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A UNIFIED APPROACH TO MIXED FINITE ELEMENT METHODS

By

Shmuel L. Weissman

ABSTRACT

A general formulation to generate assumed stress and strain fields in the context of
mixed finite element methods is introduced. Both the Hellinger-Reissner and Hu-Washizu
variational principles are considered. Finite elements based upon classical isoparametric
displacement formulations exhibit locking behavior when applied to thin plates (plate
bending) and to the nearly incompressible limit (plane strain). Therefore, the plate bend-
ing problem, based on the Reissner-Mindlin plate theory, and the in-plane problems (plane
stress/strain) are used to illustrate the proposed formulation. While the objectives set to
overcome locking at the nearly incompressible limit and shear locking seem to be unre-

lated, the same methodology is applied to both problems.

In formulating the plate bending problem an explicit coupling between the assumed
moment and shear resultant fields is introduced in both variational principles. Also, in the
case of the Hu-Washizu variational principle, an explicit coupling between the assumed
curvature and assumed shear strain fields is introduced. It is demonstrated that as a result
of these couplings the proposed formulations lead to elements that, as the thickness is
reduced to zero, converge to the thin plate solution and do not lock in shear. Further-

more, shear locking is avoided at the element level.

For the case of plain strain, it is shown that the strain field generated by the proposed

method can model a nearly incompressible state.

A method to generate fields possessing the desired properties is presented. The strain

field is assumed as the sum of two independent fields, labeled "compatible” and



"

"incompatible.” The assumed incompatible strain is constructed such that the resulting ele-
ments pass the patch test, provided the assumed displacement field can model the associ-
ated state of deformations. The desired stress field to be used in the variational principles
is obtained by constraining the complementary energy associated with the incompatible
modes to vanish in a weak sense over each element. The desired strain field is obtained
by constraining the "strain energy” resulting from the coupling of the assumed compatible
and incompatible strains to vanish in a weak sense over each element. As a result, if the

material properties are constant over each element domain, the incompatible strains arc

identically zero pointwise.

The elements formulated by this method are shown to yield excellent results when
applied to a wide range of problems. Furthermore, the variationally consistant stress resul-

tants recovered at the element level produce excellent results.
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CHAPTER 1: INTRODUCTION

1.1 Objective and Motivation

The objective of this dissertation is to present a general formulation that can be used

to generate plate bending elements suitable for both thin and thick plate applications, as

well as to generate membrane elements suitable for both plane stress and plane strain appli-

cations. These elements are to exhibit the following properties:

Shear locking is avoided at the element level (plate bending).

Locking at the nearly incompressible limit is avoided at the element level (plane

strain).

Recovery of stress resultants (i.e., membrane, transverse shear and moment
resultants) is variationally consistent with the formulation used to obtain the dis-

placement field.
Good stress resultants are recovered at the element level.

Convergence to the thin plate, or Kirchhoff, solution as the thickness is reduced

to zero (plate bending).
Correct rank (no spurious zero-energy modes).
Applicable for both thin and thick plate problems (plate bending).

Performance independent of coordinate system or user input data.

To avoid shear locking, much current plate element technology (see Section 1.2.2)

resorts to the sharing.of shear constraints across element boundaries. Consequently, shear

locking is avoided only at the global level. In order to maintain full generality of the finite

element method, different types of elements must be able to interact. This objective may

not be obtained if the elements need to share constraints with their neighboring elements.

As an example, consider the case of stress intensity analysis near cracks. In this class of

problems special elements are used to model the vicinity near the crack tip. Current
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element technology requires modifying these elements so that the constraint-sharing scheme
will be applicable. For this reason it is essential that the element formulation does not
impose constraints on its neighbors; i.e., shear locking should be avoided at the element

level as well as at the global level.

Current finite element technology involves a different treatment for each field.
Unfortunately, if special techniques are used for each field, no gain is obtained in solving
other problems of similar type (i.e., same type of governing differential equations). For
example, the B-bar method used to overcome locking at the nearly incompressible limit is
not beneficial in solving the shear locking problem in thin plates and shells which account
for shear deformations. Also, many recent developments of shell elements use different
types of formulations and/or interpolations for the membrane, bending, and transverse
shear parts of the theory (e.g., Simo, Fox & Rifai [1989]). From a conceptual perspective
it is desirable to have a uniform treatment of all fields so that a better understanding of the
finite element method will be obtained. Ideally, the same methodology would be used to
solve all problems. For example, the same methodology would be used to avoid shear
locking in thin plates and shells as would be used to overcome locking at the nearly

incompressible limit in plane strain.

The complete solution of a mechanical problem involves the determination of the
state of displacements and the state of stresses at any given point of the body at any given
time. Recent finite element technology has made considerable progress in determining the
state of displacements in plates and shells; currently, however, shear stress resultants are
not recovered from a variationally consistent method (e.g., Hinton & Huang [1986]). It
follows that the shear stress resultants recovered are only a weak approximation; therefore,
shear stress resultants must be approximated as constant throughout the element. Further-
more, the stresses are usually the limiting factor on the design and not the displacement
state. Accordingly, if is essential to develop a fully consistent and unified treatment of the

field variables together with the use of appropriate variational methods.
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1.2 Background

1.2.1 Plane Stress/Strain

Solution of problems by the finite element method necessitates that certain require-
ments be fulfilled by the formulation employed. Lax & Richtmyer [1956] proved that con-
sistency and stability are necessary, and, for linear problems, they are sufficient require-
ments for convergence. Isoparametric formulations are known to satisfy consistency and
stability conditions provided sufficient order quadrature is used (Bicanic & Hinton [1979]).
However, equally well known is the "locking” behavior of these types of formulations for

plane strain linear isotropic elasticity models with high Poisson’s ratio (e.g., v > 0.499).

The simplest way to overcome locking at the nearly incompressible limit is to use an
under-integrated stiffness matrix. In this case, the stiffness matrix satisfies necessary accu-
racy (consistency) requirements; however, it does not meet stability requirements. To
overcome this difficulty, Hughes [1977] applied the selective reduced integration (SRI)
technique to develop element stiffness matrices through the assumed displacement method.
The SRI scheme used under-integration on the volumetric strain terms and full-integration
on the deviatoric strain terms. Malkus & Hughes [1978] showed that the SRI method falls
within the concept of a mixed finite element method for plane strain and three-dimensional
analysis.

Hughes [1980] refined the SRI scheme into a general method, known as the B-bar
method, for three-dimensional and axisymmetric elements. More recently, Simo, Taylor &
Pister [1985] showed that it is possible to derive the B-bar method from the Hu-Washizu
variationa!l principle.

Belytschko and co-workers (e.g., Belytschko, Ong, Liu & Kennedy [1984] and Liu
& Belytschko [1984]) took a different approach to overcome locking at the nearly
incompressible limit. Using a projection operator, Flanagan & Belytschko [1981] showed

that the usual finite element approximation can be rewritten in a form that leads to
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decoupling of the stiffness matrix. The stiffness matrix is written as the sum of the decou-
pled under-integrated stiffness matrix and a "stabilization" stiffness matrix. This decou-
pling leads to an efficient implementation as well as to a better understanding of the ele-
ment behavior in limit situations (such as the nearly incompressible limit). Following this
approach Belytschko & Bachrach [1986] presented formulations based upon the Hu-
Washizu functional. The best of the elements presented is known as the Quintessential
Bending Incompressible (QBI). This element, however, is not frame invariant (i.e., it is
dependent upon the coordinate system) unless a unique local coordinate system is defined
and the element stiffness matrix and load vector, defined in the local coordinate system,

are transformed to the global coordinate system.

Wilson, Taylor, Doherty & Ghaboussi [1973] took yet another approach. They
observed that when the four-node element, based upon isoparametric displacement formu-
lation, is subjected to a pure bending load it deforms in shear rather than in bending. To
improve the behavior in bending they introduced a set of incompatible displacements. It
was soon realized, however, that the distorted element did not pass the constant strain
patch test. Taylor, Beresford & Wilson [1976] modified the incompatible modes element
so that the resulting element passed the patch test. This result was obtained by replacing
the derivatives associated with the incompatible modes with their values at the center of the
element. Only recently it was observed that these element do not exhibit locking behavior

when applied to model plane strain problems at the nearly incompressible limit.

Pian & Sumihara [1984] presented a four-node plane stress element based upon the
Hellinger-Reissner variational principle. This element has excellent characteristics in bend-
ing applications. Also, when modified to account for the plane strain constitutive rela-
tions, it has excellent characteristics at the nearly incompressible limit. In addition, the
element sensitivity to mesh distortion from a parallelogram shape appears to be the smallest
of any four-node element evaluated to date. The assumed independent stress field is sub-

jected to a set of constraint equations. These equations are interpreted as satisfying the
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equilibrium equations in a weak sense relative to a set of incompatible displacement
modes. Initially, the formulation required a quadratic perturbation of the element shape
in order to obtain the required number of independent constraint equations. Recently,
Pian & Wu [1988] presented a new formulation that avoids element perturbation. The
constraint equations are obtained by constraining the stress field to perform no work along
the element boundary when subjected to a set of assumed incompatible displacement
modes. A general formulation to generate incompatible element functions was presented
by Wu, Huang & Pian [1987].

Simo & Rifai [1989] presented four-node elements based upon the Hu-Washizu func-
tional which introduced "enhanced strains.” Results reported for these elements are almost

identical to the results obtained by the element presented by Pian & Sumihara [1984].

1.2.2 Plate Bending

Solutions to plate bending problems pose a difficult task for the classical finite ele-
ment method (displacement formulation). This problem was one of the first to be tackled
by the finite element method in the early 1960s, yet today it is still the subject of intensive
research. Obtaining a satisfactory solution of plate bending problems is a necessary prere-

quisite for the analysis of shells.

The original approach utilized thin plate theory. This approach introduced the diffi-
culty of imposing C! continuity of the shape functions used by the finite element method.
Also, the resulting elements were restricted to thin plate applications. Babuska & Scopolla
[1989] showed how in an apparently very thin plate (thickness to span ratio equal to 0.01)
differences of approximately 5% in the displacements are observed between the true
behavior and that predicted by the thin plate theory. For these reasons, most elements
presented recently in the literature are based on thick plate theories (i.e., theories that
account for shear deformations; e.g., Reissner-Mindlin plate theory). These theories

require only C° continuity of the shape functions. Furthermore, applicability for both thin
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and thick plate problems is obtained.

Unfortunately, many of the proposed elements fail at the thin plate limit because of a
phenomenon known as shear locking. Development of a general class of elements free of
shear locking in all applications has been the focus of extensive research during the past
two decades. The first successful developments were based on reduced integration and
selective reduced integration (full integration on the curvature terms and reduced integra-
tion on the shear terms), concepts which were proposed simultaneously by Zienkiewicz,
Taylor & Too [1971] and Pawsey & Clough [1971]. Later, Malkus & Hughes [1978]
presented an equivalence theorem, which demonstrated that both reduced integration and

selective reduced integration fall within the scope of a mixed finite element method.

Unfortunately, both reduced integration and selective reduced integration often result
in unstable elements due to the presence of spurious zero-energy modes. In the case of
selective reduced integration elements, the spurious modes can be controlled by a careful

choice of the boundary conditions (e.g., Hughes [1987], pp. 334).

MacNeal [1978] presented a four-node shell element, known as QUAD4, in which the

. . . . 1
transverse shear strains are computed at special points. These points are located at = —=—
3

on the element’s natural axes. Later it was recognized that spurious zerd—energy modes are
present in some applications (MacNeal [1982]). A further difficulty was the presence of a

tuning parameter.

Hughes & Tezduyar [1981] presented a four-node element, known as T1, that is free
of spurious zero-energy modes and does not utilize tuning parameters. Furthermore, it
does not exhibit shear locking on reasonable meshes. The underlying idea is that shear
locking occurs when too many constraints are imposed on the shear field; thus, by sharing
constraints across element boundaries it is possible for the global system not to be overcon-
strained, even when the individual elements are. As a result, shear locking is avoided.
The sharing scheme is obtained by constraining the tangential component of the shear

strain, for both elements sharing an edge, to be equal at the edge midpoint. Dvorkin &



Ch. 1 Introduction 7

Bathe [1984] justified this approach via the Hu-Washizu variational principle. A
mathematical analysis of this scheme was presented by Bathe & Brezzi [1985, 1987]. A
rigorous proof of uniform convergence for any thickness, however, is still lacking. Huang

& Hinton [1984] extended the formulation to a nine-node element.

The scheme presented by Dvorkin & Bathe [1984] solved the problem of shear lock-
ing, but introduced the problem of shear resultants recovery. In obtaining the displace-
ment field it was assumed that the shear resultant field is a set of concentrated forces at the
midpoints of the element edges. Thus, the only possible way to recover the shear resultants
at any given point is by using the shear strains together with the constitutive equations.
This procedure, however, is not variationally consistent with the formulation used to obtain
the displacement field. Furthermore, the shear resultants recovered pose potential difficul-
ties in the interpretation of results obtained from the finite element analysis. As a result, it
is necessary to introduce special sampling techniques in order to obtain "good" shear resul-

tants (Hinton & Huang [1986]).

Simo, Fox & Rifai [1989] presented a four-node shell element in which the membrane
and the moment stress resultant fields were modeled after Pian & Sumihara [1984]. The
shear resultant field for the element is modeled after Dvorkin & Bathe [1984]. The dis-
placements reported are excellent. However, no stress resultants are reported. Further-

more, shear stress resultants cannot be obtained in a variationally consistent form.

Simo & Rifai [1989] presented an assumed strain method which can be used to gen-
erate plate bending elements. Results reported for their proposed element are identical to

the results obtained by the T1 element for square elements.

Belytschko and co-workers (e.g., Belytschko, Liu, Ong & Lam [1985] and Liu,
Belytschko, Law & Lam [1987]) extended the stabilization approach introduced in the in-
plane problem to shell applications. The Hu-Washizu variational principle was used to jus-
tify their approach. These formulations, however, use a tuning parameter. A "good"

value for this parameter may be obtained if the true solution is known; this, however, is
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usually not the case. Furthermore, an optimal parameter for one problem may not be

appropriate for a different problem.

1.3 Dissertation Overview

The formulations proposed in this dissertation are developed within the framework of
mixed finite element methods, and are based upon the Reissner-Mindlin plate theory. The
plane strain problem is also tackled. While the objectives set in order to overcome locking
at the nearly incompressible limit (plane strain problem) and shear locking (plate bending
problem) seem to bear no connection, the same methodology is applied to both problems.
Consequently, a unified methodology suitable for both plate bending and plane stress/strain

problems is presented.

As noted in Section 1.2, the classical finite element method (i.e., displacement formu-
lation) yields poor results at the nearly incompressible limit (plane strain) and at the thin
plate limit (plate bending - using theories that account for shear deformations). This result
was established in a limitation principle put forth by Fraeijs de Veubeke [1965]. In order
to overcome this drawback, mixed formulations (i.e., formulations that use more than one
type of variable) will be used in this dissertation. Two types of mixed variational princi-
ples are commonly used: the Hellinger-Reissner and Hu-Washizu principles. The former
principle may be viewed as a special case of the latter. The Hu-Washizu principle is a
three-field formulation (i.e., the stress, strain and displacement fields are assumed as
independent fields) that can be easily used in conjunction with existing methods when
non-linear material properties are encountered. This property is not shared by the
Hellinger-Reissner formulation. In this dissertation, however, both principles will be used,
in parallel and independently. This is done because the main ideas presented in this

dissertation are more clearly conveyed via the Hellinger-Reissner variational principle.

A plate theory that accounts for shear deformations is presented in Chapter 2. As is

evident from the strong form of the boundary value problem, plate bending and in-plane
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problems are decoupled for homogeneous isotropic material properties. This dissertation
will focus on this type of material. Also presented is the matrix notation used in formulat-

ing the finite element arrays.

The weak form, counterpart to the strong form presented in Chapter 2, and the finite
element formulations are presented in Chapter 3. The formulations are presented indepen-
dently for the plate bending and plane stress/strain elements. For each type of element the
formulation is carried out via the Hellinger-Reissner variational principle and in parallel

via the Hu-Washizu variational principle.

An explicit coupling between the assumed moment and shear resultant fields is intro-
duced in both variational principles. In the case of the Hu-Washizu variational principle,
an explicit coupling between the assumed curvature and shear strain fields is also intro-
duced. It must be noted that the coupling between the moment and shear resultant fields
is consistent with the structure of the equilibrium equations. Thus, the assumed coupling

is viewed as a natural assumption.

In Chapter 4 it is formally proved that as a result of the couplings introduced in
Chapter 3 the proposed formulation leads to elements which, as the thickness is reduced to
zero, converge to the thin plate solution and do not lock in shear. Furthermore, shear

locking is avoided at the element level.

Additionally, in Chapter 4 it is argued that locking at the incompressible limit (plane
strain) can be avoided if the assumed strain field can a priori model a state of strains such

that the trace of the strain goes to zero pointwise as Poisson’s ratio goes to 0.5~

A method to generate the assumed stress resultant and strain fields used as indepen-
dent fields in the variational formulations is presented in Chapter 5. First, the method is
presented for a general three-dimensional body. The reduction to the in-plane problem is
straightforward, and will also be presented. Next, the method is reformulated in resultant
form for the plate bending problem. Finally, in order to show the generality of the

method, the formulation for the axisymmetric problem is presented. Also presented is a set
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of requirements which the assumed incompatible displacements, used in this method, must
satisfy.

The method is presented as a three-field formulation. It can, however, be applied to
the two-field formulation. The assumed strain field is assumed as the sum of two indepen-
dent fields, which are termed compatible and incompatible. The assumed incompatible
strain is constructed from a set of displacements not contained in the finite element approx-
imation of the displacement solution space. The desired stress field to be used in the varia-
tional principles is obtained by constraining the complementary energy associated with the
incompatible modes to vanish in a weak sense over each element. The desired strain field
is obtained by constraining the "strain energy” resulting from the coupling of the assumed
compatible and incompatible strains to vanish in a weak sense over the element. As a
result, if the material properties are assumed to be constant over the element domain, the

incompatible strains are identically zero pointwise.

It must be pointed out that the methodology outlined is a precursor for the finite ele-
ment method, and at no point do the incompatible strains play any role in the finite ele-
ment formulation. Consequently, the methodology presented yields fully compatible ele-

ments.

The assumed stress and strain fields as well as the assumed incompatible shape func-
tions used to generate the proposed elements are presented in Chapter 6. These elements,
however, are only an illustration of the method. The elements are shown to satisfy the

requirements introduced in Chapter 4 in order to avoid locking.

An extensive numerical evaluation of the proposed elements is presented in Chapter
7. The elements are shown to perform well even in cases when other elements such as the
S1 or T1 fail. Furthermore, the stress resultants recovered are shown to be good at the ele-

ment level.

Closing remarks and suggestions for future work are presented in Chapter 8.



CHAPTER 2: PLATE THEORY WITH SHEAR DEFORMATIONS

2.1 Introduction

A theory of plates that accounts for shear deformation is presented in this chapter.
This theory was first presented by Reissner [1945], based upon energy considerations and
assumed stress distributions. Mindlin [1951] presented the kinematic assumptions used in
this dissertation. The stress distributions used by Reissner, however, account for the warp-
ing of transverse planes. In this dissertation the warping effect is neglected. However, a

shear correction factor is introduced to compensate for the lack of warping.

The in-plane and bending problems are shown to be decoupled in the case of homo-
geneous isotropic materials. In this dissertation only this class of material properties is con-
sidered. Consequently, the strong form for each problem is given separately in this
chapter. The counterpart to the strong form, the weak form, will be presented in Chapter
3.

The in-plane problem is the usual plane stress problem. Since the kinematics for both
plane stress and plane strain cases are the same, the constitutive equations for plane strain

are also introduced.

Throughout this dissertation Greek subscripts take the values 1 and 2, while Latin
subscripts take the values 1, 2 and 3. Repeated indices imply the usual summation con-
vention. All quantities are referred to a fixed system of rectangular, Cartesian coordinates.

A general point in this system is denoted by (x;,x5,x3).

2.2 Plate Kinematics

2.2.1 Basic assumptions

A plate is a three-dimensional body embedded in an Euclidian three-space R3. In

the undeformed configuration the plate domain {2 is of the following form:

11
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0:= f (xl ,x;,x;;] €R3 | x5¢ [_h(le’xZ) ’ h("'lzsxz) ] , (xl,xz} GACRZT

)
where h(xy,x,) is the plate thickness and A is a closed region in the x;x, plane, bounded
by a simple closed curve C. Let Cy; and C, be subregions of C such that m =C
and Cy M C, = ¢, where Cy, is the part of C on which displacements are specified and C,
is the part of C on which tractions are specified. & is assumed to be small in comparison
to a characteristic length of A. The plane x5 = 0 is denoted the mid-surface of the plate.
The outward normal unit vector to C in the x;x, plane has the components v,, and the

counterclockwise tangential unit vector has the components 7.

The stress resultants are defined as:

h

T
Qq:= f_h O3, dx3 Shear resultants.
2
h
z
Mp:= f_h OapXadx3 Moment resultants.
2
z
Nog = f_h Oqpdx; Membrane forces.
2

The distributed loads are defined as:

h

h

- z

0 =033 3—'!'_.+f-h X3dxs Transverse load.
2 2

— h #

Mg = 0,x3] §_+ _, Xax3dx; Couple loads.

2
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A
Ng:i= 0,3 Z_,,+ f_{ Xqdxs In-plane loads.
2

where X is the body force vector.

The equilibrium equations for a three-dimensional body are given by:
GaijtXq=0 (2.1a)
and
03, +X3=0 (2.1b)

where the equilibrium equation in the x5 direction, equation (2.1b), was separated from
the other two equilibrium equations (2.1a). Integrating equations (2.1) through the thick-

ness and substituting the definitions for stress resultants yields:
Napp+No=0 (2.2a)
and
Quat0=0 (2.2b)
Multiplying equation (2.1a) by x5 and integrating through the thickness yields:
Mapp—Qo+M,=0 (2.2¢)

Equations (2.2) are the equilibrium equations for the plate problem, written in resultant

form.

