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Abstract

To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization

was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treat-

ment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe dis-

ease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus

and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus

accelerate the decline in viral load and lower hospitalization rates among high-risk patients

with variants susceptible to mAb therapy. However, viral resistance has been observed, in

some cases leading to a transient viral rebound that can be as large as 3–4 orders of magni-

tude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infec-

tions, evaluation of treatment-emergent mAb resistance can help uncover underlying

pathobiology of SARS-CoV-2 infection and may also help in the development of the next

generation of mAb therapies. Although resistance can be expected, the large rebounds

observed are much more difficult to explain. We hypothesize replenishment of target cells is

necessary to generate the high transient viral rebound. Thus, we formulated two models

with different mechanisms for target cell replenishment (homeostatic proliferation and return

from an innate immune response antiviral state) and fit them to data from persons with

SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence

of resistant virus associated with high transient viral rebounds. We found that variations in

the target cell supply rate and adaptive immunity parameters have a strong impact on the

magnitude or observability of the viral rebound associated with the emergence of resistant

virus. Both variations in target cell supply rate and adaptive immunity parameters may

explain why only some individuals develop observable transient resistant viral rebound. Our
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study highlights the conditions that can lead to resistance and subsequent viral rebound in

mAb treatments during acute infection.

Author summary

Monoclonal antibodies have been used as a treatment for SARS-CoV-2. However, viral

evolution and development of variants has compromised the use of all currently autho-

rized monoclonal antibodies for SARS-CoV-2. In some individuals treated with one such

monoclonal antibody, bamlanivimab, transient nasal viral rebounds of 3–4 logs associated

with resistant viral strains occur. To better understand the mechanisms underlying resis-

tance emergence with high viral load rebounds, we developed two different models that

incorporate drug sensitive and drug resistant virus as well as target cell replenishment and

fit them to data. The models accurately capture the observed viral dynamics as well as the

proportion of resistant virus for each studied individual with little variation in model

parameters. In the models with best-fit parameters, bamlanivimab selects for resistance

mutants that can expand to high levels due to target cell replenishment. The ultimate

clearance of virus however depends on the development of adaptive immunity.

Introduction

As of September 2023, SARS-CoV-2 has caused over 6.9 million deaths worldwide [1]. While

vaccines are available to reduce disease severity, a large fraction of the world’s population is

not vaccinated [2]. With new variants that escape immunity rapidly emerging, effective treat-

ment for severe cases is urgently needed [3]. Anti-SARS-CoV-2 monoclonal antibodies

(mAbs) represent one class of effective treatments [4]. For example, the first monoclonal anti-

body that received emergency use authorization (EUA) for the treatment of SARS-CoV-2,

bamlanivimab (BAM), can accelerate the viral decline and lower hospitalization and death

rates among high-risk patients [5,6].

One concerning observation during treatment of SARS-CoV-2 infection with mAbs is the

emergence of viral resistance and concomitant viral rebound. In the case of BAM treatment,

after the initial peak in the viral load, viral rebounds of up to 3–4 orders of magnitude consist-

ing mostly of resistant virus have been observed in small subsets of patients in multiple studies

[7–9]. During rebound, infectious viruses are culturable, implying virus may be able to be

transmitted and infect others [10].

Since mAbs are a treatment for SARS-CoV-2 and other viral infections such as respiratory

syncytial virus and Ebola virus [11], understanding the mechanisms that allow resistant virus

to emerge and rebound is important for designing effective treatment strategies that reduce

disease severity and the chance of on-treatment viral transmission. Furthermore, such analyses

can provide insights on the underlying dynamics of SARS-CoV-2 infection, such as the impact

of the host target cell regeneration and adaptive immune responses on viral rebound, which

has potential implications for the development of the next generation of mAb therapies and

viral rebound after nirmatrelvir-ritonavir or other antiviral therapies [12–16].

Here, we use data from the ACTIV-2/A5401 randomized controlled clinical trial

(NCT04518410) of BAM [5,7] to investigate the mechanism that gives rise to the observed

transient viral rebound associated with the emergence of resistant virus. BAM is an IgG1

monoclonal antibody that binds to the SARS-CoV-2 virus’s spike protein, blocking its ability
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to enter and infect target cells. Due to its high potency for neutralizing SARS-CoV-2 [5,6],

BAM can select for escape mutations such as E484K, an emergent mutation observed in the

majority of rebound cases [7–9]. As a single substitution mutation, E484K is likely to be pres-

ent at low frequencies at the time of treatment initiation and selected for in the presence of

BAM (see Section A in S1 Text), yet only a small fraction of treated patients shows signs of

resistance emergence and transient viral rebound [7]. The selective pressure of BAM is likely

the reason why some resistant mutations become dominant during the transient viral rebound;

however, there must be other important factors associated with high viral load rebound.

Drug resistance to antiviral treatments has been studied extensively for many viral patho-

gens [17–21]. Rapid viral growth under treatment requires high resistance of the virus and the

availability of abundant target cells for the resistant virus to replicate and spread further as dis-

cussed in Ke et al. [21]. Without enough target cells, the selected resistant virus is unlikely to

generate an observable transient viral rebound. For SARS-CoV-2, it has been shown that the

viral load peaks around the time of or a few days after symptom onset [22–25], suggesting cells

that are available for early infection either become depleted (by infection) or protected by

innate immune responses [22] causing the virus to fall post-peak. The fact that the emergence

of resistant virus associated with high viral load rebound occurs several days post symptom

onset in some patients treated with BAM [7] is, therefore, difficult to explain.

