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ABSTRACT OF THE THESIS 

Testing a New Respondent Driven Sampling Estimator 

by 

Ji Yeon Hong 

Master of Science in Statistics 

University of California, Los Angeles, 2016 

Professor Mark Stephen Handcock, Chair 

 

The main purpose of this paper is to review and refine a new respondent driven sampling 

estimator developed by Ian Fellows and test this estimator by simulation. The previous 

estimators predicted the proportion of the interesting group appropriately only under strong 

assumptions such as small sample fraction and no seed bias. However, in reality, these 

assumptions do not always hold. Therefore we need to develop a new estimator which is not so 

sensitive to those assumptions. My study starts from the brief idea of Ian Fellows. I clarified and 

refined his theoretical idea and notation, and tested it under different conditions. By the 

simulation, I could verify that the new estimator predicts the true proportion of the interesting 

group better than previous estimators. 
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CHAPTER 1 

Introduction 

 

 Respondent driven sampling has been used for studying the underrepresented people such 

as HIV infected persons, drug users and minority ethnic groups. However there has always been 

an issue over how well the RDS estimators measure the true proportion of the underrepresented 

people in population. The previous RDS estimators provide unbiased estimates only when the 

sample fraction is relatively small compared with populations, when there is not a severe 

problem of seed bias or seed dependency, and when there is not a strong homophily within 

groups. However, when one of those strong assumptions is violated, the previous RDS estimators 

are not able to predict the proportion of underrepresented group properly.  

 Therefore, the main purpose of this paper is to test the new estimator provided by Ian 

Fellows (2014). He suggests estimating the average degrees of each group by Gile’s (2011) 

successive sampling process. And he requires to estimate the transition probability from a certain 

group to another group through these estimated degrees. Since he claimed this idea through his 

brief notes, I need to clarify and refine his theoretical idea and the notations first. Then I will 

compare his new estimator with the previous estimators; RDS I, RDS II, and Gile’s SS estimator. 

And by constructing the bootstrap confidence intervals, I will test the unbiasedness and 

efficiency of the new estimator.  
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CHAPTER 2 

Review on Previous Estimators 

  

Salganik and Heckathorn (2006) developed the RDS I estimate. Different from random 

sampling, sampled the respondent-driven sampling implies the dependency between recruiters 

and recruitees, and the frequency of transitions between different groups. So they created an 

estimator, including the elements which indicate the number of degrees from a certain group to 

another group.  

Before I present the estimator, I need to set up some notations needed for the estimator. 

Let n be the number of a sample and 𝑛𝐴be the number of vertices which belong to group A in the 

sample. Let 𝛿𝑖 be the degree of individual i, and Let 𝛿𝐴 and 𝛿𝑥 be the average degrees of 

individual from group A and X respectively. And let 𝛿𝑈 be the average degree of total population. 

𝑅𝐴𝑋 indicates the total number of recruitments from group A to group X. Then the RDS I can be 

expressed as follows: 

 

𝑃𝐴 = 
𝑛𝐴

𝛿𝐴
(∑

𝑅𝐴𝑋𝑛𝑋

𝑅𝑋𝐴𝛿𝑋
)𝑋

−1
(Eq 2.1) 
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Volz & Heckathorn (2008) developed the RDS II estimate to adjust the homophily 

problem when we use respondent driven sampling. RDS II can be expressed as follows:  

 

𝑃𝐴 = (
𝑛𝐴

n
)( 

𝛿�̂�

𝛿�̂�
)   (Eq 2.2) 

 

In the equation 2.2, the left part is estimation for the proportion of the sampled members 

from group A when we assume a standard random sampling. The right part is correction of 

network effects. If 𝛿�̂� is greater than 𝛿�̂�, we are under-sampling individuals from group A so we 

inflate our estimate.  

Gile (2011) presented a successive sampling process for respondent driven sampling 

estimators. From a fixed degree distribution of the sample, she estimates the population 

distribution of degrees. And by simulating m times of successive sampling, she estimates the 

inclusion probability of the vertices with different number of degrees respectively. From 

mapping the degree distribution to its corresponding inclusion probability, she estimates the 

proportion of a certain group in population via the generalized Horvitz-Thompson estimator.  
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CHAPTER 3 

Reviewing and Clarifying Ian Fellows’ Idea on  

New RDS Estimator  

 