The assumed displacement field is taken as:
Ug(x1,X2,x3) 1= Ug(xy,x3) + x3€4585(x1,x2) (2.3a)
and
us(xy,x3,x3):=w(xy,x3) - (2.3b)

where e,g is the alternator tensor, defined as:

feu]= [ 23]
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It follows from equations (2.2) and (2.3) that the bending problem is decoupled from
the membrane problem. In addition, by equations (2.3), a plane section in the reference
configuration remains plane in the deformed configuration. 6, may be interpreted as the
rotation of a fiber initially normal to the plate mid-surface. 8, is independent of w , and
so a straight fiber initially normal to the mid-surface remains straight, but not necessarily
normal to the mid-surface in the deformed configuration. Furthermore, it also follows
from the assumed displacement field that the transverse displacement, w, does not vary

through the thickness. Consequently, the assumed displacement field implies plane strain

behavior.

Sign conventions for the rotations are shown in Figure 2.1, and sign conventions for

stress resultants are shown in Figure 2.2.

2.2.2 Strain-displacement relations

It follows from the assumed displacement field, equations (2.3), that the strain-

displacement relations are of the following form:
Ya= 2€,3=2€3, = €4t W, (2.4a)
and
€ap = €48 —X3Kop (2.4b)

and €,g is the membrane strain tensor, defined as:

1
EQBI'—_ Z—(UG’B+ UB,Q) (26)

Plate kinematics are summarized in Figure 2.3.
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2.3 Boundary Conditions

The method of virtual work is used to derive the boundary conditions for the plate

theory presented in Section 2.1. First, the following definitions are introduced:

M, :=vavgMg Normal bending moment.
My :=votgMap Twist moment.

and
Qn =v,0Q,4 Normal shear.

Let e denote a virtual strain field. The internal virtual work is defined as:

h
7
2

( _ )
=/ tNuBSeaB+ epyMapd0y o+ 0q(€ayd0,+ 8w ,) JdA
=J; {(Nupaus-rehuapae,-r Qaﬁw),a}dA (2.7)

_j; {NGB,BaUu—ea,(Qa—MQB,B)89,+ Qo.adW }dA

The virtual-work principle, 8W; = 8W, , may be rewritten as:

W, —sw,l=sw2 ‘ (2.8)
where 8W,! denotes the external virtual-work due to body forces and surface tractions on
the planes x; = * g—, and 8W,2 denotes the external virtual-work due to applied forces and
moments along the edge. Accordingly, 8W,! is given by:

W, 1= { [IC’_‘,SUG + eayMo 80, + O Bw ] dA 2.9)
so that, upon using the two-dimensional divergence theorem and the equilibrium equa-
tions, equations (2.2), equations (2.7) and (2.9) may be combined to obtain:

8W; —8W,}! = [, (NogdUp+ epy Mo 80, + Q8w )ds (2.10)
(&
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Let —e,p0p = vo8, +1,6,, where 6, is the rotation about the tangent to the edge, and 8,

is the rotation about the normal to the edge; thus:
Va€pyMopd8y =M, 86, + M, 86, (2.11)

Substituting equation(2.11) into equation (2.10) and taking notice of the normal shear

definition, yields the following expression:

sw, —sw,1= [ [vazv,,asua + M, 86, + M,, 80, + 0, 5w ] ds 2.12)
C

Let the applied transverse shear be denoted as Q7, the applied in-plane force along
the edge be be denoted as N, the applied normal bending moment be denoted as M/, and
the applied twist moment be denoted as M. Noting that M? and M5 may be specified

independently, SW,2 is given by:

sw,2= [ [NZBU‘,+ MP86, + M5 86, + QF 8w ]ds (2.13)
c

It follows from equations (2.8), (2.12) and (2.13) that the boundary conditions for
the plate problem are as follows:

either vgN ,g = Ng or U, is prescribed.

either M, = M/ or 8, is prescribed;

either M,, = Mj or 8, is prescribed;

and either Q, = Qf or w is prescribed.
In the above, s is the arc length along the boundary, and the superscript a stands for

applied boundary conditions.

The bending boundary-value problem involves three types of homogeneous boundary
conditions:

Simply supported: w = M, = 0 and either M,, = O or 8, =0.

Clamped: w= 6, = 6, = 0.

Free: M, = M, = 0, = 0.

The in-plane boundary-value problem involves two types of homogeneous boundary
conditions:

Fixed: U,=0.
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Free: Ng =0.

2.4 Constitutive Equations

The assumed displacement field implies plane strain behavior. This assumption,
however, is not a valid representation of plate behavior. Rather, the stresses o;3 are negli-
gible in comparison to o,g. Therefore, a plane stress assumption is a much better approxi-
mation of the plate behavior. o33 is assumed to be zero pointwise. 0,3, on the other
hand, are needed for the equilibrium equations. In practice, the contradiction with the

plane strain assumption causes no problem.

Substituting o33 = 0 into the three-dimensional constitutive equations, eliminating €33
and integrating through the thickness yields the constitutive equations for the plate. For
the case of homogeneous isotropic linearly elastic materials the three-dimensional constitu-
tive equations are as follows:

O =Ad;jey +2pe€;
where A and p are the Lamé coefficients and 8;; is the Kronecker delta. o33= 0 implies:

—-A
= Ty

The constitutive equations for the plate are as follows:

Oap=Adgpeyy+2pe,p

and
Ca3= 2| €q3
where
2.
A+2p

The constitutive equations may be rewritten in terms of the membrane forces, N; the
resultant moments, M; the shear resultants, Q; the curvature, k; the shear strain v; and the

in-plane strain €, as:
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Nop = Clays€ys (2.14a)
Map= Clayikys (2.14b)

and
Q.= aClgvp (2.14¢)

where C" is the elastic coefficients tensor for the membrane effect, given by:
C;BYS =h [‘L ( 8‘!.1855 + 805875 ) + iauaa.ya (215)

C? is the elastic coefficients tensor for the bending effect, given by:

h3 -
Clop= 1> [u(t;,,,zs,f,8 + Basdys) + X Bagbos } (2.16)

o is a correction factor introduced in order to obtain consistent results with the three-

dimensional theory, quadratic variation of the transverse shear along a fiber normal to the
mid-surface, (usually a = 2— ); and C* is a second order tensor, of the elastic coefficients
for shear, given by:

Cap=hndsg (2.17)
X and p may be eliminated in favor of Young’s modulus, E, and Poisson’s ratio, v:"’

vE . _ E
- p= ——

A=
12 7 2(1+v)

2.5 Strong Form

The formal statement of the strong form of the plate bending boundary-value problem
is summarized in Box 2.1, and that of the plane stress/strain boundary-value problem is

summarized in Box 2.2.

* A plane strain formulation for the membrane part may be obtained by setting h to 1, andrqalacing)rby)\,
where \ is given by:

_ vE
(1+v)(1-2v)

A
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Box 2.1: Plate Bending - Strong Form

/

Mupp—Qo+Mo=0
QuntQ =0

M a=Cbi <k

ap aByb®yd

in A 1
Qa=°‘C¢ip'YB

1
Kap = _E(eu‘rev.l& +epy0yq)

Ya = ea898+ W

on Cy

M, =M;
onC,{ My =MZ

O = Qn

\

Given A-{—a, 0, M2, Mg, O, W9, 6, and 6, find w, 8,, Qo and Mg such that:

2.6 Matrix Notation

19

The plate theory presented above in tensor notation is now rewritten in matrix nota-

tion, which is the standard notation used in the finite element method. The following vec-

tors are introduced:

U" is the in-plane displacement vector, defined as: U™ := < U,,U,>,

U? is the "bending displacement" vector, defined as: UYT := <w , 8, ,0,>,
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Box 2.2: Plane stress/strain - Strong Form

Given N, , N2 and U?%; find U_ and N g such that:
a a a a af

N“ByB+N-°= 0
inA 1 NQB= C:Bvai—ys

_ 1
€ap= 5 (Uap+tUpa)

on C, { vgNap = Ng

v is the shear strain vector, defined as: yT =<v1,v2>,

k is the curvature vector, defined as: k7 := < ky1, K2, k12>,

P is the membrane strain vector, defined as: PT := < &, & ,€2>,

Q is the shear resultant vector, defined as: Q7 := < 0,,0,>,

M is the moment resultant vector, defined as: M7 := <My, ,M 5 ,M;>, and

N is the membrane resultant vector, defined as: N7 := <Ny;,Ny,Ny3>.

The shear strain displacement relation is given by:
y=LU
the curvature displacement relation is given by:
k=Lt Ub
and the membrane strain displacement relation is given by:

P=L"U"
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where L’ is the shear strain displacement operator, given by:

d
e 01

L= o (2.18)
axz

L? is the curvature displacement operator, given by:

0 o --2-
axl
=0 2- o (2.19)
aXZ
9 _98_
L axl aX2-

and L" is the membrane strain displacement operator, given by:

I
ax1
L":=| 0 5%2— (2.20)
S 98_
L6.\:2 daxq

The constitutive equations relating the shear resultants to the shear strain, in matrix

form, are given by:
Q=D"y

the constitutive equations relating the moment resultants to the curvature, in matrix form,

are given by:
M=Db«

and the constitutive equations relating the membrane resultants to the in-plane strains, in

matrix form, are given by:
N=D"P

where D’ is the shear elastic coefficients matrix, given by:
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DJ‘...

- oaE h 10
2(1+v)

01J

D’ is the bending elastic coefficients matrix, given by:

3 v 0
b_ E h
= — 1 0
12(1=v*) 1
00 E’(l—v)
and D" is given by:
1
Eh 1 0 |
"= —= v 1 0 l
1-v 1
00 2—(l—v)]
for the case of plane stress and by:
E [l—-v v 0
" v 1-v 0

T+ (1-2v)

for the case of plane strain.

22

(2.21)

(2.22)

(2.23a)

(2.23b)
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X3

e,

Figure 2.1: Sign convention for rotations, right-hand-rule rotations.

X3

Figure 2.2: Sign convention for stress resultants on positive faces.
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Yy=W+e ©

a ,a ap B

Deformed
geometry

24

Undeformed geometry

ngure 2.3: Plate kinematics.



CHAPTER 3: MIXED FORMULATIONS FOR PLATE BENDING
AND PLATE BOUNDARY-VALUE PROBLEMS

3.1 Introduction

The weak form counterpart of the strong form presented in Chapter 2 is derived, in
parallel and independently, from the Hellinger-Reissner and Hu-Washizu mixed varia-
tional principles. The weak form is then used to obtain the finite element stiffness matrix

and load vector.

In order to emulate the equilibrium equations structure, the following couplings are
introduced in the finite element approximations of the stress resultant and strain fields: an
explicit coupling between the assumed moment resultant and shear resultant fields, and an
explicit coupling between the assumed curvature and shear-strain fields. It will be shown
in Chapter 4 that as a consequence of these couplings the resulting plate bending elements
do not lock in shear at the thin plate limit. A method to generate the assumed stress resul-

tant and strain fields will be given in Chapter 5.

Because the strong forms of the in-plane and plate bending problems are decoupled
(see Chapter 2), the two problems are treated independently. The Hellinger-Reissner and

Hu-Washizu variational functionals are used in both cases.

The superscripts b and n on U will be omitted. It will be clear from the context which
displacement field is referenced. Furthermore, to avoid cumbersome notations in the finite
element approximation subsections, the superscript # denoting the finite element approxi-
mation will be omitted with the understanding that the finite element approximations used
are all proper subspaces of the corresponding spaces introduced in the weak form subsec-

tions.

3.2 Approximation of the Assumed Fields

Both the Hellinger-Reissner and the Hu-Washizu mixed variational principles, which
form the theoretical framework for this dissertation, involve the use of assumed indepen-

dent displacement and stress resultant variables. The Hu-Washizu principle requires in

25
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addition the use of assumed independent strain variables. In this section, the approxima-

tion of these fields is introduced and motivated.

3.2.1 Assumed displacement field

The displacement field, U, is approximated by an interpolation between displace-
ments at discrete points, known as nodes in the finite element terminology. The following

approximation is used (summation convention is implied):
U =N,(&) 4 (3.1)

where N, (£) is the shape function associated with node 7 (N, is a function of the element
natural coordinates £7 = <¢,m> ), and d, is the displacement vector associated with node

1, given by:
dfT= <W,,8y,05> (3.2a)
for the plate bending problem, and by:
diT=<Uy ,Uy> (3.2b)

for the in-plane problem.

3.2.2 Assumed stress fields

Plate boundary-value problems involve membrane forces, moment resultants and
shear resultants. It follows from the governing balance equations, (2.2), that the moment
and shear resultant fields are coupled. The coupling is such that it is possible to obtain a
state of pure moment but not one of pure shear. Following this observation, the stress field

is assumed as:
N:=N(¢)n (3.3a)
M:=M({)m+ S(¢) q (3.3b)

and

Q:=Q(&)q (3.30)
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where n is the membrane force coefficients vector, m is the moment resultant coefficients
vector, q is the shear resultant coefficients vector and the second term in equation (3.3b) is
the explicit coupling term introduced in this dissertation. In the finite element approxima-

tion, n, q and m will be defined at the element level.

3.2.3 Assumed strain fields

Plate boundary-value problems involve membrane strain, curvature and shear strain.
The curvature and shear strain fields are coupled in such a way that a state of pure curva-
ture is possible, but not one of pure shear strain. Following this observation, the strain

field is assumed as:

P:=P(£)p (3.4a)
k:= k(£)k + R(E)e (3.4b)

and
v:=T(§)e (3.4c)

where p is the membrane strain coefficients vector, k is the curvature coefficients vector, e
is the shear strain coefficients vector and the second term in equation (3.4b) is the coupling

term introduced in this dissertation.

3.3 Hellinger-Reissner Mixed Formulation for Plate Bending

3.3.1 The energy functional

The Hellinger-Reissner functional is a two-field principle: the energy functional is
stated in terms of displacements and stress resultants as independent fields. For the case of

a plate bending boundary-value problem, the energy functional is stated as follows:
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(1 T b y-1 T s\ =1 Tyb Tys )
HR(M,Q,U):=ft—5(M (P*) M + QT(D*)"1Q)+ MTLb U + Q7L UJdA
A

—-JUTFada - [UTds (3.5)
A C,

where:
FT = <6 , ﬁl R ﬁz > is the body resultants vector; and

" = <Q?,M?, M2> is the applied boundary traction vector.

3.3.2 Weak form

To define the weak, or variational, form a number of classes of functions must be
characterized as follows:

Trial displacement solutions:”
U:= {U|U<H1(6),U=U“oncu} (3.6)
Displacement weighting functions:
U:= {U|UEH1(5),U=00nC01 (3.7)
{ )
Trial moment solutions:
M= {M|MeH°(5)} (3.8)
and trial shear resultant solutions:
Q:= {QIQ€H°(5)} (3.9)

Note that the spaces of functions introduced as moments and shear resultant solution

spaces may also be used as the spaces for the moment and shear resultant weight functions,

* A function G is said to be a member of H” if the function and jis first n derivatives are members of Ly. A
function]-‘issaidtobcamanberoszifitissquare-integmblc,i.e.,fF’dA <,
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respectively.

The first variation of the energy functional is given by:

8Ix(M,Q,U)= [sMT(L® U—-(D*)"'M)da + [3Q7(L* U-(D*)"1Q)dA
A A

+f {(L” SU)M + (L* 8U)TQ —SUTF}dA - f8uTtds =0 (3.10)
A C

The first two terms are the weak form of the constitutive equations. After integration by
parts, the last two terms provide the balance of momentum equations for the plate bending

problem. The formal statement of the weak form is given in Box 3.1.

Box 3.1: Plate Bending - Hellinger-Reissner Weak Form

Given ﬁ, Q_, M?, M7, Qf and U?; find UEU, M €M and Q€ Q such that for
every 83U €U, M €M and 8Q € Q

0= [sMT(L*U-(D*)"'M)d4 + [8Q7(LSU - (D°)"1Q)dA
A A

+f {(L"SU)TM + (L*3U)"Q —-38UTF }dA — [8UTtas
A C,

3.3.3 Finite element stiffness matrix and load vector

The finite element stiffness matrix and load vector may be obtained from the weak
form presented in Section 3.3.2. Substituting the finite element approximations of the
assumed fields, as presented in Section 3.2, the first variation of the Hellinger-Reissner

functional is as follows:
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8z (m,q,d)=3m’ (God-H;, m~H2 q)
+8q" (Gld+G*d-HTm-H} q-H'q) (3.11)
+8d7 (G"TM + G/Tq+ G q) —dd"f

where f is the load vector resulting from body forces and boundary tractions, and the fol-

lowing definitions have been introduced:

HE :=LMT(D”)‘1M¢A ; HE = [MT(Db)71S4A ;

H:q:=LsT(D")-1SdA ; Ho:=[QT(D°)71QudA (3.12)
b._ [ xaT mb . Cb.= T b . = AT
G,,,.-—LM B® dA ,Gq.—LS B® dA ,G‘.—LQ B* dA
In the above, B? is the finite element curvature-displacement relation, defined by:
B}d,:=L*U (3.13)

where B/ is associated with node I and is given by:

0 0 -N;,
Bf:=|0N, O (3.14)
0 Njp N2
and B’ is the finite element shear strain-displacement relation, defined by:
B/d,;:=L°U (3.15)
where B/ is associated with node I and is given by:
N1 0 N
J
B/ := N2 =N; 0 (3.16)

In equation (3.11), HS,, H5, and G/ reflect the effect of the explicit coupling intro-
duced. In the absence of "loading" terms from the constitutive equations (e.g., thermal

terms), the Euler-Lagrange equations may be written as:

-H Gl (x) (0)

@ oft)-

where
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H., H, G, fm
H:= H:u?;' H:q+H‘ ; G:= qu+G’ ; Ti= kq] (3.18)
Elimination of the stress resultant coefficients,r, for all elements yields:
Kd=f (3.19)
where K is the finite element stiffness matrix, defined as:
K:=GTHlG (3.20)
and f is the load vector, defined as:
17 ;=L~,Ffm +CfN,tds (3.21)

Since stress resultant interpolations are independent in each element, the elimination of 7

may be performed at the element level.

In order to satisfy the mixed patch test (Zienkiewicz, Qu, Taylor & Nakazawa
[1986]), the following requirements must be satisfied for all admissible boundary conditions
on 6;,0,and w (i.e., d;):

Ny, +n,=ng (3.22a)
and

ng=n, (3.22b)

where n, and n, are the number of moment and shear coefficients, respectively, ng is the
number of rotational degrees of freedom, and n,, is the number of transverse displacement

degrees of freedom.

The stress resultant coefficients may be obtained in terms of the nodal displacements,

d;, as follows:

Shear coefficients:

q= [H”—H‘]-l [G"—G‘ ]d=F1d (3.23)

and, moment coefficients:
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m=(H?, ) {G,f, -H} F ] d=F,d (3.24)
where
H? :=H (H:,)'HE -H], (3.25)
and
G’ :=HI(H})G: -G} (3.26)

3.4 Hu-Washizu Mixed Formulation for Plate Bending

3.4.1 The energy functional

The Hu-Washizu functional is a three-field variational principle: the functional is
stated in terms of assumed independent displacement, stress, and strain fields. For the

case of plate bending boundary-value problems, the energy functional is stated as follows:
1
M, Q,x,v,0):= [ [5(x"D* x +47D* y) —Q7 (y ~L°U)
-MT(k —L*U) -UTF]dA — [UTtds - (3.27)
C

.

3.4.2 Weak form

To define the weak form of the Hu-Washizu functional, two additional classes of

functions must be characterized, as follows:

Trial curvature solution:

K:= {x | k eHO(ﬁ)} (3.28)

and trial shear strain solution:

G := {'y|'y€H°(f_l)} (3.29)
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Note that the curvature and shear strain trial solution spaces may be used as the spaces for

the curvature and shear strain weight functions, respectively.

The first variation of the Hu-Washizu functional is given by:
8, (M,Q,x,y,U):= —fA M7 (x —L*U)dA —fA 8Q7(y-L*U)dA
+L8xT(D”x—M)dA +J;8-yT(D’-y—Q)dA (3.30)
bsinT T
+L(L 8U)MaA +L(L‘SU) QdA
T T
~J, 8UTFaa - [8UTtds
Cl
The first two terms relate the assumed independent strain field to the displacement field.
The third and fourth terms are the constitutive equations for the mixed plate bending

boundary-value problem. The terms in the third and fourth lines, after integration by

parts, provide the balance of momentum equations for the plate bending problem.

The formal statement of the weak form for the Hu-Washizu functional is given in

Box 3.2.

Box 3.2: Plate Bending - Hu-Washizu Weak Form

Given M, Q, M? M2, Q% and U%; find U€U, M€M, Q€Q, k€K and y€G
sucbthatforeveryBUGlj,bMGM,SQEQ,BKEK and 8y €G
o=—fA 8MT(x —L*U)dA —j; 8Q7(y-LU)dA
+Lsgf(nbx—M)4A +L817(D’-y-Q)dA

+ [, *8U)Mda + [ (L78U)7QaA — [ 8UTpdA — [8UTtds
<,
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3.4.3 Finite element stiffness matrix and load vector

The weak form presented in Section 3.4.2 is used to formulate the finite element stiff-
ness matrix and load vector. Substituting the finite element approximation of the assumed
fields, as presented in Section 3.2, yields the first variation of the Hu-Washizu variational

principle, in matrix notation, as follows:
8My(m,q,k,e,d):=3q" [G?d+ G, d—A5k—Ale—Aj e]
+dmT [GLd—AL k—AL e]
+3kT [HE k+HLe—-ATm—-Allq] (3.31)
+8e" [Hk+HL e+ H e—ATq-AIm-Af q]
+8d" [GTq+ G Tm+ G[Tq]-3d"f

where f is the force vector resulting from the body forces and boundary tractions, given by

equation (3.21), and the following definitions have been introduced:
HY, :=fA.zTD”.sz . HE :=LRTD”RdA :
H,”,:=LRTD”RdA i H* :=fA I"D'TdA ; (3.32)
A;,:=fAQTrdA ; Agk:=fAMT.zazA : A,’,’,,:=LMTRdA ;
A;’k:=fAsT.sz ;AL :=LSTRdA ;
and G2, G;’ and G’ are as in equation (3.14).

In (3.31) H.,, HE, A;’k ,AL,, A:, and Gg reflect the effect of the two couplings intro-
‘duced in Section 3.2. In the absence of "loading” terms from the constitutive equations

(e.g., thermal terms), the Euler-Lagrange equations may be written as follows:

T
H —A 0 Sl {0 \
d f

-A 0 Gli+ti= OJ (3.33)
0 GT o -

where
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. HS  HL A AL [
T lag oL +E | AT (AL AL +aL] ST e (3.34)

and G and 7 are defined by equation (3.18).
Elimination of the stress resultant coefficients, T, and the strain coefficients , S', from
equation (3.33), for all elements yields:
Kd=f
where K is the finite element stiffness matrix, given by:
K:=G'ATTHA™IG (3.35)
and f is the load vector, given by equation (3.21).

