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ARTICLE

Statistical modeling of RNA structure profiling
experiments enables parsimonious reconstruction
of structure landscapes
Hua Li1 & Sharon Aviran 1

RNA plays key regulatory roles in diverse cellular processes, where its functionality

often derives from folding into and converting between structures. Many RNAs further rely

on co-existence of alternative structures, which govern their response to cellular signals.

However, characterizing heterogeneous landscapes is difficult, both experimentally and

computationally. Recently, structure profiling experiments have emerged as powerful and

affordable structure characterization methods, which improve computational structure

prediction. To date, efforts have centered on predicting one optimal structure, with much less

progress made on multiple-structure prediction. Here, we report a probabilistic modeling

approach that predicts a parsimonious set of co-existing structures and estimates their

abundances from structure profiling data. We demonstrate robust landscape reconstruction

and quantitative insights into structural dynamics by analyzing numerous data sets. This work

establishes a framework for data-directed characterization of structure landscapes to aid

experimentalists in performing structure-function studies.
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The diverse regulatory functions of RNA are deeply rooted
in its ability to form and switch between specific structures,
thus making structure prediction an essential task in

biology and biotechnology1. Modeling RNA structure accurately,
however, is a difficult task, both experimentally and computa-
tionally2. Of particular interest and challenge are regulatory sys-
tems that involve multiple functional and biologically important
structures, such as natural and engineered riboswitches, riboS-
Nitches, ribozymes, thermosensors, viral elements, protein-bound
RNA, and folding pathways3–10. Often, these alternative struc-
tures are jointly present at different abundances, to confer these
systems their flexibility and sensitivity in responding to diverse
cellular signals. Accurate characterization of these complex and
dynamic structure landscapes is thus critical to understanding
and engineering riboregulators. However, despite steady progress
in experimentally probing complex landscapes with nuclear
magnetic resonance (NMR), single-particle, and single-molecule
techniques, these approaches still suffer technological, infra-
structure, size, and resolution limitations that prohibit their broad
application6,8,11,12.

Chemical structure profiling (SP) experiments have recently
emerged as affordable and powerful methods for analyzing RNA
structures in vivo, in vitro, and in a massively parallel fashion.
Propelled by advances in DNA sequencing, this classical
approach has dramatically expanded both in scope and depth,
unveiling a complex layer of RNA-based regulation13–16. In SP,
local structural characteristics are gleaned using structure-
sensitive reagents, such as SHAPE and DMS, which pre-
ferentially modify structurally unconstrained nucleotides
(Fig. 1a). Modifications are detected via reverse transcription,
which either stops at modified nucleotides or proceeds while
introducing a mutation. Resulting complementary DNA (cDNA)
products are sequenced and stops/mutations are tallied to
determine modification frequencies per nucleotide. Progress in
experiments has also spurred development of computational tools
that use SP data to either constrain secondary structure predic-
tion algorithms or, more recently, to inform data-driven dis-
covery in a range of emerging applications17–19.

Harnessing SP data to better predict structure computationally
proved widely successful20,21, although efforts have centered on
predicting a single secondary structure—typically the most
thermodynamically stable. Less progress has been made on pre-
dicting multiple structures in situations where their joint presence
is critical for function, primarily due to computational challenges.
One key difficulty stems from the fact that SP measurements
capture an ensemble-weighted average over the different struc-
tures17,18. Other than M2-REEFFIT and RING-MaP22,23, current
approaches entail large-scale data-directed sampling of sub-
optimal secondary structures, which interprets SP data as the
signature of one structure that dominates in solution17. Fur-
thermore, generated secondary structures are often subject to
limitations of thermodynamic models21 and also warrant lossy
post-processing via clustering and/or dimensionality reduction to
mine a simplified view of key structures24–26. While this paper
was under review, another group reported a thermodynamics-
based method, Rsample, which employs data-directed suboptimal
sampling followed by large-scale clustering, yet it explicitly con-
siders multiple structures as the sources of the data27. Rsample
predicts multiple structures and their respective population frac-
tions. Notably, M2-REEFFIT and RING-MaP rely on different
large-scale clustering techniques, which extract information on
dominant motifs (e.g., helices or local tertiary interactions) or on
constituent structure profiles. Yet, to our knowledge, they do not
directly output complete structures along with their respective
population fractions. M2-REEFFIT is also data-intensive, war-
ranting two-dimensional data sets comprising of M + 1 structure

profiles for an RNA of length M, which can be currently obtained
only in vitro. RING-MaP is specialized to a single SP technique
and further requires ultra-high modification rates. Methods of
broad applicability, which provide direct and compact recon-
struction of complex ensemble dynamics are currently lacking.

Here, we introduce structure landscape explorer and quantifier
(SLEQ), a method for sparse SP-guided reconstruction of RNA
structure landscapes. SLEQ features a statistical model that
leverages prior modeling work28,29 and “sample and select”
principles30 to consider large structural ensembles and to inter-
pret SP data as an aggregate (or average) measure of structure-
specific modifications17,25. It selects a parsimonious set of
structures that best explain SP data from a pre-determined can-
didate set and estimates their relative abundances. Such parsi-
mony is critical to elucidating complex dynamics as it identifies
dominant structures, which likely govern function. SLEQ is ver-
satile in two key ways: (1) it accommodates complex structural
features, which allow it to circumvent limitations of conventional
structure prediction algorithms; and (2) it supports data obtained
by two prominent SP paradigms—mutation and truncation, and
thus applies to diverse data sets. Its versatility and succinct output
render it a broadly applicable and accessible framework for
quantitative studies of complex RNA dynamics. To demonstrate
its performance, utility, and breadth, we analyze several systems
whose function critically derives from complex structure
landscapes.

Results
Statistical model and inference. SLEQ takes two inputs: a set of
candidate structures and SP sequencing data (Fig. 1b). Candidate
structures are obtained computationally and/or manually and
represent prior knowledge of structural dynamics. Each sequen-
cing read reports a chemical modification pattern detected in a
single molecule (Methods). Two main approaches to modification
detection exist: truncating the transcribed cDNA at the mod-
ification site or introducing a mutation at that site13,31. They
differ in the set of patterns they detect (Fig. 1a), with mutational
profiling being capable of assaying a richer and potentially more
informative pattern set. SLEQ thus supports two modes: mutation
and truncation, where reads are binned into the appropriate set of
patterns (see Methods and Supplementary Fig. 1). A linear model
then links observed pattern statistics to the unknown structural
sample composition. By implementing non-negative least-squares
model fitting, SLEQ selects a parsimonious subset of candidate
structures that best explain observed modifications and jointly
estimates these structures’ abundances. See Methods for details.

Figure 1c, d highlights the theoretical ideas and concepts that
underlie our method. SLEQ’s reconstruction of the landscape is
driven by the degree of consistency between each candidate
structure and the modification patterns observed in reads. Since
modifications are expected to occur predominantly in uncon-
strained or unpaired nucleotides, a structure is deemed consistent
with a pattern if nucleotides modified in said pattern correspond
to some of its unconstrained regions. For example, two regions of
modifications are highlighted in Fig. 1c. Alignment of reads with
dot-bracket representations of candidate structures indicates that
the top hairpin (magenta) is consistent with the top three patterns
and the second hairpin (blue) is consistent with the other two
patterns. The other two candidate structures are inconsistent with
the reads shown.