Mathematical models are well suited to study the phenomenon of drug resistance and viral

rebound [19–21,26–29]. We hypothesized the replenishment of target cells is necessary to gen-

erate the high transient viral rebound. Thus, to better understand the crucial factors leading to

the emergence of resistant virus associated with high viral load rebound, we built models that

include feasible mechanisms that can increase the availability of potential virus producing

cells: the natural proliferation of target cells such as epithelial cells expressing the ACE-2 recep-

tor [30] and the loss of protection from infection by the innate immune response [31] and fit

these models to data from individuals who experienced viral rebound due to the emergence of

resistant virus during BAM treatment.

Methods

Ethics statement

This research was approved by the LANL Human Subjects Research Review Board (HSRRB)

Data. We analyzed data from the cohort of individuals with SARS-CoV-2 infection and

symptoms consistent with COVID-19 who were given a single infusion of 700 mg BAM in a

phase 2 randomized, placebo-controlled trial (ACTIV-2/A5401 study) described in detail pre-

viously [5,7]. Viral load and mutant frequency data were obtained from anterior nasal swabs

collected by the participants daily from the time of the BAM infusion to day 14 and at days 21

and 28. There were eight individuals who showed viral rebound with emerging resistance

mutations in this treatment group. Patient B2-10, who showed signs of transient viral rebound

with mutation S494P, only had four data points above the quantifiable limit and only one data

point associated with the S494P resistance. Hence, we focus our study on the other seven par-

ticipants with more frequent data (B2-2 to B2-8), who exhibited transient viral rebound associ-

ated with resistant mutants.

Models. Classical target cell limited models with a single viral population have been used

to study within-host dynamics of SARS-CoV-2 [28,32–38] and other diseases such as HIV and

HCV [39,40]. Since our data set contains data on both the viral load and the frequency of resis-

tant mutants, we used a two-strain SARS-CoV-2 model to utilize both types of data [20]. In

this model, target cells (T) represent the epithelial cells expressing ACE-2 receptors that are
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susceptible to infection. The target cell dynamics is governed by

dT
dt
¼ � b1V1T � b2V2T: ð1Þ

We classify SARS-CoV-2 viruses as either sensitive (V1) or resistant (V2) to BAM. Note that

V1 andV2 do not indicate two particular genotypes of SARS-CoV-2, but rather groups of viruses

that are either sensitive or resistant to BAM. The other equations defining the model are:

dE1

dt
¼ b1V1T � kE1

dE2

dt
¼ b2V2T � kE2

dI1
dt
¼ kE1 � dðtÞI1

dI2
dt
¼ kE2 � dðtÞI2

dV1

dt
¼ pð1 � mÞI1 � cV1

dV2

dt
¼ pI2 þ mpI1 � cV2:

ð2Þ

In this model, viruses V1 and V2 infect target cells at rate β1 and β2, respectively. The infec-

tion produces E1 and E2, which are cells infected by V1 and V2, respectively, in the eclipse

phase of the viral lifecycle and not yet producing virus. Cells in the eclipse phase move into

productive infection with rate k. Thus, after staying in the eclipse phase for an average duration

of 1/k, infected cells start producing viruses at rate π and are reclassified as productively

infected cells, I1 and I2, respectively. We also allow for a fixed mutation rate μ from the BAM

sensitive to BAM resistant virus. Infected cells and viruses are cleared at per capita rates δ(t)
and c, respectively. The loss rate of infected cells also includes the emergence of adaptive

immunity, which is modeled as in the study by Pawelek et al. [41] by

dðtÞ ¼
d; t < t∗

dM � dM � dð Þe� s t� t∗ð Þ; t � t∗
: ð3Þ

(

We define δ and δM as the baseline and maximum death rates of the infected cells, respec-

tively. For simplicity, we set δM = 10δ. Time t* is when adaptive immunity starts to emerge and

σ determines the emergent speed of adaptive immunity. Note that adaptive immunity affects

the cells infected by either viral strain.

Neutralizing effect and dynamics of neutralizing antibodies. We explicitly incorporate

the passive infusion and decay dynamics of BAM based on the model developed by [42]. We

let A(t) be the serum concentration of BAM with unit μg mL-1. We define tinf as the time after

infection that BAM infusion starts, ΔT as the duration of the infusion (assumed to be 1 hour or

1/24 day), and Amax as the maximum serum concentration (taken from data for these seven
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study participants). The equation governing the antibody dynamics takes the form

AðtÞ ¼

0; t < tinf
Amax
Dt

t � tinf
� �

; tinf � t < tinf þ Dt

Amaxe
� a t� tinfþDtð Þð Þ; t > tinf þ Dt

: ð4Þ

8
>>>><

>>>>:

For each study participant, we have the maximum antibody concentration (Amax) and the

concentration at day 28(A28). By fitting an exponential decay function that goes through the

data points Amax and A28 we estimate the decay rate α (Table A and Section B in S1 Text).

Note that we do not include a loss term for A(t) due to the binding to the viruses or a gain

term when the antibody dissociates from an immune complex. This is a simplification based

on the observation that 99% of individuals infused with BAM have mAb concentrations

greater than the IC90 (the concentration required for 90% inhibition) 28 days after the infu-

sion [5]. Thus, antibodies are in great excess, and we assume the mAb concentration is not

noticeably affected by interaction with the virus.