Since the stress resultant and strain interpolation are independent in each element, the

reduction may be performed at the element level.

In order to satisfy the mixed patch test (Zienkiewicz, Qu, Taylor & Nakazawa
[1986]), the following requirements must be satisfied for all admissible boundary conditions

on w, 6; and 6, (i.e., d;):

n,+n,+ng=n, (3.36a)
n,+n,+ngtn,=n, (3.36b)
n, =n, (3.36¢)

Ny, +n,Zng (3.36d)

Note that in order to obtain the form given by equation (3.35), A must be a square matrix.
This requirement is met if n, = n, and n; = n,. Consequently, equations (3.36a,b) are
identically satisfied. -

The stress resultant and strain coefficients may be written in terms of the nodal dis-

placement, d, as follows:
e=A G +Gl-AL(AL)'GL]d=F,d (3.37)

k=(A%)[GL-AL Fild=F,d (3.38)
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q=AT[(HY -H,)F,+ (H. + H* —=H, )F{]d=F,d (3.39)
m= (AN [HLFy+ HLF -AF3]ld=F,d (3.40)
where
A=Al —AL (AL)TTAL + AL, (3.41)
and
H, =AM (AL HS, (3.42)

3.5 Hellinger-Reissner Mixed Formulation for Plane Stress/Strain

3.5.1 The energy functional

The Hellinger-Reissner functional, in the case of in-plane problems, takes the form:

Mg (N,U):= [ {-—-;—NT(D")‘IN+NTL"U}—L UTNdA —JUTﬁ“ds (3.43)

3.5.2 Weak form

To define the weak form a number of classes of functions must be characterized as
follows:

Trial displacement solutions:
| = )
U:={U|UEH' (2),U=1U" on CUJ (3.44)
Displacement weighting functions:
_ - )
U:={U|UecH' (Q2),U=00n CUJ (3.45)
and trial membrane forces solution:

N := {N INEHO(ﬁ)} (3.46)
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Note that the trial membrane forces solution space may also be used as the membrane

forces weight functions space.

The first variation of the energy functional is given by:

8Ix(N,U) = [8NT(L"U—(D")"'N)da
A

+ [ {(L" sU)TN-SUTﬁ}dA — [8UTtds =0 (3.47)
A C

The first term is the weak form of the constitutive equations. After integration by parts,
the last two terms provide the balance of momentum equations for the membrane. The

formal statement of the weak form is given in Box 3.3.

Box 3.3: In-Plane - Hellinger-Reissner Weak Form

Given ﬁ, N?, and U%; find U € U, and N € N such that for every 8U 6(7, and 8N €N

-)
0= [8NT(L"8U-(D")"'N)daA +f{[(L"8U)TN—SUTN)}dA — [ 8UTtds
A A C,

3.5.3 Finite element stiffness matrix and load vector

The finite element stiffness matrix and load vector may be obtained from the weak
form presented in Section 3.5.2. Substituting the finite element approximation of the
assumed fields, as presented in Section 3.2, the first variation of the Hellinger-Reissner

functional, in matrix notation, is given by:
8l (N,U)=5n" (G"d-H"n) + 847 (G N) -8d"f (3.48)

where f is the load vector resulting from body forces and boundary tractions, and the fol-

lowing definitions have been introduced:
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n.= NT =1 N . n._ SR L
H.LN(D)NdA,G.LNBdA (3.49)
In the above, B" is the finite element strain-displacement relation, defined by:
B/d,:= L"U (3.50)

where B, is associated with node I, and is given by:

{N,'l 0
0 N, (3.51)

N;2 NI,]_I

Bln =

In the absence of "loading” terms from the constitutive equations, the Euler-Lagrange

= 516

Elimination of the membrane forces coefficients, n, for all elements yields:

equations may be written as:

Kd=f
where K is the finite element stiffness matrix, defined as:
K:=G"T (H")"!G" (3.53)
and f is the load vector, defined as:

fl :='£Nl N_dA +letdS (354)
C,

Since stress resultant interpolation is independent in each element, the reduction may be

performed at the element level.

In order to satisfy the mixed patch test (Zienkiewicz, Qu, Taylor & Nakazawa
[1986]), the following requirement must be satisfied for all admissible boundary conditions

on U (i.e., those excluding rigid body modes).
ny =ny (355)

where ny is the number of membrane forces coefficients, and ny; is the number of displace-

ment degrees of freedom.
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The membrane forces coefficients may be obtained in terms of the nodal displace-

ments, d;, as follows:

n=(H")"1G"d (3.56)

3.6 Hu-Washizu Mixed Formulation for Plane Stress/Strain

3.6.1 The energy functional

The Hu-Washizu functional, in the case of in-plane problems, takes the form:

-
HH(P,N,U):=J; {;—PTD"P+ N7 (L"U-P) —UTNJdA - fUTNe ds (3.57)
CI

3.6.2 Weak form

To define the weak form an additional class of functions must be characterized as fol-
lows:

Trial membrane strain solutions:

P:= {p|pen0(ﬁ)} (3.58)

Note that the membrane strain solutions space may also be used as the space of membrane

strain trial functions.

The first variation of the energy functional is given by:

8H,,(P,N,I_J)=L8NT(L"U—P)dA +L8PT(D"P—N)dA
+[ [(L" SU)TN—SUTﬁ}dA - [8UTtds = 0 (3.59)
C,

The first term relates the assumed strain field to the symmetric part of the gradient of the
displacements in a weak form; the second term is the weak form of the constitutive equa-
tions; and the last two terms after integration by parts provide the balance of momentum

equations for the membrane. The formal statement of the weak form is given in Box 3.4.
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Box 3.4: In-Plane - Hu-Washizu Weak Form

Given N, N4, and U%; find U€U, P€P, and N €N such that for every SUEJ,
8P € P, and 8N €N

o=f{aNT(L"U—P)+aPT(D"P—N)+ (L"SU)TN-—BUTF}dA — f8UTtds
A C,

3.6.3 Finite element stiffness matrix and load vector

The finite element stiffness matrix and load vector may be obtained from the weak
form presented in Section 3.6.2. Substituting the finite element approximations of the
assumed fields, as presented in Section 3.2, the first variation of the Hu-Washizu func-

tional, in matrix notations, is given by:
8Mly(n,p,d):=8n" [G"d—A"p]+8p" [H"p—A"n]+ 84" [G" n —f] (3.60)

where f is the force vector resulting from the body forces and boundary tractions, given by

equation (3.54), and the following definitions have been introduced:
H" :=J‘A P D" PdA (3.61a)
and
n._ SUR Y
A" fA N7 PdA (3.61b)
and G" is defined by equation (3.49b).

In the absence of "loading” terms from the constitutive equations, the Euler-Lagrange

equations may be written as:

n _anT .

H A 0 (p 0)

-A" 0 G" ln = OJ (3.62)
0 6T oW U

Elimination of the membrane forces coefficients, n, and the membrane strains, p, for all

elements yields:
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Kd=f
where K is the finite element stiffness matrix, defined as:
K:= G" (A"T) 1" (A")~lG" (3.63)
and f is the load vector, defined by equation (3.54). Since stress resultant interpolation is
independent in each element, the reduction may be performed at the element level.

In order to satisfy the mixed patch test (Zienkiewicz, Qu, Taylor & Nakazawa
[1986]), the following requirements must be satisfied for all admissible boundary conditions

on U.
n, + ny = ny (3.64a)
ny =ny (3.64b)
where ny is the number of membrane forces coefficients, np is the number of membrane
strain coefficients, and ny is the number of displacement degrees of freedom. Note that in

order to obtain the form given by equation (3.63), A, must be a square matrix. This

requirement is met if n? = ny. Consequently, equation (3.64a) is identically satisfied.

The membrane strain coefficients may be obtained in terms of the nodal displace-

ments, as follows:
p=(A")"G"d (3.65)
and the membrane force coefficients may be obtained, as follows:

n=(A"T)1H"(A")"1G"d (3.66)



CHAPTER 4: LOCKING ANALYSIS

4.1 Introduction

This dissertation concerns itself with plate bending and plane stress/strain elements.
As is well known, some plate bending elements which are formulated based upon theories
that account for shear deformations lock in shear at the thin plate limit. Also well known
is the fact that some plane strain elements lock at the nearly incompressible limit. In this

chapter these locking mechanisms are investigated.

In Section 4.2 locking at the nearly incompressible limit is discussed. In Section 4.3,
it is proved that as a result of the coupling introduced in Chapter 3, shear locking at the
thin plate limit is avoided. If the coupling is rank deficient (i.e., not all shear terms are
coupled to the bending terms), the proof relies on the constraint count method, which is

summarized in Appendix 4.1.

A method to generate stress resultant and strain fields possessing the properties

presented in this chapter will be given in Chapter 5.

4.2 Locking at the Nearly Incompressible Limit

Locking at the nearly incompressible limit occurs in plane strain elements as a result
of trying to force the trace of the strain to vanish pointwise. Thus, if it is possible to
obtain elements in wl_lich the number of constraint equations is smaller than the number of
degrees-of-freedom, it is possible to obtain elements that will not lock. This is the basis for

the constraint count method, which is summarized in Appendix 4.1.

In this dissertation a different avenue of thought is taken. The assumed strain field is
designed a priori in such a way that as Poisson’s ratio, v, goes to 0.5~, the trace of the
assumed strain field goes to zero pointwise. Consequently, there are no constraints to be

enforced, and locking at the nearly incompressible limit will not occur. It must be noted,

42
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however, that the criteria set by the constraint count method, namely, that elements with
less constraints than the "optimal” number of constraints per element are too soft, does not
apply to the elements presented in this dissertation. It will be shown in Chapter 6 that the
assumed strain field for the proposed plane strain elements have indeed the property that at

the nearly incompressible limit the trace of the assumed strain vanishes pointwise.

4.3 Shear Locking

Shear locking occurs at the thin plate limit in some elements based upon theories that

account for shear deformations. Shear locking is defined as follows:

Shear locking occurs at the thin plate limit when the shear strain energy becomes large in

comparison to the bending strain energy.

Shear locking occurs in elements which become over-constrained at the thin plate limit.
Thus, a common criteria for element design is to have the "correct” number of constraints

per element, given by the constraint count method (see Appendix 4.1).

In this Chapter it will be shown that due to the couplings introduced in Chapter 3,
shear locking is avoided a priori at the element level. Furthermore, it will be shown that
in cases where the couplings are rank deficient, provided the rank deficiency is smaller
than the "optimal” number of constraints per element, shear locking will not occur. Conse-
quently, the coupling introduced reduces the number of constraints per element, and in

the best case there are no constraints.

It must be noted that according to the constraint count method, if the element has less
constraints than the "optimal” number, it is predicted to be soft. This comment, however,
does not apply to the class of elements presented in this dissertation. The comment refers
to elements in which all shear strain parameters must be constrained. As will be shown,

this is not the case with the formulations proposed in this dissertation.
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First, the formulation based upon the Hellinger-Reissner variational principle is inves-
tigated in Section 4.3.1. Then the formulation based upon the Hu-Washizu variational

principle is investigated in Section 4.3.2.

4.3.1 Hellinger-Reissner formulation

In this section it is proved that as a result of the coupling between the shear and
moment resultant fields, elements derived from the Hellinger-Reissner variational principle
do not lock in shear. First the coupling is assumed to be of full rank. It is shown, without
resorting to the constraint count method, that shear locking at the thin plate limit is
avoided. Furthermore, it is proved that the definition given for shear locking holds for
elements derived from the Hellinger-Reissner variational principle. In the second part of
this section the constraint on the rank of the coupling matrix is relaxed. It is shown that
provided the number of shear resultant parameters which are not coupled to the moment
field is less than or equal to the number of constraints allowed per element by the con-
straint count method, results established in the first part of this section hold. Finally it is
shown in proposition 4.6 that as the thickness is reduced to zero convergence to the thin

plate solution is obtained.

Proposition 4.1: If the stress resultant fields are given by equations (3.3b) and
(3.3c), and, furthermore, if M, S, and Q are of full rank, then, as the thickness is reduced
to zero, F; and F,, defined by equations (3.23) and (3.24), respectively, are O(h3).

Proof: First note that HZ,,, Hﬁq, and H:q are O(h™3); H* is O(h~Y); and G2, Gq”,
and G* are independent of h.

It follows that, as the thickness is reduced to zero, H? — H* = H? where H? is defined
by equation (3.25). Consequently, the desired results follow. =

Proposition 4.2: If the stress resultant fields are given by equations (3.3b) and
(3.3¢), and F; and F,, defined by equations (3.23) and (3.24), respectively, are O(h3),

then, as the thickness is reduced to zero, the shear strain energy becomes negligible in
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comparison to the bending strain energy.

Proof: By equation (3.11):

m'H), m=m’G,d-m"H} q 4.1)
and
" Gld=q"H m+q"HY q+q" H q-q" G*d (4.2)

The strain energy part of the Hellinger-Reissner functional, equation (3.5), is given by:
lIg(m,q,d)= —;—[mTH,f,,,,m+ mTH,,b,qq+ qTH,‘,’,gm+ qT(H:q + H’)q]
+m"Gld+q"Gld+q"G*d 4.3)
Substituting equations (4.1) and (4.2) into equation (4.3) yields:
l'IR(m,q,d)=;—(mTG,zd+q7H£m+q7H:qq+qTH‘q) (4.4)

It follows from the assumptions that as the thickness is reduced to zero, the last term in
equation (4.4), which is associated with the shear strain energy, is negligible in comparison
to the first three terms, which are associated with the bending strain energy. - Conse-
quently, as the thickness is reduced to zero, the shear strain energy becomes negligible in

comparison to the bending strain energy. =

Proposition 4.3: Shear locking is avoided if and only if the shear strain energy is
negligible in comparison to the bending strain energy.

Proof: Assume the shear strain energy is negligible in comparison to the bending
strain energy; it follows immediately from the definition of shear locking that shear locking

does not occur.

Now assume that shear locking does not occur. Since M and Q are determined by
equilibrium and are O(h9), it follows that m and q are O(h%). Furthermore, F,, defined
by equation (3.24), is O(h3) independent of the coupling. Consequently, d is O(h ~3).

Thus, it follows from equation (4.4) that the shear strain energy is negligible in comparison
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to the bending strain energy. =

46

So far, M, S and Q were restricted to be fully ranked. The question then arises, what

happens when S is not fully ranked? As a first step, spectral decomposition of H®, given

by equation (3.25), is performed.
H® =XTAX

where X7 X = I, the identity matrix. H° is represented in the generalized coordinates (X)

as:
H = XTXH XTX=XTH'X

By equations (3.12), (3.17) and (3.18):

(A+H)q=Gd
where,
q=Xgq G=X(G"-G*)
AO - - - — -
=10 0] qQ =<q;,9;> G =<G,,G,>
and
_ [An g
H=|- -
Hj in

Substituting equations (4.6) into equation (4.5) yields:

(Hji+A) Bhpogy &),
o) )

Hj, Hi | |a:

(4.5)

(4.6a)

(4.6b)

(4.6¢)

4.7

Let q, = F;d and q;= F,d. It follows from equation (4.7) that F; is O(h%) while F, is

O(hY).
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Proposition 4.4: Given that the rank deficiency of S is less than or equal to the max-
imum number of constraints allowed per element by the constraint count method, then (-]-2
is O(h9).

Proof: First note that d is O(k 3), as in proposition 4.3. Since F is O(k3), it follows
that El is 0(h°). fz, on the other hand, is O(h); consequently (;2 is at worst O(h ‘2).

As a result of meeting the constraint count requirement, shear locking does not occur.
It follows from proposition 4.3 together with equation (4.4) that E is O(h®), where a > —1.
Recall that Q is determined by equilibrium; as a result, Q is O(k%. Consequently, a = 0.

This result contradicts the previous result for (;2.

" . -~ LY -
Letd= 3 h‘~3d;. The above contradiction is resolved if and only if dg and d; are
i=0

orthogonal to (fz Consequently, 62 is O(h). »

Proposition 4.5: The vector 62d is O(h 1) if and only if 62 is O(h9).

Proof: This result follows immediately from equation (4.7) once it is noted that d is
O(h~3) and qq is O(h?). =

Proposition 4.6: If M and Q are 0(h°) and the formulation is based upon the
Hellinger-Reissner functional, then the components of the shear strain tensor are O(h ')

while the components of the curvature tensor are O(h ~3).

Proof: The Hellinger-Reissner functional may be viewed as a special case of the Hu-

Washizu functional, where the assumed shear strain tensor is given by:
v=(C)7Q

and the assumed curvature tensor is given by:
k=(C)'M

Since both M and Q are O(h%), the desired result follows immediately. «
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Remarks

It follows from proposition 4.6 that as the thickness is reduced to zero the solution
obtained by the proposed formulation converges to the thin plate solution (Kirchhoff
theory). It must be noted, however, that the solution converges to the thin plate solu-
tion only when the analytical solution obtained for the plate theory used converges to
the thin plate solution (e.g., when point loads are considered, the thin plate solution

under the load is bounded while the Reissner-Mindlin solution is not).

Without the coupling between the shear and moment stress resultant fields, F; is
O(h), while F, is O(h3). Consequently, if the coupling is neglected, then as the
thickness is reduced to zero, the first three terms in equation (4.4), associated with
the bending strain energy, become negligible in comparison to the last term, associ-
ated with the shear strain energy. As a result, by proposition 4.3, the element locks
in shear at the element level. Thus, analysis at the global level is required to deter-

mine whether shear locking occurs.

The functional presented in equation (4.4) is not useful in formulating elements since
the constitutive equations were used to obtain it; equation (4.4) can be used, how-

ever, to obtain bounds on the strain energy.

It follows from the above propositions that the formulation presented in this disserta-
tion guarantees elements which do not lock in shear (provided H is invertible and H?

is of the appropriate rank).

As H’ becomes negligible (i.e., numerically zero), the mixed patch test requirement
for the full recovery of (Iz is n,, + ng = nyy, where ng; is the number of 62 parameters.
In order to maintain a robust implementation for this case 62 would be taken as glo-
bal variables (i.e., Lagrangian multipliers). When a rectangular mesh of n X n ele-
ments, with clamped boundary conditions, is considered, the number of parameters in

q, is:
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f

2n? S1 element
2n(n+1) T1 or Dvorkin-Bathe
"92% 1 <22 for elements presented in Chapter 6 of this
dissertation
\

and the number of displacement parameters is n,, + ng= 3(n —1)2. Hence, a full

solution for all variables is achievable only when

6 — Sl element
n= 7 - T1 or Dvorkin-Bathe
=6 — for elements presented in Chapter 6 of this dissertation

e By introducing the coupling, the S1 element, which represented the best case scenario
in comparison with the T1 or Dvorkin-Bathe elements, in terms of locking, is the

worst case scenario in comparison with the elements presented in this dissertation.

4.3.2 Hu-Washizu formulation

Following the path established for the Hellinger-Reissner formulation, initially it will
be assumed that the coupling introduced in the strain fields as well as that introduced in
the stress resultant fields are fully ranked. It will be shown, without resorting to the con-
straint count method, that shear locking at the thin plate limit is avoided. The constraint
on the rank of the coupling matrices will then be relaxed. It will be shown that provided
the number of shear strain parameters not coupled into the curvature field and the number
of shear resultant parameters not coupled into the moment field are both less than or equal
to the number of constraints allowed per element by the constraint count method, results
presented in the first part of this section hold. In proposition 4.11 it will be shown that as

the thickness is reduced to zero, convergence to the thin plate solution is obtained.

In order to simplify notations and without loss of generality, the plate thickness will
be assumed as constant over the element domain. Furthermore, the shear strain assump-

tion introduced in equation (3.4c) is modified as follows:
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v:=hTe (4.8)
This assumption will be justified in Chapter 5. As a result,
Al = L h2QT I dA (4.9a)
and

H* :=Lh‘I‘TD’ T dA (4.9b)

Proposition 4.7: If the assumed stress resultant field is given by equations (3.3b,c),
the assumed strain field is given by equations (3.4b) and (4.8), and if M, S, Q, &, R, and
" are of full rank, then, as the thickness is reduced to zero, F; and F,, defined by equa-
tions (3.37) and (3.38), respectively, are O(h%), while F; and F,, defined by equations
(3.39) and (3.40), respectively, are O(k3).

Proof: First note that HY,, H.., and H. are O(h3); H* is O(k°); G2, G:, and G*
are independent of h; A2, AL,, A:k, and A:e are independent of & ; and A/, is O(k?). It

follows that, as the thickness is reduced to zero, K, defined by equation (3.41), is given by:
A=AL —AL (AL)TAL
Consequently, the desired result follows. =

Proposition 4.8: Let the assumed stress resultant and strain fields be as in proposition
4.7. If F; and F, are O(h%, and F; and F4 are O(h3), then, as the element thickness is
reduced to zero, the shear strain energy becomes negligible in comparison to the bending

strain energy.

Proof: It follows from equation (3.31) that:

Gld=ALe+Ask+ALe-G'd (4.10a)
AL k=Gld-AL e (4.10b)
Hpe=A¥m+ANq-Hjk (4.10¢)

and
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HL=ATq+ AL+ AT -HTk -H* e (4.10d)

Substituting equations (4.10) into equation (3.27), and neglecting the external work, yields

the following expression for the strain energy:

Iy(m,q,e,k,d)= ;—[kTA:{m+kTA:kTq+ e AlTm+e" (AT+AT)q] (4.11)

It follows from the assumed order of F;, F,, F3, and F4 that the last term in equation
(4.11), associated with the shear strain energy, is negligible in comparison to the first four
terms, which are associated with the bending strain energy. Consequently, as the thickness
is reduced to zero, the shear strain energy becomes negligible in comparison to the bending

strain energy. =

Proposition 4.9: Shear locking is avoided if and only if the shear strain energy is

negligible in comparison to the bending strain energy.

Proof: Assume the shear strain energy is negligible in comparison to the bending

strain energy; it follows from the definition of shear locking that it does not occur.