To quantify structure-to-pattern consistency, SLEQ employs a
probabilistic model. Extending on prior models that link average
modification frequencies in a sample to observed reads28,29, here
we consider a heterogeneous population of explicit structures as
the generative source of reads. Furthermore, we model the
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statistical relationship between any given structure and any
possible read pattern, where modeling at the read resolution is
key to SLEQ’s ability to unify treatment of truncation and
mutation data sets. As structurally unconstrained nucleotides can
potentially be modified, for each candidate structure, the model
considers its nucleotide states (constrained/unconstrained) to
calculate the likelihood that it would generate each of the
observed reads (Fig. 1d). As SLEQ seeks a subset of structures that

jointly support the data, our probabilistic model is embedded
within a linear model, which captures the understanding that co-
existing populations of distinct structures additively contribute to
a total number of reads observed for each pattern. The linear
model thus accounts for the relative abundances of these
populations, which are unknown and estimated by fitting the
model to the pattern counts. A particular advantage of linear
modeling is the availability of well-established techniques for
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Fig. 1 Cartoon depictions of structure profiling experiments, SLEQ’s workflow, and its modeling principles. a RNA molecules adopt multiple co-existing
structures of potentially differing abundances (magenta and blue hairpins). Structures are probed with a reagent that preferentially modifies structurally
unconstrained nucleotides. Modifications (red pins) are detected by reverse transcriptase, which either stops or introduces mutations at modified sites.
Complementary DNA products are sequenced and reads are classified by modification locations, from which degrees of modification are quantified. b
Workflow of SLEQ. Sequencing reads and candidate structures are input to SLEQ. Reads report detections via truncation or mutation (purple box) and are
subsequently binned into patterns (yellow box). See Supplementary Fig. 1 for detailed binning routine. At the core of SLEQ is a linear model that links input
structures to observed patterns. Through linear parameter estimation, a small set of structures is selected and their abundances are estimated. c SLEQ
selects structures that jointly support observed read patterns. Candidate structures, shown in dot-bracket format, are aligned to read patterns.
Modifications occur predominantly in unconstrained nucleotides (dots). Top three patterns are supported by the magenta structure, whereas the bottom
two are consistent with the blue structure (background colors highlight loop locations). Green and purple structures are unlikely to generate shown
patterns. These principles drive SLEQ to select magenta and blue structures. d Conceptual model description. Each observed pattern may be generated by
any underlying structure with a structure-dependent likelihood. The structure-to-pattern likelihood is determined by the degree of consistency between
modifications in a pattern and regions of unconstrained nucleotides in the structure. As indicated in c, the magenta structure is highly likely to generate
patterns in upper yellow box but unlikely to generate patterns in lower yellow box, and vice versa for the blue structure. Subpopulations of candidate
structures then additively contribute to observed pattern counts. Individual subpopulation contributions are determined by their relative abundance and
pattern likelihood
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sparse optimization, such that a solution entailing a small subset
of candidate structures can be found. See Methods for details.

SLEQ recovers structural heterogeneity of a human riboSNitch.
The recently developed DMS-MaPseq technique couples muta-
tional profiling with DMS chemistry and attains modification
densities substantially higher than previously feasible despite the
fact that modifications are assayed only for adenines and cyto-
sines32. One advantage of mutational profiling lies in its ability to
resolve allelic origins of reads, as its cDNA products entail more
complete sequence information than truncated cDNAs31. Such
information becomes crucial when studying riboSNitches—sin-
gle-nucleotide polymorphisms (SNPs) that result in local struc-
tural re-arrangement, which may have phenotypic outcomes4. In
ref. 32, structural heterogeneity associated with the human
MRPS21 riboSNitch was revealed by DMS-MaPseq. Samples
transcribed in vitro from two MRPS21 alleles were mixed and
profiled. Allele-specific data analysis uncovered highly distinct
structure profiles, which were no longer separable from the
mixed-data profile (Supplementary Fig. 2). This proof-of-
principle is especially suited for method validation for several
reasons: (1) constituent structural signatures were undetectable in
mixture; (2) sample was sequenced deeply; and (3) SNP identity
(A/C) within reads enabled recovery of true allelic composition
for benchmarking.

We tested SLEQ’s ability to recover the predicted allelic
structures and estimate their abundances from mixture data
(Fig. 2a–c). Analysis of >56 million reads revealed the ground
truth to be 67.8%:32.2% for A:C (Supplementary Methods). We
statistically sampled 1000 secondary structures for each allele
sequence, removed duplicates, and combined samples into one set
of >100 structures. To account for inter-sample variation at the
base-pair level, which is characteristic of statistical samples24,26,
we considered 10 independent samples in all analyses. Although
DMS-MaPseq can report multiple modifications per read by way
of mutational profiling, it is also possible to generate an
equivalent truncation data set in silico, where each read reports
up to one modification (see Methods for details and Supplemen-
tary Fig. 1 for illustration). By summarizing the sequencing data
in these two forms, we were able to apply SLEQ in both
truncation and mutation modes to gauge the impact of their
differing information contents on its performance.

In mutation mode, a representative run of SLEQ selected only
four structures with abundances exceeding 5%, populating 98% of
the sample (estimates were 48, 14, 8, and 30%). Due to minor
discrepancies between selected structures and structures shown in
ref. 32, we clustered them into A/C structure classes. Each cluster
comprised of two structures with total abundances 62%:38% (A:
C). Figure 2a, b shows the reference structures and a structure
representative for each cluster, respectively. Representatives were
selected in two steps. First, we identified the most abundant
structure in the cluster. Second, we locally minimized free energy
of structures by retrieving all candidates whose pairing states at all
probed adenines and cytosines were identical to their states in the
selected structure. Of these, the structure with minimum free
energy was chosen as representative. This strategy accounts for
SLEQ’s data-directed principles, as these structures diverge in
regions where no DMS information is available to guide SLEQ
and are thus deemed comparable by SLEQ’s model despite their
energy differences. Supplementary Table 1 summarizes our
findings over 10 runs, indicating reproducible results with
average A:C estimates 59%:41% and 4% standard deviation.
Numbers of selected structures ranged from 4 to 6 and all were in
complete or near-complete agreement with reference structures
(on average, one nucleotide differed in pairing state). Notably, the

best-performing run estimated abundances at 64%:36% (compare
to ground truth 68%:32%).

To gain insight into how the data drives SLEQ’s reconstruc-
tions, we inspected prevalent read patterns. Figure 2d shows the
three most frequent patterns of two mutations. The two top
patterns map to allele A, and one can readily see that they are
consistent with its reference structure but inconsistent with allele
C’s reference structure. Together, these patterns are also
significantly more prevalent than the third pattern, which maps
to allele C and is consistent with its reference structure but
inconsistent with reference structure A. The discrepancies in A/C
pattern frequencies manifest in an ensemble composition that
favors allele A. Furthermore, inspection of the reactivity profile of
the mixed sample (Fig. 2e) revealed that measurements indeed
capture ensemble averages, as modeled by SLEQ (Fig. 1d). One
can see that neither individual structure selected by SLEQ solely
supports the entirety of the reactivity profile, hence a hetero-
geneous solution was obtained.

