
UC Irvine
ICS Technical Reports

Title
Clock-driven performance optimization in interactive behavioral synthesis

Permalink
https://escholarship.org/uc/item/3c211403

Authors
Juan, Hsiao-ping
Gajski, Daniel D.
Chaiyakul, Viraphol

Publication Date
1996-04-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3c211403
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Clock-Driven Performance Optimization in
Interactive Behavioral Synthesis

Hsiao-ping Juan
Daniel D. Gajski

Viraphol Chaiyakul

Technical Report ,^96-08
April 10, 1996

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 824-7063

hjuan@ics.uci.edu
gajski@ics.uci.edu

viraphol@ics.uci.edu

Abstract

In interaciive behavioral synthesis, the designer can control the design process at
every stage, including modifying the schedule of the design to improve its performance.
In this report, we present a methodology for performance optimization in interactive
behavioral synthesis. Also proposed in this report are several quality metrics and hints
thai can assist the user in utilizing the proposed methodology. When the user is opti
mizing the performance of the design, one important decision is the selection of a clock
period. We have developed an algorithm to estimate the effect of different clock periods
on the execution time of the design. This algorithm can be used to facilitate clock period
selection by the user in order to optimize the performance of the design. We have tested
our methodology on several benchmarks. The experimental results support the proposed
methodology by demonstrating an average improvement of 46.2% in design performance.

6L- 6AR-

/\0 . is'

1 Introduction 1

-2 Previous Work 2

3 Methodology 2
3.1 Reducing Clock Slacks 3
3.2 Reducing the Number of States on the

Critical Path 3
3.3 Quality Metrics 4

4 Problem Definition and Algorithm Out
line 4

5 Algorithm 5
5.1 Design Model 5
5.2 Execution Path Identification 6
5.3 State Shape Function Generation 6
5.4 Shape Function Merging 7
5.5 Control Unit Delay Estimation 8

6 Experimental Results 10

7 Conclusion 10

8 Acknowledgements 10

9 References 10

List of Figures
1 The example to illustrate the clock

slacks 1
2 The Methodology for performance op

timization 3
3 An example to demonstrate the perfor

mance optimization methodology ... 3
4 An example illustrating the inputs and

outputs of the problem 5
5 Design model for clock period calcula

tion 5
6 An example to illustrate the execution

paths in the state transition graph ... 6
7 The procedure to estimate the mini

mum clock period, given N cycles 6
8 Determining the minimum clock period 7
9 The shape functions of states SI, 52,53

and 54 8
10 An example to illustrate the merging

of state shape functions into execution
path shape functions 8

11 An example to illustrate the merging
of execution path shape functions into
STG shape function 9

12 A random-logic implementation of the
control unit 9

13 Experimental results on four bench
marks 11

Clock-Driven Performance Optimization in
Interactive Behavioral Synthesis

Hsiao-ping Juan, Daniel D. Gajski and Viraphol Chaiyakul
Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

Abstract

In interactive behavioral synthesis, the designer can
control the design process at every stage, including modify
ing the schedule of the design to improve its performance.
In this report, we present a methodology for performance
optimization in interactive behavioral synthesis. Also pro
posed in this report are several quality metrics and hints
that can assist the user in utilizing the proposed methodol
ogy. When the user is optimizing the performance of the
design, one important decision is the selection of a clock
period. We have developed an algorithm to estimate the ef
fect of different clock periods on the execution time of the
design. This algorithm can be used to facilitate clock period
selection by the user in order to optimize the performance
of the destgn. We have tested our methodology on several
benchmarks. The experimental results support the proposed
methodology by demonstrating an average improvement of
46.2% in design performance.

1 Introduction

Many years of research have been dedicated to the
development of automatic behavioral synthesis tools
[3][4][6j[l 1]. Recently, several EDA vendors have also in
troduced commercial products based on behavioral synthe
sis. In these systems, designs are obtained with minimal
user interaction. The only means of controlling the output
from such systems is via constraints expressed in terms of
area and/or performance.

Automating behavioral synthesis is a very complicated
issue. However, it is well accepted that mojority of syn
thesis tasks are NP-complete problems. In addition to
complexity, the order in which these synthesis tasks are
performed also has an impact on both the efficiency and
results of the overall synthesis process. Hence, the result
ing designs sometimes cannot satisfy the performance or
area demands of real-world constraints. When the design
produced by automatic behavioral synthesis is not a good
one, it presents the user with the following dilemma: if
the user modifies the input description and constraints and
resynthesizes it, he/she may get a completely different and
unpredictable design, which still may not satisfy the con
straints. In addition, low level tasks such as placement and
routing, which usually require tremendous amount of time,
need to be done in every iteration. On the other hand, if

the user modifies the output design manually, then he/she
needs to spend considerable effort to understand the syn
thesized result and to prove the correctness of the modified
design.