Now assume that shear locking does not occur. M and Q are defined by equilibrium
equations and are O(k%). Furthermore, F, is O(h3) independent of the coupling. It fol-
lows that the elements of the vector d are O(h ~3). As a result, e and k are O(hk ), and m
and q are O(#%. It follows from equation (4.11) that the shear strain energy becomes

negligible in comparison to the bending strain energy as the thickness is reduced to zero. =

So far it has been assumed that M, S, Q, &, R and T are fully ranked. The question
arises, what if S and R are not fully ranked? To answer this question, note that the con-
straint is that the shear strain must vanish pointwise as the thickness is reduced to zero.
Consequently, only the rank deficiency of R is of importance, as long as the rank defi-

ciency of S is less or equal to the rank deficiency of R. This will be shown below.

Proposition 4.10: A is O(h® independent of the coupling introduced between the

assumed shear strain and assumed curvature.
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Proof: In the case when R is rank deficient, the assumed shear strain is given by:
‘y=h21:1e1+ 1:202 (412)

where e; are the shear strain coefficients coupled into the curvature, and e, are the shear
strain coefficients not coupled into the curvature. Consequently, the following structure is

induced on A, :
e 4]
qe AS )

The desired result follows. s

Remark: The above proof holds as long as the rank deficiency of S is less than or

equal to the rank deficiency of R. This may be seen directly from the structure of A .

Let the shear coefficients q be given by:
 =<q,q> (4.13)

and let the displacement vector d be given by:
n . ~
d=3 ni3g, (4.14)
i=0

where d; are independent of h.

Proposition 4.11: If the rank deficiency of R is less than or equal to the maximum
number of constraints allowed per element by the constraint count method, and provided
the rank deficiency of S is less than or equal to the rank deficiency of R, then, ‘Iz is O(h%)

and the shear strain, v, is O(h ™).

Proof: First note that by proposition 4.10 A is O(h%. Secondly, note that it follows
from proposition 4.10 that F; and F, are O(k°).

It follows from the structure of equation (3.39) that (-1-1 = l‘:ud and 62= f32d, where
Fi, is O(h?), and Fy, is O(k!). Hence, there is a contradiction. Q is determined by
equilibrium, and thus is O(h 9). It follows that the contradiction is resolved if and only if d

is O(h~3), and f32 is orthogonal to dg and d;. Consequently, (-1-2 is O(h%).
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The assumption on the number of constraints implies that shear locking does not
occur. Consequently, by proposition 4.9, the shear strain energy becomes negligible in
comparison to the bending strain energy at the thin plate limit. Therefore, by equation
(4.11) e; must be O(h®) with a > =3.

Let ;= F-‘ud and ¢; = l':ud. Now, in order for f32 to be orthogonal to dg and d,
l-‘;lz must be orthogonal to both dy and d,. Consequently, since F; is O(k%, and, noting

equation (4.12), the assumed shear strain is O(h 7). »
Remarks:

o It follows from proposition 4.11 that the solution obtained by this formulation con-
verges to the thin plate solution as the thickness is reduced to zero. It must be noted,
however, that this convergence will be obtained only when the solution of the plate
theory used converges to the thin plate solution.

®  The energy functional presented in equation (4.11) is not useful in formulating ele-

ments. It may be used, however, to obtain bounds on the strain energy.

®  The last two remarks made for the Hellinger-Reissner formulation are also applicable
to the Hu-Washizu formulation, provided n,; as well as n,, are taken as global vari-
ables, where n,, is the number of shear strain parameters that are not coupled into

the curvature. =
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Appendix 4.1: The Constraint Count Method

The constraint count method is a heuristic approach for determining the ability of an
element to perform well when subjected to a set of constraints. While it is not a precise
mathematical method for evaluating element performance, it is a quick and simple tool for
obtaining an indication of the element performance when subjected to constraints. It does

have, however, the ability to predict a tendency for locking, which is the issue at hand.

Let n,, represent the total number of active equations in the given mesh (i.e., after
boundary conditions have been imposed), and let n, represent the total number of con-

straints in the mesh. The constraint ratio, r, is defined by:

= Do (4.15)
nC

The idea is that the » should imitate the behavior of the number of equilibrium equations
divided by the number of constraints for the governing partial differential equations. In
the case of in-plane problems subjected to incompressibility constraint, these numbers are 2
and 1, respectively, and in the case of plate bending problems these numbers are 3 and 2,
respectively. Consequently, the optimal ratios are 2 and 1.5 for the incompressible and

plate bending problems, respectively.

Let a standard mesh, illustrated in Figure 4.1, be introduced. The motivation for the
constraint count method is: can the "optimal" ratio be approached asymptotically as the
number of elements per side in the standard mesh approaches infinity? The predictions

that can be made based upon the constraint count method are summarized in Box 4.1.

It must be pointed out, however, that while these predictions regarding behavior for
the incompressible problem are very successful, this is not so for the plate bending prob-
lem. Specifically, some plate bending elements which are predicted to be flexible or stiff
were shown to perform well. For further elaboration regarding this topic, see Hughes

[1987].
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Box 4.1: Constraint Count Prediction

r <Tomimay 0O many constraints, and

r=1 locking.

7222

lmmmmmmmnome

Clsmped boundary conditions (0 displacements)

7

Figure 4.1: Standard mesh.



CHAPTER 5: A METHOD TO GENERATE STRESS
RESULTANT AND STRAIN FIELDS

5.1 Introduction

The formulations presented in Chapter 3 rely upon the use of assumed stress resultant
and strain fields. In Chapter 4 it was argued that these fields must satisfy some require-
ments if the resulting elements are to avoid locking. A method that can be applied to both

the plate bending and in-plane problems is presented in this chapter.

In order to develop a basis upon which appropriate stress resultant and strain field
interpolations possessing the desired properties (as presented in Chapter 4) may be derived,
the Hu-Washizu variational principle is modified to account for assumed "incompatible”
strains, while retaining the assumed "compatible” strains. The method may also be
applied, with no modifications, in cases where the Hellinger-Reissner variational principle

is used.

The method presented is a precursor for the finite element method, and should not be
confused as being a part of it. It must be noted, however, that in the case where the
material properties are constant over the element domain, the formulation presented in this
chapter is in agreement with the corresponding variational principle (i.e., Hellinger-
Reissner or Hu-Washizu functionals). In this case, the classical form of the variational
principle evolves naturally and no distinction is made between the formulation presented
and the classical variational principle. Since a state of constant material properties over the
element domain is the limit case under mesh refinement, the formulation presented here
will always be, in the limit case, a natural precursor for generating the assumed stress and

strain fields for mixed finite element methods.

The method relies on the introduction of assumed incompatible strains that are

obtained from assumed "incompatible" displacements. The displacement field, however, is

56
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assumed as a compatible field. The incompatible strains are used to reduce the number of
independent parameters in the stress and assumed compatible strain fields. The desired
couplings in the plate bending problem arise naturally from this method. Furthermore, in
the case of constant thickness over the element domain, the assumption introduced in
equation (4.8) is recovered. In Chapter 6 it will be proved that the plane strain elements
presented in this dissertation possess the property that as the nearly incompressible limit is

approached, the trace of the strain goes to zero pointwise.

First, the method is formulated for a general three-dimensional body in Section 5.2.
The reduction to the in-plane problem is straightforward, and is stated in Section 5.3. The
formulation for plate bending is presented in Section 5.4. In Section 5.5, the formulation
for axisymmetric problems is introduced, thus showing applicability to all types of problems
arising in mechanics of solids. In Section 5.6, a set of requirements for the assumed

incompatible displacements is presented.

In Chapter 6 the method will be applied to generate four-node quadrilateral plane

stress/strain and plate bending elements.

5.2 Three-Dimensional Formulation

The starting point for the method presented here is the Hu-Washizu variational prin-
ciple, which is stated in terms of an assumed stress field, o, an assumed strain field, €, and
an assumed displacement field U. In the case of linearly elastic materials undergoing small

deformations in an isothermal state, the Hu-Washizu energy functional is given by:
IIH(e,a,U)=“];{%—eTDe+cT(LU—e)}dQ—IIw (5.1)

where,
D is the elastic coefficients matrix;

L is the strain displacement operator, given by:
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[
S0 o
axl
0 o
aXZ
o o X
aX3
L= 3 3 (5.2)
0 ——— ——
aX3 axz
B o B
BX3 ax1
I
dxy dxq

and Il is the external work.
Let the assumed strain field be given by:
e=¢+¢ (5.3)
where €° is an assumed compatible strain field (in the case of Hellinger-Reissner formula-
tions €€ = D71o), € are the incompatible strains given by:
¢ =LU (5.4)
and U’ are the assumed incompatible displacements.

The proposed method consists of constraining the assumed stress fields and the com-

patible strain fields. These constraints are presented in Box 5.1.

where D is the mean value of D, defined by:

fpda
[

Jaa

n

o —

and D is assumed to be positive definite.
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Box 5.1: Constraint Equations

Juida=0
fncrre' dQl=0

Ty (i =
fne De'dQl=0

The first constraint is introducedlin order to pass the constant strain patch test. The
motivation is as follows: if the assumed stress field, o, and the compatible strain field, €,
can represent a state of constant stresses/strains, then by introducing the first constraint on
the incompatible displacements, and noting the particular choice of the incompatible

strains, this property of the assumed stress and assumed strain fields is preserved.

The second constraint is introduced in order to force the internal complimentary
energy resulting from the assumed stress and assumed incompatible strains to vanish in a

weak sense.

The motivation for the third constraint will become clear from subsequent discussion.

For now, it may be viewed as a stronger counterpart of the second constraint.

Substituting the assumed strain field, equation (5.3), into the energy functional,

equation (5.1), and replacing D by D yields:

Ny(e,o,U0)= { %—(e‘ +€)D(+€)+oT(LU—€ —¢) }dﬂ | (5.5)
0

Subjecting equation (5.5) to the last two constraint equations in Box 5.1, it is reduced to:

H”(e,a,U)=_‘];{;—(e"Tﬁec+e'Tf)-ei)+oT(LU—e‘)}dﬂ—Hm (5.6)

Let the 8¢ denote a virtual incompatible strain field. The first variation of the

energy functional I1;; with respect to €’ is given by:
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DIy -3¢ = [8¢Del d1=0 (5.7)
0

It follows from the assumption concerning the positive definiteness of D that, provided all
the terms in (5.4) are linearly independent, € is zero pointwise. Thus, the incompatible
strain vanishes when the material properties are constant over the element. Consequently,
a special structure has been induced on the assumed stress and compatible strain fields,
and, noting equation (5.7), no incompatible strains are present in equation (5.6) for this
case. Furthermore, the functional presented in equation (5.6) is identical to the one
presented in equation (5.1). Hence, the starting point for the finite element method is
equation (5.1), but the assumed stress field o, and the assumed strain field e = € satisfy

the constraints summarized in Box 5.1.

5.3 In-Plane Formulation

The reduction of the procedure presented above to the in-plane problem is straightfor-
ward. The strain displacement operator, L, is now given by equation (2.20), and the
volume integrals are replaced by area integrals. With these exceptions, the procedure is
identical to that presented for the three-dimensional body. The constraint equations on the

assumed membrane stress field, N, in an explicit form, are given by:
L \[NHU‘i,] +NpUi, LiA =0 (5.8a)
{ )
and

. ]
S {Nuu'z,] +NnpUb, JdA =0 (5.8b)

and the constraint equations on the compatible strain field are given by:
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I {(Pﬁ Djy + PLDJ) Ui,y + PHDAUY, }dA =0 (5.9a)
and
I, {szﬁggu'z,l + (Pf;Dy + PHDS) Ub, }dA =0 (5.9b)

where D" is the mean value of D", given by equation (2.23).

5.4 Plate Bending Formulation

The plate bending problem is formulated in resultant form. Consequently, the last
two constraints introduced in Box 5.1 must be reformulated in resultant form. The result-

ing constraint equations are presented in Box 5.2.

Box 5.2: Constraint Equations: Plate Bending

J, Uhda =0
J, M +QTy ]aa =0

L [xDPxi + v¢ D* v/ ]dA =0

where D? is the mean value of D?, given by equation (2.22), and D* is the mean value of

D*, given by equation (2.21).
In the above constraints the assumed incompatible strains are obtained by:
=LV ; =LV (5.10)

where L? is given by equation (2.19), and L* is given by equation (2.18).
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The structure of the constraint equations presented in Box 5.2 is such that the cou-
pﬁng structure introduced in Chapter 3 between the assumed moment and the assumed
shear stress resultant fields is imposed. Also imposed is the coupling between the assumed
curvature and assumed shear strain fields. Consequently, as was shown in Chapter 4,
shear locking in elements formulated by this method is avoided at the element level.
Furthermore, note that the assumption used in Chapter 4 on the assumed shear strain field

(i.e., T is O(h?) ) follows naturally from the structure of the last equation in Box 5.2.

In the previous discussion of the two- and three-dimensional problems it was pointed
out that the first constraint introduced in Box 5.1 was necessary in order to obtain elements
which pass the constant strain patch test. In the plate bending formulation, however, the
displacement itself, U, appears explicitly in the constraint equations through the appear-
ance of the incompatible shear strains. The question arises, therefore, do elements formu-
lated by the proposed method pass the constant strain patch test? In order to obtain a
better understanding, the constraint equations are now written in an explicit form. The

constraint equations on the assumed stress resultant field are given by:

fA{qwfa +qywh 1dA =0 (5.11a)
{ )
{ i i i)
L{kMzzel,z'*‘ Mu91,1‘9291}d-4 =0 (5.11b)
and
L{MueiﬁMuez‘,z—qlez‘}dA =0 (5.11c)

and the constraint equations on the assumed compatible strain are given by:

L {vfﬁﬁ wii +ysD3wi, }dA =0 (5.12a)

J, {(xﬁ D}, + k$,D3)6{,+ x,D$,6{; —v§ D30/ jdA =0 (5.12b)
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and
J { (xfiDfs + x5, D3) 041 + xf, D405, —vf Df; 0] }dA = (5.12c)

A close examination of equations (5.11) reveals that the equation used to reduce the
assumed shear resultant field, equation (5.11a), involves the derivatives of the assumed
incompatible transverse displacement. The equations used to reduce the assumed moment
field, equations (5.11b,c), involve derivatives of the assumed incompatible rotations on
which the moments perform work, and .the incompatible rotations on which the shear resul-
tants perform work. Similar results are obtained for the constraint equations on the
assumed curvature and shear strain field, equations (5.12). Consequently, the structure of
the constrained fields is such that constant moment/curvature (i.e., shear resultants/shear
strains are zero pointwise), as well as a state of constant shear stress/strain are possible. As
a result, elements formulated by the proposed method pass the patch test, provided the

assumed displacement field can model the associated state of deformations.

5.5 Axisymmetric Formulation

When considering this case, it is not clear why the first constraint introduced in Box
5.1 should be satisfied in the radial direction. Furthermore, examining the strain displace-
ment operator, which in a cylindrical coordinate system is given by:

r

9

ar

0o -
A 0z

dz odr

L o

r

reveals that the circumferential strain, €gg, is a function of the radial displacement. Conse-

quently, applying the method as presented in Box 5.1 would lead to coupling of the
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circumferential stress and strain into the radial stress and strain, respectively. While con-
ceptually this result does not pose any difficulty, from a computational point of view it is
undesirable. It was shown by Weissman & Taylor [1988] that excellent results can be
obtained when the radial and circumferential stresses are decoupled. Consequently, in
order to obtain decoupled circumferential stress and strain, as well as to be able to use the
same type of incompatible displacements as in the plane case (the functions used in the
plane case divided by the radial coordinate, r, may be used), the strain displacements
operator, used to generate the assumed incompatible strains from the assumed incompatible

displacements, is modified as follows:

[
K 0
ar
0o < 0
— 0z 4
L? = s 0 (5.19)
dz adr
1, 9 d
0 0 =(=-—4 —
r(ar az)

Using LA implies the introduction of an assumed incompatible displacement in the circum-
ferential direction. Note, however, that this displacement is such that its integral over the
element area vanishes. Since this is an assumed field, it is legitimate to do so provided the
resulting strains are contained in the admissible strain space (i.e., are in H®). Further-
more, the circumferential displacement which is zero pointwise in the strong statement of
the problem, is zero in a weak sense if the method presented here is used; in the case of
constant material properties over the element domain, this displacement is identically zero

pointwise.

5.6 Criteria for the Assumed Incompatible Displacements

The methodology presented above involves the use of incompatible displacements
used to generate incompatible strains. A set of properties that these displacements must

possess are presented in Box 5.3, and motivated below.
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Box 5.3: Properties of the Incompatible Displacements

o Frame invariant,

® Do not artificially bias the element in any direction,

®  The functions should be as simple as possible (i.e., lowest order of po-
lynomial possible),

®  The assumed incompatible displacements must be of higher order than

the assumed compatible displacement (e.g., for the bilinear elements,

the assumed incompatible displacements must be at least quadratic),

®  The first derivative with respect to the coordinates vanishes (first con-

straint in Box 5.1), and

®  Preserve the sign convention used in the strong form (plates, shells

and beams).

The first three requirements are obvious, and are primary objectives for every finite

element development.

The fourth requirement is introduced in order to obtain stability of the algorithm. If
the order of the incompatible function would not be higher than the compatible functions,
the orthogonalization procedure introduced will render nonstable elements. This is because
the null kernel of the G matrix with respect to the solution space will be augmented by the
incompatible functions. By requiring the incompatible functions to be of higher order

polynomials, the null kernel with respect to the solution space is not modified.

The fifth requirement is introduced in order to pass the patch test as was explained

above.
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To obtain a grasp on the last requirement, consider the case of a plate element with
constant shear in one direction (e.g., a cantilever beam with end shear). In this case, this
requirement must be met in order for the contribution of the shear to the moment (from

the explicit coupling introduced) to be of the correct sign.

Using the requirements as put forth in Box 5.3, the incompatible displacements can
be defined up to within a constant. This constant does not play any role in the two- and
three-dimensional cases as well as in the axisymmetric case, as the incompatible strains are
derivatives of the incompatible displécemems (see equations (2.20), (5.2) and (5.14),
respectively). In the case of plate bending, however, this constant appears explicitly in the
incompatible strain, equation (5.10), and is important to the couplings produced, as shown
in equations (5.11b,c) and (5.12b,c). Consequently, a method to determine its value must

be presented.

The last of the property requirements for the incompatible displacements puts a con-
straint on the values this constant may take. A unique value for this constant may be
obtained if the incompatible displacements are required to integrate to the element area.
This may be viewed as a normalization procedure. The constant obtained, however, will
depend on the element geometry. As a result, the incompatible displacements will be ele-
ment dependent. This result may be avoided if it is noted that the range of values that the
constant may take is bounded from above and below (assuming the Jacobian to be non-
zero at all points in the element). Consequently, a unique value independent of element
geometry may be obtained. While for a very coarse mesh, results obtained will not be as
good as those obtained by using an element dependent constant, results will converge
quickly and, for reasonable meshes, they will be practically insensitive to the constant value

(provided the value used is in the allowable range).



CHAPTER 6: PROPOSED ELEMENTS

6.1 Introduction

Four-node quadrilateral plane stress/strain and plate bending elements are presented
in this Chapter as an illustration of the methodology developed in Chapters 3 and 5. In
Section 6.2, the assumed displacement field is presented. The assumed stress resultant
fields are presented in Section 6.3. The assumed compatible strains are presented in Sec-
tion 6.4. The incompatible displacerhents used to generate the assumed incompatible
strains are presented in Section 6.5. Finally, the proposed elements are presented in Sec-

tion 6.6.

6.2 Assumed Displacement Field

The assumed displacement field used in the four-node elements presented in this
chapter is presented in this section. The in-plane displacement field is assumed as a stan-
dard isoparametric field and is presented in Section 6.2.1. The rotation field and
transverse displacement field are presented in Section 6.2.2. The rotation field is assumed
as a standard isoparametric field. In order to be able to represent exactly a state of con-
stant curvature, characterized by a biquadratic transverse displacement field, the bilinear
isoparametric interpolation, used in four-node elements, must be substituted by a biqua-
dratic one. To avoid the addition of degrees of freedom, the transverse displacement field
is enhanced by interpolating it in terms of the nodal rotations as well as in terms of the

nodal transverse displacement.

6.2.1 Plane stress/strain

The assumed displacement field is a standard isoparametric field; the displacements

are given by equation (3.1), which is restated here:
U= N, q, (6.1)

67
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where N, is the shape function associated with node 7, and 4, is the displacement vector
given by equation (3.2). In the case of four-node quadrilateral elements, the shape func-

tions are given by:
NiEm)= 7 (1+§E)(1+am) (62)

where £ and m are the element natural coordinates, on the interval [-1,1], and &; and 7,

are the values of the natural coordinates at the node /.

6.2.2 Plate bending

Plate bending elements are required to be able to represent exactly constant curvature
and constant shear. The former is characterized by a state of biquadratic transverse dis-
placements and bilinear rotation fields (no shear deformations), while the latter is charac-

terized by a state of bicubic transverse displacements and biquadratic rotation fields.

Current four-node element technology (e.g., T1 and Bathe & Dvorkin [1985] ele-
ments) is able to model exactly constant curvature for an arbitrarily-shaped quadrilateral.
Constant shear strain, however, can be modeled exactly only when the elements are in the
form of a parallelogram, but the displacements are not exact at the nodes. This behavior is
due to the order of interpolation used for the rotations and transverse shear deformation in
four-node elements. In the case of four-node plate bending elements the rotations must be
interpolated by standard isoparametric interpolation. The transverse displacement, on the
other hand, may be enhanced by expressing it in terms of nodal rotations as well as in
terms of the nodal transverse displacement. The enhancement procedure may be done
explicitly (e.g., Morris [1986]) or implicitly by modifying the shear strain displacement
relations (e.g., T1 and Bathe & Dvorkin [1985] elements). In this dissertation the first
approach is taken. A simple and efficient method to explicitly enhance the assumed

transverse displacement to a biquadratic field is presented.
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The rotation field is assumed as a standard isoparametric field. Consequently, the

assumed rotation field is given by:
Gu = Nl Oal (6.3)

where 0 is the rotation 6, at the node I and N, is the shape function associated with

node 1, given by equation (6.2).

A state of constant curvature is characterized by zero shear strain, pointwise. Conse-
quently, it follows from the shear strain displacement relation, equation (2.4a), that
w,=—€,aBg. As a result, if the tran@erse displacement at a point a is known, and if the
rotation field is known, too, then the transverse displacement at a point b can be computed

as follows:

b
wp=w, + [8,(E,m)ds (6.4)

where w, is the transverse displacement at point b, w, is the transverse displacement at
point a and 6, is the rotation about the normal to the line ab connecting points a and b.