Next, we applied SLEQ to the equivalent data set of in silico-
generated truncated reads. Results were nearly identical,
especially in terms of numbers of structures and their
discrepancies from references. Average A:C estimates 62%:38
and 2% standard deviation indicated slight improvement,
albeit not highly significant (paired t test, p value 0.067).
Selected structures from a representative run are shown in Fig. 2c.
These results demonstrate successful and robust landscape
reconstruction, with minor differences between modes. In this
particular example, truncation data appears to be sufficiently
informative with respect to landscape reconstruction, such that
reads with one modification carry the information needed to
accurately resolve the mixture (see also Fig. 2e and Supplemen-
tary Fig. 2). Moreover, mutation data would embed more
information than truncation data only if many reads had
contained more than one modification. In this case, however,
<4% of the reads belong to this category (see Methods for pattern
statistics), which deems insufficient. Note, however, that such
low frequency does not imply low modification rate because
mutations were considered at 11 adenines/cytosines only (Fig. 2e).
In fact, the modification rate is ~1 per 33 A/C nucleotides,
an order of magnitude higher than previous standards in the
field33. Given the exponential growth in multiple-modification
patterns with increasing RNA length, their frequency would
rapidly grow upon consideration of longer regions and may
thereby confer mutational profiling access to additional valuable
information.

SLEQ quantitatively elucidates riboswitch folding dynamics.
To further validate SLEQ’s capacity to uncover and quantify
structural subpopulations, we turned to more complex dynamics.
In ref. 34, in vitro RNA polymerase arrest was coupled to SHAPE-
Seq to monitor cotranscriptional folding of Bacillus cereus crcB
fluoride riboswitch in presence and absence of fluoride. Briefly,
transcription roadblocks embedded into DNA templates capture
folding intermediates, which are subsequently profiled (see Fig. 1
in ref. 34). Watters et al.34 visually inspected consecutive SHAPE-
Seq profiles of increasing length to infer folding trajectories with/
without fluoride, based on which they proposed a mechanistic
model to elucidate how the riboswitch is directed into each of two
previously characterized ligand-bound/unbound states35,36. Yet,
crafting such model warrants manual inspection and interpreta-
tion of complex data sets, relying substantially on qualitative
comparisons at select few nucleotides and user-guided structure
modeling (see Figs. 4–6 in ref. 34).

We used SLEQ to explore this folding trajectory quantitatively.
Consistent with prior work34,37, our analysis distinguishes
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between two phases: ligand-independent and ligand-dependent.
In the ligand-independent phase, two hairpins are folded
sequentially—P1 and P3 (Fig. 3a). Details of SLEQ’s reconstruc-
tion of P1 and P3 formation at two intermediate lengths are
found in Supplementary Methods. Their folding sets the stage for
the formation of pseudoknot PK1 (Fig. 3b). This initial phase is
followed by ligand-dependent bifurcation when OFF (terminated)
and ON (antiterminated) states emerge (see Fig. 3c, d,
Supplementary Fig. 10 in ref. 36 and Supplementary Fig. 10 in
ref. 35). Note that differences between ON and OFF amount to
helix formation between P1 loop and nucleotides 42–47
(pseudoknot PK1) and two long-range (LR) interactions (A10-
U38, A40-U48). Previous studies thus suggested that fluoride
activates transcription by preventing formation of a complete
terminator (CT), as mediated by PK1 formation and stabilization
at the aptamer domain35–37. Support for these ON–OFF
differences can also be gleaned from reactivity profiles in the
absence and presence of fluoride (Fig. 3e, f). Without fluoride, P1
loop is reactive, consistent with the OFF state. With fluoride,
reactivity in this region decreases to intermediate levels,
supporting the presence of ON structure in the sample.

To explore ligand-dependent dynamics, we analyzed profile
lengths 55–80 nt. Since conventional statistical sampling

algorithms disregard pseudoknoted structures24, we spiked six
PK1-containing structures into candidate sets (Supplementary
Methods). SLEQ’s output structures and abundance trajectories
revealed several interesting findings. As expected, the ON
structure (PK1 and partial terminator PT) is consistently and
substantially more abundant in fluoride’s presence than in its
absence (Supplementary Fig. 3, solid purple and dashed green
lines). A similar trend is seen upon inspection of the total fraction
of structures that contain PK1 but not necessarily in tandem with
PT (Supplementary Fig. 3, solid red and dashed blue lines). This
population was obtained by manually clustering the small
number of structures output by SLEQ. It is of interest because
PK1 suffices to prohibit terminator formation (Fig. 3c, d) and is
thus key to ON structure’s function in gene regulation35,36.
Moreover, without fluoride, ON structure disappears at 71 nt and
similarly for the structures containing PK1 (76 nt). These
dynamics support previous insights into the ligand’s role in
stabilizing the aptamer domain34,36.

SLEQ outputs are best visualized by pairing probabilities plots
(PPPs). For example, Supplementary Fig. 4 shows outputs at 69 nt
with/without fluoride. The OFF structure dominates without
fluoride (see P1, P3, terminator helices), whereas ON dominates
with fluoride (see P1, P3, PT, PK1 helices and LR). Ovals
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highlight substantially elevated PK1 and LR presence (note
yellow-to-red transition). Prevention of CT formation in favor of
aptamer interactions can be seen from base-pair colors at lower-
right corner.

From abundance trajectories, three subphases emerged, defined
by two events: formation of terminator helices starting at tstart
(~62 nt) and completion of CT at tend (~73 nt). To illustrate this,
Fig. 4a, b depicts population fractions of three classes: ON+, OFF
+, and OTHER (Supplementary Table 2). Classes were obtained
by manually assigning the small number of structures selected by
SLEQ into three clusters, which we defined from a functional
perspective. Particularly, based on prior studies35, we identified
motifs within the ON and OFF structures (Fig. 3c, d), which are
key to their function with and without fluoride, respectively. As
mentioned above, the key motif to ON structure’s functionality is
PK1, hence class ON+ comprises of all structures that feature PK1
(see Supplementary Fig. 5 for examples). Similarly, OFF+ class
comprises of structures with both P1 and terminator (see
Supplementary Fig. 6 for examples), whereas OTHER consists
of the remaining structures. Without ligand, OFF+ population
upsurges at tstart at the expense of ON+ and OTHER populations,

and reaches its maximum at tend. With ligand, dynamics are
fundamentally different: OFF+ and ON+ populations expand
simultaneously from tstart until they surpass OTHER, then
competing and driving the system into steady state at tend. The
third subphase displays ligand-dependent outcomes: dominance
of OFF cluster (without ligand) vs. ON:OFF co-existence at
40%:60% (with ligand). Taken together, these results highlight
steady progress toward structural homogeneity and system
stabilization. Revisiting the SHAPE-Seq profiles in Fig. 3e, f,
one can see how these results manifest in the data. With ligand,
the mixed ON:OFF population is consistent with intermediate
reactivities at the 3′ end (f) as compared to suppressed ones
without ligand (e). The mixture is further supported by the
reduction in P1 loop’s reactivity associated with ligand presence.
SLEQ analyses of 10 independent statistical samples at 5
intermediate transcript lengths with and without fluoride resulted
in similar findings (Supplementary Methods).

Despite differing steady-state distributions between the
two conditions, the OTHER population steadily declines
from 80% to extinction. This led us to consider how structural
diversity evolves over time, which we evaluated by average
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Shannon entropy of base-pairing (Methods). To estimate pairing
probabilities for each nucleotide, we used SLEQ’s predictions,
which simplify ensemble dynamics into a relatively small number
of feasible states and therefore underestimate the entropy of the
true ensemble. Low/high entropy indicates low/high diversity,
respectively. Entropies shown in Supplementary Fig. 7 highlight
the phase dependence of structural diversity. Entropies are fairly
stable until terminator formation (subphase 1), then decline
(subphase 2) until after terminator fully forms, and stability is
reestablished (subphase 3). Generally, fluoride’s presence results
in lowered entropies, suggesting that ligand-induced interactions
constrain the system, which aligns with our understanding of
ligand-binding thermodynamics3. Interestingly, relationships
reverse near tend, possibly due to convergence to one vs. two
states.

