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Abstract
In this work, we examine how volume exclusion caused by regions of high chromatin density
might influence the time required for proteins to find specific DNA binding sites. The spatial
variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-
ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear
space into regions of low-density euchromatin and high-density heterochromatin. Volume
exclusion experienced by a diffusing protein caused by this varying density of chromatin is
modeled by a repulsive potential. The value of the potential at a given point in space is chosen to
be proportional to the density of chromatin at that location. The constant of proportionality, called
the volume exclusivity, provides a model parameter that determines the strength of volume
exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding
site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding
sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the
protein experiences no volume exclusion). An analytical theory is developed to explain these
results. The theory suggests that for binding sites in euchromatin there is an optimal level of
volume exclusivity that balances a reduction in the volume searched in finding the binding site,
with the height of effective potential barriers the protein must cross during the search process.
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1 Introduction
What mechanisms drive the process by which regulatory proteins and transcription factors
search for specific DNA binding sites? It is usually assumed that in the absence of any
interactions, within an “empty” nucleus a protein will move by Brownian motion and bind
upon getting sufficiently close to a target site. This corresponds to the well-known diffusion-
limited reaction model of Smoluchowski (1917). A number of theoretical and experimental
studies suggest proteins may experience facilitated diffusion, allowing them to find specific
binding sites faster than the diffusion limit predicted by the Smoluchowski theory (Halford
2009; Normanno et al. 2012). Whether facilitated diffusion occurs in any meaningful way in
vivo, allowing proteins to find binding sites significantly faster than the diffusion limit, is
very much an active area of investigation and debate (Halford 2009; Normanno et al. 2012;
Svetlov and Nudler 2013; Veksler and Kolomeisky 2013). In the present paper, we consider
the possible influence of volume exclusion caused by spatial heterogeneity in chromatin
density on the time needed for a protein to find a target by diffusion.

There are many different interactions that have been proposed that could in principle
decrease the mean time required for regulatory proteins and transcription factors to find
specific DNA binding sites, relative to the diffusion limited reaction model. These include
nonspecific DNA binding interactions, electrostatic interactions between proteins and
binding sites, one-dimensional diffusion of proteins along DNA, and jumping of proteins
between different regions of DNA fibers (Halford 2009; Normanno et al. 2012). The relative
contribution of these (possible) interactions is still being assessed by both experimental and
theoretical studies. Perhaps the most popular of these mechanisms is the possibility that
proteins may exploit nonspecific DNA binding interactions to allow diffusion or sliding
along DNA. In the classic study of Berg et al. (1981), a model was developed in which
proteins could undergo a mixed search process involving periods of three-dimensional
diffusion, coupled to periods of one-dimensional diffusion along DNA fibers when the
proteins were non-specifically bound. A large number of theoretical studies have
investigated how this mechanism might influence the search process for specific DNA
binding sites (for example, see Berg et al. 1981; Li et al. 2009; Malherbe and Holcman
2008; Slutsky and Mirny 2004; Mirny et al. 2009; Halford 2009). Recently, several single-
molecule imaging studies have demonstrated that sliding of lac repressor can occur in vivo
(Elf et al. 2007; Hammar et al. 2012). The theoretical estimates in Hammar et al. (2012)
suggest this mechanism may allow a significant decrease in the mean time required for a
protein to find a specific binding site, in comparison to the diffusion limited reaction model.
Most of the existing studies have focused on prokaryotic cells, and it remains to be seen
whether sliding along chromatin in eukaryotic cells can noticeably reduce the time required
for regulatory proteins to locate specific binding sites in vivo. More complete references for
both theoretical models and previous experimental work can be found in the reviews
(Halford 2009; Normanno et al. 2012).

The nucleus of a eukaryotic cell is a complex spatial environment, containing chromatin
fibers with spatially-varying compaction levels, nuclear bodies, and fibrous filaments (such
as the nuclear lamina). Spatial inhomogeneity of the nuclear space provides another possible
mechanism that may influence the search process of proteins for specific binding sites. In
Bancaud et al. (2009), the impact of spatial variation in chromatin density on the movement
of proteins within the nucleus was investigated. Using a combination of single-particle
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tracking experiments, photo-activation experiments and computational modeling, the
authors concluded that chromatin dense regions, such as heterochromatin, exhibited
noticeable volume exclusion compared with less dense regions, such as euchromatin. It was
observed that similar fluorescence activation curves were found in photo-activation
experiments within heterochromatin and euchromatin, when each of the two curves was
normalized to the steady-state fluorescence level of its own region. The authors inferred
from these experiments that heterochromatin is not substantially more difficult for proteins
to enter than euchromatin, but that heterochromatin has a smaller amount of free space in
which proteins can accumulate. In contrast, the supplemental movies of Vargas et al. (2005)
demonstrate that individual mRNAs that are able to move freely within nuclei appear
restricted to regions of low histone-GFP fluorescence. These mRNAs seem to have
difficultly moving into regions of heterochromatin, as identified by regions of high histone-
GFP fluorescence.