6, is given by:
On (§,"l)= va(g M ) ea(g;"] ) : (65)

where v; and v, are the components of the unit normal vector to the line ab in the x; and

x, directions, respectively.

Using the relations given by equations (6.4) and (6.5), the transverse displacements at
the element mid-edge points can be computed as follows:
1 i+4 k
i i+4
where i=1,2,3,4; and k = (i+4) modulo 4. The "node” numbering and the normals to the

paths used are presented in Figure 6.1. The transverse displacement at the element center

(¢ = m = 0) can be computed as follows:
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9

§8; (Wi + [8,ds) (6.7)
i=5 i

Wo=

ENTT

Using the procedure outlined above, the transverse displacement field can be interpo-
lated by the nine-node Lagrangian element shape functions. The shape functions associ-

ated with the corner nodes (nodes 1,2,3 and 4) are given by:
-1
Ny= En(6+ &) (n+ ) (6.8)

the shape functions associated with the mid-edge points 5 and 7 are given by:

Ny= n(1-8)(n+n) (6:9)

the shape functions associated with the mid-edge points 6 and 8 are given by:
Ny= ZE(1L-m)(E+ &) (6.10)
and the shape function associated with the center point is given by:
Ng=(1-£€)(1-7?%) (6.11)

Consequently, the assumed quadratic transverse displacement field is given by:
S .
w(E,m)= 3 Ni(&,m)w (6.12)
1=1

Remarks:

®  The consistent loading and consistent mass matrix must be modified to account for
the enhanced interpolation used for the transverse displacement.

®  When the simply supported boundary condition is specified as w = M,, = M,, = 0 (the
so called SS1 boundary condition), as a result of the enhanced interpolation used on
the transverse displacemen!t, the w = 0 condition is satisfied only at the nodes. w

converges pointwise to zero, however, under mesh refinement.

® It must be emphasized that without the enhanced interpolation used for the transverse

displacement, the proposed elements will not lock in shear. The enhanced transverse
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displacement is introduced only in order to be able to represent a state of constant

curvature/moment for elements distorted from a parallelogram shape.

®  An error is introduced in the values computed for the transverse displacements at the
mid-edge and center points when the shear strain is not zero pointwise and/or the
rotation field cannot be represented exactly by a bilinear field. Consequently, the
interpolation used for the transverse displacement is not, in general, identical to the

nine-node element interpolation.

®  The general constant strain patch test requirement for plate bending elements necessi-
tates the ability to exactly represent a state of constant shear strain/stress as well as
that of constant curvature/moment. The scheme outlined above will not yield ele-
ments that can model a state of constant shear if the element is perturbed from a
parallelogram shape. This remark, however, is true for all known four-node plate

bending elements (e.g., T1 and Bathe & Dvorkin [1985] elements).

® It is common practice in the finite element literature to replace the constant shear
strain patch test, as stated above, by a test in which the nodal rotations are con-
strained to be zero (i.e., shear deformation only). Indeed, the transverse displace-
ment field for this case is bilinear. Consequently, all four-node elements can represent
this case exactly. The plate bending elements presented in this dissertation contain
coupling between the shear strain and the curvature. Consequently, the curvature is

not zero unless body couples are introduced. The shear strain, however, is exact. =

6.3 Assumed Stress Resultant Fields

The assumed membrane, moment and transverse shear resultant fields are formulated
in the element natural coordinates and then transformed into the physical domain by
means of a transformation identical to the one used to transform second Piola-Kirchhoff
stresses into Cauchy stresses. However, in order to pass the patch test and in order to

maintain frame invariance, the transformation is based on values at the center of the
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element (Pian & Sumihara [1984]).

6.3.1 Assumed membrane resultant field

The assumed membrane resultant field is a complete linear field® in the element

natural coordinates and is expressed as:

ni
Nge] 1£€m000000] s
N =N t=]0001¢&m000]]:-} (6.13)
N;nJ 0000001¢m|]|-.
hg

Since complete polynomials are used to express the membrane forces, equation (6.13)
could be used for N* directly. However, the reduction to satisfy the constraints introduced
in Chapter 5 would require selection of different parameters in each element (i.e., there
would be a dependence on element orientation of £ and m with respect to x; and x;). This
dependence may be avoided by using the transformation procedure described below.

The following definitions are introduced:

1 1 1
xs = 4—§11u P X=Xy xh = ;(éﬂ Dixu

1 1 1
ys = 2hxy 5 = gmyxy 3 oyh= (En)xy

Following Zienkiewicz & Taylor [1989], the Jacobian of the coordinate transformation
from the (€,m) space to the (x;,x,) space is given by:

J=Jo+.’1§+.’2’ﬂ (614)
where,

Jo=xs 'yt —=xt - ys (6.15a)

* The stress resultant and strain fields are assumed as complete lincar fields since this is the best assumption that
may be used in conjunction with a bilinear displacement field.
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Ji=xs-yh —xh 'ys (6.15b)
Jy=xh -yt —xt -yh (6.15¢)

The membrane forces in the physical space are obtained by using the following

transformation:

1
Ny = ;O-F,, Fy; Ny (6.16)

where both i and j take the values x; or x3, and both I and J take the values £ or 1, and

axl
x,¢ = — eftc.

1S

At the center of the element, F is given by:

Fre=xs ; Frqo=xt (6.17a)

M
Fee=ys 5 Fyq=yt (6.17b)

After redefining the independent coefficients, the assumed moment resultant field is given

by:
\
ny
Ny {1 00 xs?n % xs% xlq 2xsxt§2.1tsxt'r|.I n,
N={Nxt=1010 ys2q y%  ys%t  ytPn 2ysyrk 2ysyim|d-} (6.18)
N12J 001 xsysm xtytfé xsysé€ tytm  A¢ A n.g
\ 7
where,

A =xs-yt+xt-ys

ny= }-1—(xs2n; +xt2ny +2xsxtny)
0
1 2 - 2 L *
ma= 7-(ys7n3 + yPn] + 235 3t n3)
0

n3y= Flg(xsysn;+.ttytn;+A ny)
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with
)
(i,j)¢ {(4,3),(5,5),(6,2),(7,6),(,8,8),(9,9)J‘
It is convenient to write N in the following form:
v ) )
where,

AT _ Y g
ny =<ny,ny,n3,n4,n5g> ; ny =<ng,ny,ng,ng>

74

With the above construction, the parameter set /i, may always be selected as the set to be

eliminated in satisfying equation (5.8).

6.3.2 Assumed moment resultant field

The moment resultant field is constructed in a manner identical to that described

above for the assumed membrane forces. Accordingly, following the procedure presented

for the assumed membrane field, the assumed moment resultant field, in the physical

space, is given by:

[Mu] xsz-q xt2§ xs2t xt2n 2xsx1§2xsxtn]

100
M= 1M22t= 010 ys?n yt%& ys%  yt?m 2ysytE 2ysytm |-
lezJ 001

xsysm xxytE xsys€ xxytm A€ A |

It is convenient to write M in the following form:

3

M= [M M 1}
1 l 2] rflzj
where,

AT TS .
my = <m1,m2,m3,m4,m5> y mpy = <m6,m7,m8,m9>

my
ma

(6.19)
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With the above construction, the parameter set ri; may always be selected as the set to be

eliminated in satisfying equation (5.11).

6.3.3 Assumed shear resultant field

The shear resultant field is constructed in a manner similar to that described above
for the membrane and moment resultant fields. Accordingly, let the assumed linear resul-

tant field in the element natural space be given by:

fqz‘

. fo:) 1&£€m000] 92

Q _{Qi}_[o 01 ¢ nj<- » (6.20)
96
\ )

The shear resultant field in the physical space is obtained by means of the following

transformation:

Qi= 71‘F.'1 o (6.21)
0

where i takes the values x; or x,, and / takes the values £ or m. After redefining the

independent shear coefficients, the assumed shear resultant field in the physical space is

given by:
|
r‘Il
fo1] 110 xsm g xs€ xxm] |92

Q-{Qz}— [Olys'ﬂ eyt |1t (6.22)
96
\
where,

1 . .
q1= J—(X-“h +xtq4)
0

1 * [ ]
q2= ;-(ys q1+y1qy)
0
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with
(i ’j)6 {(3’3)’(4’5)’(5’2)’(6’6)}

It is convenient to write Q in the following form:

where,

~T . ‘T—
91 =<91,92,93,94> ; 92 = <g5,96>

With the above construction, the parameter set §, may always be selected as the set to be

eliminated in satisfying equation (5.11).

6.4 Assumed Strain Fields

The assumed membrane strain, curvature and shear strain fields are formulated in the
element natural coordinates, and then transformed into the physical domain. Two types of

transformations can be used:
®  The same transformation as used for the corresponding stress fields.
®  The inverse to the transformation used for the corresponding stress fields.

The motivation for the first approach is to have the same "shape functions,” or interpola-
tion, for the strain fields as for the corresponding stress fields. The second approach is
motivated by the invariance of the complementary energy (o;;€;) under coordinate
transformation. Accordingly, the transformation of a tensor of order two is given by:"

Ty =JF FiiTy; (6.23)

* In direct notation, equation (6.23) wouldread: T =J F~'T" F-7
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and the transformation for a tensor of order one is given by:
Z,=JFz; (6.24)

A similar approach was taken by Simo & Rifai [1989].

6.4.1 Assumed membrane strain field

Following the path established in the assumed stress fields, the membrane strain field
is assumed as a complete linear field in the element natural coordinates, and then
transformed into the physical space. Using the transformation given by equation (6.16)

yields:

)

P

[pu] [1 00 xs?n x% xs%% xzz'q 2xs xt & 2xsxr-q] L,;
P= anJ= lO 10 ys?q y%  ys%  y’n 2ysyt & 2ys yt‘qJ 1 -t (6.25a)

Py 001 xsysm xtyt€E xsys€ xtytny A¢g An »
9
L)
and using the inverse transformation, equation (6.23), yields:
2 2 2 2 P1
100 yt*q xt“¢ yt<g xt‘n  —2ytxtfE 2ytxtm Pa
P=]010 ysz'n xs2t ys2t xs?m  2ysxst —2ysxsqm|{-} (6.25b)
001 —ytysm —xtxs& —ytys& —xtxsm At AT p’
9
\ )

It is convenient to write P in the following form:

- [rn:] )

where,

Pl =<py,P2,P3,P4,Ps> ; B3 = <Pg,P7,Pg,P9>

With the above construction, the parameter set p, may always be selected as the set to be

eliminated in satisfying equation (5.9).
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6.4.2 Assumed curvature field

An identical procedure to the one used to obtain the assumed membrane strain field
in the physical space is repeated for the assumed curvature field. Accordingly, the

assumed curvature field in the physical space, using equation (6.16), is given by:

(
kq
Kul [100 xsz-q a2 xsi xtz-r] 2xsxt § 2xsxam k,
kpf=1010 ys?n y% y% y™n 2ysyk 2ysym|q-

. (6.26a)
K12}| lOlesys'n xtyt§ xsysE xtytmp AE Anm

K=

] k‘9

\ )

and using the inverse transformation, equation (6.23), the assumed curvature field in the

physical space is given by:

ky
[1 00 y?q xt2 yt2E xt2n 2ytxt £ =2yt xim l ko
k= 1010 ys’q xs2 ys 2 xs?q  2ysxskE 2ysxsm|{-} (6.26b)
lO 01 —ytysm —xtxs& —ytys€& —xtxsm At Anm k.g
\

It is convenient to write x in the following form:

(£
K= [k1|f<2} tIJ
2
where,
‘e{= <k1’k2’k3’k4vk5> > E§= <k67k79k89k9>

With the above construction, the parameter set k, may always be selected as the set to be

eliminated in satisfying equation (5.12).

6.4.3 Assumed shear strain field

The shear strain field is constructed in a manner similar to that described above for
the membrane strain field. Accordingly, the assumed shear strain field in the physical

space, using equation (6.16), is given by:
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RN

€1

10 xsm xté xs¢ x €2

Y1 n n

- = ! 27
K {’Yz} [Olysn neyEwnf]. | (6:272)

€6

\ J

and when using the inverse transformation, equation (6.24), the shear strain field in the

physical space is given by:

€1

10 ytm -xm& g -xm] |2
= [0 1 —ysm xs& -ysé xs'ﬂ]‘: ' (6.270)

€6

It is convenient to write vy in the following form:

v=[51%] {e;}

where
T =<e;,e5,e35,64> ; 67 =<es,e64>

With the above construction, the parameter set é, may always be selected as the set to be

eliminated in satisfying equation (5.12).

6.5 Assumed Incompatible Displacements

The assumed incompatible displacements used in the constraint equations are
presented here. To pass the constant strain patch test (see Section 5.2), the first derivative
with respect to x; and x5 coordinates must vanish in a weak sense (i.e., their integral over
the area should vanish). To demonstrate the rules set up in Chapter 5 for selecting these
displacements, two functions are used. The first was presented by Wu, er. al. [1987].
These functions do not satisfy the last condition presented in Box 5.3. The second func-

tion was presented by Taylor, er. al. [1986]. These functions satisfy all the criteria set in
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Box 5.3.

6.5.1 Plane displacements

Let the assumed incompatible displacements for the plane case be given by:

Ui =Ni{x;+ Ni X, (6.28a)
and

U} - Nixg+ NiX, (6.28b)
where \q, Ay, ...., and A4 are the independent incompatible displacement parameters, and

Ni are the incompatible shape functions.

6.5.2 Plate bending displacements

Similarly, let the assumed incompatible displacements for the plate bending case be

given by:

0i=Ni X3+ Nix, (6.29a)

0i=NiAs+ N (6.29b)
and

wi=Ni{N + NiX, (6.29¢)
where Ay, Ay, ...., and Ag are the independent incompatible displacement parameters.

Remark: Differe_nt incompatible shape functions are used for the assumed incompati-
ble transverse displacement since a higher order interpolation is used to model the
transverse displacement (Section 6.2.2). If isoparametric interpolation was used for the
assumed transverse displacement, too, the same shape functions used for the rotations

could be used for the transverse displacement. =
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6.5.3 Assumed incompatible shape functions

As was stated above, two options are selected for the incompatible shape functions N4
and N5. The first set of incompatible shape functions were presented by Wu, ez al. [1987].

The functions are given by:

2J 2J
-2 1 2
Ni=¢ -——310 ——-310 n (6.30a)
and
. 2J 2J
o2y 21, 272 .30b
Ny =P+ S3E- 375 (6.30b)

The second set of incompatible shape functions was presented by Taylor, er al. [1986].
In order to obtain a more compact form, the incompatible modes given below are a linear

combination of the modes originally presented. The functions are given by:
. Ja Jq
Ni=(1-=0)(1-8)+ —£(1-7%) (6.31a)
Jo Jo
and
. Jq Ja .
Ny =(1-7-6)(1-m?)+ 7=m(1-¢) (6.31b)
Jo Jo

Note that the second set of incompatible modes is zero (compatible) at the nodal points

while the first set is not.

The incompatible shape functions N4 and N} used in the incompatible transverse dis-

placement were proposed by Wu, er al. [1987], and are given by:

47, 47,

NL = g
3=8 57,8 57,0

(6.32a)

and

4], 4],

57,6757, (6.32b)
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Remark: The functions given by equations (6.32a,b) are used in equations (5.11a)

and (5.12b) and thus, it is not necessary to meet the last criteria set in Box 5.3 . =

6.6 Proposed Elements

A number of plane stress/strain and plate bending elements are proposed as an illus-
tration and test of the formulation proposed in Chapters 3 and 5. These elements are also
designed to test the sensitivity of the formulation to the particular choice of the assumed

incompatible displacement fields.

Six four-node quadrilateral plane stress/strain elements are proposed. Two are formu-
lated via the Hellinger-Reissner variational principle, and four via the Hu-Washizu varia-

tional principle. The class of elements developed here is labeled Plane Stress/Strain (PSS).

In addition, six four-node quadrilateral plate bending elements are proposed. Again,
two are formulated via the Hellinger-Reissner variational principle, and four via the Hu-
Washizu variational principle. The class of elements developed here is labeled Coupled

Resultants Bending (CRB).

The two sets of incompatible shape functions for the incompatible displacements
presented above, equations (6.30) and (6.31), are used in both the plane and plate bending
cases. The first of these sets of functions satisfies all the requirements presented in Chapter
S, with the exception of the last requirement set in Box 5.3. The second set satisfies all cri-
teria stated in Box 5.3. Thus, it is anticipated that the plane elements presented should
not, to any degree, be sensitive to the type of incompatible shape functions used since they
depend on the derivatives of the shape functions only (this result is also true for the three-
dimensional and axisymmetric formulations). For very coarse meshes the plate bending
elements presented are expected to show some sensitivity to the particular incompatible
shape functions used. The stress resultants recovered for the plate elements are expected to

be more sensitive than the displacements to the type of incompatible shape functions used.
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The incompatible displacements used represent, in effect, the extreme cases of possi-
ble choices for the incompatible displacements (see Section 5.6 - normalization of the
incompatible displacements). Consequently, if the results will be shown to be insensitive to
the particular choice of incompatible shape functions for reasonable meshes, the full robust-

ness of the method will be revealed.

6.6.1 Plane stress/strain elements: Hellinger-Reissner formulation

The displacement field presented in equations (6.1) together with the assumed mem-
brane forces presented in equation (6.18) form the independent fields for the Hellinger-
Reissner based elements. The two elements presented differ only by the incompatible dis-
placements used to reduce the assumed membrane force field. It must be noted that in the
case of a constant Jacobian element (e.g., equation (6.14) is constant) the two elements are
identical. The element associated with the incompatible shape functions given by equa-
tions (6.30) is PSS1, and the element associated with the incompatible shape functions

given by equations (6.31) is PSS2.

In Chapter 4 it was argued that if the assumed strain field can model a state of strains
in which the trace of the strain vanishes, no locking at the nearly incompressible limit will

occur. A proof that the elements presented meet this requirement is given in proposition

6.1.

Proposition 6.1: The Hellinger-Reissner elements presented above can, in the case of
plane strain, model a state in which the trace of the strain goes to zero pointwise as v goes

to 0.5

Proof: Recall that in the case of the Hellinger-Reissner variational principle the
assumed strain field is obtained from the assumed independent stress field. Consequently,

in the case of plane strain the membrane strain P is given by:

P=(D")"IN (6.33)
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where (D)7 is given by:

A+2p =X

(™) 1= A A+2p

Q'v-

(6.34)

L —

F|Q o o

with,
a=4p(p+\)

As Poisson’s ratio, v, goes to 0.57, X goes to infinity while p remains bounded. It
follows that, at the limit, the following relation is obtained:
(D*)ii' = (D")z' = —(D")z' = —(D")z;’ (6.35)

After imposing the constraint equations introduced in Chapter 5, the assumed mem-

brane stress field presented in equation (6.18) is reduced to the general form:

n
(N, ) [100 am+biE agt+ban] "
N= Nn =1010 021]+b2§ 05§+ bm 1° (636)
V12 100 1 agn+b3 agk+ben [n,
where a4, a,, ...., and ag, and by, by, ...., and bg are constants to be determined by the

procedure presented in Chapter 5.

Substituting equations (6.34) and (6.36) into equation (6.33) and taking notice of

equation (6.35) yields the desired result. =

6.6.2 Plane stress/str.ain elements: Hu-Washizu formulation

The displacement field presented in equations (6.1) together with the assumed mem-
brane forces presented in equations (6.18) and the assumed membrane strains presented in
either equation (6.25a) or equation (6.25b) form the independent fields for the Hu-

Washizu based elements. The four elements presented differ by the incompatible
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displacements used to reduce the assumed membrane forces and strains, and by the strain
field used. The elements associated with the incompatible shape functions given by equa-
tions (6.30) are PSS3 (strain field given by equation (6.25a)) and PSSS (strain field given
by equation (6.25b)); the elements associated with the incompatible shape functions given
by equations (6.31) are PSS4 (strain field given by equation (6.25a)) and PSS6 (strain field

given by equation (6.25b)).
Once again it is necessary to prove that the trace of the assumed membrane strain
field vanishes as Poisson’s ratio, v, goes to 0.5~. This is done in proposition 6.2.
Proposition 6.2: The trace of the assumed shear strain field, in plane strain elements,

goes to zero pointwise as v goes to 0.57.

Proof: After constraining the assumed membrane strain field introduced in equations

(6.25), the reduced field is given in a general form by:

Pl] 100 011']+b1§ a4§+b4'r|
P= Pyt= 010 am+ by asE+bsm |1 ¢t (637)
Pi2f 10 0 1 ayn+bst agt+benl |,

Ps
L )

The structure imposed by the constraint equations is such that the following relations are

obtained, as v goes to 0.57, between the ay, a,, ...., and ag and by, b, ...., bg coeffi-
cients:

aj+a;=0 ; ag+as=0 (6.38a)
and

bi+by=0 ; by+tbs=0 (6.38b)

A formal proof for equations (6.38) can be obtained. This proof, however, is very
cumbersome and tedious, and does not yield a better understanding of the formulation.
For these reasons, a numerical "proof” will be given. To obtain a more compact form, an

equivalent form to equations (6.38) is given. Namely, the values of
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(a1+ax)n+ (by+by)t and (as+as)t+ (by+ bs)m are reported at the Gauss points.
First, a square element (see Figure 6.2a) is examined. The values for the first Gauss point
are reported in Table 6.1. Values for other Gauss points may be obtained as follows: given
that the value at the first point is v, then, at the other points it is - sign(§) * v, where
sign(§) is the sign of the &/m coordinate at the given Gauss point (n for the first column

and ¢ for the second column).

Table 6.1 Square element

v (a1+az)n+ | (ag+as)E+

(b1+by)¢E (bat bs)m
0. -0.144338 -0.144338
0.3 -0.082479 -0.082479
0.49 -0.005661 -0.005661
0.499 -0.000577 -0.000577
0.4999 -0.000058 -0.000058

Secondly, an element distorted from a parallelogram shape (see Figure 6.2b) is examined.
In this case the values at the first and second Gauss points are reported. The value for the
third Gauss point is minus the value at the second Gauss point, and the value at the forth
Gauss point is minus the value at the second Gauss point. Results are summarized in

Tables 6.2 and 6.3.