Further insights into crcB fluoride riboswitches were previously
gained from functional mutagenesis studies35. We thus analyzed
mutants cotranscriptional data to test how well structural
dynamics correlate with function measurements (see Supplemen-
tary Fig. 8a and Supplementary Fig. 8 in ref. 35). Mutations were
introduced to disrupt base pairs in PK1 stem only (M18), in both
PK1 and CT (M19), or in CT only (M20). Mutations were
also combined: M21 =M18 +M19 restores PK1 but affects
CT, M22 =M19 +M20 restores CT but affects PK1, and
M23 =M18 +M19 +M20 restores PK1 and CT (Supplementary
Table 3). SLEQ’s outputs confirmed disruption and restoration of
PK1 and CT in all mutants, as PPPs show (Supplementary
Fig. 8b–g). Further, they highlighted that targeting PK1 bears
more dramatic effects compared to CT. Specifically, PK1 does not
form in M18 and M19, whereas CT is visible in M19 and M20.
Nevertheless, such limited disruption suffices to render CT
nonfunctional35.

Functional fluoride-induced outcomes of these mutations were
assessed at the protein level via reporter fusion assays35 and at
the RNA level via transcript readthrough quantification34. To
link structure to function, we considered all structures that
are functional, i.e., that may explain measured expression
levels. Similar to our analysis of wild-type (wt) sequence, we

manually clustered SLEQ’s outputs by their inclusion of
key functional state-specific motifs. As before, if a structure has
PK1, it is assigned to the ON+ class. However, in contrast to
wt, we are also interested in structures that contain P1 and
CT with disrupted base pairs, which are assigned to a class called
DEF-OFF+. This is because mutants with such defective CT are
unable to shut down transcription and thus contribute to protein
levels. We then quantified the relationship between these clusters
and protein levels (see Supplementary Fig. 9B in ref. 35).
Supplementary Fig. 9a depicts ON+ and DEF-OFF+ abundances
along with protein levels. It is apparent that neither ON+
nor DEF-OFF+ solely explain discrepancies in protein levels
among mutants, supporting their joint contribution to gene
expression. To uncover their relative contributions, we fitted a
linear model

Protein level ¼ αAbundance ðONþÞ
þβAbundance DEF�OFFþð Þ ð1Þ

and normalized α, β to obtain relative contributions 0.66 and
0.34, respectively (Supplementary Fig. 9b). These results allude to
superior translation efficiency of ON structures and to
translation-inhibiting activity via ribosome binding-site seques-
tration38. As final note, we point out that the two-state
composition shifted in favor of OFF state when attempting to
recover WT functionality with M23. It may be because replacing a
G-C pair with A-U exerts stronger destabilizing effects on
PK1 compared to CT. This recapitulates our previous finding that
PK1 is easier to disrupt (Supplementary Fig. 8). See Supplemen-
tary Methods for further details and analysis of additional data
sets.

Performance evaluations and comparisons. We compared SLEQ
to RING-MaP23 and M2-REEFFIT22, which also reconstruct
information on multiple structures from SP data. RING-MaP
extracts distinct reactivity profiles from mutation data by clus-
tering reads according to their modification patterns. It mines
correlations between multiple modifications that reside in the
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same read, hence it only utilizes a subset of the reads and
necessitates very high modification rates. For each identified
cluster, RING-MaP outputs its respective reactivity profile and
population fraction. As RING-MaP only outputs profiles, it can
be supplemented by other methods to obtain data-directed single
secondary structure predictions for each profile39–41. We applied
RING-MaP to the MRPS21 DMS-MaPseq data and compared
reconstructions to its ground truth. Overall, performances were
comparable, with both SLEQ and RING-MaP deviating by a few
percents from ground truth in estimating allele population frac-
tions. To compare predicted structures, we fed RING-MaP’s
output profiles to RNAstructure39—predicted structures were
close to both the references and SLEQ’s predictions. The complete
details are found in Supplementary Methods. It is worth noting,
however, that by summarizing DMS-MaPseq reads as truncation
patterns in silico, we have demonstrated that in this data set,
reads with a single modification, or equivalently, the reactivity
profile (Fig. 2e), contain sufficient information for accurate
reconstruction. While SLEQ can extract this information from
both data types, RING-MaP necessitates generation of mutation
data.

M2-REEFFIT reconstructs RNA landscapes from mutate-and-
map (M2) data sets consisting of reactivity profiles of the wt and
all single mutant sequences. Similarly to SLEQ, it applies “sample
and select” principles, yet it relies on the premise that the wt and
mutants ensembles share a common set of alternative structures,
whose populations are re-distributed upon sequence mutations.
Furthermore, Cordero and Das22 reported that they were unable
to properly recover landscapes from wt profiles alone and that
mutants data were critical to reconstruction.

We compared SLEQ and M2-REEFFIT reconstructions
on three RNAs analyzed from real data in ref. 22 and for
which ground truth information is available from NMR or
crystallography studies: a bistable RNA (BST), Vibrio vulnificus
adenosine deaminase (add) riboswitch and Escherichia coli 16S
ribosomal RNA (rRNA). To bridge between the electrophoresis-
based measurements analyzed in ref. 22 and sequencing readouts,
we applied a simulation technique we previously developed42.
Complete details of all comparisons and our simulation
methodology are provided in Supplementary Methods. Here, we
briefly summarize our findings. For BST—an engineered RNA—
comparison is straightforward as only two alternative hairpins
co-exist. Both methods generated accurate reconstructions,
although SLEQ did so with much greater precision between
repeated runs. The landscape of the add riboswitch is far more
complex, as NMR studies identified three underlying structures,
each comprising of several helices (see Fig. 1a in ref. 43). In the
absence of ligand, two structures (apoA and apoB) co-exist,
whereas in its presence, another structure (holo) dominates. Here,
we followed an approach similar to our fluoride riboswitch
analysis, where we clustered SLEQ’s outputs by functional motifs.
SLEQ’s reconstruction was consistent with NMR measurements
with and without ligand. In the presence of ligand, M2-REEFFIT
found that holo structure dominates but did not quantify its
abundance. In the absence of ligand, M2-REEFFIT recovered
population fractions of helices but not of combinations thereof,
which renders a direct comparison to the complete structures
output by SLEQ infeasible. We therefore converted our results to
helix abundances and found good agreement for half these
helices. Finally, we analyzed a 110-nt region of E. coli 16S rRNA
where a crystallography-based model was in disagreement with a
SHAPE-directed model44 (see Fig. 2h in ref. 22). M2-REEFFIT
recovered a single dominant structure that is similar to the crystal
structure but found no evidence for the SHAPE-directed
structure. In contrast, SLEQ’s reconstruction supports co-
existence of both crystal and SHAPE-directed structures. As

Cordero and Das22 reported population fractions of helices, we
converted SLEQ’s results to single-helix level and found that both
methods generated highly consistent estimates for over half of the
nine helices while deviating for remaining ones. While our results
generally agree with the results by Cordero and Das22, SLEQ has
consistently generated substantially improved precision between
runs.

