contributions are: 

(6) 

< ) 1 ~ 
n ,n ,AITin +Z'n ,A =--4 hw {(n +l)(n +2)} 2 

z p z p z z . z 

The potential energy matr~ elements have to be calculated numerically: 

( n' ,n' ,A' IVIn ,n ,A\ z p z p / 
('() 

1 
A A 

dn exp( -n)~ '. (n)~ (n) 
p p 

. 0 

• zn'n (n) 
z z 

where: 

zn' n (n) 
z z 

CXl 

-oo 

exp(-s2)hn,(s) hn Cs) V(s,n) 
z z 

(7) 

(8) 
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From the recursion relations (5) one finds the recursion formula for 

the matrix elements Zn'n 
z z 

2n'+l n -1 Cn) = (n~~l) ~ 2n 1 n (n) 
z ' z z z' z 

· ( n~ ) ~ ( nz -1 )~ 
- n'+l 2n'-l,n -1 (n) + n'+l 2n' n -2 (n) 

z .. z . z z z' z 

(9) 

For problems with reflection synnnetry only the matrix elements between 

wave functions with the same parities are non-vanishing. This reduces 

substantially the size of the matrix B to be diagonalized. Furthermore, 

because of the ~elation (9) only the diagonal matrix elements need to be 

computed, all the others are obtained by recursions. In the cases with no 

reflection synnnetry all the matrix elements are non-vanishing and must 

be calculated. Because of the recursion formulas only the computation of 

the diagonal and those adjacent to the diagonal matrix elements is actually 

necessary, all the others are obtained by recursion. 

The integrals involved in formulas (7) and (8) have been done by the 

Gauss-Laguerre and Gauss-Hermite quadrature methods, using 14 and 32 

mesh points in the p and z direction, respectively. 

The Time Dependent Schrodinger Equation 

The time dependent equation is: 

aw. (r; t) 
ih l at = xi (t) wi Cr, t) (10) 

* Inserting expansion (2), multiplying from the left by ¢
8 

and inte-

grating one gets: 

(11) 
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Bg) = ( <l>e IJCi I <~>a) 

Daa = (<t>el~tl<~>a) · 

If the basis wave functions <Pa are time independent (fixed basis), 

DBa. = 0, and the equation (11) simplifies to: 

(12) 

This is the first order differential equation for the time evaluation of 

the expansion coefficients a~i)(t). As a~i) can be complex one can write 

a~i) = x~i) + i y~i), ~ obtain a coupled system of differential equations 

for the real and imaginary·parts of the coefficients a~i). 

-,~(i) = .!. '=' B(i) yCi) 
"'S h ~ Sa a (13) 

y.Ci) = _ .!. t B (i)x(i) 
S h a Sa a 

The equations (13) were solved numerically by an improved version of the 

predictor-corrector method18 which is described below. 

Let us denote by X andY the values of fi) and yCi) at time 
n n · a a 

t = n • ~t. 

First one calculates a predictor: 

0 . 4 . 
Xn+l = ~-3 + 3 ~t(2in-i~-1+21n-2) 

Y~+l = Yn-3 + j ~tC21n-1n-1+21n-2) 
where: 

X =By /h 
n n n 

Y =-BX/h. n n n 

(15) 

Ol '."~ ~' 0 . t· "· .~ 
Ct (j Q ... 

.} ,. 
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Then modifies it to obtain: 

- ' 0 112 0 
Xn+l = Xn+l + 121 (Xn-~) 

yn+l = Y~+l + gf (Yn -Y~) · 

Finally one calculates: 

and: 

*n+l = Bn+l • Yn+l/h 

yn+l = - Bn+l • Xn+l/h 

(16) 

(17) 

(18) 

The last step is to repeat (17) and (18) using ~+l and Yn+l just ob

tained. 

The first four values at the points n = 0,1,2,3, which are necessary 

to start the predictor-corrector procedure, are obtained by the Runge-

Kutta method~ 



.. 
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SEQUENCE OF SHAPES 

In order to provide some basis for comparison of this method with the 

classical hydrodynamical approach we choose a sequence of saddle to scission 

shapes for 236u that were calculated classically using a viscosity of 

0.02x1o12 poise. 9,10 This value of the viscosity was choosen to give the 

best agreement with the measured values of the asymptotic kinetic energy 

release for a wide range of nuclei. 