3.1 Large Sample Fraction Problem  

Let 𝑑1, … , 𝑑𝑁 be a set of fixed degrees for a population of size N, and 𝑦𝑖 ∈ {0, 1} be a 

binary outcome measure. Define 𝑔1 = {𝑖: 𝑦𝑖 = 1} and 𝑔0 = {𝑖: 𝑦𝑖 = 0}. Set 𝜃1as a transition 

probability from 𝑔1 to 𝑔0. And set 𝜃0as a transition probability from 𝑔0 to 𝑔1. If we consider 

mutual relationship between 𝑔1 and 𝑔0, we can identify: 

 

𝜃0 =
𝜃1 ∑ 𝑑𝑖𝑔1

∑ 𝑑𝑖𝑔0

    (Eq. 3.1.1) 

 

If we define 𝑑1
̅̅ ̅ =

1

𝑁1
∑ 𝑑𝑖𝑔1

 and 𝑑0
̅̅ ̅ =

1

𝑁0
∑ 𝑑𝑖𝑔0

, where 𝑁1 and 𝑁0 are the number of vertices in 

each group, we may rewrite this as: 

𝜃0 = 𝜃1
𝑑1̅̅̅̅ 𝑁1

𝑑0̅̅̅̅ 𝑁0
    (Eq. 3.1.2) 
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Rearranging gives us  

 

�̅� =
𝑁1

𝑁
=

𝜃0𝑑0̅̅̅̅

𝜃1𝑑1̅̅̅̅ +𝜃0𝑑0̅̅̅̅
   (Eq. 3.1.3) 

 

This is similar to the previous estimators; RDS I by Salganik & Heckathorn; and RDS II by  

Volz and Heckathorn. We can rearrange the RDS I estimator as follows:  

 

      𝑃�̂� = 
𝑛𝐴

𝛿𝐴
(∑

𝑅𝐴𝑋𝑛𝑋

𝑅𝑋𝐴𝛿𝑋
)𝑋

−1
=   

𝑛𝐴

𝛿𝐴
(∑

𝑅𝐴𝜎𝐴𝑋𝑛𝑋

𝑅𝑋𝜎𝑋𝐴𝛿𝑋
)𝑋

−1

   

                                     =   
𝑛𝐴

𝛿𝐴
(∑

𝑛𝐴𝜎𝐴𝑋𝑛𝑋

𝑛𝑋𝜎𝑋𝐴𝛿𝑋
)𝑋

−1
 

                                         =  
𝑛𝐴

𝛿𝐴
(

nAσAX

σXA
∑ δX

−1
X )−1 

                                           = 
𝑛𝐴

𝛿𝐴
(

nAσAX

σXA

∑ δ𝑖
−1

𝑖∈𝑆∩𝑋

𝑛𝑋
)−1 

                               = 
𝑛𝐴

𝛿𝐴
(

nAσAX

σXA

𝑛𝑋
𝛿𝑋
̂

𝑛𝑋
)−1 

                                  =  
σ𝑋𝐴𝛿�̂�

σ𝐴𝑋𝛿𝐴
    (Eq. 3.1.4) 

 

If we use Fellows’ notation, we can translate the set A into 𝑔1, and the set X into 𝑔0. Therefore 

the equation 3.1.4 can be rewritten as:  
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        �̅� = 
𝜃0̂𝑑0̅̅ ̅̂̅

𝜃1𝑑1̅̅ ̅̂̂̅
    (Eq. 3.1.5) 

 

Similarly, RDS II estimator can be rewritten as: 

�̅� = (
𝑛𝐴

n
)( 

𝛿�̂�

𝛿�̂�
) 

                    = (
𝑛1

n
)( 

�̂̅�

𝑑1̅̅ ̅̂̅
)    (Eq. 3.1.6) 

 

By comparing the equation 3.1.3 and the equation 3.1.5, we can notice that when we 

estimate the proportion of our interesting group by RDS I, we inflate the estimate by removing 

𝜃0̂𝑑0
̅̅ ̅̂ from the denominator. If we compare equation 3.3 and 3.6, we can find that RDS II in 

equation 3.1.6 inflates the estimate when �̂̅� is greater than 𝑑1
̅̅ ̅̂, which means when we are under-

sampling 𝑔1. Given that RDS sampling is used for estimating the underrepresented group and 

given that homophily occurs frequently, RDS I and RDS II are approximate approaches for 

estimating the proportion of hard-to-reach groups. However, these estimators are biased if we 

compare them with the true value in equation 3.1.3, and the bias gets a significant problem in 

particular when the sample fraction is large or there is a seed-bias.  
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3.2 The Review on Ian Fellows’ New RDS Estimator 