The neutralizing effect of BAM is modeled as follows. Antibodies bind to sensitive and

resistant viruses at rates kon,1 and kon,2, respectively, to create neutralized virus-antibody

immune complexes C1 and C2, respectively, which are no longer able to infect target cells. The

complexes dissociate at rates koff,1 and koff,2 and are cleared at rates γ1 and γ2, respectively for

the sensitive and resistant viruses. This leads to the following modifications to the basic target

cell limited model.

dV1

dt
¼ pð1 � mÞI1 � kon;1V1Aþ koff ;1C1 � cV1

dC1

dt
¼ kon;1V1A � koff ;1C1 � g1C1

dV2

dt
¼ pI2 þ pmI1 � kon;2V2Aþ koff ;2C2 � cV2

dC2

dt
¼ kon;2V2A � koff ;2C2 � g2C2:

ð5Þ

Together, Eqs (1)–(5) constitute the basic viral dynamic model with the neutralizing effect

of antibodies. The E484K mutation, which is observed in 5 out of the 7 participants with tran-

sient viral rebound, is an escape mutant that abrogates BAM binding. A previous in vivo study

showed that the binding affinity of BAM to the E484K spike protein is less than 1% of the bind-

ing to wild type SARS-CoV-2 [43]. Hence, we assume kon,2 is negligible, and thus we do not

account for the dynamics of C2.

Our first intuition is perhaps to attribute the observed viral rebound solely to resistance to

BAM as the majority of rebound viruses are resistant mutants. However, the timing of viral

rebound suggests a greatly reduced pool of target cells at the time of BAM treatment, which

was a median of 4.5 days post-symptom onset for the seven individuals analyzed. Thus, a

mechanism for a supply of target cells is needed to support the rebound (See Sections A and C

in S1 Text). We investigate two non-mutually exclusive mechanisms that may contribute to

the availability of target cells after peak viral load, i.e., proliferation of target cells [30,44,45]

and transition of cells from an interferon induced antiviral state back to a susceptible state due

to a decline in the level of type I and III interferons [31,46,47]. Thus, we introduce the modifi-

cations needed for each proposed mechanism to explain the rebound of virus.
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Target cell regeneration (the logistic proliferation model). We assume homeostatic

mechanisms induce a logistic growth of target cells that attempts to restore the population size

to its baseline level. This leads to the following modification of the target cell dynamics:

dT
dt
¼ � b1V1T � b2V2T þ rT 1 �

T þ E1 þ E2 þ I1 þ I2
TM

� �

; ð6Þ

where r and TM are the maximum proliferation rate (or regeneration rate) and carrying capac-

ity, respectively. While it may be possible for infected cells to proliferate and generate infected

progeny, existing experimental evidence suggests that proliferation of cells infected with

SARS-CoV-2 is impaired [48–50]. Hence, we assume proliferation of infected cells is

negligible.

Loss of the antiviral state (the innate immune response model). The protective effect of

the type-I and type III interferons (representative of the innate immune response) is modeled

as in previous studies [22,41,51]. We introduce a variable R that keeps track of cells in an anti-

viral state and thus refractory to infection. This leads to the following changes to the original

model:

dT
dt
¼ � b1V1T � b2V2T � � I1 þ I2ð ÞT þ rR

dR
dt
¼ � I1 þ I2ð ÞT � rR:

ð7Þ

In this formulation, we assume the interferon level is proportional to the number of pro-

ductively infected cells, so the rate of conversion of target cells to refractory cells is given by the

rate constant ϕmultiplied by the total number of infected cells, (I1+I2). The refractory cells

return to being susceptible to infection at per capita rate ρ.

Population fitting. We used a nonlinear mixed effects modeling approach (software

Monolix 2021, Lixoft, SA, Antony, France) to fit each model to the viral load and mutant fre-

quency data for all individuals simultaneously. In this approach we fit all the data simulta-

neously, both total viral load and fraction of resistant virus, across all individuals, increasing

the power to estimate the model’s quality of fit to the data. Note that we fit the distribution of

each parameter (mean and variance) rather than just point estimates. More details of the pro-

cedure and the use of Monolix can be found in [52]. Specifically, here, besides fitting the total

viral load (V + C in the model), we fit
V1

V1þV2
to the frequency of the BAM sensitive viral popula-

tion. We do not fit
V2

V1þV2
to the frequency of the BAM resistant viral population because it is

simply 1 �
V1

V1þV2
, so the resistance data is colinear with the sensitive data. Comparison of the

models was done using the corrected Bayesian Information Criterion (BICc) [53,54] as

reported by Monolix and is given by:

BICc ¼ � 2LLþ dim yRð Þlog N þ dim yFð Þlog ntot;

where -2LL is the -2 times loglikelihood, dim θR is the number of the random and fixed covari-

ate parameters, N is the number of subjects, dim (θF) is the number of fixed effects (except

covariates), and ntot is the total number of observations (Monolix.lixoft.com/tasks/log-

likelihood-estimation).

