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ABSTRACT  
 
Background: Postoperative gastrointestinal leak and venous thromboembolism (VTE) are 

devastating complications of bariatric surgery. The performance of currently available predictive 

models for these complications remains wanting, while machine learning has shown promise to 

improve on traditional modeling approaches. The purpose of this study was to compare the 

ability of two machine learning strategies, artificial neural networks (ANNs) and gradient 

boosting machines (XGBs), to conventional models using logistic regression (LR) in predicting 

leak and VTE after bariatric surgery. 

Methods: ANN, XGB, and LR prediction models for leak and VTE among adults undergoing 

initial elective weight loss surgery were trained and validated using preoperative data from the 

2015-2017 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program 

database. Data was randomly split into training, validation, and testing populations. Model 

performance was measured by the area under the receiver-operating characteristic curve (AUC) 

on the testing data for each model. 

Results: The study cohort contained 436,807 patients. The incidences of leak and VTE were 

0.70% and 0.46%. ANN (AUC 0.75, 95% CI, 0.73 - 0.78) was the best-performing model for 

predicting leak, followed by XGB (AUC 0.70, 95% CI, 0.68 - 0.72) and then LR (AUC 0.63, 

95% CI, 0.61 - 0.65, p < 0.001 for all comparisons). In detecting VTE, ANN, XGB, and LR 

achieved similar AUCs of 0.65 (95% CI, 0.63-0.68), 0.67 (95% CI, 0.64-0.70), and 0.64 (95% 

CI, 0.61-0.66) respectively; the performance difference between XGB and LR was statistically 

significant (p = 0.001).  

Conclusions: ANN and XGB outperformed traditional LR in predicting leak. These results 

suggest that ML has the potential to improve risk stratification for bariatric surgery, especially as 

techniques to extract more granular data from medical records improve. Further studies 

investigating the merits of machine learning to improve patient selection and risk management in 

bariatric surgery are warranted. 

 
Keywords: Bariatric surgery, Postoperative Complications, Anastomotic Leak, Venous 
Thromboembolism, Machine Learning, Deep Learning  
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INTRODUCTION 

Obesity and associated metabolic diseases constitute a major public health threat for 

which bariatric surgery is a highly effective intervention [1].  Laparoscopic weight loss surgery 

(WLS) is safe relative to other elective general surgical procedures [2], but complications can be 

morbid and expensive [3]. Safety concerns among both patients [4] and providers [5] help explain 

why WLS is under-utilized relative to clinical needs [6]. Stratification of risk for post-operative 

complications can guide patient selection, inform referral practices and patient counseling, and 

identify high-risk patients for monitoring and intervention.  

Gastrointestinal leak occurs in less than one percent of WLS cases [7] but is associated 

with other complications, readmission, reoperation, death [8], and increased cost [9]. Obese 

patients are at high risk for deep vein thrombosis [10, 11] and American Society for Metabolic and 

Bariatric Surgery guidelines recommend routine thromboprophylaxis [12]. Nevertheless, venous 

thromboembolism (VTE) remains a leading cause of morbidity and mortality in this population 

[13, 14] and optimizing thromboprophylaxis strategies remains an area of considerable interest [13, 

15, 16]. Prior risk models for leak and VTE achieve modest results [14, 17]. For example, BariClot is 

a VTE risk assessment tool based on logistic regression (LR) that was developed and validated 

using the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program 

(MBSAQIP) registry. Though it achieved an area under the receiver-operating characteristic 

curve (AUC) of just 0.60, it outperformed two previously published models [14, 18, 19]. 

 Machine learning (ML), a branch of artificial intelligence, is the study of computer 

algorithms that extract information from data without explicit instructions from humans. ML 

does not refer to a specific mathematical approach, but to a broad array of statistical models. 

These are generally related in their flexibility and capacity to distinguish subtle, nonlinear 
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patterns in data that are often not accessible to traditional approaches like LR [20]. ML models 

have recently outperformed LR in preoperative risk stratification using National Surgical Quality 

Improvement Program data [21, 22]. 

Artificial neural networks (ANNs) and gradient boosting machines (XGBs) are powerful 

classes of ML models that perform well in medical risk prediction using tabular data [23, 24]. A 

simple ANN is a stack of layered functions with each layer containing a matrix of weights. Data 

pass through the stack with the output of one layer used as the input to the next, ultimately 

transforming the data into model outputs. Training involves repeatedly adjusting the weights to 

gradually match model to target outputs [25]. XGB is a ML algorithm in which a series of 

decision models are iteratively constructed, tested, and adjusted to correct outputs, ultimately 

resulting in a decision tree algorithm optimized for a regression or classification task [26]. 

The aim of this study was to develop and validate preoperative ANN and XGB risk 

models for gastrointestinal leak and VTE among WLS patients and compare their performance 

against traditional models.  