Table 6.2 Distorted element
v point (ayta))n+(by1+by)¢
PSS3 PSS4 PSS5 PSS6
0. 1 -0.138299 | -0.136318 | -0.239751 | -0.166003
2 -0.142666 | -0.145547 | -0.234665 | -0.224427
0.3 1 -0.074126 | -0.072729 | -0.2255061 | -0.231639
2 -0.077283 | -0.079388 | -0.204323 | -0.169421
0.49 1 -0.004723 | -0.004612 | -0.051700 | -0.037454
2 -0.004982 | -0.005156 | -0.055967 | -0.042924
0.499 1 -0.000479 | -0.000467 | -0.006410 | -0.004384
2 -0.000505 | -0.000523 | -0.006890 | -0.004980
0.4999 1 -0.000048 | -0.000047 | -0.000650 | -0.000446
2 -0.000051 | -0.000052 | -0.000700 | -0.000506

The results summarized in Tables 6.1, 6.2 and 6.3 "prove” equations (6.38).
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Table 6.3 Distorted element
v point (ag+as)E+ (by+bs)m
PSS3 PSS4 PSSS PSS6
0. 1 -0.099318 -0.096704 -0.386263 -0.414609
2 +0.102311 | +0.103024 | +0.388999 | +0.420426
0.3 1 -0.053029 -0.051169 -0.692734 -1.013897
2 +0.055193 | +0.055728 | +0.703892 | +1.045209
0.49 1 -0.003365 -0.003215 | +0.027529 | +0.021353
2 +0.003542 | +0.003588 | -0.029822 -0.024105
0.499 1 -0.000341 -0.000326 | +0.002510 | +0.001978
2 +0.000359 | +0.000364 | -0.002771 -0.002279
0.4999 1 -0.000034 -0.000033 | +0.000249 | +0.000197
2 +0.000036 | +0.000036 | -0.000276 -0.000227

87

It follows from equations (6.37) and (6.38) that as v goes to 0.5 the trace of P is
given by:

traceP=p,;+ p, (6.39)

In order to show that the trace of the membrane strains goes to zero pointwise recall

from Chapter 3 that the stress strain weak relation is given by:
H'p-A"n=0 (6.40)
To simplify notations and without loss of generality, £ and m in the assumed strain field,

equation (6.37), may be replaced by £ and 7, given by:

E=E-& ; m=m-m

where, &; and m are shifts introduced in order to make H" block diagonal. In order to
obtain this result the following requirements must be met:

f,. EdA =0
and

fA ndA =0

The resulting &, and m are given by:
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b= 3Jp
and
o= 37,

The H" matrix is now of the following form:

D"A 0O

n_ .
H 0 H

(6.41)

where D" is given by equation (2.23), A is the element area, and H is the "material” pro-
perties for the linear part of the membrane strains. Based on results in equations (6.38), H
satisfies pointwise the incompressibility constraint. Hence, it remains only to consider the

constant part, given by D" A .

Combining equations (6.40) and (6.41) yields:

and

where n = A" n.

Substituting equations (6.42) into equation (6.39) yields:

2u(ni+ny)
aA

traceP = (6.43)

As v goes to 0.57, a goes to infinity while p is bounded; hence the desired result is

obtained. »
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6.6.3 Plate bending elements: Hellinger-Reissner formulation

The rotation field given by equation (6.3) and the enhanced transverse displacement
field, together with the assumed moment resultant and shear resultant fields presented in
equations (6.19) and (6.22), respectively, form the independent fields for the Hellinger-
Reissner based elements. As in the case of the membrane elements, the two elements
differ only by the incompatible shape displacements used to reduce the assumed resultant
fields. The element associated with the incompatible shape functions given by equations
(6.30) is CRBI1, and the element associéted with the incompatible shape functions given by
equations (6.31) is CRB2. In both elements the incompatible shape functions given by

equations (6.32) are used for the incompatible transverse displacement.

The coupled structure of the assumed resultant field can easily be seen from the struc-
ture of the constraint equations. Unfortunately, due to symmetry conditions, the coupling
involves only the terms associated with the constant part of the transverse shear resultants
in the direction in which the Jacobian is constant. Consequently, in the worst case, these
elements have two constraints per element. It follows that these elements will, in the worst
case, lock whenever the S1 element locks. Note, however, that for a nonconstant Jacobian
element in both directions, there are no constraints. Also, if the element is such that the
Jacobian is constant only in one direction, then there is one constraint per element. Con-

sequently, in both of these cases, shear locking will not occur.

6.6.4 Plate bending elements: Hu-Washizu formulation

The rotation field given by equation (6.3) and the enhanced transverse displacement
field; together with the assumed moment and shear resultant fields presented in equations
(6.19) and (6.22), respectively; the assumed curvature field, either equation (6.26a) or
equation (6.26b); and the assumed shear strain field, given by either equation (6.27a) or
equation (6.27b); form the independent fields for the Hu-Washizu based elements. The

four elements proposed differ by the incompatible shape functions used to reduce the
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assumed stress resultant and strain fields, and by the assumed strain fields. The elements
associated with the incompatible shape functions given by equations (6.30) are CRB3
(strain fields given by equations (6.26a) and (6.27a)) and CRBS5 (strain fields given by
equations (6.26b) and (6.27b)); the elements associated with the incompatible shape func-
tions given by equations (6.31) are CRB4 (strain fields given by equations (6.26a) and
(6.27a)) and CRB6 (strain fields given by equations (6.26b) and (6.27b)). In all four ele-
ments the incompatible shape functions given by equations (6.32) are used for the incom-

patible transverse displacement.

The coupled structure of the assumed moment field to the assumed shear resultant
field, as well as the coupled structure of the assumed curvature to the assumed shear strain
field is obvious from the structure of the constraint equations introduced in Chapter 5. As
in the case of the Hellinger-Reissner-based elements, the rank of the coupling is depen-
dent upon the symmetry of the element, and once again the worst case scenario is the con-
stant Jacobian element. In this case, there seem to be four constraints, two in the shear
resultant field and two in the shear strain field, to be enforced in order to avoid shear lock-
ing at the thin plate limit. However, as was pointed out in Chapter 4, it is sufficient to
constrain only the shear strain parameters. The constraint on the shear resultant parame-
ters will follow. Consequently, as for the CRB1 and CRB2 elements, the Hu-Washizu
based elements will lock, in the worst case, whenever the S1 element locks. Note, how-
ever, that for a nonconstant Jacobian element in both directions, there are no constraints.
Also, if the element is such that the Jacobian is constant only in one direction, then there
is one constraint per element. Consequently, in both of these cases, shear locking will not

occur.
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Figure 6.1: Location of the additional five "nodes" (numbers
5-9) and the normals to the paths used in the
integration scheme to provide enhanced
interpolation for the transverse displacement.
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Figure 6.2: (a) Square element; (b) Element distorted from
a parallelogram shape.
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CHAPTER 7: NUMERICAL EXAMPLES

7.1 Introduction

The performance of the plane stress/strain (PSS) and plate bending (CRB) elements
proposed in Chapter 6 is evaluated with several discriminating problems selected from the
literature. The purpose of these evaluations is to test the proposed formulation sensitivity
to the specific choice of the incompatib]é shape functions as well as the overall performance

of the proposed elements.

First tackled are the constant strain patch tests in Section 7.2. Following these are the
beam problems suggested by MacNeal & Harder [1985] in Section 7.3, the membrane prob-
lem suggested by Cook [1987] in Section 7.4, the thick walled cylinder also suggested by
MacNeal & Harder [1985] in Section 7.5, a finite width strip with a hole in Section 7.6,
bending of circular and square plates in Sections 7.7 and 7.8, respectively, and bending of

a highly skewed rhombic plate in Section 7.9.

Convergence of the results obtained by the four-node elements presented in Chapter 6
are compared with other well-known four-node plane stress/strain and plate bending ele-

ments. A listing of these elements, and the abbreviations used to identify them is given in

Tables 7.1.
Table 7.1a Reference Elements
Element Description
2X2 Isoparametric plane stress/strain.
P-S . | Pian & Sumihara [1984], plane stress/strain.
QBI Belytschko & Bachrach [1986], plane stress/strain.
S1 Hughes er. al. [1978], plate bending.
T1 Hughes & Tezduyar[1981], plate bending.
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Table 7.1b Proposed Plane Stress/Strain Elements

Element Formulation Incompatible shape | Strain transformation
function equations equations

PSS1 Hellinger-Reissner (6.30) -

PSS2 Hellinger-Reissner (6.31) -

PSS3 Hu-Washizu (6.30) (6.16)

PSS4 Hu-Washizu (6.31) (6.16)

PSS5 Hu-Washizu (6.30) (6.23)

PSS6 Hu-Washizu (6.31) (6.23)

Table 7.1c Proposed Plate Bending Elements

Element 'Formulation Incompatible shape | Strain transformation
function equations equations

CRB1 Hellinger-Reissner (6.30) -

CRB2 Hellinger-Reissner (6.31) -

CRB3 Hu-Washizu (6.30) (6.16) and (6.21)

CRB4 Hu-Washizu (6.31) (6.16) and (6.21)

CRB5 Hu-Washizu (6.30) (6.23) and (6.24)

CRB6 Hu-Washizu (6.31) (6.23) and (6.24)

Three types of boundary conditions are used for the plate bending examples:

SS1 - Simply Supported, w = M, =
SS2 - Simply Supported, w = M,
CL - Clamped, w = 6, = 6,

=9, = 0.

0.

Two types of boundary conditions are used for the in-plane examples:

Fixed - U,

Free - N

0.

= 0.
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In all the examples given in this dissertation, identical results are obtained for elements

Jormulated via the Hellinger-Reissner variational principle and the corresponding (i.e., same

incompatible shape functions) elements formulated via the Hu-Washizu variational principle.

Identical results are also obtained for the two approaches taken to transform the assumed

strain field from the element’s natural space into the physical space.

Convergence of the energy norm is the natural convergence test for the finite element

method (Strang & Fix [1973]). It is common practice in the literature, however, to
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examine convergence of the finite element solution by analyzing the displacement at some
characteristic points. In this dissertation, convergence is examined in terms of both the
energy norm and displacement at characteristic points (energy norm reported is twice the
internal strain energy). All tables and figures show the displacement/energy norm as a

function of the number of elements (denoted nel) used in the corresponding mesh.

7.2 Patch test

A rectangular domain is modeledl by a single element shown in Figure 7.1a and the
skewed mesh shown in Figure 7.1b. The mesh is subjected to constant states of tension,
bending, shear and in-plane twist. The elements presented in this dissertation pass all tests
with the exception of the constant out-of-plane shear, when the skewed mesh is used. The
failure of the plate bending elements to pass the constant shear patch test is discussed in
Section 6.2.2. Constant shear strain is modeled exactly, however, when all rotational
degrees-of-freedom are fixed (this is the common test for constant shear in the finite ele-

ment literature).

7.3 Beam problems

These problems were suggested by MacNeal & Harder [1985] as standard problems to
evaluate the performance of different elements. Plane elements are used to model exten-
sion and in-plane shear, and plate bending elements are used to model out-of-plane shear
and twist. The meshes used contain only one row of six elements for both the straight
beams, shown in Figure 7.2, and the curved beam, shown in Figure 7.3. Geometrical and
material properties used are summarized in Table 7.2. Results are normalized with respect

to solutions obtained by beam theory which are summarized in Table 7.3.
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Table 7.2 Material and Geometrical Properties for Beam Problems
E v thickness length/ width/ arc
inner radius | outer radius
straight beam | 1.0E+7 | 0.3 0.1 6.0 0.2 -
curved beam | 1.0E+7 | 0.25 0.1 4.12 4.32 90°
Table 7.3 Theoretical Solutions for Beam Problems
Tip load direction | Displacement in the direction of the load
Straight beam Curved beam
Extension 3.0E-5 -
In-plane-shear 0.1081 0.08734
Out-of-plane shear 0.4321 0.5022
Twist 0.03208 -

7.3.1 Extension
The straight beam meshes shown in Figure 7.2 are used for this problem. The exact
solution is obtained for all (plane) elements. This example is equivalent to the patch test

for plane elements.

7.3.2 In-plane shear

Both the straight beam meshes shown in Figure 7.2, and curved beam mesh shown in
Figure 7.3 are used. The results are normalized with respect to the solution obtained by

the beam theory, given in table 7.3, and are summarized in Table 7.4.

Table 7.4 In-plane shear
mesh PSS/P-S | 2X2 QBI

straight (a) | 0.9929 | 0.0933 | 0.9929
straight (b) | 0.2208 | 0.0278 | 0.0777
straight (c) | 0.7963 | 0.0348 | 0.0890

curved 0.9782 | 0.0740 | 0.2324

Results obtained for all proposed elements are identical to the results obtained by the
Pian & Sumihara [1984] element. The 2X2 element locks for all meshes. However, if two

rows of elements are used, the 2X2 element yields reasonable results. All elements exhibit
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locking when trapezoid-shape elements are used (straight mesh (b)). This is in accordance
with the theorem put forth by MacNeal [1987] regarding the locking of tapered four-node
membrane elements. The QBI element appears to be much more sensitive to mesh distor-

tion than the PSS or P-S elements.

7.3.3 Out-of-plane shear

Both the straight beams, Figure 7.2, and curved beam, Figure 7.3, meshes are used.
The results are normalized with respect to the solution obtained by the beam theory, given

in Table 7.3, and are summarized in Table 7.5.

Table 7.5 Out-of-plane shear
mesh CRB1,3,5 | CRB2,4,6 S1 T1
straight (a) 0.9825 0.9877 0.9801 | 0.9801
straight (b) 0.9706 0.9684 0.9963 | 0.9634
straight (c) 0.9843 0.9889 0.9912 | 0.9780
curved 0.9308 0.9248 29.535 | 0.9290

The proposed elements exhibit a slight sensitivity to the incompatible shape functions
used, less than 0.5% for all meshes. The results for the CRB and T1 elements are compar-

able. The S1 element exhibits unstable behavior in the curved beam problem.

7.3.4 Twist of a beam

The straight beam meshes shown in Figure 7.2 are used. The results are normalized

with the theoretical beam solution given in Table 7.3, and are summarized in Table 7.6.

Table 7.6 Twist of a straight beam

mesh CRB1,3,5 | CRB24,6 | sI T1

straight (a) | 0.9429 0.9373 | 377.36 | 0.9445
straight (b) | 0.9882 0.9622 | 108.83 | 0.8844
straight (c) | 0.9478 0.9412 | 138.16 | 0.8490

The S1 element shows instability in this problem. The proposed elements show

slightly superior results over the T1 element for distorted meshes (a and b). As in the
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example of out-of-plane shear, the proposed elements show only slight sensitivity, a max-

imum of 2.6% for mesh b, to the type of incompatible shape functions used.

7.3.5 Beam bending: Sensitivity to mesh distortion

In this standard test, a beam is modeled by two elements. The beam is fixed at one
end and subjected to a bending moment on the other, as shown in Figure 7.4. The
material properties used are: E = 1.0 and v = 0.4999. A state of plane strain is assumed.
The edge separating the two elements is gradually rotated, as shown in the Figure, to skew
the mesh. Results, normalized with the exact beam theory solution (w = 562.575), are
reported in Table 7.7, and shown in Figure 7.5. Results for the 2X2 element are not

reported since it exhibits severe locking.

Table 7.7 Beam bending; sensitivity to mesh distortion
A PSS/P-S QBI
0.00 1.0000 1.0000
0.25 0.9583 0.7891
0.50 0.8540 0.5103
1.00 0.7041 0.2773
2.00 0.6643 0.1944
4.99 0.7217 0.1885

All proposed elements yield identical results to the Pian & Sumihara [1984] element.

The QBI element exhibits rapid deterioration as A is increased.

7.4 Cook’s Membrane Problem

The problem consists of a trapezoidal plate clamped on one end and loaded by a uni-
formly distributed in-plane bending load on the other end, as shown in Figure 7.6. This
problem has a considerable amount of shear deformation. It was suggested by Cook [1987]
as an excellent problem to test membrane elements using skewed meshes. No analytical
solution is available for this problem. The best known solution is given by Cook as: Vo =

0.29 (vertical displacement), 0, = 0.236 (maximum principal stress) and o5 = -0.201
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(minimum principal stress). The material properties used are: E = 1.0, v = 1.0/3.0, thick-
ness = 1.0; plane stress assumption was used. The results normalized with respect to these
best known answers are summarized in Tables 7.8 (V¢), 7.9 (04) and 7.10 (o), and

shown in Figures 7.7, 7.8 and 7.9, respectively.

Table 7.8 V. - Vertical displacement at point C
nel PSS/P-S 2X2 QBI

1 0.6997 0.2497 0.2880

4 0.8841 0.4956 0.5782
16 0.9633 0.7657 0.8322
64 0.9912 - 0.9238 0.9506
256 0.9993 0.9804 0.9883

Table 7.9 o, - Maximum principal stress at point A
nel PSS/P-S 2X2 QBI

1 0.8208 0.5074 0.4381

4 0.7858 0.4566 0.5246

16 0.9495 0.7667 0.7920

64 0.9935 0.9428 0.9623
256 1.0143 0.9967 1.0030

Table 7.10 o - Minimum principal stress at point B
nel PSS/P-S 2X2 QBI

1 0.7919 0.2388 0.5143

4 0.7709 0.3813 0.5587

16 0.9235 0.7142 0.7970
64 0.9882 0.9161 0.9482
256 1.0075 0.9930 1.000

The results presented for one element are obtained by interpolating the nodal values;
for the finer meshes the nodal values are reported. The results obtained for all plane ele-
ments proposed in this dissertation yield identical results to the Pian & Sumihara [1984]
element. Excellent results are obtained even for very coarse meshes; about 70% of the
vertical displacement and 80% of the stresses are obtained using only one element. The

2X2 and QBI elements yield poor results for coarse meshes; less than 50% and 60% of the
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vertical displacement and stresses are obtained by the 2X2 and QBI elements, respectively,

when a four-element mesh is used.

7.5 Thick-Walled Cylinder

This problem was suggested by MacNeal & Harder [1985] as an excellent problem to
test the effect of nearly incompressible material. The mesh used is shown in Figure 7.10.
The material properties are: E = 1.0 and v varies from 0.0 to 0.4999. The exact radial

solution is given by:

_ (1+v)pR} R}
u-E—_————-(R-}—Rlz)[ . +(1-2v)r] (7.1)

where p is the internal pressure; Ry is the inner radius; R, is the outer radius; and r is the
radius where the radial displacement, u, is to be computed.

Results at r = R, normalized with respect to the exact solution, are summarized in

Table 7.11.

Table 7.11 Thick-Walled Cylinder
v PSS/P-S | 2X2 QBI
0. 0.9987 | 0.9964 | 0.9985
0.3 0.9954 | 0.9908 | 0.9952
0.49 0.9913 | 0.8490 | 0.9911
0.499 0.9910 | 0.3606 | 0.9909
0.4999 | 0.9910 | 0.0534 | 0.9908

Once again all proposed plane elements yield identical results with the Pian &
Sumihara [1984] element. Almost no deterioration with v is observed, only 0.77% differ-
ence between the two extreme values of v. The QBI element yields almost identical results.

The 2X2 element exhibits the well known locking at the nearly incompressible limit.
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7.6 Finite Strip With a Hole

This problem is introduced in order to test the accuracy of the stress distribution
inside the proposed plane elements. A finite width strip with a hole, of width b, is sub-
jected to uniform tensile stress in the axial direction, as shown in Figure 7.11. The axial
stress along the critical section, line A-B, is investigated.

First, the relatively simple case of plane stress with free upper and lower edges is
investigated in Section 7.6.1. Then, the more challenging case of plane strain, at the nearly

incompressible limit, with the upper and lower edges fixed in the vertical direction, is tack-

led in Section 7.6.2.

7.6.1 Finite strip with a hole: Plane stress

The material properties used are E = 1.0 and v = 0.3. First, convergence in the
energy norm is examined. No analytical solution for the energy is known. Therefore, a
converged finite element solution of 19.37 obtained for the Pian & Sumihara [1984] ele-
ment using 3072 elements is used as the reference solution. Results normalized with
respect to this reference solution are summarized in Table 7.12 and shown in Figure 7.12.
The axial stress distribution along the critical section for the meshes containing 48 and 192

elements is presented in Figure 7.13. The results are compared with the analytical solution

given by Savin [1961].

Table 7.12 Strip With a Hole - Plane Stress
Convergence in the energy norm

nel PSS/P-S 2X2 QBI
3 0.9582 0.9515 0.9587
112 0.9763 0.9716 0.9747
48 0.9897 0.9876 0.9886

192 0.9964 0.9959 0.9964
768 0.9990 0.9990 0.9990
3072 1.0000 1.0000 1.0000
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Almost identical results are obtained for the proposed elements and the Pian &
Sumihara element (about 5.0E-3 difference in energy norm for the three-element mesh).
A very small sensitivity to the incompatible shape functions used is observed ( about 2.0E-

3 difference in the energy norm for the three-element mesh).

Excellent results are obtained for both the energy norm, 95.82% of the reference solu-
tion with only three elements, and stress distribution inside the elements. The 2X2 and

QBI elements yield comparable results for this problem.

7.6.2 Finite strip with a hole: Plane strain

The material properties used are E = 1.0 and v = 0.4999. First, convergence in the
energy norm is examined. No analytical solution for the energy is available. Therefore, a
converged finite element solution of 2.389 obtained for the Pian & Sumihara [1984] ele-
ment using 12288 elements is used as the reference solution. Results normalized with
respect to this reference solution are summarized in Table 7.13 and shown in Figure 7.14.
The axial stress distribution along the critical section for the meshes containing 48 and 192
elements is presented in Figure 7.15. No analytical solution for the stress distribution is
available. Therefore, the smoothed stresses obtained for the 768-element mesh are used as

a reference.

Table 7.13 Strip With a Hole - Plane Strain
Convergence in the energy norm
nel | PSS1,3,5 | PSS2,4,6 P-S 2X2 QBI
3 0.6974 0.6844 | 0.7082 | 0.0061 | 0.5919
12 0.8363 0.8326 | 0.8401 | 0.0084 | 0.8108
48 | 0.9368 0.9360 | 0.9372 | 0.0167 | 0.9330
192 0.9812 0.9812 | 0.9812 | 0.0477 | 0.9807
768 0.9967 0.9967 | 0.9967 | 0.1754 | 0.9958
3072 | 0.9992 0.9992 | 0.9992 | 0.3968 | 0.9992

The results obtained show the Pian & Sumihara element to exhibit a marginal
superiority over the proposed elements for the coarse meshes, only 0.8% for a twelve-

element mesh. The formulation shows a small sensitivity to the type of incompatible shape
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functions used, only 1.3% and 0.04% for three- and twelve-element meshes, respectively.