One of the main purposes of this paper is to clarify Ian Fellows’ theoretical idea on new 

estimator and refine some of the notations he used.  In his brief note, he claims that we need to 

develop a new estimator, which can rigorously estimate the average degrees of 𝑔1 and 𝑔0 

respectively. And he also suggests to estimate 𝑑1 and 𝑑0 by Gile’s successive sampling (SS) 

process. From these estimated 𝑑1 and 𝑑0, we can estimate the transition probability 𝜃1 (from 𝑔1 

to 𝑔0) and 𝜃0 (from 𝑔0 to 𝑔1) as well. Then we can treat an RDS sample as the time-ordered 

sample. Let 𝑡1
𝑖  be a binary random variable, which indicates whether a vertex in 𝑔1 is linked to 

𝑔0 or not at a time i; the time i indicates each wave of the RDS sample. Since the sample fraction 

is large, he develops the way to estimate the transition probability in non-sampled vertices. Let 

𝑟0 be the total number of edges originating from non-sampled members of 𝑔0 to non-sampled 

members of 𝑔1. And let 𝑟1 be the total number of edges originating from non-sampled members 

of group 𝑔1 to 𝑔0. Finally, let 𝑛𝑜𝑢𝑡1 be the number of non-sampled vertices, which belong to 𝑔1, 

and let 𝑛𝑜𝑢𝑡0 be the number of non-sampled vertices, which belong to 𝑔0. Then we can write 

P(𝑡1) as: 

 

P(𝑡1) = ∏ 𝑝 (𝑛
𝑖=2 𝑡1

𝑖  | 𝑡1
𝑖−1 ) = ∏  𝑛

𝑖=2 (𝜃1
𝑖−1)𝑟1 (1 − 𝜃1

𝑖−1)𝑛𝑜𝑢𝑡1𝑑𝑜𝑢𝑡1̅̅ ̅̅ ̅̅ ̅̂̅ −𝑟1   (Eq. 3.2.1) 

 

From the equation 3.2.1, we can estimate 𝜃1, which maximizes P(𝑡1) at time i. Let p(𝑡1) 

be the probability of a binary random variable at time i, where the observed number of degrees 
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from 𝑔1 to 𝑔0 in sample is 𝑟1. Then p(𝑡1) shows a binominal distribution function.  For 

simplification, we can take the log of p(𝑡1): 

 

ln p(𝑡1) = 𝑟1ln𝜃1 + (𝑛𝑜𝑢𝑡1𝑑𝑜𝑢𝑡1
̅̅ ̅̅ ̅̅ ̅̂ − 𝑟1) ln(1 − 𝜃1)   (Eq. 3.2.2) 

 

We can take a derivative of the equation 3.2.2 and set it as zero to maximize p(𝑡1): 

𝑑 lnp(𝑡1)

𝑑𝜃1
=  

𝑟1

𝜃1
−

𝑛𝑜𝑢𝑡1𝑑𝑜𝑢𝑡1
̅̅ ̅̅ ̅̅ ̅̂ − 𝑟1

1 − 𝜃1
= 0  (Eq 3.2.3) 

 

If we solve the equation 3.2.3, we can estimate 𝜃1 as 
𝑟1

𝑛𝑜𝑢𝑡1𝑑𝑜𝑢𝑡1̅̅ ̅̅ ̅̅ ̅̅ ̅̂ . Similarly, we can estimate 𝜃0 as 

𝑟0

𝑛𝑜𝑢𝑡0𝑑𝑜𝑢𝑡0̅̅ ̅̅ ̅̅ ̅̂̅
.  

 

We can rewrite this estimate as: 

𝜃1
𝑖= 

𝑟1
𝑖−1

𝑢1
𝑖−1−𝑧1

𝑖−1  (Eq 3.2.4) 

𝜃0
𝑖 = 

𝑟0
𝑖−1

𝑢0
𝑖−1−𝑧0

𝑖−1  (Eq 3.2.5) 

 𝑢1
𝑖  is the total number of degrees originating from non-sampled vertices in group1, which 

is equal to 𝑁1𝑑1
̅̅ ̅ - ∑ 𝑑𝑗𝑗∈𝑠1

𝑖−1 , and 𝑢0
𝑖  is the total number of degrees originating from non-sampled 
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vertices in group0, which is equal to 𝑁0𝑑0
̅̅ ̅ - ∑ 𝑑𝑗𝑗∈𝑠0

𝑖−1 . 𝑠1
𝑖  and 𝑠0

𝑖  are the sampled vertices in 

group1 and group0 respectively. 