In this work, we utilized samples of suboptimal structures to
create structural diversity. In such cases, structural variants of a
target are often observed. To test SLEQ’s robustness to divergence
of sampled structures from true structures, we performed a case
study on cotranscriptional SHAPE-Seq data. We perturbed the
ON and OFF structures by incrementally removing up to seven
base pairs from key functional motifs. This resulted in 24
candidate sets that are missing ON or OFF but include their
variants at varying degrees of divergence. SLEQ consistently
selected variants as long as no >40% of the base pairs in a key
motif were disrupted. However, variation in structures manifested
in gradual re-distribution of population fractions (see Supple-
mentary Methods for complete details). This case study highlights
the importance of statistical samples’ quality, which may be
improved via deeper sampling. In this work, we found that
sample size of 1000 sufficed to observe complete hairpin motifs in
repeated samples.

We further confirmed SLEQ’s accuracy and robustness by
simulating different ground-truth landscapes and varying
noise levels for numerous real and engineered RNAs. We
also analyzed real data for two additional riboswitches and for
fluoride riboswitch in equilibrium conditions. See Methods for
details.

Assumptions and limitations. A simplifying assumption in our
model is that for a given sequence, all unconstrained nucleotides
in any structure are statistically identical in their propensity to be
modified by SHAPE. For DMS, all unconstrained adenines dis-
play identical modification propensity and similarly for all
unconstrained cytosines. We further assumed that constrained
sites cannot be modified and that modification and noise
dynamics are statistically independent between sites. Differences
in reactivities are thus entirely attributed to ensemble dynamics.
While discrepancies in modification propensities are known to
exist45,46, these simplifications serve to reduce the model’s
dimensionality in the interest of retaining its simplicity and
alleviating risks of overfitting.

To ensure robust parameter estimation and reliable modeling,
high-quality data are necessary, as evident from our simulations
(see Methods, Supplementary Methods, and Supplementary
Note 1). It is therefore necessary, albeit sometimes insufficient,
to deeply sequence a region of interest, as sequencing coverage is
a major determinant of data quality42. For transcripts of low
abundance, this can be achieved by targeted priming32. Our
simulations indicate that average coverage per nucleotide of 103 is
sufficient for reproducible reconstructions. Nevertheless, we
recommend assessing reproducibility from biological replicates
when available and also from in silico bootstrap replicates, as the
latter capture technical variation at a given sequencing depth (see
ref. 47 for SP-specialized bootstrap techniques). We find that such
approach is more informative on coverage requirements than
general guidelines derived from select examples because in our
experience, performance also depends on other properties, such
as information content of the data with respect to regions of
differences between alternative structures. Other determinants to
data quality include noisy cellular environment and biases in read
counts introduced by library preparation steps such as PCR
amplification and random priming48. To minimize such issues,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02923-8

8 NATURE COMMUNICATIONS |  (2018) 9:606 |DOI: 10.1038/s41467-018-02923-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


we considered data obtained by targeted priming in well-
optimized in vitro conditions. Additionally, SLEQ’s model
directly accounts for 5′ bias incurred in targeted-priming
truncation protocols42 (see Methods for details).

By design, “sample and select” approaches are strongly
dependent on the initial sample of candidate structures. Its
completeness is thus critical to accurate reconstruction in the
sense that the correct structures must be included a priori. In
this work, we generated candidates using statistical sampling
alone or combined with other sources of prior knowledge
(e.g., PK1 spike-ins). While generating suboptimal structures is
generally useful as a way of enriching structural diversity
among candidates49, current approaches rely on thermodynamic
models. In some situations, e.g., when considering long RNAs
or non-nested motifs, it is difficult and sometimes impossible to
ensure that the correct key structures are generated, even
when one samples deeper. There are several reasons for this
limitation, including simplifications made in the thermodynamic
model, exclusion of certain motifs from consideration to reduce
complexity, insufficient sample size, and numerical accuracy
limitations. Such uncertainty poses the greatest challenge to
working with SLEQ, as SLEQ neither supports de novo structure
generation nor it alerts the user that a key structure is missing.
To help discern such situations, we recommend to visually
compare the reactivity profile against an “ideal” profile that is
expected from SLEQ’s reconstruction. The latter is indicative
of local trends we expect to see in the data, i.e., where we
expect reactivities to peak or decline according to motifs that
dominate the reconstructed ensemble. Due to the stochastic
nature of SP data and simplifying assumptions made in
SLEQ’s model, one should not expect near-perfect matches
between model-based and real reactivities. However, one should
seek good agreement when it comes to clear trends observed in
the data. Specifically, local peaks of real reactivities should be
well-captured by the ideal model-based pattern, such that the
model’s inability to reproduce such peaks should serve to alert a
user that unconstrained motifs might be missing. Details of
the proposed routine are found in Supplementary Methods along
with examples of reconstructions when key structures
are missing.

It is also worth noting that methods for structure generation
other than those used here may be helpful in approaching
completeness of candidate sets. For example, suboptimal
pseudoknotted structures can be generated by specialized
algorithms39,50, and SP data can be used to direct ensemble
sampling the same way it has been used to improve single-
structure prediction44,51. Alternatively, one could enhance
diversity by sampling the wt and all SNP sequences22,52. This
approach, inspired by riboSNitches, aims at revealing structures
that are rare in wt but emerge upon SNP introduction. Another
direction, recently taken by RING-MaP, mines several constituent
reactivity profiles directly from SP reads. These may subsequently
be used to direct candidate generation.

To simplify modeling of complex structural dynamics, SLEQ
seeks a parsimonious solution. In linear modeling, the most
common fitting routine is the method of least squares. To
guarantee non-negativity of abundances, non-negative least
squares (NNLS) is warranted. Nonetheless, NNLS is not
guaranteed to yield sparse solutions. In this work, NNLS
consistently yielded sparse solutions in extensive analyses of
simulated and real data sets with multiple candidate samples and
for numerous small RNAs (see Supplementary Methods and
Supplementary Note 1). In these cases, non-negativity constraints
sufficed to constrain the solution space, allowing us to opt for a
simple and unbiased method such as NNLS. Otherwise, least
absolute shrinkage and selection operator (LASSO) is commonly

used to impose sparsity53. Due to potential estimation bias
associated with LASSO and the challenge in appropriately
choosing its regularization parameter, we recommend using the
simpler NNLS whenever it yields a sparse solution. Otherwise, a
two-step approach may be more appropriate, where LASSO is
applied to limit the number of selected structures, followed by
NNLS for accurate abundance estimation54. Also, one may cluster
either the input structures or the structures selected by NNLS
using methods specialized to RNA structure4,24,26. However,
clustering might eliminate features that may be informative to
downstream analysis. Finally, we stress that SP data contain only
partial information on structures. First, structures are assayed as
sequences of constrained/unconstrained nucleotides as opposed
to base-pair patterns. This inherently limits SP’s ability to
distinguish between structures that have distinct base pairs but
similar pairing states. Second, reactivities display large variation
within a given structural context (i.e., paired/unpaired), manifest-
ing in occasional discrepancies between reactivity magnitudes and
the true structural context17,20. Such situations of imperfect
information might lead to mispredictions.

Discussion
We developed SLEQ to aid experimentalists in quantitatively
gauging RNA structure landscapes. Ultimately, the goal is to
elucidate sequence–structure–function relationships that govern
RNA-based regulation in natural and engineered systems9,55,56.
Of particular interest are situations where dynamics are sig-
nificantly impacted by multiple structural states, as current
computational approaches fall short in their ability to model
them. Here, we explored several such scenarios and demonstrated
SLEQ’s capability to glean quantitative information on system
dynamics.