The shapes themselves were parametrized in terms of smoothly joined 

portions of three quadratic surfaces of revolution. Figure 1 shows the 

parametrization. Table I lists the calculated values of 01, 0 2 and 0 3 as 

a function of time and also gives the corresponding values of the potential 

energy of deformation E~ , the collective kinetic energy E~oll and the 

dissipated energy E~. All of the shapes from Ref. 10 are axially symmetric, 

and also reflection symmetric. This sequence of shapes was obtained by 

starting the nucleus from its liquid drop model saddle point with 1 MeV 

of kinetic energy in the fission direction. For the value of viscosity 

choosen here the nucleus arrives at scission (a somewhat more elongated 

configuration than for the non-viscous case) in about 38xlo- 22 sec. These 

shapes were used for the single particle potential in our time dependent 

calculat1ons of the microscopis energy of the system. In a later section 

we compare the values we obtained for the collective and dissipated energy 

with the hydrodynamic values . 

In addition we made another calculation which required a slight gen

eralization of the trajectory to include asymmetric shapes. Leaving the 

rest of the time development of the shape intact we introduced a dif-

ference in size between the two fragments that grew linearly in time so 

that the mass ratio at scission was 1.4 to 1 (which is approximately the 

0 () 0 
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Table I. Hydrodynamical Calculations for the Fission of 236u.a) 

t ~ Eo Eo 
-22 coll d ., 

(10 sec) al a2 03 (MeV) (MeV) (MeV) 

0.0 1. 830 -0.0074 0.6376 4.5 1.0 

5.5 2.215 -0.0604 0.6357 4.2 0.7 0.6 

10.5 2.495 -0.1048 0.6422 3.6 0.9 1.0 
~: 

15.5 2.807 -0.1472 0.6518 2.3 1.6 1.6 

20.5 3.189 -0.1814 0.6618 - 0.1 3.1 2.5 

25.5 3.649 ~0,2042 0.6774 - 4.7 6.1 4.1 

30.5 4.165 -0.2131 0.7024 -12.9 11.8 6.6 

35.5 4.671 -0.2109 0.7418 -29.6 23.6 11.5 

38.5 4.974 -0.2026 0.8009 -54.5 38.7 21.3 

a)For the case~ = 0.02 terapoise given in Ref. 10. 
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value observed experimentally for the most probable division of this 

nucleus). Our goal was to investigate the dependence of the internal 

excitation energy on the mass asymmetry along the trajectory. There had 

been speculations that some of the apparent excitation of the nucleus 

along the original trajectory was connected with their reflection sym

metry. 19- 21 If a smaller amount of damping occurs along an asymmetric 

trajectory this could be associated with the preference of this nucleus 

for asymmetric division. 

SINGLE PARTICLE POTENTIAL 

For each shape along the specified trajectory a single particle 

well of the Woods-Saxon type is generated. We have used the procedure 

of Ref. 22 to insure that the normal diffuseness is approximately con-

stant even for deformed shapes and we have chosen a diffuseness pa-

rameter a = 0.66 fm (b = 1.20 fm in the notation of Ref. 23). The v v . 

radius (or scale) of the potential and its depth were chosen on the basis 

of Droplet MOdel considerations. 24 Figure 2 shows such a series of po

tentials for the case treated here. They extend from saddle tow~rd 

scission and illustrate the approximate constancy of the normal diffuse-

ness and the fact that the full well depth remains in the neck region 

even as one approaches scission. (One could compare these potentials 

with those in Fig. 1 of Ref. 25 which are calculated by a folding pro

cedure which is probably more nearly correct.) 