In Isaacson et al. (2011), we developed a mathematical model to investigate how the
spatially varying density of chromatin within eukaryotic cell nuclei might influence the time
required for proteins to find specific binding sites. Our model assumed that regions of higher
chromatin density were more difficult for proteins to move into. Protein motion was
approximated as diffusion within a volume-excluding potential. The model was constructed
from the 3D structured illumination microscopy fluorescence imaging data of Schermelleh
et al. (2008). In that work, mouse myoblast cell nuclei were chemically fixed, and both
antibody labeled nuclear pores and DAPI stained DNA were imaged. From these data, we
reconstructed a nuclear membrane surface to determine the nuclear space. The normalized
DAPI stain intensity within a given voxel of the imaging data was assumed proportional to
the density of chromatin within that voxel. Based on this assumption, we constructed a
volume exclusion potential, with the value of the potential within a given voxel chosen to be
proportional to the normalized DAPI stain intensity of that voxel. The constant of
proportionality, which we called the volume exclusivity, was a model parameter that set the
overall strength of volume exclusion. By varying the volume exclusivity, we studied how
the time to find specific DNA binding sites varied when there was no volume exclusion (i.e.,
the volume exclusivity was zero and the protein simply diffused), weak volume exclusion,
and strong volume exclusion from chromatin dense regions. Numerical simulations of the
protein’s search process suggested that for binding sites localized in regions of low DAPI
stain intensity, such as the 20th to 30th percentile of intensity values, the median time for
proteins to find a specific binding site was minimized for non-zero values of the volume
exclusivity. That is, as the volume exclusivity was increased from zero the median binding
time initially decreased to a minimum, beyond which the median time increased to infinity.
After randomly shuffling the values of the DAPI stain intensity among the voxels of the
nucleus, we observed that this effect was lost and the median binding time simply increased
as a function of the volume exclusivity. Based on these results, we concluded that the spatial
organization of chromatin played a role in the observed minimum of the median binding
time for nonzero volume exclusivity. For binding sites localized in regions of high DAPI
stain intensity, such as the 70th to 80th percentile of the DAPI stain intensity distribution,
the median time to find the binding site increased monotonically as the volume exclusivity
was increased from zero.

In this work, we expand upon the studies begun in Isaacson et al. (2011). To determine
chromatin density fields, we now use 3D soft X-ray tomography (SXT) reconstructions of
cell nuclei (McDermott et al. 2009; Clowney et al. 2012; Le Gros et al. 2013). SXT provides
several advantages over fluorescence imaging in assessing the spatial variation of chromatin
density. Foremost, the measured linear absorption coefficient (LAC) of a voxel within SXT
reconstructions is linearly related to the density of organic material within that voxel by the
Beer–Lambert law (McDermott et al. 2009). Our simulations in Isaacson et al. (2011) made
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use of imaging data from one mouse myoblast cell nucleus, raising the question of whether
the observed dependence of the binding time on the volume exclusivity and binding site
localization was simply an artifact of the particular cell we studied. In this work, we repeat
the computational studies of Isaacson et al. (2011) within five mouse olfactory sensory
neuron cell nuclei obtained by SXT imaging. We observe the same qualitative behavior of
the mean binding time on volume exclusivity and binding site localization as was observed
for the median binding time in Isaacson et al. (2011). In addition, we now give a theoretical
explanation why the mean binding time has this qualitative behavior.

We begin in the next section by summarizing the SXT imaging data we use in constructing
our mathematical models. It is shown that the distribution of LACs within each nucleus is
bimodal, indicating a division of the nuclear space into regions with high densities of
material and low densities of material. We infer that the lower mode corresponds to the most
likely regions of euchromatin, less-compact DNA comprised of the majority of active genes,
while the higher mode corresponds to the most likely regions of heterochromatin, more-
compact DNA thought to contain most silenced genes (Alberts et al. 2007).

In Sect. 3, we summarize the mathematical model we developed in Isaacson et al. (2011).
The protein is assumed to diffuse in a volume-excluding potential. Since the underlying
SXT imaging data is a 3D grid of voxels, we assume the protein’s motion can be
approximated by a Markovian continuous-time random walk. The volume exclusion
potential within a given voxel is chosen proportional to the normalized LAC of that voxel.
The protein moves by hopping between neighboring voxels of the 3D grid with jump rates
determined by the protein’s diffusion constant and the strength of the potential difference
between the two voxels. Section 4 summarizes the underlying stochastic simulation
algorithm (SSA) we use to simulate the protein’s search for the binding site.

In Sect. 5, we repeat the studies of Isaacson et al. (2011) using volume exclusion potentials
reconstructed from SXT imaging of five cell nuclei. We verify that the conclusions of
Isaacson et al. (2011) still hold in each of the five nuclei, and demonstrate that for binding
sites localized in euchromatin, i.e., regions of low chromatin density, volume exclusion can
lead to decreases in the mean binding time of 23 % to 34 % when compared to simulations
with no volume excluding potential (zero volume exclusivity). Finally, in Sect. 6, we
develop an analytical theory to explain the observed dependence of the mean binding time
on the volume exclusivity and binding site localization. The theory suggests that for binding
sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction
in the volume searched in finding the binding site, with the height of effective potential
barriers the protein must cross during the search process.

2 Nonuniformity of Nuclear Chromatin Distribution
To measure the spatial variation in chromatin density within nuclei, we make use of soft X-
ray tomographic (SXT) reconstructions of cells. For an overview of SXT imaging, we refer
the reader to McDermott et al. (2009). In this work, we use reconstructions of mouse
olfactory sensory neurons, including several mature cells and one immature cell taken from
the data of Le Gros et al. (2013). The experimental protocol for obtaining these
reconstructions was the same used in Clowney et al. (2012). SXT is similar in concept to
medical X-ray CT imaging, but uses soft X-rays in the “water window,” which are absorbed
by carbon and nitrogen dense organic matter an order of magnitude more strongly than by
water (McDermott et al. 2009). As the absorption process satisfies the Beer–Lambert law,
the measured linear absorption coefficient (LAC) of one voxel of a 3D reconstruction is
linearly related to the density of organic material within that voxel (McDermott et al. 2009).
In practice, SXT reconstructions are able to achieve high resolutions of 50 nm or less. For
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all reconstructions used in this work, the underlying voxels were cubes with sides of length
32 nm. Another advantage of SXT is in the minimal preprocessing of cells that is required
before imaging. Cells are cryogenically preserved, but no segmentation, dehydration, or
chemical fixation is necessary. In the Appendix, we comment on the measurement error of
the SXT imaging process.