 𝑧1
𝑖  is the total number of degrees originating from non-sampled vertices of group1 to the 

sample vertices in either group. 𝑧0
𝑖  is the total number of degrees originating from non-sampled 

vertices of group0 to the sample vertices in either group. These can be estimated by 

 

𝑧1
𝑖 = (1-𝜃1) 𝑢1

𝑖−1 
𝑁1𝑑1̅̅̅̅ −𝑢1

𝑖−1−𝑐1
𝑖−1

𝑁1𝑑1̅̅̅̅  
 + 𝜃1𝑢1

𝑖−1 
𝑁0𝑑0̅̅̅̅ −𝑢0

𝑖−1−𝑐0
𝑖−1

𝑁0𝑑0̅̅̅̅  
 (Eq 3.2.6) 

𝑧0
𝑖 = (1-𝜃0) 𝑢0

𝑖−1 
𝑁0𝑑0̅̅̅̅ −𝑢0

𝑖−1−𝑐0
𝑖−1

𝑁0𝑑0̅̅̅̅  
 + 𝜃0𝑢0

𝑖−1 
𝑁1𝑑1̅̅̅̅ −𝑢1

𝑖−1−𝑐1
𝑖−1

𝑁1𝑑1̅̅̅̅  
(Eq 3.2.7) 

 

 As I mentioned above, 𝑟1
𝑖 indicates the total number of edges originating from non-

sampled members of group 𝑔1 to 𝑔0. 𝑟0
𝑖 indicates the total number of edges originating from non-

sampled members of group 𝑔0 to 𝑔1. These can be estimated by, 

𝑟1
𝑖 = 𝜃1𝑢1

𝑖−1 
𝑢0

𝑖−1

𝑁0𝑑0̅̅̅̅  −𝑐0
𝑖−1 (Eq 3.2.8), 

𝑟0
𝑖 = 𝜃0𝑢0

𝑖−1 
𝑢1

𝑖−1

𝑁1𝑑1̅̅̅̅  −𝑐1
𝑖−1 (Eq 3.2.9), 

 𝑐1
𝑖  is the sum of recruiter-recruitee edges incident on each node in group 1. 𝑐0

𝑖  is the sum 

of recruiter-recruitee edges incident on each node in group 0. 
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To summarize, Ian Fellows’ new estimator takes the following processes: 

1) Set i to 1 for the first iteration,  𝜃1
�̂� and 𝜃0

�̂�  to the sample fractions and �̂�0 (initial value for 

the proportion of an interesting group) to the RDS I (SH) estimate. 

2) Estimate 𝑑1
̅̅ ̅̂

𝑖
 and  𝑑0

̅̅ ̅̂
𝑖
 using Gile’s successive sampling (SS) process with population 

sizes of (N-s) �̂�𝑖−1 and (N-s)(1-�̂�𝑖−1) respectively. (N is the number of population and s 

is the number of sample) 

3) Using the degrees in step 2, estimate 𝜃1
�̂�  

4) Estimate �̂�𝑖 = 
𝜃0

�̂� 𝑑0̅̅̅̅ 𝑖

𝜃0
�̂� 𝑑0̅̅̅̅ 𝑖

+𝜃1
�̂� 𝑑1̅̅̅̅ 𝑖   

5) If not converged, set i to i+1 and go to step 2. 

6) Let the final estimate be �̂�𝑖. 
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CHAPTER 4 

Data 

  

In this research, I will use the two datasets in RDS package in R; fauxmadrona and 

fauxsycamore. These two datasets have different features regarding seed-dependency and sample 

fraction, which is good for testing the new estimator under different conditions. In both datasets, 

each vertex can be categorized into two groups; a group with a disease and a group without a 

disease. And we are interested in estimating the proportion of diseased persons.  

As for fauxmadrona, the population is 1000 people in Seattle and the true proportion of 

diseased persons is 0.20. Fauxmadrona is the respondent driven sample with n=500, so the 

sample fraction is 50%. In fauxmadrona, out of 10 seeds, only two seeds are diseased persons, so 

the proportion of diseased persons in seeds is 20%. Therefore, we can say that there is no seed 

bias or seed dependency in fauxmadrona.  

As for fauxsycamore, the population is 715 people in Oxford and the true proportion of 

diseased persons is 0.20. Fauxsycamore is the respondent driven sample with n=500 so the 

sample fraction is about 70%. In fauxsycamore, all 10 seeds are diseased persons, so the 

proportion of diseased persons in seds is 100%. Therefore, we can say that there is an extreme 

seed bias or seed dependency in fauxsycamore.  