Excellent results are obtained; with only three elements in the mesh, 69% and 68% of
the reference solution is obtained for the PSS1,3,5 and PSS2,4,6, respectively. Excellent

results are also obtained for the stress distribution inside the elements.

7.7 Circular Plates

A circular plate is modeled using 3, 12, 48 and 192 elements. Due to symmetry, only
one quadrant is discretized. A typical mesh used is shown in Figure 7.16. While the
three-element mesh results are retained, it should be noted that significant errors result in
approximating the domain. SS1 and CL boundary conditions are used. The material pro-

perties and geometrical data used are summarized in Table 7.14.

Table 7.14 Material and Geometrical Data for Circular plates
E v h R
Thin Plate 10920 0.3 0.1 5.0
Thick Plate 1.365 0.3 2.0 5.0
: : . E h3
With these properties the plate stiffness D = —————=1.0.
12(1 —v*)

Two loading types are examined:

° Uniform transverse unit load, and

¢  Unit point load at the center of the plate.

The analytical solution for the case of uniform transverse unit load is given by:

Clamped boundary, center transverse displacement:

2
_ qR? 8 b
wO) = G50 5005 [R ] ] (1.2)

Clamped boundary, external work:

(n)
Eer = 384D [1+ a(l-v) lITJ ] (7.3)
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Simply supported, center transverse displacement:

2
_qR* 5+v 8 h
w(0)= 64D[1+v+3a(1—v)[R] ] 7.4

Simply supported, external work:

2p6 2
_¢RD  T+v 4 h
Es=Feap 113 a(1-9) [R]] (7.5)

where, for all examples considered in this section, & is the sector analyzed, and is equal to

%; and a = % is the correction factor that was introduced in Section 2.4.

It should be noted again that the above energy expressions represent the total work
performed by the external transverse loads, and consequently are twice the actual strain

energy.

In theories that account for shear deformations, the analytical solution for the
transverse displacement under a point load is infinite. Consequently, the external work is
also infinite. The finite element method, however, being a weak approximation, yields a
finite transverse displacement under the load. The sensitivity of the finite element solution
depends heavily on the plate thickness. For thin plates, the finite element solution con-
verges to the thin plate solution in the initial phase of mesh refinement. However, when
very fine meshes are used in the vicinity of the point load, the singularity will be evident.
When thick plates are considered, the singularity is evident even for coarse meshes. In the
case of thick plates, some elements exhibit unstable behavior. These examples are included

in order to test the proposed elements’ sensitivity to singularity in the solution.

7.7.1 Simply supported thin plate: Uniform transverse load

The analytical solutions are: w(0) = 39.83156 and Eg; = 359.08748. The results
obtained, normalized with respect to these solutions, are summarized in Table 7.15, and

are shown in Figures 7.17 and 7.18 for the convergence of the center displacement and
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energy norm, respectively.

Table 7.15 Simply Supported (SS1) Circular Plate
Uniform Load, h = 0.1

nel CRB1,3,5 CRB2,4,6 S1 T1

disp. energy | disp. energy | disp. energy | disp. energy
3 1.1075 | 1.0913 | 1.1866 | 1.1964 | 0.7588 | 0.5846 [ 0.9141 | 0.7589
12 1.0314 | 1.0324 | 1.0617 | 1.0842 | 0.9305 | 0.8760 | 0.9801 | 0.9336

48 1.0083 | 1.0089 | 1.0174 | 1.0242 | 0.9826 | 0.9675 | 0.9950 | 0.9830
192 | 1.0021 | 1.0023 | 1.0045 | 1.0063 | 0.9957 | 0.9918 | 0.9988 | 0.9957

Monotonic convergence in both the energy norm and center transverse displacement
is obtained for all elements. The elements proposed in this dissertation show some sensi-
tivity to the type of incompatible shape functions used for coarse meshes, from 10.5%
difference in the energy norm for the three-element mesh to only 1.5% difference for the
48-element mesh. Convergence is from above for all elements proposed in this dissertation
in both the energy norm and the center displacement. The S1 and T1 elements, on the
other hand, converge from below in both criteria. Results for all elements are comparable,

with a slight advantage to the CRB1,3,5 elements.

7.7.2 Simply supported thick plate: Uniform transverse load

The analytical solutions are: w(0) = 46.95656 and Eg; = 429.03701. The results
obtained, normalized with respect to these solutions, are summarized in Table 7.16 and are
shown in Figures 7.19 and 7.20 for the convergence of the center displacement and energy

norm, respectively.

Table 7.16 Simply Supported (SS1) Circular Plate
Uniform Load, h = 2.0

nel CRB1,3,5 CRB2,4,6 S1 T1
disp. energy | disp. energy | disp. energy | disp. energy |
3 1.0855 | 1.0342 | 1.1552 | 1.1220 | 0.7877 | 0.6091 | 0.9255 | 0.7556
12 1.0244 | 1.0152 | 1.0533 | 1.0594 | 0.9385 | 0.8844 | 0.9816 | 0.9325

48 1.0064 | 1.0044 | 1.0143 | 1.0172 | 0.9847 | 0.9698 | 0.9954 | 0.9827
192 | 1.0016 | 1.0011 | 1.0036 | 1.0045 | 0.9962 | 0.9924 | 0.9989 | 0.9956
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Monotonic convergence in both the energy norm and center transverse displacement
is obtained for all elements. Again, the proposed elements show some sensitivity to the
type of incompatible shape functions used for coarse meshes, from 8.8% difference in the
energy norm for the three-element mesh to only 1.3% difference for the 48-element mesh.
Convergence is from above for all elements proposed in this dissertation in both the energy
norm and the center displacement. The S1 and T1 elements, on the other hand, converge
from below in both criteria. Results for all elements are comparable, with a slight advan-

tage to the CRB1,3,5 elements.

7.7.3 Clamped thin plate: Uniform transverse load

The analytical solutions are: w(0) = 9.78348 and E,; = 64.09118. The results
obtained, normalized with respect to these solutions, are summarized in Table 7.17 and are
shown in Figures 7.21 and 7.22 for the convergence of the center displacement and energy

norm, respectively.

Table 7.17 Clamped Circular Plate
Uniform Load, h = 0.1
nel CRB1,3,5 CRB2,4,6 S1 T1
disp. energy | disp. energy | disp. energy | disp. energy
3 1.1813 | 1.1567 | 1.5918 | 1.7975 | 0.7341 | 0.5257 | 0.9274 | 0.8003
12 1.0530 | 1.0742 | 1.1912 | 1.3643 | 0.9128 | 0.8566 | 0.9865 | 0.9508

48 1.0146 | 1.0279 | 1.0526 | 1.1064 | 0.9784 | 0.9623 | 0.9969 | 0.9877
192 | 1.0037 | 1.0057 | 1.0136 | 1.0277 | 0.9947 | 0.9905 | 0.9993 | 0.9965

Monotonic convergence in both the energy norm and center transverse displacement
is obtained for all elements. The proposed elements show great sensitivity to the type of
incompatible shape fu.nctions used. 64% difference in the energy norm is observed for the
three-eclement mesh. However, for the 192-element mesh, only 2.4% difference is observed
in the energy norm. Again, convergence is from above for all elements proposed in this
dissertation in both the energy norm and the center displacement. The S1 and T1 ele-

ments, on the other hand, converge from below in both criteria. The T1 element appears
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to yield the best results, but the CRB1,3,5 elements yield comparable results.

7.7.4 Clamped thick plate: Uniform transverse load

The analytical solutions are: w(0) = 16.90848 and E;; = 134.04070. The results
obtained, normalized with respect to these solutions, are summarized in Table 7.18 and are
shown in Figures 7.23 and 7.24 for the convergence of the center displacement and energy

norm, respectively.

Table 7.18 Clamped Circular Plate
Uniform Load, h = 2.0

nel CRB1,3,5 CRB2,4,6 S1 T1

disp. energy | disp. energy disp. energy | disp. energy
3 1.0725 | 0.9372 | 1.2954 | 1.2441 | 0.8192 | 0.6348 | 0.9275 | 0.7681
12 1.0239 | 0.9979 | 1.1066 | 1.1394 | 0.9427 | 0.8937 | 0.9858 | 0.9384

48 1.0065 | 1.0007 | 1.0289 | 1.0413 | 0.9859 | 0.9724 | 0.9967 | 0.9843
192 | 1.0017 | 1.0003 | 1.0074 | 1.0108 | 0.9965 | 0.9930 | 0.9992 | 0.9960

Monotonic convergence in both criteria is obtained by S1, T1 and CRB2,4,6 ele-
ments. The CRB1,3,5 elements converge monotonically only in the center displacements.
As in the case of the thin plate a great sensitivity to the incompatible function used is
shown. The best results are shown by the CRB1,3,5 elements; unfortunately, however,
they exhibit non-monotonic convergence in the energy norm. For this reason, the T1
appears to yield the best results, with the S1 and CRB2,4,6 elements yielding comparable

results.

7.7.5 Simply supported plates: Unit concentrated load at the center

The results for simply supported (SS1) plates under unit concentrated load at the
center of the plate are summarized in Tables 7.19 and shown in Figures 7.25 (thin plate)
and 7.26 (thick plate). The results obtained for the thin plate are normalized with the
solution given by the thin plate solution, w(0) = 1.26253 (Timoshenko & Woinowsky-

2
Krieger [1959]). The results obtained for the thick plate are normalized with %55 As
™
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noted above, the displacement at the center for the thick plate is infinite, due to shear

deformations.

Table 7.19a Circular Plate - Point Load,
Simply Supported (SS1), h = 0.1
nel | CRB1,3,5 | CRB2,4,6 S1 T1

3 1.0725 1.2213 0.9883 | 0.9837
12 1.0234 1.0679 0.9725 | 0.9970
48 1.0096 1.0261 0.9943 | 1.0000
192 1.0045 1.0107 1.0007 | 1.0013

Table 7.19b Circular Plate - Point Load,

Simply Supported (SS1), h = 2.0
nel | CRB1,3,5 | CRB2,4,6 S1 T1
3 3.8051 4.3236 3.8978 | 3.7070
12 3.9092 4.1173 4.3675 | 3.8938
48 4.1125 4.1821 4.9250 | 4.1204
192 4.3506 4.3719 5.4466 | 4.3598

All elements exhibit monotonic convergence for the thin plate limit. In the thick
plate case only the CRB2,4,6 elements do not exhibit monotonic convergence. If the
three-element mesh results are ignored, the CRB2,4,6 elements, too, exhibit monotonic
convergence. As was pointed out in the beginning of this section, the three-element mesh
is a rather poor approximation of the domain. Consequently, all elements exhibit mono-

tonic convergence for the thick plate as well as for the thin plate.

The proposed elements exhibit sensitivity to the incompatible shape functions used.
This sensitivity, however, diminishes under mesh refinement, from about 15% for the

three-element mesh to only about 0.5% for the 192-element mesh.

7.7.6 Clamped plates: Unit concentrated load at the center

The results for thin and thick plates are summarized in Tables 7.20a and 7.20b,
respectively, and shown in Figures 7.27 (thin plate) and 7.28 (thick plate). The results for

the thin plate case are normalized with the thin plate solution, w(0) = 0.4973592
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(Timoshenko & Woinowsky-Krieger [1959]). The results for the thick plate are normalized

P R?
16D’

Table 7.20a Circular Plate - Point Load,
Clamped, h = 0.1

nel | CRB1,3,5 | CRB24,6 S1 T1

3 1.0479 1.3759 0.8452 | 0.8089
12 1.0217 1.1202 0.9315 | 0.9534
48 1.0157 1.0585 0.9860 | 0.9905
192 1.0093 1.0256 1.0022 | 1.0010

Table 7.20b Circular Plate - Point Load,
Clamped, h = 2.0
nel | CRB1,3,5 | CRB2,4,6 S1 T1
3 2.1361 2.6792 2.3496 |-1.9342
12 2.3394 2.5571 2.9134 | 2.2919
48 2.5668 2.6387 3.4677 | 2.5609
192 2.8104 2.8263 3.9883 | 2.8135

Identical behavior to that observed for the simply supported plate under point load is
repeated for the clamped plate.
Next the thick plate case is used to demonstrate the stability of the proposed elements.

P R?
167D’

The transverse displacement along the radius, normalized with for a mesh of 48

elements, is reported in Table 7.21 and shown in Figure 7.29. The analytical solution can
be found in Lukasiewicz [1979]. The S1 shows the well known instability (Hughes [1987]);

the T1 and all CRB elements, on the other hand, show excellent results.

7.8 Square Plates

A square plate is modeled using meshes of uniform square elements. Due to sym-
metry, only one quadrant is discretized. A typical mesh is shown in Figure 7.30. The
material properties and geometrical data are summarized in Table 7.22. Using these pro-

perties, the plate bending stiffness D = 1.0.
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Table 7.21 Thick clamped circular plate,
transverse displacement along the radius

R | CRB1,3,5 | CRB24,6 S1 T1 EXACT

0.000 2.5668 2.6387 3.4677 | 2.5609 ©

0.125 1.6499 1.6839 0.8499 | 1.6338 | 1.5659
0.250 1.2703 1.2924 1.8104 | 1.2603 | 1.1951
0.375 0.9426 0.9589 0.4793 | 0.9343 | 0.8895
0.500 0.6575 0.6836 0.9985 | 0.6500 | 0.6189
0.625 0.4152 0.4273 0.1176 | 0.4104 | 0.3883
0.750 0.2202 0.2292 0.4170 | 0.2167 | 0.2033
0.875 0.0794 0.0844 -0.0298 | 0.0776 | 0.0714
1.000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000

Table 7.22 Material Properties and Geometrical Data
E v h L

Thin Plate | 10.92E+6 0.3 0.01 10.0

Thick Plate | 1.365 0.3 2.0 10.0

Only the case of uniform transverse loading is examined. The boundary conditions

examined are: SS1, SS2, and CL.

The "exact” energy reported is computed from:

E= _‘];q(xl,xz)w(xl,xz)dﬂ (7.6)

using a Fourier series solution and, thus, is twice the actual strain energy.

7.8.1 Thin simply supported (SS1) plate

The exact solution is w = 40.623 (Timoshenko & Woinowsky-Krieger [1959]) and
E = 425.6276. Results, normalized with the exact solution, are summarized in Table 7.23
and shown in Figures 7.31 (center displacement) and 7.32 (energy).

Monotonic convergence is obtained for all elements. The T1 element yields the best
results. All other elements, however, yield comparable results.

With the exception of the one-element mesh, only mild sensitivity to the incompatible
shape function used is observed. A difference of only 2.4% and 3.4% is observed in the

center transverse displacement and energy norm, respectively, for the four-element mesh.
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Table 7.23 Square Plate - SS1 - h = 0.01
nel CRB1,3,5 CRB2 4,6 S1 T1
disp. energy | disp. | energy | disp. | energy | disp. energy
1 1.3663 | 1.3585 | 1.0987 | 1.1897 | 1.4794 | 0.8825 | 0.7850 | 0.4683
4 1.1012 | 1.0901 | 1.0764 | 1.0565 | 1.0645 | 0.9456 | 0.9770 | 0.8552
16 | 1.0328 | 1.0233 | 1.0174 | 1.0199 | 1.0162 | 0.9863 | 0.9949 | 0.9628

64 1.0062 | 1.0062 | 1.0046 | 1.0059 | 1.0041 | 0.9966 | 0.9988 | 0.9907
256 | 1.0022 | 1.0022 | 1.0021 | 1.0025 | 1.0012 | 0.9994 | 0.9997 { 0.9977

7.8.2 Thin simply supported (SS2) plate

The exact solution is w = 40.623 and E = 425.6276 (thick plate theory, series solu-
tion). Results, normalized with the exact solution, are summarized in Table 7.24 and

shown in Figures 7.33 (center displacement) and 7.34 (energy).

Table 7.24 Square Plate - SS2 - h = 0.01
nel CRB1,3,5 CRB2,4,6 S1 T1
disp. energy disp. energy disp. energy disp. energy

1 1.3665 | 1.3585 | 1.1611 | 1.1544 | 0.7850 | 0.4683 | 0.7850 | 0.4683
4 1.0881 | 1.0789 | 1.0515 | 1.0425 | 0.9770 | 0.8552 | 0.9770 | 0.8552
16 1.0212 | 1.0190 | 1.0129 | 1.0106 | 0.9949 | 0.9628 | 0.9949 | 0.9628
64 1.0060 | 1.0056 | 1.0039 | 1.0034 | 0.9988 | 0.9907 | 0.9988 | 0.9907
256 | 1.0021 | 1.0020 | 1.0022 | 1.0024 | 0.9997 | 0.9977 | 0.9997 | 0.9977

Monotonic convergence is obtained for all elements. T1 and S1 elements yield identi-
cal results. The CRB2,4,6 elements obtain the smallest error in the energy norm. All

other elements, however, yield comparable results.

As observed for the SS1 boundary condition, with the exception of the one-element

mesh, only mild sensitivity to the incompatible shape function used is observed.

7.8.3 Thin clamped plate

The exact thin plate solution is w = 12.6 (Timoshenko & Woinowsky-Krieger [1959]).
No analytical solution is available for the energy. Consequently, a converged finite ele-
ment solution obtained using 4096 elements is used, E = 97.3. Results, normalized with

these values, are summarized in Table 7.25 and shown in Figures 7.35 (center
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displacement) and 7.36 (energy).

Table 7.25 Clamped - h = 0.01

nel CRB1,3,5 CRB2,4,6 S1 T1
disp. energy | disp. | energy | disp. energy | disp. energy
1 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000

4 0.9774 | 0.7912 | 0.9174 | 0.7427 | 0.9613 | 0.7781 | 0.9613 | 0.7781
16 0.9976 | 0.9475 | 0.9824 | 0.9333 | 0.9926 | 0.9421 | 0.9926 | 0.9421
64 1.0059 | 0.9922 | 1.0025 | 0.9894 | 1.0013 | 0.9852 | 1.0013 | 0.9852
256 1.0072 | 1.0021 | 1.0109 | 1.0095 | 1.0035 | 0.9962 | 1.0035 | 0.9962
1024 | 1.0052 | 1.0007 | 1.0076 | 1.0051 | 1.0041 | 0.9989 | 1.0041 | 0.9989
4096 | 1.0045 | 1.0000 | 1.0052 | 1.0013 | 1.0042 | 0.9996 | 1.0042 | 0.9996

The converged finite element solution of the transverse displacement is about 0.4%
larger than the solution obtained by the thin plate theory. This result is expected since all

the elements under discussion are based on a theory that accounts for shear deformation.

The S1 and T1 elements yield identical results. Both elements obtain monotonic con-
vergence in both criteria. The CRB elements, on the other hand, do not converge mono-
tonically. A small sensitivity to the incompatible shape functions is observed. Only about
1.5% difference is observed in both the energy norm and center transverse displacement for

the 16-element mesh.

All elements exhibit locking for the one-element mesh. This result is expected since
all rotational degrees-of-freedom are constrained, and consequently the rotations are zero
pointwise in the element’s domain. It follows from the shear strain transverse displacement
relation (see Section 2.2) that the derivatives of the transverse displacement go to zero
pointwise as the thickness is reduced to zero; consequently, the transverse displacement

tends to zero as the plate thickness is reduced to zero.

7.8.4 Thick simply supported (SS1) plate

A converged finite element solution of w = 55.45 and E = 600.9, obtained using 4096
elements, is used as the reference solution. Results, normalized with this reference solu-

tion, are summarized in Table 7.26 and shown in Figures 7.37 (center displacement) and
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7.38 (energy).

Table 7.26 Square Plate - SS1 - h = 2.0
nel CRB1,3,5 CRB2 4,6 S1 T1
disp. energy | disp. energy | disp. energy | disp. energy
1 1.2998 | 1.1836 | 1.1859 | 1.0887 | 1.3414 | 0.7737 | 0.8026 | 0.4629
4 1.0833 | 1.0481 | 1.1548 | 1.1326 | 1.0197 | 0.8957 | 0.9462 | 0.8202
16 1.0168 | 1.0091 | 1.0517 | 1.0535 | 1.0036 | 0.9722 | 0.9788 | 0.9446

64 1.0036 | 1.0017 | 1.0138 | 1.0148 | 1.0008 | 0.9929 | 0.9936 | 0.9848
256 | 1.0008 | 1.0001 | 1.0035 | 1.0038 | 1.0002 | 0.9982 | 0.9983 | 0.9961

With the exception of the CRB2,4,6 elements, all elements obtain monotonic conver-
gence in both the energy norm and center transverse displacements. If the results for the
one-element mesh are ignored, the CRB2,4,6 elements, too, obtain monotonic conver-

gence. All elements yield comparable results.

Only mild sensitivity to the incompatible shape functions used is observed.

7.8.5 Thick simply supported (SS2) plate

The analytical solution for the case of SS2 boundary conditions (series solution which
includes shear deformation) is w = 49.043 and E = 526.04. Results, normalized with the
analytical solution, are summarized in Table 7.27 and shown in Figures 7.39 (center dis-

placement) and 7.40 (energy).

Table 7.27 Square Plate - SS2 - h = 2.0

nel CRB1,3,5 CRB2 4,6 S1 T1
disp. energy | disp. energy disp. energy disp. energy
1 1.4559 | 1.2773 | 1.3448 | 1.1314 | 0.9495 | 0.5486 | 0.8687 | 0.5062
4 1.1267 | 1.0914 | 1.1743 | 1.1412 | 1.0035 | 0.8759 | 0.9899 | 0.8657

16 1.0315 | 1.0242 | 1.0466 | 1.0442 | 1.0003 | 0.9681 | 0.9979 | 0.9655
64 1.0078 | 1.0061 | 1.0117 | 1.0115 | 1.0000 | 0.9920 | 0.9995 | 0.9913
256 1.0020 | 1.0010 | 1.0091 | 1.0029 | 1.0000 | 0.9980 | 0.9999 | 0.9978
1024 | 1.0005 | 1.0004 | 1.0007 | 1.0007 | 1.0000 | 0.9995 | 1.0000 | 0.9995
4096 | 1.0001 | 1.0001 | 1.0002 | 1.0002 | 1.0000 | 0.9999 | 1.0000 | 0.9999

With the exception of the S1 element, all elements obtain monotonic convergence in

both criteria. If the results for the one-element mesh are ignored, the Sl element, too,
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obtains monotonic convergence. All elements yield comparable results. Only mild sensi-
tivity to the incompatible shape functions used is observed. Results for the 4096-element
mesh are reported in order to demonstrate that a converged solution is obtained when
using this mesh. Consequently, solutions obtained for this mesh may be used as reference

solutions when no analytical solution is available.