As chromatin is the primary organic material within the nuclei of cells, we subsequently
assume the LACs from SXT reconstructions are directly proportional to the density of
chromatin within each voxel of the reconstruction. For this reason, in the rest of this paper
when we discuss regions of low or high chromatin density we are, more precisely,
discussing regions with low or high densities of organic material. In Fig. 1, we show two
image plane slices through a 3D reconstruction of a cryogenically preserved mature mouse
olfactory sensory neuron within a glass capillary. Each image shows the underlying
reconstructed LACs within a given voxel, with smaller LACs appearing darker (see
colorbars for LAC range). In both images, the cell completely fills the capillary, and the cell
nucleus is clearly visible as a circular structure within the cell. The full 3D reconstruction of
the LACs within the nucleus are shown in Fig. 2. Voxels denoting the boundary of the
nucleus were hand traced in Amira.1 From these traces, a mask was produced to label voxels
within the nucleus. In the rest of this paper, the nuclear membrane is assumed to be given by
the collection of voxel faces that are shared by a voxel within and a voxel outside the
nucleus. It is readily apparent that the nucleus is comprised of regions of low LAC values
interspersed with regions of high LAC values. We subsequently identify regions of smaller
LACs, corresponding to regions of low density, as euchromatin (regions of less compact
DNA, where most active genes are typically located Alberts et al. 2007). Regions of higher
density are identified as heterochromatin (more compact DNA, often containing silenced
genes Alberts et al. 2007).

Figure 3 provides further motivation for this labeling. There we plot histograms of the
normalized LAC distribution within the nuclei of five cells. (By normalized, we mean that
the LACs have been rescaled so that the maximum LAC within each nucleus is one.) For
each nucleus, the normalized LAC distribution is bimodal, illustrating the division of the
nucleus into regions of euchromatin and heterochromatin. Moreover, we see that the first
mode of the distribution occurs between the 20th and 30th percentiles of the normalized
LAC distribution, while the second mode occurs between the 70th and 90th percentiles. We
therefore interpret these percentile ranges as the most likely LACs for euchromatin and
heterochromatin, respectively. Note the bimodal LAC distribution observed in each nucleus
is fundamentally different than the unimodal DAPI stain fluorescence distribution we saw in
Isaacson et al. (2011) (which was peaked at zero intensity, see Fig. 1C of Isaacson et al.
2011).

3 Mathematical Model
We are interested in studying the statistics of the time required for a diffusing regulatory
protein to find specific binding sites within the nucleus of a eukaryotic cell. The
mathematical model and biological assumptions we describe in this section are based on the
model we developed in Isaacson et al. (2011). For completeness, we summarize them here,
but refer the reader to Isaacson et al. (2011) for further detail.

We assume that in the absence of chromatin, inside the nucleus the protein would move by
Brownian motion with a fixed diffusivity. Volume exclusion caused by the varying spatial
density of chromatin is modeled by a repulsive potential that imparts drift to the protein’s

1Amira, Visualization Sciences Group
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movement. The strength of the potential is assumed to be proportional to the density of
chromatin at a given point in space. Regions of higher chromatin density will therefore be
more volume excluding, i.e., more difficult for proteins to enter, than regions of low density.
Note there are many other possible interactions that may influence the protein’s search
process. These include nonspecific DNA binding interactions, trapping caused by such
interactions or local chromatin structure, and the possibility of protein diffusion along DNA
(Halford 2009; Elf et al. 2007). The model we describe focuses on how the search process
for specific binding sites is influenced by the assumption that regions of high DNA density
are more difficult to enter.

As described in the previous section, the measured soft X-ray tomography (SXT) linear
absorption coefficients (LACs) are directly proportional to the density of organic matter
within a given voxel. We assume here that the LAC gives a direct measure of the density of
chromatin in a voxel. Let I ⊂ ℤ3 denote the set of voxels from a SXT reconstruction that
comprise the nucleus of a cell. For i ∈ I, a given voxel within the nucleus, we denote by ℓi
the normalized LAC for that voxel. By normalized, we mean that the ℓ has been rescaled so
that maxi∈I ℓi = 1. We assume the potential of the ith voxel is given by

(1)

where the potential maximum φmax, subsequently called the volume exclusivity, is a
parameter of our model. When φmax = 0, the particle will simply diffuse, while as φmax →
∞ it will become increasingly difficult for the protein to enter regions of high chromatin
density.

As the imaging data are defined by a mesh of voxels, we approximate the diffusion of the
protein within the nucleus as a Markovian continuous-time random walk among these
voxels. The protein moves by hopping between neighboring voxels. The probability per unit
time that the protein hops from one voxel to a neighbor is determined by the diffusion
constant of the protein, the edge length of the voxels, and the strength of the potential barrier
crossed in hopping from one voxel to another. Let Pi(t) label the probability the protein is in
the ith voxel at time t. In what follows, we assume the DNA binding site is given by one
specific voxel of the mesh, ib, and that upon reaching this voxel the protein immediately
binds. Using this condition, our model can be interpreted as an approximation of the search
process by the protein for a small region containing the binding site (i.e., the voxel ib). The
binding reaction then gives the reactive boundary condition that

(2)

Note this choice of boundary condition assumes the protein is immediately removed from
the system upon hopping into the voxel containing the binding site. This is equivalent,
insofar as the rest of the system is concerned, to the assumption that the protein stays at the
binding site once it has arrived there. It is purely a matter of bookkeeping whether we say
that the protein is removed from the system upon arrival at the binding site or remains at the
binding site once it has arrived there.