Table 4.1 shows a summary statistic on fauxmadrona and fauxsycamore. 
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Table 4.1: A Summary Statistic on Fauxmadrona and Fauxsycamore 

Data City Seed Bias 

Population 

Size 

Sample 

Size 

Sample 

Fraction 

True Proportion of 

Diseased Persons 

Fauxmadrona Seattle No Seed Bias 1000 500 50% 0.2 

Fauxsycamore Oxford 

Extreme 

Seed Bias 

715 500 70% 0.2 
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CHAPTER 5 

Analysis 

 

5.1 Comparison between Previous Estimators and the New Estimator 

 Using the process described in Chapter 3, I estimated the proportion of diseased persons 

in two datasets. The table 5.1 shows the comparison between the new estimator and the previous 

estimators. As for fauxmadrona, the New Estimate predicts the proportion of diseased persons 

accurately. Compared with RDS I, RDS II and Gile’s SS estimator, the New Estimate’s value is 

closer to the true value. The sample fraction of fauxmadrona and fauxsycamore is 50% and 70% 

respectively, which is not small, so that we can say that the new estimate works better under the 

large sample fraction condition than previous estimators. Furthermore, the new estimator 

predicts the true value better even under the extreme seed bias condition where all of the ten 

seeds are diseases people in fauxsycamore. From this result, we can say that our new estimator 

alleviates the problem of large sample fraction and seed bias compared with previous estimators. 

The difference between Gile’s successive sampling and the New Estimator is that Gile’s 

successive sampling calculates the inclusion probability corresponding to the degree distribution, 

while the New Estimator calculates the transition probability corresponding to the degree 

distribution. We can predict that the transition probability is more strongly affected by seed bias 

rather than inclusion probability, since the transition probability is directly influenced by the 

degree of seed bias, while the inclusion probability is directly influenced by the transition 
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probability. So the two steps are needed to estimate the inclusion probability, which makes it 

difficult to estimate the inclusion probability accurately without calculating the transition 

probability itself when there is an extreme seed bias. However, by estimating the transition 

probability directly, the new estimator succeeds in estimating the true value correctly.  

 

Table 5.1: The Comparison between RDS Estimators 

Data True Value RDS I (SH) RDS II (VH) Gile’s SS New Estimator 

Fauxmadrona 0.20 0.1592 0.1644 0.1941 0.1961 

Fauxsycamore 0.20 0.1087 0.1372 0.1814 0.1859 

 

5.2 Bootstrapping for Respondent Driven Sampling 

 In respondent driven sampling, we need to use a special bootstrapping procedure, which 

is different from that in used for random sampling. Salganik (2006) developed a bootstrapping 

which can be used for respondent driven sampling, and verified that the coverage probability of 

confidence interval established from this process is higher. He claims that since the respondent 

driven sampling process generates dependencies in sample selection process, it is required to 

mimic such a procedure. Different from traditional bootstrapping which resample the observed 

samples randomly with replacement until the number of a replicate sample reaches to that of 

original sample, Salganik first divides the sample members into two groups based on how they 

were recruited. If a person is recruited from the person who belongs to group A, he or she is 

categorized as 𝐴𝑟𝑒𝑐. And if a person is recruited from the person who belongs to group B, he or 
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she is categorized as 𝐵𝑟𝑒𝑐. The first step of bootstrapping starts with resampling seeds randomly 

with a uniform selection probability. Then based on the group membership 𝐴𝑟𝑒𝑐 or 𝐵𝑟𝑒𝑐, we can 

draw the persons with replacement. For example, if the chosen seed is recruited from group A, 

we draw with replacement from the set of sample members who were recruited by someone from 

group A. Then based on the group membership of the newly chosen persons, we sample the 

persons with replacement from either 𝐴𝑟𝑒𝑐 or 𝐵𝑟𝑒𝑐. This process is repeated until the number of 

bootstrap sample reaches to that of original sample. By iterating this whole process with a certain 

number of time m, we can create m number of replicate samples. And from each of these 

samples, we can estimate the proportion of our interesting group; m number of estimates is 

established. Finally, we can construct bootstrap confidence interval from these m estiamtes.  