7.8.6 Thick clamped plate

A converged finite element solution of w = 21.72 and E = 203.7, obtained using 4096
elements, is used as the reference solution. Results, normalized with this reference solu-
tion, are summarized in Table 7.28 and shown in Figures 7.41 (center displacement) and

7.42 (energy).

Table 7.28 Square Plate - CL - h = 2.0
nel CRB1,3,5 CRB2 4,6 S1 T1
disp. energy | disp. energy | disp. energy | disp. energy
1 0.9451 | 0.6298 | 1.4366 | 0.9573 | 0.6577 | 0.4383 | 0.4933 | 0.3287
4 1.1166 | 1.0121 | 1.4551 | 1.4287 | 1.0025 | 0.8658 | 0.9641 | 0.8375
16 1.0326 | 1.0087 | 1.1247 | 1.1369 | 1.0009 | 0.9660 | 0.9933 | 0.9586

64 1.0083 | 1.0026 | 1.0314 | 1.0357 | 1.0002 | 0.9916 | 0.9984 | 0.9898
256 | 1.0021 | 1.0009 | 1.0079 | 1.0092 | 1.0001 | 0.9981 | 0.9997 | 0.9976

The S1 and T1 elements obtain monotonic convergence in both the energy norm and
center displacement criteria. The CRB elements obtain monotonic convergence only if the
results obtained for the one-element mesh are ignored. The S1 element yields the best
results. The T1 and CRBI1,3,5 elements yield comparable results, with the CRB2,4,6 ele-
ments slightly more flexible.

A large sensitivity to the incompatible shape function is observed for the coarse
meshes, more than 40% difference is observed in the energy norm for the four-element

mesh. For the 256-element mesh, however, only 0.8% difference is observed.
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7.8.7 Mesh distortion

To study the sensitivity to mesh distortion, a coarse mesh modeling a clamped square
plate is used. Only four elements are used to model one quadrant of the plate. The plate
is loaded by a uniform unit transverse load. The thin plate material properties are used.
Two types of distortion are introduced. First, the center node of the mesh is moved along
the main diagonal of the plate as shown in Figure 7.43. Results, normalized with respect
to the thin plate solution w = 12.6 (Timoshenko & Woinowsky-Krieger [1959]), are sum-

marized in Table 7.29, and shown in Figure 7.44.

Table 7.29 Mesh Distortion - Symmetric
A CRB1,3,5 | CRB2,4,6 S1 T1
-1.25 0.9992 1.7792 0.8773 | 0.8613
-1.00 1.0330 1.4123 0.9208 | 0.8790
-0.50 1.0171 1.0136 0.9600 | 0.9152
+0.00 | 0.9774 0.9174 0.9613 | 0.9613
+0.50 | 0.9089 0.8775 0.9248 | 1.0033
+1.00 | 0.7847 0.8935 0.8409 | 0.9998
+1.25 | 0.7030 0.8691 0.7735 | 0.9410

Next the center node is moved parallel to the edge as shown in Figure 7.45. Results,
normalized with respect to the thin plate solution w = 12.6 (Timoshenko & Wionowsky-

Krieger [1959]), are summarized in Table 7.30, and shown in Figure 7.46.

The difficulty of this mesh is that there are only eight degrees-of-freedom. The
"optimal” number of constraints per element, according to the constraint count method (see
Appendix 4.1), is two. Consequently, the ratio of degrees-of-freedom to constraints, for
this mesh, is one. Thus, shear locking becomes an important issue as the symmetry of the

mesh is lost.

Results show that all CRB elements do not lock. The S1 and T1, on the other hand,
show severe locking. The T1 element locks much faster than the S1 element. This is in
accordance with the remark made in Section 4.3, noting the S1 element behavior, in terms
of shear locking, to be the best case scenario for the T1 element. Numerical results indi-

cate that severe locking (of the S1 and T1 elements) occurs when the distortion, A,
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Table 7.30 Mesh Distortion - Asymmetric
A CRB1,3,5 | CRB2,4,6 S1 T1

0.00 | 0.9774 0.9174 0.9613 | 0.9613
0.02 | 0.9371 0.8817 0.9495 | 0.8917
0.04 | 0.8606 0.8136 0.9163 | 0.7316
0.06 | 0.7963 0.7560 0.8658 | 0.5629
0.08 | 0.7529 0.7170 0.8037 | 0.4256
0.10 | 0.7250 0.6919 0.7357 | 0.3241
0.15 | 0.6902 0.6611 0.5681 | 0.1773
0.20 | 0.6763 0.6498 0.4300 | 0.1086
0.30 | 0.6673 0.6457 0.2526 | 0.0516
0.50 | 0.6673 -0.6602 0.1074 | 0.0193

0.80 | 0.6755 0.7065 0.0437 | 0.0077
1.00 | 0.6817 0.7534 0.0279 | 0.0049
1.50 | 0.6929 0.9392 0.0119 | 0.0022
2.00 | 0.6785 1.1534 0.0064 | 0.0013

2.49 | 0.6009 1.3373 0.0039 | 0.0009

becomes larger than about 30 times the plate thickness. Consequently, as the thickness is
reduced to zero, the S1 and T1 elements become more and more sensitive to mesh distor-
tion. The CRB elements, on the other hand, show the same type of behavior as indicated
by Figure 7.46 (i.e., faster deterioration than the S1 element in the initial distortion phase,

but deterioration stops at about 65% of the solution).

7.8.8 Shear and moment resultants

These examples were proposed by Hinton & Huang [1986] as a set of tests designed
to test the stress resultants recovered by the finite element approximation. A square plate
of side length L = 10 is modeled by a graded mesh shown in Figure 7.47. Due to sym-
metry only one quadrant is discretized. The stress distribution inside the elements is

reported. Results are compared to the solutions given by Kant & Hinton [1983].

First, SS2 boundary conditions are considered. The distribution of My, along the line
x2=0 is presented in Figures 7.48 and 7.49 for the CRB1,3,5 and CRB2,4,6 clements,
respectively. The distribution of Q5 along the line x5 = 0 is reported in Figures 7.50 and

7.51 for the CRB1,3,5 and CRB2,4,6 elements, respectively. The distribution of 0, along
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the line x, = L/2 for all CRB elements is presented in Figure 7.52.

The moment distribution inside the CRB1,3,5 elements has an opposing gradient to
the exact moment gradient. This behavior results from the choice of the incompatible
shape functions. These functions, in the CRB1,3,5 elements, do not satisfy the last criteria
set in Box 5.3, which was introduced in order to avoid this pathology. On the other hand,
in the CRB2,4,6 elements, in which the incompatible shape functions satisfy all criteria set

in Box 5.3, the moment gradient has the same slope orientation as the exact solution.

The distribution of Q5 along the line x5 = 0 exhibits large oscillations whenever a big
change in the element size occurs (only for distorted elements). For regular meshes, almost
identical distributions are obtained for the CRB1,3,5 and CRB2,4,6 elements, as can be
seen from the distribution of Q; in Figure 7.52.

Secondly, SS1 boundary conditions are imposed along the lines x; =0 and x;=L.
The distribution of Q, along the line x5 = L/2 is shown in Figure 7.53, for both CRB1,3,5
and CRB2,4,6 elements. The M, distribution along the line x5 =0 is shown in Figure
7.54 for the CRB1,3,5 elements and in Figure 7.55 for the CRB2,4,6 elements. The Q,

distribution along the line x; = 0, for all CRB elements, is shown in Figure 7.56.

Both shear distributions reported are almost identical for both the CRB1,3,5 and
CRB2,4,6 elements. The moment distribution in the CRB1,3,5 elements show the same

pathology observed for the uniform SS2 boundary conditions. Excellent results are

observed for the CRB2,4,6 elements.

7.9 Rhombic Plates

In this standard test, a highly skewed rhombic plate of side length L = 100.0 and an
acute angle ©= 30° is modeled by a uniform mesh. A typical mesh is shown in Figure
7.57. The material properties used are: E = 10E+6 and v=0.3. Two thicknesses are

considered: h=1.0 and h = 0.1. A comparison solution for the center displacement of
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w = 0.04455 for h = 1.0 and w = 44.55 for h = 0.1 was obtained by Morley [1963]. No
solution is available, however, for the energy. Consequently, converged finite element
solutions of E = 78.9 (h = 1.0) and E = 770317.0 (h = 0.1) are used as reference solutions.
Results for h = 1.0, normalized with the reference solution, are summarized in Table 7.31
and shown in Figures 7.58 (center displacement) and 7.59 (energy). The distribution of
M, and My, along the short diagonal, for h = 1.0, is shown in Figures 7.60 (CRB1,3,5
elements) and 7.61 (CRB2,4,6 elements). Results, for h = 0.1, normalized with the refer-
ence solution, are summarized in Table 7.32 and shown in Figures 7.62 (center displace-

ment) and 7.63 (energy).

Table 7.31 Rhombic Plate - Uniform load,
SS1, h = 1.0, a = 100., ©= 30°
nel CRB1,3,5 CRB2,4,6 S1 T1
disp. energy | disp. | energy | disp. energy | disp. energy |
4 1.0910 | 1.2072 | 2.1844 | 1.9843 | 0.6581 | 0.4582 | 0.6239 | 0.4344
16 | 0.8823 | 0.8903 | 1.2229 | 1.1125 | 1.0121 | 0.8328 | 0.8795 | 0.7483
64 | 0.9363 | 0.9269 | 1.0598 | 1.0084 | 0.9962 | 0.9073 | 0.8752 | 0.8249
256 | 0.9856 | 0.9550 | 1.0473 | 1.0030 | 1.0061 | 0.9541 | 0.9400 | 0.9051
1024 | 1.0128 | 0.9742 | 1.0452 | 1.0001 | 1.0238 | 0.9794 | 0.9899 | 0.9526
4096 | 1.0295 | 0.9872 | 1.0434 | 1.0000 | 1.0341 | 0.9901 | 1.0166 | 0.9760

In the case of h = 1.0, monotonic convergence is obtained only by the CRB2,4,6 and
T1 elements. The converged center displacement is about 4% higher than the solution
predicted by the thin plate theory (Morley [1963]). These results are in agreement with the
observation made by Babuska and Scopolla [1989]. The T1 element exhibits relatively slow
convergence, with 4096 elements only 97.6% of the converged energy is obtained. The
proposed elements show great sensitivity to the incompatible shape functions used, 78%
and 22% difference iﬂ the energy norm are observed for the four- and 16-element meshes,
respectively.

As observed for the square plate, the moment slope orientation in the CRB1,3,5 ele-
ments is opposite to the slope orientation of the exact solution. The slope orientation in
the CRB2,4,6 elements, on the other hand, is of the same orientation as the slope of the

exact solution. It must be noted that the corner element exhibits a pathological behavior
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(for both CRB1,3,5 and CRB2,4,6 elements). Excellent behavior, however, is observed in

all other elements. Also note that good moments are recovered at the center of the corner

Numerical Examples

element.
Table 7.32 Rhombic Plate - Uniform load,
SS1, h = 0.1, a = 100., © = 30°

nel CRB1,3,5 CRB2 4,6 S1 T1
disp. energy | disp. energy | disp. energy | disp. energy
4 1.0839 | 1.2357 | 2.1822 | 2.0513 | 0.6558 | 0.4741 | 0.6219 | 0.4496
16 0.8563 | 0.8831 | 1.2259 | 1.1219 | 1.0084 | 0.8614 | 0.8769 [ 0.7739
64 0.8813 | 0.9143 | 0.9622 | 0.9246 | 0.9599 | 0.9149 | 0.9411 | 0.8286
256 | 0.9299 | 0.9465 | 0.9327 | 0.9349 | 0.9128 | 0.9153 | 0.8411 | 0.8587
1024 | 0.9621 | 0.9690 | 0.9714 | 0.9755 | 0.9414 | 0.9478 | 0.8862 | 0.9025
4096 | 0.9802 | 0.9830 | 1.0007 | 1.0000 | 0.9740 | 0.9770 | 0.9330 | 0.9430

For the case of h = 0.1, only the T1 element exhibits monotonic convergence. How-
ever, with 4096 elements only 94.3% of the reference energy is obtained. The proposed
elements’ sensitivity to the incompatible shape functions increases with the reduction in

thickness. A difference of 82% and 24% is observed for the four- and 16-element meshes,

respectively.
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Figure 7.1a: Patch test, one-element mesh.
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Figure 7.1b: Patch test, skewed mesh.
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Figure 7.2: Straight cantilever beam. (a) Regular shape elements;

(b) Trapezoid shape elements; (c) Parallelogram shape
elements.

Figure 7.3: Curved beam mesh.
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Figure 7.4: Beam bending problem, sensitivity to mesh distortion.
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Figure 7.5: Beam bending; sensitivity to mesh distortion.
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Figure 7.8: Cook's membrane problem;
maximum principal stress at point A.
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Figure 7.9: Cook's membrane problem;
principal minimum stress at point B.
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Figure 7.12: Strip with a hole; plane stress;
convergence in the energy norm.
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Figure 7.13: Strip with a hole; plane stress; axial stress

distribution along the line A-B.
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Figure 7.14: Strip with a hole; plane strain;
convergence in the energy norm.
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Figure 7.15: Strip with a hole; plane strain; axial stress

distribution along the line A-B.
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Figure 7.16: Circular plate. Due to symmetry only
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Figure 7.17: Simply supported (SS1) thin circular plate; uniform load
convergence of center transverse displacement.
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Figure 7.18: Simply supported (SS1) thin circular plate;
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uniform load; convergence in the energy norm.
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Figure 7.19: Simply supported (SS1) thick circular plate;

uniform load; convergence of the center
transverse displacement.
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Figure 7.20: Simply supported (SS1) thick circular plate;

uniform load; convergence in the energy norm.
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Figure 7.21: Clamped thin circular plate; uniform load;
' convergence of the center transverse displacement.
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Figure 7.22: Clamped thin circular plate; uniform load;

convergence in the energy norm.
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Figure 7.23: Clamped thick circular plate; uniform load;
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convergence of the center transverse displacement.
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Figure 7.24: Clamped thick circular plate; uniform load;

convergence in the energy norm.
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Figure 7.25: Simply supported (SS1) thin circular plate;

concentrated unit load at the center;

normalized center transverse displacement.
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Figure 7.26: Simply supported (SS1) thick plate;
concentrated unit load at the center;
normalized center transverse displacement.
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Figure 7.27: Clamped thin plate; concentrated unit load at the center
normalized center transverse displacement.
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Figure 7.28: Clamped thick plate; concentrated unit
point load at the center; normalized
center transverse displacement.
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Figure 7.30: Square plate. Due to symmetry, only
one quadrant is discretized.
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Figure 7.31: Simply supported (SS1) thin square plate;

uniform load; convergence of the center
transverse displacement.
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Figure 7.32: Simply supported (SS1) thin square plate;

uniform load; convergence in the energy norm.
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Figure 7.33: Simply supported (SS2) thin square plate; uniform load;
' convergence of the center transverse displacement.
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Figure 7.34: Simply supported (SS2) thin square plate;
uniform load; convergence in the energy norm.
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Figure 7.35: Clamped thin square plate; uniform load;
convergence of the center transverse displacement.
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Figure 7.36: Clamped thin square plate; uniform load;

convergence in the energy norm.
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Figure 7.37: Simply supported (SS1) thick square plate; uniform load

convergence of the center transverse displacement.
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Figure 7.38: Simply supported (SS1) thick square plate;

uniform load; convergence in the energy norm.
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Figure 7.39: Simply supported (SS2) thick square plate; uniform load
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Figure 7.40: Simply supported (SS2) thick square plate;
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Figure 7.41: Clamped thick square plate; uniform load;
convergence of the center transverse displacement.
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Figure 7.42: Clamped thick square plate; uniform load;
convergence in the energy norm.
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Figure 7.44: Sensitivity to mesh distortion; symmetric distortion;
normalized center transverse displacement.
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Figure 7.45: Mesh distortion; asymmetric.
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Figure 7.46: Sensitivity to mesh distortion; asymmetric distortion;
normalized center transverse displacement.
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Figure 7.47: Square plate; graded mesh.
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Figure 7.48: Variation of M12 along the line x2 = 0 for the uniformly
loaded square plate with SS2 boundary conditions;

CRB1,3,5 elements.
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Figure 7.49: Variation of M12 along the line X2 = 0 for the pniformly
loaded square plate with SS2 boundary conditions;
CRB2,4,6 elements.
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Figure 7.50: Variation of Q2 along the line x2 = 0 for the uniformly
loaded square plate with SS2 boundary conditions;
CRB1,3,5 elements.
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Figure 7.51: Variation of Q2 along the line x2 = 0 for the uniformly
loaded square plate with SS2 boundary conditions;
CRB2,4,6 elements.

147



Ch. 7 Numerical Examples
EXACT
- CRB1,3,5
o CRB2,4,6
=
(7]
N
®
E
1 9
=
z
.
0.05
- L D —-1
o0 +——--+—-—vab—->+—-"-yzr-—---or—-—--—
0.0 0.1 0.2 0.3 0.4 05 xI1/L
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Figure 7.53: Variation of Q1 along the line x2 = L/2 for the

uniformly loaded square plate with SS1/SS2
boundary conditions.
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Figure 7.55: Variation of M12 along the line x2 = 0 for the
uniformly loaded square plate with SS1/SS2
boundary conditions; CRB2,4,6 elements.
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Figure 7.58: Rhombic plate; h = 1.0; convergence

of the center displacement.
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Figure 7.59: Rhombic plate; h = 1.0; convergence

in the energy norm.
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Figure 7.60: Rhombic plate; h = 1.0; variation of
M11 & M22 along the line x2 = 0;
CRB1,3,5 elements.

-0.01

3 sesssense: EXACT - M11
1 :': ssssanst  EXACT - M22
0024 ¢ . emm  CRB2,4,6 - M11
emmmeees  CRB2,4,6 - M22
-0.03
;
20,04 T[T
0.00 0.05 0.10 0.15 0.20 0.25

Figure 7.61: Rhombic plate; h = 1.0; variation of
M11 & M22 along the line x2 =0;
CRB2,4,6 elements.
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Figure 7.62: Rhombic plate; h = 0.1; convergence

of the center transverse displacement.
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Figure 7.63: Rhombic plate; h = 0.1; convergence

in the energy norm.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 Conclusion

A unified approach to mixed finite element methods has been presented in this
dissertation. The proposed method has been used to formulate plane stress/strain and plate
bending elements. It was proved that plane strain elements formulated by this method do
not lock at the nearly incompressible limit. It was also proved that plate bending elements
formulated by this method do not lock in shear when applied to model thin plates. Furth-
ermore, the elements derived via this method possess all the properties presented in

Chapter 1 as the objective for this dissertation.

The plane stress/strain elements presented show no sensitivity to the type of incompa-
tible shape functions used. The plate bending elements, on the other hand, appear to be
sensitive to these functions for coarse meshes. Both classes of elements yield identical
results for both approaches taken to transform the assumed strain field from the element
natural space into the physical space. Furthermore, the elements formulated via the
Hellinger-Reissner variational principle yield identical results to their corresponding ele-

ments formulated via the Hu-Washizu variational principle.
The main contributions of this dissertation are:

¢  Uniform treatment of all fields (displacement, strain and stress) in the context of

the Hu-Washizu and Hellinger-Reissner variational principles.

® A proof that by introducing coupling between the assumed shear and moment
resultant fields, shear locking is avoided at the element level in plate bending

elements formulated via the Hellinger-Reissner variational principle.

® A proof that by introducing coupling between the assumed shear strain and cur-
vature fields as well as between the assumed shear and moment resultant fields,

shear locking at the thin plate limit is avoided at the element level in plate
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bending elements formulated via the Hu-Washizu variational principle.

®  The introduction of a general method to generate the assumed stress and strain
fields used in the variational principles. When applied to formulate plate bend-

ing elements, the desired couplings are obtained.

® A proof that in the case of plane strain, the trace of the strain field produced by
the proposed method goes to zero pointwise as Poisson’s ratio, v, goes to 0.57.

Thus, locking is avoided at the nearly incompressible limit.

® It is shown that shear locking in plate bending elements and locking at the
nearly incompressible limit in plane strain elements can be avoided, in the con-

text of mixed formulations, without resorting to the constraint count method.
®  Varnationally consistent recovery of all stresses.

® It is shown that in the case of linear isotropic elastic materials, elements that
yield identical results can be derived via the Hellinger-Reissner and Hu-Washizu
variational principles. Thus, an equivalence is established between elements for-

mulated via the two principles.

e  Establishing an equivalence between the two approaches taken to transform the

strain field from the element natural space into the physical space.

® A simple and efficient method to enhance the assumed transverse displacement
field so that four-node plate bending elements pass the constant curvature patch

test.

8.2 Suggested Future Work

In this dissertation a general method that may be applied to all types of solid mechan-
ics problems has been presented. This method, however, in the context of this dissertation,
was applied only to small deformation analysis of linear isotropic elastic materials. A

number of issues remain to be addressed:
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An extension of the method proposed by Wu, Huang & Pian [1987] to generate

the incompatible shape functions so that a unique constant will be defined.

A study of possible modifications to the proposed method, the initially assumed
independent fields, and incompatible shape functions, so that the coupling
between the shear and moment resultant fields and the coupling between the
curvature and shear strain fields will not be rank deficient for parallelogram-

shaped elements.

A reformulation of the enhancement of the transverse displacement, introduced
in four-node plate bending elements, as a modification to the assumed shear

strain field in order to model the SS1 boundary condition pointwise.

A study of the equivalence of the two approaches taken to transform the

assumed strain field from the element natural space into the physical space.

An extension of the notion of coupled stress resultant fields and coupled strain

fields to the analysis of shells and beams.
An application of the method to generate higher order elements.
An application of the method to model non-isotropic materials.

An extension of the proposed method to the non-linear regime (non-elastic large

deformations/rotations undergoing large strains).
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