Let αij label the probability per unit time the protein will hop to voxel i when within voxel j.
The master equation for the probability the protein is in the ith voxel at time t is then the
linear system of ODEs
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(3)

where I − {ib} denotes the set of voxels, I, with the ib voxel removed. Note this model
implicitly enforces the no-flux boundary condition that the protein cannot leave the nucleus.

The spatial hopping rates αij were derived in the supplement to Isaacson et al. (2011). They
are chosen so that in the absence of the reactive boundary condition (2), the master equation
(3) would converge as the voxel size approaches zero to a Fokker–Planck partial differential
equation (PDE) describing the drift-diffusion of the protein. Let D denote the diffusion
constant of the protein, h the edge length of each voxel, kB Boltzmann’s constant, and T the
temperature of the nucleus. We found in Isaacson et al. (2011) that when i and j are nearest
neighbor voxels along a coordinate axis the choice

(4)

with αij = 0 for all other voxel pairs, provides a second order spatial discretization of the
corresponding Fokker–Planck PDE. As the potential barrier to hop from voxel j to i grows
(φi − φj → ∞), we see that αij → 0. As the potential becomes constant (φi − φj → 0), we
recover a discretization of the standard discrete Laplacian with the corresponding jump rates

Note the not-quite-obvious consequence of (4) that

This ensures that the steady state solution to (3), in the absence of the reactive boundary
condition (2), is the discrete Gibbs–Boltzmann distribution

(5)

This steady-state will be used in Sect. 6 to estimate the explicit dependence on φmax of the
mean time for the protein to find the binding site, ib.

We assume that the protein begins its search for the binding site from a nuclear pore within
the nuclear membrane. As nuclear pores are not explicitly visible by soft X-ray tomography,
we make the approximation that each voxel on the border of the nucleus contains the same
fraction of the total number of nuclear pores. Instead of studying the protein’s search from
one specific pore (voxel), at the start of each individual simulation we choose the protein’s
initial position from a uniform distribution among all voxels on the border of the nucleus.
The corresponding initial condition for the master equation (3) is therefore
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(6)

where Ibnd labels the set of voxels on the boundary of the nucleus and Nbnd denotes the
number of voxels in this set.

We shall also investigate an extension of the preceding model where ib is allowed to be a
random variable. To understand the difference in binding times for binding sites localized in
euchromatin versus heterochromatin, we allow ib to be chosen from a uniform distribution
among all voxels with LACs between two specified percentiles of the nuclear LAC
distribution. Binding sites placed in euchromatin were chosen from low percentiles, usually
the 20th to 30th, near the first mode of the LAC distribution (see Fig. 3). For the
fluorescence imaging data we used in Isaacson et al. (2011), this percentile range
corresponded to the first in which there was a non-zero fluorescence level. For the SXT data,
this range represents the most likely LAC values for euchromatin containing voxels. (It is
unknown if voxels with sufficiently low LAC values actually contain chromatin. Similarly,
it has yet to be determined experimentally if there is a precise LAC value above which
voxels may be assumed to contain heterochromatin.) To model heterochromatin, we used
higher percentiles near the second mode, such as the 70th to 80th.

4 Numerical Solution Method
For a specified value of ib, the master equation (3) with boundary condition (2) and initial
condition (6) is a linear system of ODEs. A typical reconstruction of a nucleus contains on
the order of 2.7 million voxels (slightly more than would be contained in a 128 by 128 by
128 Cartesian mesh). While such a system of ODEs can be solved directly, allowing ib to be
a random variable would potentially require the system to be solved many times to obtain
good statistical estimates of the binding times. For this reason, we simulated the underlying
continuous-time random walk of the protein between the voxels instead of directly solving
(3). In these simulations, the protein hops from voxel i to neighbor j with probability per unit
time αji. When the protein hops into the voxel containing the binding site, ib, the simulation
is terminated and the time the protein entered the voxel recorded. Exact realizations of this
stochastic process can be generated by the stochastic simulation algorithm (SSA), also
known as the Gillespie method or Kinetic Monte Carlo (Gillespie 1977; Bortz et al. 1975;
Gibson and Bruck 2000).

Our numerical simulation algorithm can be summarized as follows:

1. Precalculate the jump rates, αij.

2. Choose the binding site location, ib. This is either specified, or sampled from
voxels within specified percentiles of the LAC distribution (i.e., euchromatin or
heterochromatin regions).

3. Sample the initial position of the protein from Pi(0).

4. Use the SSA to simulate the motion of the protein until the time, τ, that it hops into
the voxel ib.

5. Repeat from step 2 until the desired number of simulations have been run.

5 Mean Time to Find a DNA Binding Site
We now investigate the statistics of the first passage time, τ, for the protein to find the
binding site, and how these statistics depend on the binding site position and volume
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exclusivity, φmax. We focus on the survival probability that the protein has not found the
binding site by time t,

and the mean binding time

For all reported simulations, Pr[τ > t] and associated 95 % confidence intervals were
estimated using MATLAB’s ecdf routine. [τ] and associated confidence intervals were
estimated using MATLAB’s mean routine, while the standard error was estimated using
standard deviations determined by MATLAB’s std routine.

In the following, we choose D = 10 μm2 s−1, and report φmax in units of kBT. For each SXT
reconstruction, the voxels were cubic with edge length 32 nm. In all simulations, spatial
units were in μm, so that h = 0.032 μm, and time had units of seconds.