 

5.3 Bootstrapping Result 

 I used a specific bootstrap procedure explained in 5.2, to compare the bootstrap 

confidence intervals of four different respondent driven sampling estiatmors; RDS I, RDS II, 

Giles’SS and the New Estimator. The table 5.3.1 shows the 95% bootstrap confidence intervals 

of fauxmadrona with 50 times replicates. The lengths of bootstrap confidence interval for all four 

estimators are not quite different from each other; it is about 0.13 to 0.14. However RDS I and 

RDS II do not include the true value 0.20 in their bootstrap confidence intervals. Gile’s SS 

estimate contains the true value in its bootstrap confidence interval, and the mean value of 

estimates from bootstrapping is almost same as the true value. The New Estimate also contains 

the true value in its bootstrap confidence intervals. Therefore we can reconfirm that the New 

Estimator works better than RDS I and RDS II but not much better than Gile’s SS estimator. 
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Table 5.3.1: The Comparison of Bootstrap Confidence Intervals for Fauxmadrona 

 RDS I RDS II Gile’s SS New Estimator 

Lower Bound of 

95% Bootstrap CI 

0.0808 0.0888 0.1268 0.1178 

Mean 0.1592 0.1641 0.1945 0.1874 

Upper Bound of 

95% Bootstrap CI 

0.2303 0.2395 0.2623 0.2561 

 

 The table 5.3.2 shows the 95% bootstrap confidence intervals of fauxsycamore with 50 

times of iterations. Gile’s SS estimator has the shortest length of bootstrap confidence interval, 

and RDS I and RDS II come next. The New Estimator shows the longest length of bootstrap 

confidence interval. Therefore, we may conclude that the New Estimator is an inefficient 

estimator for predicting true proportion. However, the RDS I and RDS II do not include true 

value 0.2408 in their confidence intervals. Gile’s SS estimator contains the true value and the 

mean value from the bootstrapping is almost close to the true value. The New Estimator contains 

the true value in its bootstrapping confidence interval. So we can verify that the New Estimator 

works better than RDS I and RDS II even under large sample fraction and extreme seed bias 

problem. This result is noteworthy in terms that even under fauxmadrona, which has relatively 

smaller sample fraction, the confidence interval of RDS I and RDS II did not include true values. 

 From the table 5.3.1 and 5.3.2, we can conclude that the New Estimator provides us 

almost unbiased estimate even under the conditions of large sample fraction and extreme seed 

bias. The New Estimator estimates the true value more accurately than RDS I and RDS II, but 
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compared with the Gile’s SS estimator, it is less efficient and a little bit more biased. However, 

we cannot generalize this result, since in this study, I only used the two specific data. There 

should be much more study on figuring out the relationship or the interaction between large 

sample fraction and seed bias problem. And in order to more accurately compare the different 

estimates, we also need to study the way to calculate the variance of this New Estimate. As I 

showed in the previous section 5.1, this study claims that the New Estimator is much less biased 

than RDS I and RDS II even under the extreme seed bias and large sample fraction problem, and 

sometimes it can work better than Gile’s SS estimator.  

 

Table 5.3.2: The Comparison of Bootstrap Confidence Intervals for Fauxsycamore 

 RDS I RDS II Gile’s SS New Estimator 

Lower Bound of 

95% Bootstrap CI 

0.0379 0.0718 0.1395 0.1065 

Mean 0.1087 0.1455 0.2032 0.1786 

Upper Bound of 

95% Bootstrap CI 

0.1802 0.2191 0.2670 0.2507 
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Figure 5.3.1: Boxplots of Bootstrap Confidence Interval for the New Estimate 
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CHAPTER 6 

Discussion 

 

 By comparing the estimates of the New Estimator and the previous estimators and by 

comparing the bootstrap confidence intervals, we could find that the New Estimator predicts the 

true proportion of underrepresented group in population better than RDS I and RDS II even 

under the violation of some strong assumptions; large sample fraction and extreme seed bias.  

 Actually, this study is the opening research for establishing a New Estimator for 

respondent driven sampling. We need to test the estimator under diverse conditions. In this study, 

I only examined the goodness of the estimator under large sample fraction and extreme seed bias. 

And actually these two problems were intertwined with each other in my dataset. So we need to 

fix one of the conditions as well. Moreover, there are still several strong assumptions when we 

use the previous estimators, such as with-replacement sampling process and weak homophily. 

We should test the new estimator under the without-replacement sampling process and strong 

homophily condition. Furthermore, we also need to build up a theoretical variance of this new 

estimator to make this estimator as a rigorous one. There are tremendous tasks regarding this 

New Estimator from strengthening the mathematical theory to simulating it with a variety set of 

data. This paper just started the first step. 
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APPENDIX: R-code for Testing a New Estimator 

 

########## Establishing a New Estimator 

library(RDS) 

Ian.estimate<-function(rds.data,init, 

N=1000,number.ss.samples.per.iteration=500,number.ss.iterations=5) 

{ 

 

    g1<-subset(rds.data,subset=(disease==1)) 

    classes1<-sort(unique(g1$degree)) 

    nums1<-table(g1$degree)  

    weight1<-classes1/sum(g1$degree)  

    nrow1=length(classes1) 