 

METHODS 

Data Source and Study Population 

All available MBSAQIP data from 2015 - 2017 was used. This national registry contains 

patient-level variables characterizing pre-operative risk factors and 30-day post-operative 

outcomes. In 2017, 832 accredited bariatric centers contributed over 200,000 cases to the registry 

[27]. The study population included patients aged 18-79 with no prior foregut or bariatric surgery 

who underwent elective laparoscopic gastric bypass (CPT 43644 or 43645) or laparoscopic 

sleeve gastrectomy (CPT 43775). We excluded patients with no information on height and 
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weight or Body Mass Index (BMI) given the fundamental importance of this information to the 

study interventions. This study was approved by the Boston Medical Center Institutional Review 

Board under a pre-existing protocol for research on MBSAQIP data. 

Outcomes 

Outcomes of interest were gastrointestinal leak and VTE. Each was defined as a 

composite endpoint of 30-day outcomes variables in MBSAQIP. Leak was defined as 

postoperative organ space infection, presence of a surgical drain for more than 30 days, or leak 

as the suspected reason for any readmission, reintervention, or reoperation [7]. VTE was defined 

as anticoagulation therapy for imaging-confirmed deep vein thrombosis (DVT) or pulmonary 

embolism (PE) or readmission, reintervention, reoperation, or death with DVT or PE as the 

suspected cause [14].  

Predictive Models 

For each outcome of interest, we randomly split the data into training, validation, and 

testing populations comprising 50%, 25%, and 25% of the study cohort respectively. To account 

for imbalanced data, we oversampled positive cases to a ratio of 0.5 in the training set using the 

imbalanced-learn Python library [28, 29]. Positive and negative cases were split separately to 

ensure equitable distribution of positive cases in the training, validation, and testing sets. 

Predictive models used all clinical variables that could be reasonably ascertained the day 

prior to surgery (Table 1). To permit valid comparisons of model performance, all models used 

all available input variables to generate predictions. Some features were calculated or 

consolidated from MBSAQIP variables (Table 1). Continuous variables were zero-centered and 

scaled to unit variance. Methods for handling missing and incomplete data are described in Table 
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1. Wherever possible, missing continuous variables were set to the training population mean. 

Missing categorical variables were assigned to a unique, unknown category.  

ANN and XGB were compared to LR for prediction of both VTE and leak. Our ANN, 

XGB, and LR models were compared to BariClot for prediction of VTE. Our models computed 

the probability of an outcome for each patient, while BariClot generated a risk score [14]. All 

predictive models were implemented in Python 3.6 [30, 31] using the Anaconda Distribution [32] 

with extensive use of the Pandas [33] and NumPy [34] libraries. We followed the Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis reporting 

guidelines [35]. All code used for pre-processing data and building predictive models is open 

sourced. 

ANN models were implemented in Pytorch [36] with code adapted from open sources [37–

39]. ANN architecture consisted of two layers with rectified linear units applied after each layer. 

We selected a relatively simple architecture because initial experiments with more complex 

architectures increased computational demand without a notable increase in predictive power. 

Categorical variables were encoded as neural embeddings [40]. Batch normalization was applied 

between layers [41]. Early stopping [42] and random dropout [43] were employed to avoid over-

fitting training data [23]. Training was terminated when the ANN achieved peak performance on 

the validation data. XGB was implemented in XGBoost using default hyperparameters [26]. LR 

was implemented in statsmodels [44].  

 

Statistical Comparison of Model Performance 

Model performance was measured by computing the AUC generated by each model on 

the test set for each outcome. The Delong test [45] with threshold of 0.05 was used to statistically 
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compare AUCs generated by each predictive model. AUC confidence intervals were obtained 

using the Delong procedure. Bootstrapping was used to find confidence intervals for other model 

performance measures including comparison of partial AUCs. The pROC package [46] with 

RStudio [47] and R version 3.5.2 [48] was used for all model performance calculations. Plots were 

made with ggplot2 [49]. 

Descriptive statistics were computed in using the tableone Python library [50]. Training, 

validation, and test populations were compared using one-way ANOVA and chi-squared tests for 

continuous and categorical variables respectively. 

 

RESULTS 

The study cohort contained 436,807 patients of whom 3,068 (0.070%) developed leak 

and 2,012 (0.046%) suffered VTE (Supplementary Figure 1). Characteristics of the cohort are 

shown in Table 1. The training, validation, and testing sets for both gastrointestinal leak and 

VTE had 218,403, 109,202, and 109,202 patients respectively. There were no clinically 

meaningful differences in patient characteristics between training, validation, and test sets, 

although there were some statistically significant differences (Table 1 and Table 2 in the 

Supplement). 