We first examined the time to find a fixed binding site within regions of euchromatin.
Several voxels within the euchromatin regions of the 09 and 02 cell nuclei were sampled
randomly from all voxels in the 20th to 30th percentiles of the nuclear LAC distribution (see
Fig. 3). For each fixed binding site, 128,000 simulations were run, and the time that the
protein first encountered the binding site was recorded. In Fig. 4, we examine the statistics
of the binding time, τ, for five different binding sites within two cell nuclei (labeled by “09,
pt1”, “09, pt2”, “02, pt1”, “02, pt2”, and “02, pt3”). Figure 4(a) shows the mean binding
time as a function of φmax for each of the five binding sites. We see that as the volume
exclusivity is increased from zero the mean binding time decreases to a minimum. As the
volume exclusivity is further increased, the mean binding time then increases dramatically.
This behavior can also be seen in Fig. 4(b), where we show the survival time distribution for
the binding site “pt1” from the 09 cell nucleus as the volume exclusivity, φmax, is increased.
Notice that each curve is linear with a logarithmic y-axis, suggesting that the time to find the
binding site is approximately an exponential random variable.

Figures 5 and 6 show how the binding time varies when the binding site is localized in
different subregions of the nucleus. For each value of φmax, a percentile range of the LAC
distribution was specified and 128,000 simulations were run. At the beginning of each
simulation, the binding site was sampled from a uniform distribution among all voxels
within the percentile range. As such, the figures illustrate the average of the mean binding
time and survival probability distribution over binding sites localized in different percentile
ranges of the LAC distribution. Figure 5(a) illustrates how the mean binding time varies in
the 09 nucleus as a function of φmax when binding sites were localized in euchromatin (the
10th to 20th and 20th to 30th percentile ranges) versus heterochromatin (the 70th to 80th
percentile range). When the binding site was localized in regions of higher chromatin
density, the mean binding time increased. Moreover, while localizing the binding site within
euchromatin leads to a minimum in the mean binding time for nonzero volume exclusivity
(about 10 kBT), this behavior is lost for binding sites localized in heterochromatin. For the
latter, the mean binding time simply increases as φmax increases. Figure 5(b) illustrates that
the appearance of a minimum for nonzero volume exclusivity when binding sites are in
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regions of euchromatin (20th to 30th percentile range) persists across all five of the nuclei
we studied. Moreover, for each nucleus the minimum appears at φmax ≈ 10 kBT.

The preceding simulations focused on binding sites localized near the most likely regions of
euchromatin and heterochromatin. We also examined the behavior of the binding time for
binding sites localized in broader regions. The zeroth to 57th percentile curve in Fig. 5(a)
corresponds to localizing the binding site anywhere before the minimum located between
the two modes of the LAC distribution of the 09 cell; see Fig. 3(a). This minimum was
defined to be the center of the bin between the two modes of the 09 nucleus histogram in
Fig. 3(a) that had the smallest height, approximately the 57th percentile of the LAC
distribution. In Le Gros et al. (2013), the transition point between euchromatin and
heterochromatin was assumed to be given by averaging the LAC values at the two modes.
For the 09 nucleus, this transition point differs from the location of the minimum between
the two modes by less than 0.1 %. Figure 5(a) shows that within this broader region a
minimal mean binding time still occurs for a nonzero value of the volume exclusivity, but
the overall decrease in the mean binding time relative to that when the volume exclusivity is
zero is smaller than for binding sites localized near the mode (20th to 30th percentile). In
particular, for sites sampled from the zeroth to 57th percentile range, we observe that the
smallest mean binding time is 20 % faster than that when the volume exclusivity is zero,
while for sites sampled from the 20th to 30th percentile range the smallest mean binding
time is 31 % faster. This decrease in the observed speed-up of the mean binding time arises
from the substantially longer time needed to find binding sites within voxels having the
highest LAC values. The smallest median binding time, which is less sensitive to outliers, is
27 % faster than the median binding time with zero volume exclusivity for binding sites in
the zeroth to 57th percentile range (compared to 31 % faster for the 20th to 30th percentile
range).

To test whether the minimum for binding sites in euchromatin regions was dependent on the
spatial structure of the LAC distribution we randomly shuffled the values of the LAC
distribution among the voxels of the 09 cell nucleus. This preserved the overall distribution
of LAC values, shown in Fig. 3(a), while removing all spatial correlations between the
values in neighboring voxels. As seen in Fig. 5(a), for binding sites in euchromatin (the 20th
to 30th percentile range), the occurrence of a minimum mean binding time for non-zero
volume exclusivity is lost (magenta curve). We discuss this result further in the next section,
where we show the appearance of a minimum is to be expected if the potential is slowly
varying relative to the length scale of the binding site.

In Fig. 6 we show the survival distributions, Pr[τ > t], for the 09 cell nucleus when for each
simulation the binding site was randomly localized in regions of euchromatin (20th to 30th
percentile range). Note that for large values of the volume exclusivity the survival
probability is no longer well-approximated by an exponential distribution, in contrast to the
case in which the binding site was fixed across all simulations (as in Fig. 4(b)). This non-
exponential behavior arises because the binding site location is now itself a random variable.
Figure 6(b) uses an expanded t-axis from Fig. 6(a) to illustrate how the survival distribution
shifts as the volume exclusivity is increased. We see that initially the distribution shifts to
the left, leading to faster binding times, but that as φmax → ∞ the distribution rapidly shifts
rightward.

The results of this section are consistent with those we found when studying a single cell in
Isaacson et al. (2011) using a chromatin density field reconstructed from fluorescence
imaging of DAPI stained DNA. Our new simulations illustrate that across several cells of
different phenotypes these results persist. The use of X-ray tomography provides a more
direct measure of chromatin density since each voxel’s LAC is directly proportional to the
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density of organic material within that voxel (McDermott et al. 2009). Thus, we would
expect the present results to capture more accurately the true spatial distribution of
chromatin within each nucleus. Across the five nuclei of this paper, we see that for binding
sites localized in euchromatin volume exclusion can lead to 23 % to 34 % lower (i.e., faster)
mean search times. The maximum observed speedups are summarized in Table 1.