In recent years, SP experiments have expanded in both scope
and depth to encompass diverse modification and detection
strategies, library preparation protocols, sequencing choices, and
analysis pipelines. Yet, these methods also share a common
workflow19, which we leveraged in SLEQ’s design. Besides
accommodating popular reagents such as SHAPE and DMS,
SLEQ unifies the treatment of two major approaches to mod-
ification detection: truncation and mutation. This is particularly
relevant to landscape studies because of fundamental differences
in single-molecule information they extract. Specifically, only
mutational profiling assays joint pairing states of nucleotides in
individual structures, thereby accessing more complete informa-
tion on ensemble composition. Although we observed subtle
differences between mode-specific reconstructions from DMS-
MaPseq data, we attribute this to the negligible frequency of reads
with multiple modifications that are feasible over a stretch of only
11 informative nucleotides. Nonetheless, differences will pre-
sumably arise in scenarios where truncation data might possess
limited discriminatory power with respect to a candidate set and
when the region of interest is sufficiently long to feature sub-
stantial fraction of reads with single-molecule information. The
richer set of mutation patterns would then impose additional
constraints that can potentially drive SLEQ to parsimonious
solutions. Interestingly, in simulations, we found mutation data to
better-direct SLEQ toward the ground truth in the presence of
high noise levels, exemplifying one potential advantage (Supple-
mentary Note 1). This is particularly important in light of the
recent explosion in transcriptome-wide in vivo data sets, which
are generally noisy due to dramatic variations in transcript
coverages.

Besides accommodating diverse data sets, SLEQ is versatile
with respect to structure modeling, as a breadth of structural
motifs are admissible, encompassing tertiary, non-canonical,
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inter-molecular, and non-nested interactions. This is in contrast
to popular thermodynamics-based methods, which limit con-
sideration to nested canonical secondary structures57. Two SLEQ
features allow circumventing such limitation. First, structure
prediction is decoupled from thermodynamic modeling: struc-
tures are specified a priori, and subsequently only data guides
their selection. Moreover, candidate specification may or may not
rely on thermodynamic modeling. Second, our model captures
susceptibility to modification, whose determinants extend well
beyond canonical base-pairing. For example, G-quadruplex
motifs can be “encoded” into nucleotide modification suscept-
ibilities58, and riboswitch-ligand interactions that alter nucleotide
accessibility to modification can be captured by constraining
them. Nevertheless, we stress that SLEQ does not accommodate
three-dimensional structures, as such high-resolution models
must be translated into binary representation of nucleotide states
as constrained/unconstrained based on our knowledge of their
susceptibility to modification.

Importantly, the decoupled design that confers SLEQ with much
flexibility also brings about a major weakness, namely, its reliance
on completeness of candidate sets. As SLEQ’s prediction via
selection is constrained by prior knowledge, a landscape cannot be
faithfully portrayed in the absence of the correct landmarks. Other
confounding factors are data quality and information content. As
mentioned earlier, SLEQ is a data-directed algorithm and its pre-
dictions are susceptible to noise. Further, known discrepancies
between observed modifications and assumed structural contexts
contribute to mispredictions20. Structure profiling also cannot
reveal base-pairing partners and therefore has limited capability to
distinguish between distinct structures that share similar mod-
ification patterns. Broadly speaking, performance depends on how
informative modifications are at sites where alternative structures
differ.

Our work was motivated by recent advances and massive
expansion in SP techniques, which have become widely accessible
and are capable of delivering high-fidelity and high-resolution
snapshots of structural states, aggregated over ensembles of co-
existing structures. When these data sets are judiciously com-
bined with statistical learning techniques, it becomes feasible to
parse these bulk measurements into core constituent elements.
The data-informed computational workflow we developed gives
rise to a concise, albeit simplified, representation of complex
biological processes—a building block that is integral to complex
systems analysis. Such crisp outputs adjoined by integration of
diverse data inputs render SLEQ a powerful and accessible fra-
mework that will accelerate discovery and design of new func-
tional RNAs.

Methods
Binning reads into patterns. Read binning depends on the type of SP technique,
as it defines the modification patterns that can be observed. Detection via mutation
yields a superset of patterns, as multiple nearby modifications can be assayed
within a single read (Fig. 1a, Supplementary Fig. 1), whereas truncation reveals only
the modification that is closest to the priming or fragmentation site31. Obviously,
one can readily reduce the dimensionality of the richer set of mutation-generated
patterns by recording the first modification in each read (Supplementary Fig. 1).
This essentially projects the data onto the set of truncation-generated singleton
patterns, but notably, this reduction is irreversible. To leverage on the richness of
information in mutation detection, SLEQ features two modes: mutation and
truncation. Truncation mode is simpler and considers P = L + 1 patterns, where L
is the RNA length59. In mutation mode, 2L patterns are theoretically observable,
but in practice, this number is substantially lower due to limitations on achievable
modification rates32. It should be noted that when base-selective chemistries
such as DMS are used, pattern numbers are smaller since only sites with
detectable modifications are considered. Counts of reads-per-pattern are converted
to frequencies, which form the observation (or response) vector y of the linear
model.

Candidate structures. We initialize SLEQ with a set of candidate structures. There
is full flexibility in assembling these candidates, and here we describe several
straightforward ways to accomplish this task. For example, popular softwares for
secondary structure analysis can be used to generate a pre-specified number of
structures that are either nearly optimal or represent a statistical sample of the
Boltzmann ensemble50,60–62. In this work, we used ViennaRNA50 to generate
independent samples of 1000 structures, as this sample size is generally considered
sufficient for statistical reproducibility in first-order sample statistics such as base-
pair frequencies24. We further verified that such sample size is sufficient by
applying SLEQ to 10 statistical samples and testing the reproducibility of its
reconstructions (Supplementary Methods). Occasionally, and especially for small
RNAs, sampling may be sufficiently deep with respect to the structure landscape,
such that duplicates emerge and need to be removed.

Alternatively, one can manually determine which structures to consider as
candidates, which may be useful when prior knowledge of the biological system is
available. It is also possible to combine approaches by spiking in structures of
interest into software-generated samples, as we demonstrated in our riboswitch
folding pathway analysis. In that case, standard statistical sampling algorithms
preclude pseudoknoted structures from consideration24, hence “spike-in” served to
alleviate this constraint. Alternatively, one may use samplers specialized to account
for pseudoknots39,50. It is also worth noting that structures need not conform to
common limitations in RNA structure analysis. Specifically, many popular
methods restrict analysis to nested secondary structures due to computational
complexity limitations, whereas SLEQ handles pseudoknots, non-canonical motifs,
and tertiary interactions in a fashion similar to standard base pairs. SLEQ’s
generalized treatment is facilitated by its explicit modeling of each nucleotide’s
susceptibility to modification (see subsection Design matrix), as it may be
influenced by factors other than canonical base-pairing interactions. For example,
the pseudoknot and LR interactions characteristic of the crcB fluoride riboswitch
were modeled by representing all constrained nucleotides as paired (Supplementary
Methods).