 

    g0<-subset(rds.data,subset=(disease==0)) 

    classes0<-sort(unique(g0$degree)) 

    nums0<-table(g0$degree)  
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    weight0<-classes0/sum(g0$degree)  

    nrow0=length(classes0) 

 

    theta<-number.ss.samples.per.iteration/N     

    theta1<-c(rep(0,number.ss.iterations))       

    theta0<-c(rep(0,number.ss.iterations)) 

    yhat<-c(rep(0,number.ss.iterations)) 

    prob1<-matrix(0,nrow1,number.ss.iterations) 

    prob0<-matrix(0,nrow0,number.ss.iterations) 

    d1<-c(rep(0,number.ss.iterations)) 

    d0<-c(rep(0,number.ss.iterations)) 

    N1<-c(rep(0,number.ss.iterations)) 

    N0<-c(rep(0,number.ss.iterations)) 

    c1<-c(rep(0,number.ss.iterations)) 

    c0<-c(rep(0,number.ss.iterations)) 

    s1<-c(rep(0,number.ss.iterations)) 

    s0<-c(rep(0,number.ss.iterations)) 
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    u1<-c(rep(0,number.ss.iterations)) 

    u0<-c(rep(0,number.ss.iterations)) 

    z1<-c(rep(0,number.ss.iterations)) 

    z0<-c(rep(0,number.ss.iterations)) 

    r1<-c(rep(0,number.ss.iterations)) 

    r0<-c(rep(0,number.ss.iterations)) 

     

     

    theta1[1]<-theta 

    theta0[1]<-theta 

    yhat[1]<-init 

    prob1[,1]<-weight1 * sum(nums1/weight1) / ((N-number.ss.samples.per.iteration)*(yhat[1])) 

    prob0[,1]<-weight0 * sum(nums0/weight0) / ((N-number.ss.samples.per.iteration)*(1-yhat[1])) 

    d1[1]<-sum((nums1/prob1[,1])*classes1)/((N-number.ss.samples.per.iteration)*(yhat[1])) 

    d0[1]<-sum((nums0/prob0[,1])*classes0)/((N-number.ss.samples.per.iteration)*(1-yhat[1])) 

    N1[1]<-(N*theta*d1[1])/(theta*d1[1]+theta*d0[1])    

    N0[1]<-(N*theta*d0[1])/(theta*d1[1]+theta*d0[1])    
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    c1[1]<-nrow(rds.data[rds.data$wave==0&rds.data$disease==1,]) 

    c0[1]<-nrow(rds.data[rds.data$wave==0&rds.data$disease==0,]) 

    s1[1]<-0 

    s0[1]<-0 

    u1[1]<-N1[1]*d1[1]-s1[1] 

    u0[1]<-N0[1]*d0[1]-s0[1] 

    z1[1]<-((1-theta1[1])*u1[1]*(N1[1]*d1[1]-u1[1]-

c1[1])/(N1[1]*d1[1]))+theta1[1]*u1[1]*(N0[1]*d0[1]-u0[1]-c0[1])/(N0[1]*d0[1]) 

    z0[1]<-((1-theta0[1])*u0[1]*(N0[1]*d0[1]-u0[1]-

c0[1])/(N0[1]*d0[1]))+theta0[1]*u0[1]*(N1[1]*d1[1]-u1[1]-c1[1])/(N1[1]*d1[1]) 

    r1[1]<-theta1[1]*u1[1]*u0[1]/(N0[1]*d0[1]-c0[1]) 

    r0[1]<-theta0[1]*u0[1]*u1[1]/(N1[1]*d1[1]-c1[1]) 

             

    for(i in 2:number.ss.iterations){ 

     theta1[i]<-r1[i-1]/(u1[i-1]-z1[i-1]) 

     theta0[i]<-r0[i-1]/(u0[i-1]-z0[i-1]) 

     yhat[i]<-(theta0[i]*d0[i-1])/(theta0[i]*d0[i-1]+theta1[i]*d1[i-1])    

     prob1[,i]<-weight1 * sum(nums1/weight1) / ((N-number.ss.samples.per.iteration)*(yhat[i])) 
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     prob0[,i]<-weight0 * sum(nums0/weight0) / ((N-number.ss.samples.per.iteration)*(1-yhat[i])) 

     d1[i]<-sum((nums1/prob1[,i])*classes1)/((N-number.ss.samples.per.iteration)*(yhat[i])) 

     d0[i]<-sum((nums0/prob0[,i])*classes0)/((N-number.ss.samples.per.iteration)*(1-yhat[i])) 