To develop a feasible approach for behavioral synthesis,
we have substituted the goal of a completely automated,
"push-button" synthesis system with one which attempts
to maximally utilize the human designer's insights. This
approach, as opposed to automatic behavioral synthesis, is
called interactive behavioral synthesis. Using interac
tive behavioral synthesis, the users can control the design
process, observe the effects of design decisions, and man
ually override synthesis algorithms at will. For example,
after an automatic algorithm is used to schedule a behav
ior, if the scheduling result cannot satisfy the performance
constraint, the user can manually modify the result. This
interactivity will allow synthesis systems to generate high-
complexity designs of acceptable-quality in the immediate
future, instead of the many years of research needed to
improve the current automatic synthesis techniques. With
this goal in mind, we have implemented an interactive be
havioral synthesis system called the Interactive Synthesis
Environment (ISE), and developed a design methodology
for its use.

The maximum execution time of a design can be de
fined as the product of the clock period used in the design
and the maximum number of clock cycles. Hence, to opti
mize the performance of a design, it is important to select
the clock period wisely, as well as to minimize the number
of clock cycles. Moreover, the number of clock cycles re
quired to finish all the operations in a design also depends
upon the clock period. Therefore, a bad choice of the clock
period could severely affect the performance of the design.

nicdlon Bm* • 100 > 3 • 300 iM

UUI BUCK • 80 « M • 140 n*

•ncuOBT tkn* • SO 14 • 200 B

tOUIMck>30> I0«40n4

Figure 1: The example to illustrate the clock slacks

Figure 1(a) shows a behavior description that has three

states executing sequentially in the order of STl,ST2, and
STZ. The state information is given by the user as a part of
the input behavioral description to the interactive synthe
sis system which will schedule states to clock cycles during

• synthesis process. In the example, the times required to
execute states 5Tl,5r2, and ST3 are 20 ns, 40 ns and
100 ns, respectively. If the longest state delay is used as
the clock period, the clock period of this design would be
100 ns, and consequently, the total execution time would
be 100 X 3 = 300 ns. However, states ST\ and ST2 both
have much shorter delays than STZ has. As a result, by
using 100 ns as the clock period, the circuit would be idle
for 80 ns in state STl and idle for 60 ns in state ST2.
The amount of time that the circuit remains idle during a
clock cycle is called slack [S]. That is, there is 80 ns slack
in STl and 60 ns slack in ST2. Clearly, the execution
time of a design can be optimized by minimizing the slack
time, since minimizing slack minimizes the idle time of the
circuit.

Minimizing the slack in each state can be done by exe
cuting states that have long delays in more than one cycle.
For example, if state 5T3 in Figure 1(a) is executed in two
clock cycles, the clock period would be 50 ns and the total
execution time would be 50 x 4 = 200 ns, as shown in Fig
ure 1(b). Note that in this case, the total slack is reduced
from 140 ns to 40 ns. Due to the reduction of clock slack,
the execution time decreases from 300 to 200 ns.

Having observed the impact of the clock period on the
total execution time of a behavior, we develop a methodol
ogy to optimize the performance of a design by first select
ing the clock period and then minimizing the number of
clock cycles needed when the chosen clock period is used.
We also develop several quality metrics and hints to assist
the user while selecting a clock period to optimize the per
formance of a design. For instance, state delay used in the
discussion above, is one of the metrics that we provide for
interactive performance optimization.

The rest of the report is organized as follows. In the
next section, we shall briefly review previous research in
this area. A detailed discussion of the proposed method
ology and the quality metrics and hints needed for realiz
ing this methodology is given in Section 3. In Section 4
and 5, we shall present the algorithm used to generate the
required quality metrics and hints. Finally, we present ex
perimental results and provide conclusions.

2 Previous Work

Several previous papers have addressed the importance
of user-interaction with synthesis systems. The ACE
graphical interface [2] allows the user to place and con
nect functional nodes to create a graph that specifies the
desired behavior. After the initial graphical specification is
obtained and before synthesis starts, some transformation
techniques may be applied to the specification to obtain
a specification that could be mapped into a more efficient
hardware. The user interacts with the system by accepting
or rejecting the system's transformation decisions or spec

ifying transformations manually. Nevertheless, ACE does
not allow the user to interact directly with the synthesis
tasks. Thus, the user cannot perform any performance
optimization interactively in ACE.

RLEXT [8] [9] is an interactive tool which allows a user
to manually reschedule a design's behavior or modify a
design's structure by adding or deleting components and
interconnects. However, RLEXT does not provide the user
with feedbacks as to the current design's quality to help
the user decides how to improve either the performance or
the area of the design.

The system AMICAL [7] allows the user to mix auto
matic and manual design. The user may start a design
manuaUy and ask AMICAL to finish it. Alternatively, the
user can execute the synthesis tasks step by step. At each
step, the user has the choice to continue the synthesis au
tomatically or manually. Yet, AMICAL does not provide
any hint to help the user in making important design de
cisions such as selecting the clock period.

On the other hand, several efforts have addressed the
issue of optimizing the performance of a scheduled behav
ior. In [1], an algorithm is proposed to reduce the clock
period at the binding phase of synthesis. However, this
work was done based on the assumption that each state in
the scheduled behavior cannot be executed in more than
one clock cycle, while we attempt to optimize a design's
performance by allowing the states with longer delays to
be executed in several cycles.