Linear model. Fundamental to our approach is a mathematical description of the
aggregate degrees of modification observed at each nucleotide as a linear super-
position of modifications at individual molecules. From a statistical perspective, all
molecular copies that fold into a given structure are identical in terms of their
propensity to generate each modification pattern. Hence, the unknown relative
abundances of each structure are the parameters of interest. Structure abundances
are then combined with likelihoods of pattern generation by each structure,
such that the observed frequency of each pattern is expressed as linear super-
position of the probabilities of its generation by each structural population. This
can be written as :

y ¼ Xρþ ε; ð2Þ
where y ∈RP is a vector of P observations, X ∈RP ´ S is a design matrix that

captures the relationship between observations and relative abundances of
candidate structures, ρ ∈RS is a vector of unknown relative abundances of S
candidate structures, and ε ∈RP is a vector of P error terms. Observation yp is the
frequency of pattern p in the data obtained from the treated sample. A design
matrix entry xps = Pr(pattern p | structure s) stands for the conditional probability
of observing a read of pattern p given that it originates from structure s. See
subsections Binning reads into patterns and Design matrix for details of their
calculation. Our goal is to find the relative abundances of candidate structures (ρ)
that best explain the observations and to output all structures with non-zero
abundance.

Probabilistic model. To construct X, we introduce additional parameters, whose
estimates are mode-dependent, and a probabilistic model, which we use to populate
X’s entries. For simplicity, we limit attention to data obtained with chemistries that
are indifferent to a nucleotide’s base identity, such as SHAPE. Minor adjustments
to this framework are warranted for data from base-selective probes, such as DMS,
as described in Supplementary Methods.

To describe SLEQ’s model, we first briefly review a previous model on which it
extends28,59. It was developed to estimate reactivity profiles in truncation
experiments to correct for biases introduced by coverage discrepancies arising from
random priming or from directionality in cDNA synthesis29,42,59. To simplify the
exposition, we limit discussion to truncation protocols, however, a similar
framework applies to mutation data, as will become evident from SLEQ’s model
derivation.

For an RNA of length L, we number its nucleotides 1 to L from 3′ to 5′, where
the priming site is adjacent to the 3′-end. Hereafter, we refer to nucleotides as sites.
We define the reactivity of site l, βl, as the probability of modification at this site.
Since observed read counts reflect a combined effect of modification and natural
(i.e., not modification-based) transcription termination, the latter is treated as noise
and measured in a mock-treated control sample that undergoes the same protocol.
Because natural propensity to terminate transcription may vary between sites, for
each site l, we define γl as the conditional probability of termination at said site due
to noise. We now have two L-dimensional parameter vectors, γ and β, capturing
degrees of noise and modification, respectively. We use them to express the
probability of each cDNA fragment that may be observed in the experiment or
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control. In the control, the probability of elongating up to and including site l − 1
and terminating at l is

Pr read span sites 1 to l� 1 in controlð Þ ¼ γl
Yl�1

k¼1

1� γkð Þ: ð3Þ

In the experiment, elongation continues up to l − 1 as long as there is no natural
termination or modification at any site in between the primer and l. This happens
with probability

Ql�1
k¼1 1� γkð Þ 1� βkð Þ. Termination at l happens either naturally

or if l is modified, hence with probability 1 − (1 − γl)(1 − βl). Taken together, the
probability that a read of length l − 1 is observed is

Pr read span sites 1 to l� 1 in experimentð Þ

¼ 1� 1� γlð Þ 1� βlð Þð Þ Q
l�1

k¼1
1� γkð Þ 1� βkð Þ: ð4Þ

Also, one may observe complete reads of length L when no truncation occurs, in
which case the probabilities are

QL
k¼1 1� γkð Þ andQL

k¼1 1� γkð Þ 1� βkð Þ in control
and experiment, respectively.

It is worth noting that the model by Aviran et al. treats all RNA copies in a
sample as if they adopt a single structure that displays the average modification
properties of the underlying ensemble. Furthermore, it does not consider explicit
structures or nucleotide pairing states as inputs nor does it link a structure to
observed reads. It merely links the proportion of molecules modified at each
nucleotide (β) to observed reads. In what follows, we populate SLEQ’s design
matrix with expressions derived from an extended version of this model, which
links a structure to read modification patterns.

In SLEQ’s model, we make a simplifying assumption by treating all
structurally unconstrained nucleotides in any given structure (folded from the same
sequence) as statistically identical in their propensity to be modified. We also
assume that paired/constrained sites cannot be modified. We then define η as the
probability of modification at unconstrained nucleotides. Similarly to the model by
Aviran et al., γl is a noise term, capturing the probability of truncation (mutation)
at l in truncation (mutation) experiments. However, the models differ in the way
they treat modifications, as here, η is used in place of Aviran et al.’s (β1, … βL).

In truncation mode, we consider P = L + 1 modification patterns, where pattern
p (1 ≤ p ≤ L) corresponds to truncation at site p and p = L + 1 represents a complete
read that arises when no truncation occurs. To calculate entry xps in X, we consider
the following events and respective probabilities:

1. A: given that l is unpaired, truncation occurs at l due to modification or noise.

PrðAÞ ¼ 1� ð1� ηÞð1� γlÞ: ð5Þ
2. B: given that l is unpaired, reverse transcriptase (RT) reads through l.

PrðBÞ ¼ ð1� ηÞð1� γlÞ: ð6Þ
3. C: given that l is paired, truncation occurs at l due to noise.

PrðCÞ ¼ γl: ð7Þ
4. D: given that l is paired, RT reads through l.

PrðDÞ ¼ 1� γl: ð8Þ

Given a pattern p and structure s, we denote the sets of unpaired and paired
nucleotides within the first p − 1 sites by Ups and Pps, respectively. Thus, xps, the
probability that structure s generates pattern p, is calculated as follows.

1. If site p is unpaired in s:

xps ¼
Q

l2Ups
ð1� ηÞ 1� γlð Þ

Q
l2Pps ð1� γlÞ½1� ð1� ηÞð1� γpÞ�

: ð9Þ

2. If site p is paired in s:

xps ¼
Y

l2Ups
ð1� ηÞð1� γlÞ

Y
l2Pps ð1� γlÞγp: ð10Þ

3. For the complete read pattern p = L + 1, we obtain

xLþ1;s ¼
Y

l2ULþ1;s
ð1� ηÞð1� γlÞ

Y
l2PLþ1;s

ð1� γlÞ: ð11Þ

In mutation mode, we consider the following events:

1. A: given that l is unpaired, l is mutated due to modification or noise.

PrðAÞ ¼ 1� ð1� ηÞð1� γlÞ: ð12Þ
2. B: given that l is unpaired, no mutation occurs at l.

PrðBÞ ¼ ð1� ηÞð1� γlÞ: ð13Þ

3. C: given that l is paired, l is mutated due to noise.

PrðCÞ ¼ γl: ð14Þ
4. D: given that l is paired, no mutation occurs at l.

PrðDÞ ¼ 1� γl: ð15Þ

Given a pattern p and structure s, we denote the subsets of unpaired sites, which
are mutated or non-mutated as UMps or UNps, respectively. Similarly, the two
subsets of paired sites are denoted as PMps and PNps. Thus, xps, the probability that
structure s generates pattern p, is calculated as follows.

xps ¼
Q

l2UMps
½1� ð1� ηÞð1� γlÞ�Q

l2UNps
ð1� ηÞð1� γlÞQ

l2PMps
γl
Q

l2PNps
ð1� γlÞ:

ð16Þ

Design matrix. The entries of the design matrix are expressed as functions of the
unknown modification probability at unpaired sites (η) and noise parameters (γ).
To estimate η, it is helpful to consider a related vector from the model by Aviran
et al., namely, β. Recall that βl is the probability that site l is modified when
considering all molecules in the sample59, or in other words, it is a modification
propensity that is aggregated over the many different structures in the ensemble.
Importantly, while η is kept constant across all unpaired sites within an ensemble
of structures, βl is both site-specific and an ensemble-based average measure. To
illustrate the relationship between η and β, consider three sites with the following
properties: i is unpaired in all structures, j is paired in all structures, and k is paired
in some and unpaired in others. The respective ensemble-average probabilities
would then be βi ≈ η, βj ≈ 0, and 0 < βk< η. Thus, estimating β at sites such as i
allows one to infer η at reasonable accuracy. However, not knowing which can-
didate structures are highly abundant, it is not trivial to identify such sites. A
conservative approach is to seek sites that are unpaired in all candidate structures,
but it may be challenging in cases where structural diversity is high. Here, we
estimate η from β̂ empirically by sorting the β̂l ’s from high to low, calculating their
mean, and setting η̂ as the median of those exceeding the mean. This approach is
motivated by the expectation that βl would be large at sites that are primarily
unpaired in the ensemble. At the same time, it considers a subset of reactive sites to
confer robustness to outliers, which are commonly observed in SP data19. If no sites
that are unpaired across the ensemble exist, we are likely to underestimate η, which
in turn will degrade prediction accuracy.