No spin-orbit term has been added~as yet, and since we only con-

sider neutrons in the preliminary calculations that have been done, there 

has been no need to include the Coulomb potential. 

c; ~~ ?~ 0 !'; f~1 0 r·~ 0 0 
Q-'"t· ~; 
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ACCURACY OF 1HE ME1HOD 

Because the adopted method of calculations is based on an expansion 

in a fixed harmonic oscillator basis we decided to check the dependence 

of the single particle energie~ on the number of oscillator shells in 

the basis. For the fixed basis the ratio w1/wz = 4 was chosen, which is 

the most appropriate basis for an intermediate shape between saddle and 

scission. The most crucial point therefore, was to check the behavior 

of the energy levels for the extreme shapes under investigation - the 

saddle point and scission shapes. In Fig. 3 the energies of the six 

levels Mrr = 0+, close to Fermi surface are presented as a function of the 

number of oscillator shells N in the basis. As one can see for N ~ 10 the 

energies presented became stable, independent of N, for both shapes. In 

the calculations reported here N = 11 was chosen and therefore one ex

pects little error to result from this procedure. 

The accuracy of the time dependent calculations was checked by c.al

cula ting the norm of the time dependent wave functions 

N t = I ( 1/Ji (r, t)) 1
2, which should be equal to 1. It turned out that the 

value Nt-1, which was calculated, is always smaller than 10-3. 

Another check was made by comparing the transition probabilities 

P for two levels coming close to each other to the Landau-Zener26 ex-

pression. 

_ { 2rr I J£"1
2 ! p - exp - hfcl,Ta-=DTI (19) 

where X' is the perturbation which prevents levels from crossing27 and 

is equal to one half of the energy difference between actual levels at 

the point of the closest approach. The quantity d is the speed at which 



• 

~13-

the shape of the potential changes and a and b are the slopes of the 

unperturbed energies (straight lines). 

The calculations have been done for levels·4 and 5 belonging to 
rr + . . 

the group M = 0 , and levels 9 and 10 from the same group. The schematic 

situation for levels 4 and 5 is presented on Fig. 4 and the calculated 

probabilities in Table II. 

In the Table II the Landau-Zener probabilities and those calculated 

here are presented in columns 3 and 4, respectively. The agreement, as 

one can see is very good. Obviously the numbers can not match perfectly, 

as the Landau-Zener expression applies to the idealized situation, where 

the influence of all other levels, except the two under consideration, 

is neglected. Therefore as should be expected the agreement for levels 

4 and 5 is slightly better because of the lower density of levels in 

this region:. 

ENERGIES ASSOCIATED Willi 1HE MOTION 

The results obtained in the damped hydrodynamic calculations9,10 for 

the fission of 236u given in Table 1, indicate that of the 60 MeV that 

becomes available in the course of the motion (1 MeV of kinetic energy 

in the fission direction and 59 MeV from the saddle to scission change 

in potential energy) approximately 21.3 MeV is dissipated as a conse

quence of the viscosity assumed. Another 38.7 MeV appears as collective 

kinetic energy. The time development of these quantities is shown in 

Fig. 5. The dashed line indicates how the collective kinetic energy in

creases during the 38.Sxlo- 22 sec. period necessary to move to scission. 

The solid line is obtained by adding the dissipated energy. (Both of 

these curves are scaled down by a factor of 144/236 so they can more 
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Table IL Comparison of Landau-Zener and Calculated Transition Probabilities 

Level numbers 

M1T=O+ 

4 and 5 

9 and 10 

. 
a 

0.175 

0.35 

0.7 

1.4 

0.175 

0.35 

0.7 

1.4 

0.27 

0.52 

0.73 

0.85 

0.46 

0.68 

0.82 

0.91 

p 
calc 

0.25 

0.55 

0.77 

0.87 

0.50 

0.70 

0.75 

0.83 
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easily be compared with the microscopic calculation which was done for the 

neutrons alone.) 

For comparison with the collective kinetic energy found in the classi-

cal hydrodynamic calculation we calculated the microscopic quantity 

28 
Ecoll, where . jl -2 -Ecoll(t) = 2 pv dr. (20) 

The local flow velocity is calculated from the expression v = ]/p. Where 

p and J are, respectively, the quantum mechanical density and current 

defined by the expressions, 

p(r,t) * = m L .. '!'. '!'., 
l l l 

(21) 

and 

-- * j (r, t) = h 1.:. Im(\fl. • ~;111'.), 
l l l 

(22) 

where, the wave functions \fl.(r,t) are solutions to the time dependent 
l 

Schrodinger equation in the moving potential well. This definition has 

considerable intuitive appeal since it clearly applies to simple trans-

lations and would seem to give a reasonable result even for fairly tur-

bulent flow. It breaks down, of course, when two components of the nuclear 

medium move against each other as in the case of the giant dipole resonance. 