     N1[i]<-(N*theta1[i]*d1[i])/(theta1[i]*d1[i]+theta0[i]*d0[i])    

     N0[i]<-(N*theta0[i]*d0[i])/(theta1[i]*d1[i]+theta0[i]*d0[i]) 

     c1[i]<-c1[i-1]+sum(rds.data[rds.data$wave==i-

1&rds.data$disease==1&rds.data$rec.cat==1,]$degree) 

     c0[i]<-c0[i-1]+sum(rds.data[rds.data$wave==i-

1&rds.data$disease==0&rds.data$rec.cat==0,]$degree) 

     s1[i]<-s1[i-1]+sum(rds.data[rds.data$wave==i-1&rds.data$disease==1,]$degree) 

     s0[i]<-s0[i-1]+sum(rds.data[rds.data$wave==i-1&rds.data$disease==0,]$degree) 

     u1[i]<-N1[i]*d1[i]-s1[i] 

     u0[i]<-N0[i]*d0[i]-s1[i] 

     z1[i]<-((1-theta1[i])*u1[i]*(s1[i]-c1[i])/(N1[i]*d1[i])-c1[i])+theta1[i]*u1[i]*(s0[i]-

c0[i])/(N0[i]*d0[i]-c0[i]) 

     z0[i]<-((1-theta0[i])*u0[i]*(s0[i]-c0[i])/(N0[i]*d0[i])-c0[i])+theta0[i]*u0[i]*(s1[i]-

c1[i])/(N1[i]*d1[i]-c1[i]) 

     r1[i]<-theta1[i]*u1[i]*u0[i]/(N0[i]*d0[i]-c0[i]) 
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     r0[i]<-theta0[i]*u0[i]*u1[i]/(N1[i]*d1[i]-c1[i]) 

     } 

     return(yhat[5]) 

} 

 

Ian.estimate(new.fauxmadrona,0.1592) 

Ian.estimate(new.fauxsycamore,0.1087) 

 

########## Creating Bootstrap Data and Calculating Bootstrap Intervals 

recruiter.category<-function(rds.data,seed.count){ 

rc<-c(rep(0,nrow(rds.data))) 

rc[1:seed.count]<-NA 

for (i in (seed.count+1):nrow(rds.data)){ 

if (fauxmadrona[which(rds.data$id==rds.data$recruiter.id[i]),4]==1){ 

rc[i]<-1} 

if (fauxmadrona[which(rds.data$id==rds.data$recruiter.id[i]),4]==0){ 

rc[i]<-0 
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} 

} 

return(rc) 

} 

 

rec.cat<-recruiter.category(fauxmadrona,10) 

new.fauxmadrona<-cbind(fauxmadrona,rec.cat) 

new.fauxmadrona<-as.rds.data.frame(new.fauxmadrona,network.size="degree") 

 

rec.cat<-recruiter.category(fauxsycamore,10) 

new.fauxsycamore<-cbind(fauxsycamore,rec.cat) 

new.fauxsycamore<-as.rds.data.frame(new.fauxsycamore,network.size="degree") 

 

resampling<-function(rds.data,n){ 

resamp.data<-rds.data 

resamp.data[1,]<-rds.data[sample(nrow(rds.data),1),] 

for (j in 2:n){ 



 

27 
 

 if (resamp.data[j-1,4]==1){ 

 resamp.data[j,]<-rds.data[sample(which(rds.data$rec.cat==1),1),] 

} 

 if (resamp.data[j-1,4]==0){ 

 resamp.data[j,]<-rds.data[sample(which(rds.data$rec.cat==0),1),] 

} 

} 

return(resamp.data) 

} 

 

resampling(new.fauxmadrona,500) 

resampling(new.fauxsycamore,500) 

 

boot.ci<-function(rds.data,N){ 

est<-rep(0,N) 

init<-rep(0,N) 

boot.data<-rep(list(rds.data),N) 
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for (i in 1:N){ 

boot.data[[i]]<-resampling(rds.data,500) 

init[i]<-RDS.I.estimates(rds.data,"disease")$estimate[[2]] 

est[i]<-Ian.estimate(boot.data[[i]],init[i]) 

} 

boxplot(est) 

abline(h=0.2) 

list(quantile(est, probs = c(2.5,97.5)/100),mean(est)) 

} 

 

par(mfrow=c(1,2)) 

 

boot.ci(new.fauxmadrona,500) 

boot.ci(new.fauxsycamore,500) 
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