Since we do not know the time of infection and estimating the time of infection without

data during the early phase of infection is problematic due to model identifiability issues

[55,56], we fixed the duration from infection to symptom onset to 5 days as in previous studies

[34,57,58]. This assumption is based on estimates that the duration from exposure to symptom
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onset is about 5 days [24,59–62]. Furthermore, fixing the duration from infection to symptom

onset allows us to focus on our objective, which is to access potential mechanisms that contrib-

ute to transient viral rebound of resistant virus.

For all models, we fixed the initial number of target cells T(0) to 8 × 107 cells [22]. This is an

estimate based on the observation that the number of epithelial cells that expresses the ACE-2

receptor is roughly 20% of the epithelial cells in the upper respiratory tract (around 4 × 108

cells) [63]. For the logistic proliferation model, we set TM = T(0).This means in the absence of

viral infection, the proliferation rate is negligible, which is consistent with observation that the

turnover of epithelial cells is on the order of months; however, the proliferation rate is acceler-

ated following acute infection [44].

As we do not know the number of viruses that initiate infection, we use a method suggested

by Smith et al. [64] in which we assume the initiating virus is either cleared or rapidly infects

cells. Thus, we initiate infection by setting E1(0) = 1 cell. In a previous SARS-CoV-2 modeling

study [22] we showed that choosing larger values of E1(0) such 5 or 10 cells led to slightly larger

Akaike Information Criterion values, justifying our choice of E1(0) = 1 cell. Also, besides resis-

tance arising by viral mutation there can be baseline resistance. Hence, we fit E2(0) and keep

track of the first time, t**, the model predicts E2(t**)� 1, where t**marks a physiologically

relevant threshold for the emergence of resistance virus that can be compared across

individuals.

We fixed the rate constant for BAM binding to the SARS-CoV-2 spike protein kon to

5.5 × 105 M-1 s-1 and the rate constant for unbinding koff to 2.5 × 10−5 s-1 [65]. This gives an

equilibrium dissociation constant (KD) of 0.045 nM, which is somewhat less than the reported

value of 0.071 nM in the EUA for BAM [65]. Due to the BAM concentration being given in

units of ug/mL and the rate parameter kon, being given in inverse molar units, we converted

the BAM concentration into molar units using its molecular weight of 1.46 x105 Da, yielding 1

ug/mL = 6.85 × 10−9 M.

The rate of exit from the eclipse phase, k, is fixed to 4 per day and the viral clearance rate, c,
is fixed to 10 per day [22]. BAM accelerates viral clearance within three days of infusion [5] and

thus we expect immune complexes to be cleared faster than free virus. Therefore, we carried out

sensitivity tests with γ, the rate of immune complex clearance, varying between c and 5 × c
based on the observation that neutralizing antibody enhances HIV-1 clearance by*3-fold [66].

We found that model fits were relatively insensitive to the value of γ in this range and we fixed

the clearance rate of the virus-antibody immune complexes to 3 × c (see Table B and Section D

in S1 Text), the value found by Igarashi et al. [66]. The mutation rate μ was fixed to 10−6 per day

[67,68]. Finally, we constrained the infection rate constant for the resistant virus β2 to be less

than β1 as we expect the resistance virus to be less fit than the wildtype. A complete summary of

parameters is presented in Table C and Section E in S1 Text.

Results

To demonstrate that target cell replenishment is necessary, we fit a target cell limited model

given by Eqs (1)–(5) to the data. The results of such fit are inconsistent with previous observa-

tions about when the viral load peak occurs. The model can recapitulate the second peak, i.e.

the rebound, but at the time of treatment, the model predicts that the viral load has yet to

reach its normal first peak in all seven participants (Fig A and Section C in S1 Text). This is

unlikely since the viral peak is usually around the time of symptom onset and BAM was initi-

ated a median of 4.5 days post symptom onset in these participants [7]. Essentially, this simple

model tries to preserve target cells to allow the resistant virus to grow by preventing the viral
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load from increasing rapidly after infection. Hence, we proceeded with testing models that

include target cell replenishment.

The logistic proliferation model

We first tested the logistic proliferation model, which incorporates proliferation of target cells

(see Methods). Fitting the model to data, we found that the model can describe the emergence

of resistant virus reasonably well (Fig 1). Model simulation using the best-fit parameter values

recapitulated the observation that the drug sensitive viral population (green in Fig 1) was the

dominant strain in all seven study participants before treatment. After BAM infusion, the sen-

sitive viral population was rapidly replaced by the resistant viral population (red in Fig 1),

which expanded and led to the observed viral rebound.

The parameter estimates for the logistic proliferation model are relatively consistent across

participants (Table 1). The one exception is the time that the resistant virus emerges t**. Partici-

pant B2-2 had an estimated resistance emergence time that was much earlier (0.84 days) than the

other six participants (range 3.3 to 4.8 days). This, however, is consistent with experimental data,

which showed B2-2 had baseline (at the time of BAM infusion) BAM resistance mutations

E484K and E484Q. For this individual, the anterior nasal swab data (which is used for the fitting),

showed baseline mutation frequencies of less than 10%. However, in nasopharyngeal swabs,

which were taken much less frequently and hence not used for model fitting, the frequency of

the BAM resistance mutation E484K was over 60% at baseline [7]. No baseline mutation was

detected in the other six participants in either anterior nasal or nasopharyngeal measurements,

which is consistent with the late predicted emergence time of the resistant viral population.