Figure 1 shows model performance for prediction of leak. ANN was the best-performing 

model with an AUC of 0.75 (95% CI, 0.73 - 0.78). ANN outperformed XGB (p < 0.001), which 

also performed well, achieving an AUC of 0.70 (95% CI, 0.68 - 0.72). Both ANN and XGB 

significantly outperformed LR (p < 0.001 for each comparison), which achieved an AUC of 0.63 

(95% CI, 0.61 - 0.65).  
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Figure 1. Receiver Operating Characteristic Curves for Predicting Gastrointestinal 

Leak. ANN, artificial neural network; XGB, gradient boosting machine; LR, logistic regression. 

ANN achieved a partial AUC of 0.05 under the portion of the ROC with specificity 

greater than 90%, outperforming both XGB (partial AUC 0.03, p < 0.001) and LR (partial AUC 

0.01, p < 0.001). With the specificity threshold held as close as possible to 0.975, ANN achieved 

a sensitivity of 0.493 (95% CI, 0.458 – 0.529), a positive predicative value (PPV) of 0.122 (95% 

CI, 0.114 - 0.131), and outperformed XGB and LR at the same threshold (Table 2). Of the 767 

patients in the testing set who went on to suffer post-operative leaks, ANN would have identified 

378 at the 0.975 specificity threshold, while XGB and LR would have identified 184 and 103 

respectively.  

Figure 2. Receiver Operating Characteristic Curves for Predicting Venous 

Thromboembolism. ANN, artificial neural network; XGB, gradient boosting machine; LR, 

logistic regression. 

Model performance for prediction of VTE is summarized in Figure 2. ANN, XGB, and 

LR achieved similar AUCs of 0.65 (95% CI, 0.63-0.68), 0.67 (95% CI, 0.64-0.70), and 0.64 

(95% CI, 0.61-0.66) respectively. XGB outperformed LR (p = 0.001) but there were no other 

statistically significant differences between models. ANN, XGB, and LR outperformed BariClot 

(p < 0.001 for all three comparisons), which achieved an AUC of 0.56 (95% CI, 0.54 - 0.59). At 

the 0.975 specificity threshold, confusion matrix metrics of the ANN, XGB, and LR models were 

generally comparable to one another and superior to BariClot (Table 3).  

All models used all input variables in prediction. The relative importance of predictive 

variables in XGB models for both outcomes are shown in Figures 3 and 4. XGB identified age, 

height and weight-related measures, hematocrit, albumin, and assistant training level as 
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important predictors for both leak and VTE. History of DVT was among the most important 

factors in predicting VTE, but not leak (Figures 3 and 4). Odds ratios for predictive variables 

used by logistic regression models are listed in the Supplement (Tables 3 and 4).  

Figure 3. Relative importance of each predictive variable in the gradient boosting 

machine model for predicting gastrointestinal leak. Relative performance quantifies the 

relative contribution of each variable to minimizing the error of the gradient boosting model. The 

measure is scaled from zero to one against the most important predictor [24]. Relationships 

between importance and outcomes are nonlinear and cannot be interpreted directionally with 

respect to their influence on outcomes, nor can they be used to generate cutoff or threshold 

values. BMI, body mass index; DVT, deep vein thrombosis; MIS, minimally invasive surgery; 

PE, pulmonary embolism; HTN, hypertension; IVCF, inferior vena cava filter; PCI, 

percutaneous coronary intervention; GERD, gastroesophageal reflux disease; ASA, American 

Society of Anesthesiology; COPD, chronic obstructive pulmonary disease; HLD, 

hyperlipidemia; MI, myocardial infarction.  

Figure 4. Relative importance of each predictive variable in the gradient boosting 

machine model for predicting venous thromboembolism. BMI, body mass index; GERD, 

gastroesophageal reflux disease; HTN, hypertension; IVCF, inferior vena cava filter; MIS, 

minimally invasive surgery; ASA, American Society of Anesthesiology; PE, pulmonary 

embolism. 

 

DISCUSSION 

This study demonstrates the potential utility of applying ML methods for pre-operative 

risk assessment in bariatric surgery. For predicting leak, ANN and XGB outperformed LR, 
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which performed very similarly to a previously reported LR model [17]. In our study, the potential 

clinical benefits of ML are most apparent when evaluating our leak models at high specificity, 

where ANN and XGB performed particularly well and could prove useful in preoperative 

screening. At 97.5% specificity, ANN predicted several-fold more leaks than LR and achieved a 

PPV over 10%. Among patients with a 10% probability of leak, the benefits of weight loss 

surgery are unlikely to outweigh the risks. These results suggest ML methods can offer clinically 

meaningful improvements in risk stratification, even for uncommon events that are difficult to 

predict using any statistical method. 