The values we calculated for Ecoll all lie above the curve of hydro

dynamic values in Fig. 5. This result might have been anticipated since 

the hydrodynamic calculations assume almost irrotational flow which yields 

the lowest possible kinetic energy. The microscopic calculations are pre

sumedly more turbulent. 

The comparison of the dissipation energy in the two cases is not so 

straight forward. Because of the axial symmetry of the system the magnetic 

' 9 fJ b· 0 if ici' ft f~ 0 0 
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quantum mnnber m of a given level nrust remain the same in the course of 

the motion. The same is true for the parity rr in the case of reflection - z 

symmetric shapes. Consequently, even if the motion of the potential is 

extremely slow (adiabatic) the system may end up in an excited state since 

there is no way for a particle to change to an empty level that moves down 

through the Fermi surface if its quantum numbers m and rr z are different 

from the levels being crossed. In our calculations a substantial part of the 

apparent excitation energy is of this type. This part of the energy E s 

(where the subscript s indicates that it has its origin in symmetry effects) 

is simply the difference between the ground state of the system E0 (filling 

the lowest levels) and the "adiabatic" energy Ea (where the quantum num

bers appropriate to the system are conserved.) 

E = E - E 
s a 0 

(23) 

N 
Eo = l: E.(f3), lowest N levels, 

. 1 1 1= 
(24) 

N 
E = l: E. (S), lowest N levels having the a . 1 1 appropriate quantum numbers. 1= 

(25) 

In these expressions f3 is a one-dimensional deformation parameter mea-

suring the distance along the dynamical path. 

The total excitation energy Et is defined as the difference between 

* the total energy E of the system described by the time dependent Schrodinger 

equation and the ground state at that same value of f3, where 

* Et = E - E0, (26) 
* N E = l: E.[ f3(t)], (27) 

. 1 1 1= 
and the Ei[ f3(t)] are the time dependent energy expectation values. Of course, Et 

.. 
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contains Es (the apparent excitation arising purely from symmetry), as 

well as Ecoll. If the motion is slow this is a serious defect that makes 

the calculation meaningless. If residual interactions were taken into 

· account the system would always remain in its ground state for adiabatic 

changes in the potential well. The defect does not seem to be so serious 

in the case of rapid motion since the levels in a rapidly changing po

tential are more likely to retain their nodal structure (keeping m and 

· rrz approximately the same) than to rearrange in order to follow a new 

level coming in from above. 

In Fig. 5 both the total excitation energy Et and that part arising 

from symmetry Es are plotted against time for the two cases we have con

sidered. One is the purely symmetric case (see Table I) and the other 

is a similar case where an asymmetry was gradually introduced along the 

trajectory so that the mass ratio was 1,4 to 1 at scission. The reason 

for comparing these two calculations was to determine whether the micro-

scopic dynamics would give preference to asymmetric scission shapes as 

has often been speculated. 19- 21 Indeed, the damping into intrinsic states 

is considerably less for the trajectory leading to an asymmetric mass 

division. However, the total excitation energy in both cases is so large 

(completely out of line with the experimental results or Liquid Drop 

Model predictions) as to raise serious questions about the validity of 

the approach. 

·~ 9 
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DISCUSSION 

The results of this work serve to draw attention to the importance 

of single particle damping for large scale collective motion. They show 

that the energy dissipation profile is quite different than that associated 

with a hydrodynamic (or "two-body") viscosity. They also show (as has been 

frequently speculated) that asymmetric fission is preferred over synnnetric 

fission on the basis of microscopic dynamical considerations. Another in

teresting result is that the microscopic collective kinetic energy is 

greater than that for irrotational flow indicating that some turbulence 

is generated by the collective motion. Consequently, we are inclined to 

question the applicability of the hydrodynamical saddle to scission 

trajectories. Both the dissipation and internal flow may well prefer a 

different sequence of shapes. 