Fig 1. Fit of the logistic proliferation model to the data. The circles represent viral load data which are filled green when the viral population was dominated by BAM

sensitive virus and filled red when dominated by resistant virus. The unfilled circles are data below the limit of quantification (2 log10 RNA copies/mL) or limit of detection

(1.4 log10 RNA copies/mL, indicated by horizontal lines). Black curves show the best-fit of the model to the total viral load. When plotting the model fit, V1 (BAM

sensitive) is represented by a dashed–green curve and V2 (BAM resistant) by a red curve. The vertical black line indicates the time of treatment initiation. The vertical red

line indicates the estimated time, t* when adaptive immunity begins to emerge.

https://doi.org/10.1371/journal.ppat.1011680.g001
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The innate immune response model

Next, we tested the ability of the innate immune response model in which target cells arise

from the loss of the antiviral state to fit the observed data (see Methods). The model assumes

type-I and type-III interferons levels are proportional to the number of infected cells, and that

these interferons put target cells into an antiviral state that is refractory to viral infection

[31,69,70]. The antiviral state is not permanent, and the model assumes refractory cells return

to being susceptible to infection at a constant rate. As the viral infection progresses, more cells

become infected, more interferon is produced, and a larger number of target cells become

refractory to infection. However, after the viral load reaches its peak, both the viral load and

the number of infected cells decline. As the number of infected cells and interferon levels

decline, fewer target cells become protected, while cells in the refractory state lose protection

and return to being susceptible to infection. The refractory cells returning to target cells can

provide resistant virus with the necessary resource to rebound.

Similar to the logistic proliferation model, the innate immune response model can also cap-

ture the emergence of resistant virus and the observed transient viral rebound (Fig 2). The

model also describes well the quantitative dynamics of both the BAM sensitive and resistant

viral populations and the observation that prior to treatment, the sensitive virus is dominant,

while, after BAM infusion, the resistant viral population rapidly replaces the sensitive one,

before finally being cleared by adaptive immunity (Fig 2).

The estimated parameters in the innate immune response model are consistent across

patients (Table 2). Interestingly, the estimated viral dynamics parameters that are common to

both the logistic proliferation and innate response models are very similar (e.g., β, π, and δ).

Furthermore, the best estimates of the ratio β2/β1, in both models, are close to the upper

bound of 1, which suggests BAM resistance mutations, such as E484K, have little fitness cost.

The estimated emergence times of the resistant virus for the innate immune response model

follow similar trend to that of the logistic proliferation model, which reflects the observation of

a baseline mutation in B2-2 but not the other participants. The estimated values for ρ are con-

sistent with the expected duration of protection of refractory cells [31,46,47,71].

We compare the data support for each model using the negative log-likelihood (-2LL) and

the corrected Bayesian Information Criterion (BICc) for both models (Table 3). The innate

immune response model fits the data slightly better than the logistic proliferation model

Table 1. Best fit parameters for the logistic proliferation model.

B2-2 B2-3 B2-4 B2-5 B2-6 B2-7 B2-8

-log10(β)

(mL RNA copies-1 day-1)

8.84 8.90 8.76 8.86 9.01 8.91 8.85

β2/β1 0.99 0.99 0.99 0.99 0.99 0.99 0.99

δ
(day-1)

2.22 2.57 2.18 2.90 1.81 2.04 2.38

π
(RNA copies mL-1 day-1)

1174.51 1176.53 1176.53 1172.40 1174.33 1173.98 1176.50

t**
(days)

0.84 4.40 3.29 4.27 4.82 4.17 3.91

r
(day-1)

0.61 0.89 0.64 0.91 0.89 0.86 0.84

σ
(day-1)

0.26 0.33 0.22 0.28 0.25 0.30 0.21

t*
(days)

17.38 14.63 18.89 14.40 17.53 17.35 15.23

https://doi.org/10.1371/journal.ppat.1011680.t001
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(lower fitting error); however, the logistic proliferation model is slightly preferred based on

BICc, because the innate immunity model has one more model parameter, which is two more

estimated parameters since population fitting estimates a mean and a standard deviation for

the parameter.

Adaptive immunity is crucial in viral clearance. In a target cell limited model (see Sec-

tion C in S1 Text), the constant depletion of target cells ultimately leads to the decline in viral

Table 2. Best fit parameters for the innate immune response model.

B2-2 B2-3 B2-4 B2-5 B2-6 B2-7 B2-8

-log10(β)

(mL RNA copies-1 day-1)

8.61 8.20 8.40 8.79 8.39 8.67 8.63

β2/β1 0.98 0.98 0.99 0.99 0.99 0.86 0.98

δ
(day-1)

2.38 2.19 3.59 2.75 2.32 1.55 2.26

π
(copies mL-1 day-1)

1097.54 1102.81 1102.53 1102.11 1108.76 1100.88 1102.17

ϕ
(cells-1 day-1)

8.1e-07 9.5e-07 8.1e-07 4.8e-07 7.5e-07 7.8e-06 6.9e-07

ρ
(day-1)

0.021 0.069 0.021 0.1 0.15 0.053 0.04

t**
(days)

0.77 1.61 2.24 3.87 2.04 2.96 2.85

σ
(day-1)

0.32 0.65 0.038 0.12 0.27 0.41 0.31

t*
(day)

21.65 15.16 21.37 15.66 18.48 19.65 19.1

https://doi.org/10.1371/journal.ppat.1011680.t002

Fig 2. Fit of the innate immune response model to the data. The circles represent viral load data which are filled green when the viral population was dominated by