To estimate β and γ, we use maximum-likelihood estimates derived by Aviran
et al.59:

γ̂l ¼ Yl
Cl�

; β̂l ¼
Xl
Clþ�γ̂l

1�γ̂l
; ð17Þ

where Xl and Yl (l = 1, 2, … L) are counts of truncations/mutations at site l
observed in treated and control samples, respectively, and Cl+ and Cl− are local
coverages in said samples. Local coverage at site l in a sample stands for the
sequencing depth at l, which definition is straightforward in mutation mode. In
truncation mode, local coverage is defined as the number of reads that either stop
at or pass through l63.

Structure selection and relative abundance estimation. Prior to feeding the
linear model with candidate structures and sequencing reads, we screen for
inconsistencies between these two distinct inputs and remove structures that are
markedly inconsistent with the data. Such dimensionality reduction serves to
alleviate potential model overfitting and improve performance. Notably, the linear
system in truncation mode has a relatively small number of patterns compared to
mutation mode, which number is often substantially smaller than the number of
structures considered, resulting in an under-determined system and the risk of
overfitting. Pre-filtering of inconsistent structures then serves to alleviate such
concern. A structure is deemed inconsistent with the data if there is sufficient
evidence of nucleotides that are paired in this structure but are highly reactive. This
is because we expect highly reactive sites to be predominantly unpaired in the
ensemble. We define all sites where β̂l>η̂ as highly reactive. Strictly, if a structure
has one of these sites paired, it should be removed. However, η̂ and β̂ might not
always be highly accurate, especially when data are very noisy. Additionally, highly
reactive sites are the most susceptible to measurement errors and typically have the
highest variance64. For these reasons, we only remove structures that were
inconsistent with more than a single nucleotide, specifically, more than half the
highly reactive sites. Relative abundances were estimated using standard NNLS
fitting. Structures whose estimated abundances exceed a user-specified threshold
are selected, and then abundances are normalized to sum to 1. In this work, we
thresholded at 1%.
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Post-processing SLEQ’s outputs. Structures selected by SLEQ and their abun-
dance estimates were used to estimate the probabilities of each possible base pair
(Pij for any two sites i and j) and the probability that a site is unpaired (Pii for any
site i) in the reconstructed ensemble. For each site i, Pij (j ≠ i) and Pii form a
probability distribution, whose Shannon entropy is65,66

Hi ¼ �PL

j¼1
Pijlog2 Pij

� �
: ð18Þ

To account for variable lengths of intermediate transcripts, site-specific
entropies were averaged over all sites. Base-pairing entropy was used as an
approximation of structural entropy67,68 because selected structures change as
sequence length increases, which renders the underlying distributions and their
entropies incomparable. Furthermore, structures sometimes share certain motifs
but not others, which is well-captured by base-pairing entropy but overlooked by
structural entropy. All curves in Fig. 4 and Supplementary Figs. 4 and 7 are
smoothed with a mean filter of window size 3 to improve signal-to-noise ratio.

Performance evaluations via simulations. To further test SLEQ’s performance
and robustness, we conducted extensive simulations spanning multiple RNAs,
parametric regimes, and noise scenarios. For each tested RNA, we set a ground
truth that consists of a small set of structures and their abundances along with η, γ
values. Structures were chosen based on prior studies of these RNAs, and abun-
dances relied on literature when available22,69,70. From ground truths, we calcu-
lated probabilities of observing each possible pattern in truncation and mutation
modes and repeatedly drew from these distributions a pre-set number of
sequencing reads, as previously described in42. These simulated data sets were
analyzed as described above and results were compared to ground truth. Tests
include varying the ground truth abundances of structures, η, and noise levels.
Noise was introduced in two ways: read counts were perturbed by additive
Gaussian noise and 10 randomly sampled decoy structures were added to ground-
truth structures to populate 10% of the ensemble. The former noise term mimics
measurement noise whereas the latter mimics more realistic structural dynamics in
solution. Data were simulated for the following RNAs: preQ1

70, VcQrr369, TBWN,
and MST22. See Supplementary Note 1 for more details and simulation results.

Data pre-processing. Raw DMS-MaPseq reads were quality-trimmed and strip-
ped of sequencing adapters using cutadapt (parameters “-q 25” and “-a
CACTCGGGCACCAAGGA,” respectively)71. Reads were aligned to both allelic
sequences using bowtie2 ver. 2.2.5 (parameters “–local D20 -R3 -N2 -L15 -i S,1,0.5
–score-min G,20,8 –ma 2 –mp 6,2 –rdg 5,1 -rfq 5,1 -x Allele”)72. Probed sequences
are TGCTGCCATCTCTTTTCTTCTCTATGCGAGGATTTGGACTGGCAGTG
(A allele) and ATCTCTTTTCTTCTCTCTGCGAGGATTTGGACTGGCAGT-
GAGAATAAGAGACAA (C allele). Since we analyzed the 33-nt region shared by
the two allele-specific structures shown in ref. 32 (also see nucleotide labeled with
letters in Fig. 2a), we retained reads that fully overlap this region. A ground truth
for this experiment was obtained directly from read alignments. We then binned
reads into >600 patterns that are restricted to the 11 adenines and cytosines
included in the 33-nt region. The numbers of mutations over the 11 nucleotides
were distributed as 71.3% (0), 25% (1), 3% (2), 0.2% (3) and 0.5% (≥4), yielding
average modification rate of ~0.33, which implies that a mutation is observed on
average every 33 informative adenines/cytosines nucleotides. For structure gen-
eration, we merged independent samples of 1000 structures from both sequences
and removed those that formed duplicates over the 33-nt region. Since data did not
include a control sample, we could not estimate noise levels and thus set γ to 0.

SHAPE-Seq profiles for crcB fluoride riboswitch intermediate and complete
transcripts were obtained in the form of counts of truncated transcripts. For each
transcript length, all cDNA products span sequences between a common priming
site at the 3′ end and a variable truncation site. Such targeted priming allowed us to
recover local coverages at each site (see Design matrix to estimate β and γ). Since
the experiment involves RNA polymerase arrest, its 14-nt footprint at the 3′ end
was removed from all count profiles and additionally excluded from sequences
prior to generating candidate structures.

Code availability. Software implementation of SLEQ along with code for SP data
pre-processing, simulations, and entropy calculations are freely available at https://
github.com/AviranLab/SLEQ under the BSD-2 license73.

Data availability. Original data sets used in this study are available at the links
listed in Supplementary Table 4. Other data are available from the corresponding
author upon reasonable request.
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