6 Why Does the Mean Binding Time Exhibit a Minimum for Binding Sites in
Euchromatin?

In this section, we investigate why, for binding sites localized in regions of euchromatin, the
mean binding time has a minimum as φmax is increased from zero to infinity. Our analysis is
based on the assumption that near the binding site the volume exclusion potential varies
sufficiently slowly that it is well-approximated by a constant.

To estimate the solution to (3), we make several assumptions:

1. There exists a collection of voxels, I′, about and including the binding site where
the potential can be approximated as constant.

2. The portion of the nucleus given by the voxels in I′ is large in diameter relative to
the length of one voxel, but small relative to the diameter of the entire nucleus.

3. The initial position of the protein is outside I′, that is Pi (0) = 0 for i ∈ I′.

4. The solution to (3) reaches a quasisteady state in space within I′ faster than the

binding time scale. We therefore assume that for i ∈ I′, .

5. The time for the protein to find the binding site is sufficiently large that the solution
to (3) outside I′ is essentially in equilibrium before the protein locates the binding
site. In particular, all memory of the initial position is lost.

Using these assumptions, we construct two solutions to (3), an inner solution valid near ib,

, and an outer solution valid outside I′, . The last assumption above implies that

(7)

where A(t) is a decreasing function of time, to be determined later. Since, by assumption 1,

φi is nearly constant on I′, we can use (7) to extend the definition of  so that

(8)

The second, third, and fourth assumptions imply

(9)

with the boundary condition . The assumption that the potential is constant in I′ then
simplifies (9) to
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(10)

where Δh denotes the discrete Laplacian and ed is a unit vector along the dth coordinate axis

of ℝ3. This equation is coupled to the boundary condition that . Finally, we make
the standard inner solution assumption (see Kevorkian and Cole 1996; Cheviakov and Ward
2011) that I′ is sufficiently large that the solution to this equation can be approximated by
the solution when I′ = ℤ3. If A(t) were known, a unique solution to (10) when I′ = ℤ3 could
be obtained by specifying the matching condition that

(11)

This condition assumes that I′ looks like a single voxel on length scales of relevance to the
outer solution. We note that all time-dependence in (10) arises from this matching condition.

To solve (10), we consider a related problem where the absorbing boundary condition

 is replaced with an explicit sink. Let Ci (t) satisfy

(12)

with lim|i|→∞ Ci (t) = 0. Here, K(t) denotes the probability per time the protein is removed

from the origin at time t. The choice  satisfies (10) with the

boundary condition . Note that Ci (t) ≤ 0, with its most negative value at i = 0.

Therefore, , as required. The matching condition (11) then gives

so that solving for A(t), and substituting the result into (7) and (8) we find

(13)

C0(t) can be determined using Fourier transforms. Let B = [−π, π]3 denote the cube centered
at the origin with edges of length 2π. Then for ξ = (ξ1, ξ2, ξ3) labeling a point in B,

where Ĉ(ξ, t) denotes the Fourier transform of Ci (t) and . The solution to (12) in
Fourier space is easily found to be
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so that

(14)

where . We note that the singularity of the integrand in (14) is like |ξ|−2, and hence
integrable.

To find the distribution of binding times, and in particular the mean binding time, we make
the approximation that the survival probability at any given time t can be found from the
outer solution alone, i.e., we assume that

where Z is the partition function

If we substitute C0(t) as given by (14) into the above equation, and if we also recall that K(t)
is the probability per unit time of binding and, therefore, that

we get

(15)

where

(16)

Equation (15) shows that the distribution of binding times is exponential, and (16) gives an
explicit formula for the mean binding time, [τ]. Note that the theoretical estimate (16)
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involves no unknown parameters. No parameter fitting is necessary to compare the predicted
mean binding time (16) to the simulation results of the previous section.

As the voxel size approaches zero, [τ] → ∞ like h−1. This is consistent with the well-
known fact that it takes an infinite amount of time for a point particle to find a point target
by diffusion in a three-dimensional space. (Recall that our target is one voxel in all of the
computations reported here.) As we approach the limit h → 0, the last of our simplifying

assumptions becomes more and more valid, since there is more and more time for  to
equilibrate before binding occurs. Related to this, the assumption that the initial position of
the protein does not matter also becomes better and better as h → 0.

In Fig. 7(a), we compare the mean time to find a target binding site predicted by (16) to the
empirical mean times found from the simulations in Fig. 4(a). The solid curves in Fig. 7(a)
show the simulated mean binding times for the two target locations in the 09 cell that were
used in Fig. 4(a). The dashed curves show the estimated mean binding times using (16). The
theory gives very good agreement in the predicted mean binding time, particularly for
smaller values of the volume exclusivity, φmax.

To see why the mean binding time has a minimum for binding sites in euchromatin regions,
we look at the behavior of [τ] as φmax is increased from zero. Let

Using (1), we have that

(17)

where ℓi denotes the normalized LAC in voxel i. We now consider the mean binding time as
a function of φmax, [τ](φmax). Taking the derivative in φmax,

At φmax = 0, [τ](φmax) will be decreasing when ℓib is smaller than the mean of the nuclear
LAC distribution, and increasing when ℓib is above the mean. Examining the second
derivative, we see

if the LAC values are nonconstant. We therefore find that the first derivative is a strict
monotone increasing function.