BAM sensitive virus and filled red when dominated by resistant virus. The unfilled circles are data below the limit of quantification or limit of detection (indicated by

horizontal lines). Black curves show the best-fit of the model to the total viral load. When plotting the model fit, V1 (BAM sensitive) is represented by a dashed–green curve

and V2 (BAM resistant) by a red curve. The vertical black line indicates the time of treatment initiation. The vertical red line indicates the estimated time, t*, when adaptive

immunity begins to emerge.

https://doi.org/10.1371/journal.ppat.1011680.g002
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load; however, both the logistic proliferation model and the innate immune response model

contain mechanisms that can replenish the pool of target cells. In a logistic proliferation model

without adaptive immunity, the production of target cells makes it possible for virus to oscil-

late or be sustained indefinitely (see Fig B and Section F in S1 Text). In the innate immune

response model without adaptive immunity, the dynamics of target cells going in and out of

the refractory state can also give rise to oscillations and the possibility of a slowly decreasing

viral load (see Fig B and Section F in S1 Text). Thus, for these models to generate dynamics

consistent with the observed data with rapid ultimate virus clearance, adaptive immunity must

be included in both models.

Variations in individual characteristics may explain why only some

participants develop resistance with high transient viral rebound

A previous study using a similar innate immune response model for SARS-CoV-2 infection

but fit to a different set of data from untreated, unvaccinated individuals estimated ϕ =

3.4 × 10−6 cells-1 day-1 and ρ = 0.004 /day (mean of the estimates for all individuals studied)

[22]. Compared to these estimates, our estimate for ϕ = 8.1×10−7 cells-1 day-1 is slightly smaller,

but within one order of magnitude; however, our estimate for ρ = 0.053 /day is at least one

order of magnitude larger. This would indicate that the rate of reversal of the refractory state,

ρ, is much faster in the rebound individuals. To support this, we fitted the n = 102 individuals

in this trial treated with 700 mg BAM, and who did not rebound, as well as the n = 160 individ-

uals in the control group given a placebo (Figs C-G and Section G in S1 Text). In those two

groups, without viral rebound associated with resistance, the reversal rate from the refractory

state, ρ, was much smaller than in the individuals who rebounded (Figs H-I and Section G in

S1 Text). Specifically, the values for ϕ are 1.48 × 10−6 (treated non-rebound) and 1.05 × 10−6

cells-1 day-1 (placebo) and the values for ρ are 0.003 /day (treated non-rebound) and 0.002 /day

(placebo). This difference in the rate that refractory cells lose protection, ρ, along with the abil-

ity of BAM to neutralize wildtype virus may explain why the viral trajectories for these seven

study participants exhibit high transient viral rebound of resistant virus [7].

To study this further, we used the best fit parameters for B2-8 and simulated the effect of

decreasing the supply rate of target cells, r (the logistic proliferation model) or the rate cells

lose their antiviral state ρ (the innate immune response model). We found that decreasing the

maximum target cell proliferation rate r in the logistic proliferation model caused the magni-

tude of the transient viral rebound to diminish (Fig 3A). Reducing the rate that refractory cells

return to the target cell pool ρ also has a similar effect (Fig 3B). However, there is a distinction

in the qualitative effect of the two mechanisms. The proliferation term creates new target cells

to compensate for the number of cells lost, while the refractory term only stores target cells in

an antiviral state temporarily and then returns them to the target cell state without creating

new target cells. These results suggest that how quickly target cells become available during

infection may be a key factor determining the magnitude of the transient viral rebound associ-

ated with the emergence of resistant virus. Since these parameters vary among individuals, it

may explain why only some individuals exhibit high resistant viral rebound following

Table 3. Comparison of fitting between the logistic proliferation and innate immune response models. Bolded

text shows the smaller value.

-2LL BICc
Logistic proliferation model 191.59 260.63

Innate immune response model 190.68 267.02

https://doi.org/10.1371/journal.ppat.1011680.t003
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treatment with BAM. Additionally, differences in mutations in spike, differences in BAM

binding kinetics, differences in BAM concentration in different treated individuals, differences

in the time BAM was given relative to time of infection, differences in viral kinetics, and in

particular higher viral load at the time of BAM treatment in participants with treatment-emer-

gent resistance than those who did not develop resistance [7], etc. may further contribute to

the observation that only a small fraction of treated individuals develop resistance and tran-

sient viral rebound.

Discussion

The emergence of BAM resistant viral mutants associated with transient viral rebounds of 3–4

viral logs has been observed in some individuals treated with BAM [7–9]. While the emergence

of resistant viral mutants can be attributed to the selective pressure of BAM, the 3–4 log

increase in viral load is also likely dependent upon having an additional supply of target cells.

Viral dynamic models without target cell replenishment are suitable to describe acute infection

[37,72]. However, we found that simple target cell limited models were not consistent with the

data (Fig A and Section C in S1 Text). To observe the large increase in viral load with the emer-

gence of resistance, such models predict treatment takes place early during infection (before

the peak in viral load), which was not the case here. To reconcile these contradicting observa-

tions and to better understand the factors leading to the emergence of resistant virus with high

transient viral rebound, we developed two models with different underlying mechanisms that

allow for target cell replenishment during the infection.