The main a priori objection to calculations of the type described 

here is their lack of sel~-consistancy. Since the nuclear density dis

tribution is sjmply driven forward by the predetermined motion of the po

tential well the system is manifestly non-conservative with regard to 

the total energy. Various prescriptions could be employed to keep the 

total energy approximately constant (such as adjusting the velocity along 

the trajectory) 4 but the lack of inherent self-consistancy raises even 

more serious questions. If the nature of the damping provided by the ex

citation of intrinsic states can not be approximated by a hydrodynamic 

viscosity then not only is the rate of evolution of the potential well 

incorrect, but perhaps the sequence of shapes is incorrect as well. 

In another study closely related to this one5 an analytic expression 

has been derived for the energy absorbed by a classical gas of non-

• 
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interacting particles tnside a container of fixed volume when the shape of 

the container changes. Of course, for adiabatic motion there is no change 

in internal energy. But by going to second order in the kinetic theory 

expansion one finds that for non-adiabatic motion of the container walls 

there is some internal excitation whose dependence on the changing shape 

of the container is quite different from that of a hydrodynamic vis

cosity. 5-7 Probably this type of damping (called "one-body" damping) is 

more nearly comparable to that which takes place in nuclei since an in-

dependent particle description certainly applies. Classical hydrodynamical 

calculations performed with this new type of damping give rise to a dis

tinctly different sequence of shapes than those used here. 8 An important 

step in the continuation of this work would be to perform the microscopic 

calculations in potential wells following this new shape sequence to see 

if the damping along the path to scission is similar to the classical pre-

diction. 

Another defect of the model used here is the neglect of residual 

interactions. Their proper inclusion is expected to reduce the transition 

probabilities to higher levels, which would decrease the internal ex-

citation. Calculations that have been done using the pairing interaction 

show considerably less damping, 2 but contain certain restrictions (de

signed to eliminate the collective part of the energy) that make some of 

the results questionable. 

Our concern over the lack of self consistancy in these calculations 

has lead us to consider Time Dependent Hartree-Fock (TDHF) as a natural 

extension of this wark. The computational machinery developed here can be 

used as a basis for such calculations, and work along this line is now in 

14 progress. 
0 0 0 
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FIGURE CAPTIONS 

Fig. 1. An illustration from Ref. 29 of a shape described by three smoothly 

joined portions of quadratic surfaces of revolution. Each surface is 

specified by the position ~- of its center, its transverse semiaxis 
1 

ai and its semisymmetry axis ci (the quantity c3 is imaginary for 

this shape and hence not shown). The middle hyperboloid of revolution 

joins smoothly with the two end spheroids at z1 and z2. The location 

~em of the center of mass of the drop is also shown. For reflection 

symmetric shapes, where a1 = a2 = a and c1 = c2 = c, three symmetric 

degrees of freedom can be defined by the expressions, 

crl = c~l-~1) /a, 

cr2 = (a3/c3) 
2 

03 = (a/c) 2. 

Fig. 2. The 10, 30, SO, 70 and 90 percent contours are shown for three shapes 

in the saddle to scission sequence used in the calculations described 

here. The algebraic method of Ref. 22 was used to create the dif-

fuseness. Comparison with potentials generated by folding in a short

ranged function25 show that there is considerable difference for t~e 

highly distorted shapes. 

Fig. 3. The dependence of the single particle energies on the number of 

oscillator shells N used in the fixed basis. The solid lines corre-

spond to the levels calculated at the saddle point, broken to those 

at scission. 

Fig. 4. An illustration of the behavior of two levels at the point of closest 

approach. The solid lines represent the actually calculated energy 

levels, the broken ones their asymptotic behavior. 
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Fig. 5. The results of our microscopic calculations for the intrinsic ex

citation of the neutrons in 236u for a hydrodynamically10 determined 

sequence of shapes from saddle to scission. The dashed line is the cor-

responding hydrodynamic collective kinetic energy (irrotational flow 

assumed) and the solid line is obtained by adding the internal energy 

arising from the viscous damping of the motion. The circles represent 

the results of our calculation for Ecoll the collective kinetic 

energy, Et the total excitation andEs, which is that part of the 

total excitation connected with the symmetry of the potential. The 

triangles represent these same quantities in the case when reflection 

asymmetry is introduced. 
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