Note that
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(18)

If ℓib ≠ mini∈I ℓi, there is at least one term in the sum (16) for which ℓib − ℓi > 0. As such,

The preceding results allow for a possible explanation of the dependence on φmax of the
mean binding times observed in our simulations. For binding sites in regions below the
mean of the LAC distribution, the mean binding time will always decrease to a minimum as
φmax is increased from zero. Beyond this minimum the mean binding time will increase to
infinity as φmax → ∞. In contrast, for binding sites above the mean of the LAC distribution
the mean binding time will simply increase as φmax is increased. By (13) we see that

. Combined with (18), this suggests that as φmax is
increased from zero the effective volume the protein must explore is decreased, while the
potential barriers provided by regions of high LACs the protein must cross to move between
two regions of low LAC become higher and higher. For binding sites in euchromatin, there
is a balance between the two effects at which the mean binding time is minimized. In
contrast, for binding sites in heterochromatin the latter effect wins out, and the mean binding
time simply increases as φmax increases.

We now consider how the mean binding time behaves when the binding site is itself
randomly localized within subregions of the nucleus. Let [τeuc] denote the mean binding
time when the binding site position is chosen from a uniform distribution among voxels
within a region of euchromatin, Ieuc ⊂ I. We will subsequently take Ieuc to be the collection
of all voxels of a nucleus containing euchromatin within the 20th to 30th percentiles of the
nuclear LAC distribution. If Veuc denotes the total volume of the voxels within Ieuc,

(19)

As in (16), we see that (19) completely specifies [τeuc] in terms of known parameters.

Figure 7(b) compares (19) to the mean times from simulations in the 09 and 02 cell nuclei,
while Fig. 7(c) compares (19) to simulations for all five cell nuclei (see Fig. 5(b)). In every
nucleus, we see that for φmax ≤ 10 kBT the theory gives good estimates of the mean binding
time within the nuclei. As φmax → ∞ the theoretical formula (19) appears to underestimate
the mean binding time found by the SSA simulations. This breakdown could arise for
several reasons. Foremost, as φmax is increased the difference between potential values in
neighboring voxels increases. The assumption that the potential is approximately constant
near the target binding site can therefore break down.

It should be noted that both (16) and (19) depend only on the value of the target binding site
LAC relative to the mean LAC, and not on the detailed spatial structure of the LAC
distribution. Based on this observation, one might wonder why we do not observe the same
dependence of the mean binding time on φmax when the values of the LAC distribution are
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randomly shuffled among voxels (see Fig. 5(a)). The answer is that the conditions under
which (16) and (19) were derived no longer hold. After randomly shuffling the LAC
distribution, the potential can no longer be approximated as constant near a binding site.

7 Conclusions
We have applied the model we developed in Isaacson et al. (2011) to study how the time
required for proteins to find a specific binding site varies as a function of volume exclusion
by dense regions of chromatin and binding site localization. Linear absorption coefficients
from soft X-ray tomography reconstructions of five mouse olfactory sensory neurons were
used to determine the spatial variation of chromatin density within nuclei. The distribution
of LACs within each of the nuclei was observed to be bimodal, demonstrating the spatial
separation of nuclear space into regions of euchromatin, where most active genes are
localized, and denser heterochromatin, where silenced genes are typically located.

Numerical simulations of our model suggest that for binding sites localized in regions of
euchromatin there exists a non-zero volume exclusivity at which the mean binding time is
minimized. As the volume exclusivity was increased beyond this minimum the mean
binding time simply increased to infinity. Across the five nuclei used in this study, the
minimal mean binding time was found to be 23 to 34 % faster than that observed in
simulations where the volume exclusivity was zero (i.e., the protein simply diffused,
experiencing no volume exclusion). Randomly shuffling the LAC values among the voxels
of the nucleus led to a loss of this minimum, suggesting that the spatial distribution of the
chromatin plays a roll in the existence of a minimal mean binding time for nonzero volume
exclusivity. For binding sites localized in heterochromatin, the mean binding time simply
increased as the volume exclusivity was increased from zero.

The observed behavior for binding sites localized in either euchromatin or heterochromatin
can be explained by the analytical formulas (16) and (19). These approximations to the mean
binding time were derived under several assumptions, including that the LAC values in
voxels near a binding site are approximately constant and that the time to find the binding
site is sufficiently large that the distribution of the protein’s position is proportional to the
equilibrium Gibbs–Boltzmann distribution (5). Assuming these conditions hold, both (16)
and (19) suggest that the observed dependence of the mean binding time on the volume
exclusivity is determined by whether the binding site LAC is below or above the mean LAC
within the nucleus. For binding sites with LACs below the mean, such as those localized in
euchromatin, the theory predicts the appearance of a minimum mean binding time for non-
zero values of the volume exclusivity. It appears that increasing the volume exclusivity from
zero helps speed up the search process by decreasing the effective volume that must be
searched to find the binding site. Beyond the value that minimizes the mean binding time,
further increasing the volume exclusivity leads to increased binding times as the protein
becomes trapped in regions surrounded by steep potential barriers. For binding sites
localized in regions above the mean, such as heterochromatin, the theory agrees with the
observed dependence in our simulations, predicting the mean binding time will simply
increase as the volume exclusivity increases from zero.