In an acute infection, target cells production is often assumed to be negligible due to the

short duration of the infection—continued viral infection is then dependent upon the avail-

ability of target cells [28]. However, emerging resistant virus with viral rebound extends the

duration of infection, which may justify the inclusion of target cell proliferation in the model.

Previous SARS-CoV-2 models examined the effect of proliferation of target cells, but not in

light of the emergence of resistance and transient viral rebound [73–78]. We showed that by

incorporating a logistic proliferation term into a two-viral population viral dynamic model

with adaptive immunity, the model can describe the emergence of resistant virus, which leads

to the high transient viral rebound following treatment with BAM (Fig 1). This result echoes a

Fig 3. The rate of target cell replenishment has a crucial role in driving the amplitude of the viral rebound.

Baseline parameters for the simulation are taken from the best fit parameters of B2-8. The first vertical red (dashed

dot) line indicates the time of treatment initiation. The second vertical red (dashed) line indicates when adaptive

immunity begins to emerge. (A) Viral rebound is more likely to be observable (e.g., sufficiently high VL) with

increasing intrinsic growth rate r. (B) Viral rebound is more likely to be observable with increasing rate of refractory

cells returning to cells susceptible to infection ρ.

https://doi.org/10.1371/journal.ppat.1011680.g003
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previous observation that in mice with influenza, stimulation of alveolar type II cells prior to

infection can increase the number of alveolar epithelial cells expressing ACE-2 receptors and

enhance infection [79].

Upon viral infection, infected cells as well as plasmacytoid dendritic cells (not modeled),

release type-I and type-III interferons, which put neighboring target cells into an antiviral

state, protecting them from viral infection [31,69,70,80]. Thus, a strong interferon response

correlates with strong suppression of viral replication [81]. Previous modeling efforts have cap-

tured these effects in a different context [22,41,82]. However, over time, refractory cells likely

lose their antiviral state [31,46,47]. Thus, if there are sufficient numbers of cells in the refrac-

tory state and these return to being susceptible to infection, then the returning cells would con-

tribute to a late increase in the pool of susceptible cells. In this case, if individuals were treated

with an mAb that effectively neutralizes the sensitive virus, then it would create an opportunity

for the resistant virus to infect the increasing number of target cells, allowing the vigorous

growth of resistant virus associated with an observable transient viral rebound.

SARS-CoV-2 may be able to antagonize the initial innate immune response by inducing

lower production of type I and III interferons as compared to other respiratory viruses, which

has been linked to the severity of SARS-CoV-2 disease [83]. However, the importance of type-I

interferons in SARS-CoV-2 infection has been highlighted by the finding that at least 10% of

people with life-threatening COVID-19 pneumonia had neutralizing auto-antibodies against

type I interferon [84]. There is also a sharp increase in the presence of such antibodies with age

in the elderly and people with these auto-antibodies account for at least 18% of all COVID-19

fatalities [85]. There has also been an association found between various single nucleotide

polymorphisms in interferon λ genes 3 and 4 and COVID-19 disease severity [86,87] again

highlighting the protective role of an interferon response.

Two SARS-CoV-2 studies using a murine model [88,89] suggested that innate immunity

may only have a minimal role in viral clearance, while adaptive immunity significantly con-

tributes to the ultimate clearance of acute infection. A recent clinical study also echoed this

result by examining the role of CD4+ T-cells in shaping the antiviral activity of the immune

response [90]. We have also shown that the inclusion of adaptive immunity in our models is

crucial for viral clearance (Fig B and Section F in S1 Text).

The supply rate of target cells should have a strong impact on the magnitude of the transient

viral rebound of resistant virus, or whether the emergence of resistant virus is observable clini-

cally. We examined this effect by varying the target cell supply rate in both models. Fig 3 con-

firmed our speculation. This suggests that how quickly target cells become available during

infection may be a key factor along with BAM driving the high transient viral rebound of resis-

tant virus. Because the target cell supply rate most likely varies among individuals, this may

help explain why only some individuals treated with BAM develop observable resistant viral

rebound. The innate immune response model predicts that the rapid reduction in infected

cells due to BAM led to a reduction in the production of type-I and type-III interferons. With

less interferon fewer target cells are converted into the refractory state. In this scenario, if the

rate that refractory cells return to susceptible cells is sufficiently fast, it would lead to a sizable

increase in the number of target cells that allow for the resistant virus to emerge to an observ-

able population size. This hypothesis is consistent with the observation that the rate that refrac-

tory cells return to susceptible cells for rebound participants is much faster than non-rebound

participants (Figs H-I and Section G in S1 Text). While BAM selects for resistant viral popula-

tion, target cell replenishment drives the amplitude of the transient viral rebound. See Fig 4 for

a summary description of our results.

In addition to the above two mechanisms, we also examined the possibility of antibody-

dependent enhancement (ADE) extending the range of cells that are targets of infection.
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Recent studies provide evidence that SARS-CoV-2 -antibody immune complexes can infect

and replicate in macrophages via interactions with FcγRIIA and FcγRIIIA receptors, or even

via the complement component C1q receptor [91–95]. Based on these findings, we can

hypothesize that if the virus-antibody immune complexes are not cleared at a sufficiently fast

rate, their ability to infect additional cell types via ADE may allow the resistant strain to take

over, leading to the observed transient viral rebound. However, data showing that ADE is

important in SARS-CoV-2 infection in vivo is lacking and one recent study showed that

although an infection-enhancing effect of human neutralizing antibodies was observed in

vitro, the same neutralizing antibodies exhibited a protective effect in vivo, when infused into

mice or macaques [96]. Another recent analysis using both in vitro and in vivo experiments

involving BAM also found no support for it generating ADE of SARS-CoV-2 infection [97].