In the context of VTE, ANN and XGB perform similarly to LR, with XGB achieving a 

small but statistically significant advantage. All three of our models outperformed BariClot even 

though BariClot employs intra-operative information in prediction, likely because BariClot was 

trained on less data than our models. Recent contributions to the literature on VTE risk after 

weight loss surgery use a wider range of variables and incorporate patient data from 

perioperative, intra-operative, and post-operative time points than ours [13, 14, 16]. Our VTE risk 

models are less predictive than our leak models. This may be because widespread 

thromboprophylaxis among patients in MBSAQIP dampens the statistical signals available to 

VTE models.  

These results contribute to an emerging literature describing ML for medical risk 

assessment. ML techniques have recently been applied to tabular data to predict a variety of 

outcomes including delirium [24] and pediatric emergency department triage [23] with good results. 

However, ML does not always outperform traditional LR. For example, ML outperformed LR in 

just one of two recent, rigorous efforts to predict heart failure readmissions, likely due to 
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differences between the data sets used by each team [51–53]. Our results fit the general pattern that 

no single predictive modelling technique consistently prevails. 

Several limitations apply. First, outcomes of interest that occur beyond 30 days or for 

which patients do not present to the index institution may be missed [54]. However, the effect of 

increasing the incidence of outcomes in a test population on model performance is unclear, and 

may actually boost performance. Second, feature selection is limited to the specific variables and 

level of detail available in MBSAQIP. It is not clear that models developed using narrowly 

scoped, highly structured data will perform well outside of this context [20, 55]. Nevertheless, our 

results indicate that ML techniques may provide significant performance gains against LR. 

ANNs are especially powerful in learning from unstructured and multimodal data. Thus, we 

suspect access to a wider set of features would have improved the predictive performance of all 

of our models and of ANNs in particular. Additionally, pre-trained ANNs can be adapted to new 

data in a process called transfer learning. In this fashion, the insights gained through training in 

large administrative datasets can be harnessed to build high-performing models in specific 

clinical contexts with relatively small numbers of observations that can be collected on the scale 

of single institutions [56]. Third, we do not have sufficient data to externally validate our models. 

ANN and XGB were somewhat overfitted to the training data, but all three of our models 

performed similarly in the validation and testing data, confirming internal validity 

(Supplementary Table 5). Fourth, several variables, including the precise age of all patients in 

the 2015 cohort, were missing in a non-trivial number of cases. However, we split the data to 

equally distribute the missing data among the training, validation, and testing cohorts, and model 

performance should therefore account for bias introduced in imputation.  
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Our ML models are also limited in terms of usability. They employ more variables than 

clinicians can reasonably input at the point of care. Their utility will depend on assistive software 

that marries innovation in clinical data management to user interface design [20, 57]. Additionally, 

ML models are opaque and difficult to interpret. XGBs have the concept of relative importance, 

which measures the influence of each variable on model output [24, 58]. For example, our XGB 

suggests previously unreported predictors of leak including preoperative change in BMI, first 

assistant training level, race, ethnicity, and steroid use (Figure 3) [7, 59]. However, unlike the LR 

odds ratio, relative importance does not have clear numerical or directional meaning and lacks an 

intuitive semantic connection to model outcomes. ANNs have no such analogous concept and are 

particularly difficult to interpret. In some cases, interpretable algorithms like LR may be 

preferable to ANN or XGB even at the expense of predictive performance.  

Despite these limitations, we offer a number of innovations, particularly with respect to 

our ANN. It is implemented Pytorch, an industry-standard framework. It makes use of a number 

of contemporary techniques to optimize performance and training that are common in industry 

but only beginning to emerge in the medical outcomes literature [23]. These include non-

linearities between layers, dropout, batch normalization, and automatic early stopping. 

Additionally, our ANN uses neural embeddings for categorical variables. Traditionally, 

categorical variables are represented as one-hot for use in high-dimensional operations. By 

training feature vectors for each possible value of a categorical variable, we can represent values 

more meaningfully and in theory make better predictions [60]. This technique originated in natural 

language processing [61] and has been used in commercial software [62] and data science 

competitions [40]. This may be its first application to surgical outcomes. Others can 
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straightforwardly adapt our ANN to analyze any organized tabular data and modify its structure 

to experiment with deeper and more complicated architectures. 

 Artificial intelligence has the potential to transform surgery by transferring responsibility 

for complex cognitive and manual tasks from humans to machines, ultimately automating and 

amplifying the capabilities of surgical teams [20]. This study represents incremental progress 

toward that future and generally supports the expectation that advances in artificial intelligence 

and ML will meaningfully improve the performance of predictive models in surgery. To our 

knowledge, this is the first successful application of modern ML algorithms to characterize 

preoperative risk among WLS patients. Before these models can be deployed at the point of care, 

they must be validated in future and external cohorts. They may need to be retrained or updated 

with additional data in order to ensure they perform as expected in particular patient populations. 
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