It should be noted that our theory does not give an explanation for the dependence of the
mean binding time on the volume exclusivity when the LAC values are shuffled. In this
case, the assumption that the LAC values near the binding site are approximately constant is
violated, so that (16) and (19) no longer hold. The simulations with the shuffled LAC
values, combined with our analytical theory, suggest that a key aspect of the macroscopic
spatial distribution of chromatin that could lead to a decreased mean binding time caused by
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volume exclusion is a slow variation in chromatin density in the neighborhood of binding
sites localized in euchromatin.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Soft X-ray Tomography Measurement Error
The X-ray microscope employs monochromatic X-rays and, therefore, the values obtained
from computed tomography measurements are equal to the LAC values calculated from the
atomic composition of the specimen. The SXT technique avoids the beam hardening effects
commonly found in polychromatic tomographic imaging (see Tsuchiyama et al. 2005). The
measurement error for each pixel of a single projection image is of order 3 %, determined by
photon shot noise. The LAC value of each 32 nm voxel is obtained from tomographic
reconstruction of many such projections and is typically less than 1 %. LAC measurement
errors are insignificant compared to the observed cell-to-cell variation.
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Fig. 1.
Reconstructed linear absorption coefficients of a mature mouse olfactory sensory neuron.
The cell was cryogenically preserved, and then imaged within a glass capillary (the white
ring). (a) and (b) show two z-plane slices through the underlying three-dimensional
reconstruction. The cell completely fills the capillary in both images. The cell’s nucleus is
visible as the circular structure with large regions of lower LAC values (darker pixels). The
full 3D reconstruction of this nucleus is shown in Fig. 2. In the figures, LACs have units of
per voxel. Each LAC value divided by the voxel length of 32 nm would have the more
standard units of nm−1 (Color figure online)

Isaacson et al. Page 19

Bull Math Biol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Nucleus of the cell from Fig. 1 (subsequently labeled by “09”). This volume rendering
shows the LACs of each voxel of the reconstruction. Lighter colors correspond to larger
LACs. (b)–(d) use clipping planes to reveal the interior of the nucleus along the same axis as
used for the full cell and glass capillary reconstructions shown in Fig. 1. Movie S1 shows
this reconstruction as the clipping plane is moved across the nucleus (Color figure online)
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Fig. 3.
Histograms of normalized LAC distribution in the nuclei of five cells. Legends give the
label subsequently used to identify each nucleus. For each histogram, the LAC values were
normalized by the maximum value within that nucleus. Histograms use 100 equally spaced
bins between the minimum and maximum normalized LAC values. Markers label every
tenth percentile, beginning with the zeroth. Each nucleus is from a mature mouse olfactory
sensory neuron, except the 05–15 dataset, which was from an immature mouse olfactory
sensory neuron. The label for each histogram corresponds to the dataset from Le Gros et al.
(2013) from which that nucleus was extracted. The 05–14 dataset contained two cells, with
the corresponding nuclei labeled by 05-14-1 and 05-14-2 (Color figure online)
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Fig. 4.
Mean binding time and survival time distribution for binding sites at fixed locations in
euchromatin. (a) Mean binding time as the volume exclusivity, φmax, is varied. Inset gives
the cell nucleus and target point label for each curve. Each data point was obtained from
128,000 simulations. 95 % confidence intervals are shown for each point, but often smaller
than the marker size. As φmax is increased, we see each curve initially approaches a
minimum before diverging to ∞. (b) Survival time distribution for the “pt1” binding site
from the 09 cell nucleus. The inset gives the volume exclusivity, φmax, in units of kBT. Each
curve was generated from binding time statistics for 128,000 simulations. The dashed lines
about each solid curve give 95 % confidence intervals. Linearity of Pr[τ > t] with the
logarithmic y-axis suggests the binding time is approximately exponential (Color figure
online)
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Fig. 5.
Mean binding time for binding sites randomly localized in subsets of the nucleus as the
volume exclusivity is varied. For each simulation, the target binding site was sampled from
a uniform distribution among all voxels within fixed percentile ranges of the nuclear LAC
distribution. Each data point was calculated from 128,000 simulations. (a) Mean binding
times in the 09 cell. The inset gives the percentile range used for each curve. The black (10
to 20) and blue (20 to 30) curves localized binding sites in regions of euchromatin; see Fig.
3(a). The red (0 to 57) curve localized binding sites anywhere before the LAC value giving
the minimum between the two modes of the LAC distribution. The green (70 to 80) curve
localized binding sites in heterochromatin. For the magenta curve, the values of the LAC
distribution were randomly shuffled among the voxels of the nucleus. Binding sites were
then chosen from a uniform distribution among voxels with LAC values in the 20th to 30th
percentiles of the LAC distribution. For binding sites in heterochromatin, or when using the
shuffled potential, the mean binding time diverges as the volume exclusivity is increased.
(b) Mean binding times for binding sites randomly chosen at the start of each simulation
within the 20th to 30th percentile of the LAC distribution for five different cell nuclei. For
each cell, binding sites in euchromatin were found fastest when φmax ≈ 10 kBT (Color figure
online)
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Fig. 6.
Survival time distributions for binding sites randomly localized in euchromatin. For each
simulation, one voxel in euchromatin (the 20th to 30th percentile of the LAC distribution) is
randomly chosen to represent the binding site. Each curve is then estimated from 128,000
such simulations. Insets give the volume exclusivity, φmax, for every curve. (a) For large
values of the volume exclusivity, the survival probability is no longer well-approximated by
an exponential distribution for all times. (b) Reducing the scale of the t-axis we can see that
as φmax is increased the survival distribution initially shifts to the left, leading to faster
binding times. As φmax → ∞, the distribution shifts back to the right (Color figure online)
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Fig. 7.
Theoretical mean binding times (16) and (19) versus those from simulations. Note that both
theoretical mean binding times involve no fitting to the simulated times, and are completely
determined by known parameters. In all figures, solid lines give the mean binding times
from simulations, while dashed lines give the corresponding theoretical prediction. (a) 09
cell for the two fixed targets used in Fig. 4(a). Theoretical mean binding times are from (16).
(b) 09 and 02 cells with binding sites randomly localized in euchromatin (20th to 30th
percentile of LAC distribution). Simulated means are those from Fig. 5(b), while theoretical
are from (19). (c) All five nuclei when binding sites are randomly localized in regions of
euchromatin (20th to 30th percentile of the LAC distribution). Simulated means are the
same is in Fig. 5(b), while theoretical are from (19) (Color figure online)
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