Two limitations of this study are that data for only 7 individuals was analyzed, and in sev-

eral cases, the transition between sensitive and resistant virus was very quick, with no interme-

diate observations. However, this is the best data available to analyze viral rebound after BAM

administration and provides enough data to explore the mechanisms we presented in our

models. To ameliorate these issues, we used a mixed-effects fitting approach, which simulta-

neously fits all available data, thus increasing the robustness of the fitting results.

In this study, we tested the hypothesis that the generation of drug resistant variants coupled

with an additional supply of target cells can lead to the observed transient viral rebound in

Fig 4. Target cell replenishment can explain the emergence of resistant virus associated with high transient viral rebound. (A) Natural course of acute infection as

described by a standard viral dynamic model. (B) Without target cell replenishment, the resistant virus becomes the dominant population but does not lead to observable

transient viral rebound. (C) Target cell replenishment–either via new production or target cell returning from the refractory state - can drive the resistant viral population

to an observable transient viral rebound.

https://doi.org/10.1371/journal.ppat.1011680.g004
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some persons with acute SARS-CoV-2 infection following treatment with BAM. Two models

were formulated with different mechanisms that allow for the replenishment of target cells

during the infection. By fitting the models to patient data, we showed that both models can

explain the emergence of resistant virus associated with large transient viral rebounds of 3–4

logs. Comparison between the two models showed that the logistic proliferation model was

slightly preferred based on BICc due to having fewer parameters to fit. Nevertheless, both

mechanisms may be operational. We also found that variations in the target cell supply rate

parameters have a strong impact on the magnitude of the viral rebound, which may explain

why only some individuals develop observable transient resistant viral rebound. Finally, we

highlighted the role of adaptive immunity in viral clearance in our models.

Supporting information

S1 Text. Supplemental material. Table A. Antibody concentration exponential decay rate

estimated from Amax and A28, where A28 is the antibody concentration at day 28. B2-7 does

not have information on Amax, so the average Amax for the other 6 participants is used instead.

The values for α and Amax are used in Eq (4). Table B. Fitting comparison using different esti-

mates of γ relative to c. Table C. Definition, units and values of model parameters. Note that

the subscripts 1, 2 for each parameter refers to the sensitive and resistant virus, respectively. If

a fitted parameter is shared between the two models, the population estimate for the logistic

proliferation model is reported first, followed by the innate immune response model. Values

with (*) is the average of the estimated values for the seven participants. The values for kon

reported in Table S3 are in unit of M-1 s-1, while the computation is done using a conversion to

mL μg-1day-1 (see main text). Fig A. Fit of the target cell limited model with drug sensitive and

resistant viral strain to the data. The circles represent viral load data, where filled green and

red circles indicate viral populations dominated by either the sensitive or resistant viral strain,

respectively. The unfilled circles are data below the limit of quantification or limit of detection

(indicated by the two horizontal lines). Black curves are the best-fit of the model to the total

viral load. The dashed–green or–red curves are model simulation of the sensitive or resistant

viral strain, respectively. The first vertical red (dashed-dotted) line indicates the timing of

treatment. The second vertical red (dashed) line indicates the estimated time when adaptive

immunity begins to emerge. The dashed black curve shows the total viral load without treat-

ment. Fig B. Long-term viral load in the logistic and innate immune response models without

adaptive immunity. Simulations are done using the best fit parameters of participant B2-8 for

both models. Fig C. Innate immune response model fit to data from patients who were treated

with 700 mg BAM and did not rebound (part 1). The red bars indicate the limit of quantifica-

tion (higher bar) and the limit of detection (lower bar). Fig D. Innate immune response model

fit to data from patients who were treated with 700 mg BAM and did not rebound (part 2).

The red bars indicate the limit of quantification (higher bar) and the limit of detection (lower

bar). Fig E. Innate immune response model fit to data from control patients (part 1). The red

bars indicate the limit of quantification (higher bar) and the limit of detection (lower bar). Fig

F. Innate immune response model fit to data from control patients (part 2). The red bars indi-

cate the limit of quantification (higher bar) and the limit of detection (lower bar). Fig G. Innate

immune response model fit to data from control patients (part 3). The red bars indicate the

limit of quantification (higher bar) and the limit of detection (lower bar). Fig H. Distributions

of ρ and ϕ for rebound (n = 7) and non-rebound (n = 102) treated individuals with 700 mg

BAM. Boxes in boxplots start in the first quartile and end in the third quartile of the data. The

line is the median and the whiskers connect the top/bottom of the box to the max/min values

that are not an outliers (data points further than 1.5 × IQR). Red crosses are outliers (outside
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of the whisker range). Fig I. Distributions of ρ and ϕ for treated (700 mg BAM) rebound

(n = 7) and placebo (n = 160) individuals. Boxes in boxplots start in the first quartile and end

in the third quartile of the data. The line is the median and the whiskers connect the top/bot-

tom of the box to the max/min values that are not an outliers (data points further than

1.5 × IQR). Red crosses are outliers (outside of the whisker range).
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