A post-synthesis technique that attempts to reschedule
the controller of a design, in order to optimize the per
formance of the design, without changing the datapath is
presented in [10]. The rescheduling of the controDer essen
tially generates a new controller that would execute the
states with long delays in several clock cycles. However,
this technique does not take the control unit delay into ac
count. When the number of clock cycles is very large, the
control unit tends to become very complex and the control
unit delay c<in contribute significantly to the clock period
and therefore, should not be neglected. By considering the
control unit delay, our algorithm provides a more realistic
clock period calculation.

3 Methodology
Figure 2 shows our proposed methodology for optimizing

the performance of a scheduled behavior. This methodol
ogy basically consists of two steps. In the first step, the
user selects a clock period such that the total clock slack in
the given scheduled behavior is minimized. If the chosen
clock period cannot satisfy the performance constraint, the
user tries to further minimize the number of clock cycles
required by the longest execution path. These two steps
wUl be described in detail in following sections.

Reducing clock slack and reducing the number of cy
cles are basically performance optimization techniques at
the behavioral level, because the user need to modify only
the schedule and behavior of the design. If both of these
techniques fail to satisfy the performance constraint of the

design, the user may modify the design at either the struc
tural or the physical level. At the structural level, the
performance of a design can be improved by using faster
components, while at the physical level, the performance
can be improved by modifying the floorplan to reduce wire
delays. This report focuses on performance optimization
at the behavioral level.

/pOrf.N
satisfied?

/perf.N
satisfied?

structural/ptiyslcal level
performance optimization

Figure 2: The Methodology for performance optimization

3.1 Reducing Clock Slacks
We will illustrate the methodology with the example in

Figure 3. In Figure 3, the scheduled behaviors are repre
sented using the state-actions table (SAT) format. In the
SAT, the columns PS and NS are the "present" and the
"next" states, respectively, SCOND gives the condition
for a next-slate transition, AC shows the assignment con
dition for each action, and the column ACTIONS lists
all operations in the behavior. Also shown in Figure 3 is
the quality metric state delay (ST Delay), which shows the
maximum time needed to execute each state.

Assume that the delay of a multiplier is 40 ns, the delay
of an adder is 20 ns, and the setup time of a register is 5
ns. Figure 3(a) shows that the state delay of STl is 65 ns
due to the register setup time and the chain of the addition
and the multiplication operations. Similarly, the delays of
the states ST2 and ST3 are 45 ns and 25 ns respectively.
If the design is synthesized without further optimization,
the clock period of this design would be 65 ns, which is
the longest delay per state, and the total execution time
would be 65 X 3 = 195 ns. Note that the total slack when

the clock period is 65 ns is equal to 60 ns.
In order to reduce clock slack, the user can try to ex

ecute the states that have longer delays in several clock
cycles. For example, the state STl can be executed in two
clock cycles by splitting the chain of the addition and the
multiplication operations. As shown in Figure 3(b), a new

state ST4 is inserted between STl and ST2 and the addi
tion operation from the chain is executed in 5Tl and the
multiplication operation is executed in ST4. As a result,
the clock period now becomes 45 ns instead of 65 ns, the
total slack is 40 ns, and the total execution time is reduced
from 195 ns to 45 x 4 = 180 ns.

ll sn IfTTsTn

HE

. 01 »(llHi?)B)3
* Pi *0
' n • 12« 19

[02• irt♦ 12
lo?» is"

Ot • TEM a 19

' If1 • 12*
|f(2 » ItK13

0^ • 'I ♦ 12
' 02 • * 13

lEQj ^9EiZ!D(IDE^H|

BQIlelEIDil31E*i

BIBH

Figure 3: An example to demonstrate the performance
optimization methodology

3.2 Reducing the Number of States on
the Critical Path

After the clock period is determined, the user can try
to further reduce the number of states in the scheduled

behavior in order to reduce the total execution time. The

number of states can be reduced by either merging states
or rewriting the state transitions.

In Figure 3, after splitting the state STl into two states
to reduce clock slack, the resulting behavior has a 45 ns
clock period and four states. Note that the delays of the
states ST4 and ST2 are both 45 ns and the operations
in the states ST4 and ST2 are executed under mutually
exclusive conditions. Therefore, if these two states are
merged, the clock period after merging should remain 45
ns. Figure 3(c) shows the result of merging ST4 and ST2
into one state ST4. The total execution time is reduced

from 45 x4 = 180 ns to 45 x3 = 135 ns. However, we would

like to emphasize here that merging states inappropriately
may increase the execution time of the design instead of
decreasing it. The reason is that, if there exist data de
pendencies between the operations in the states that are
merged, the state delay may increase, and consequently,
the clock period and execution time may increase.

The number of states can also be reduced by rewrit
ing the state transitions of the scheduled behavior. For
example, consider the SAT shown in Figure 3(b). The
execution of this SAT goes through all four states sequen
tially. However, the operations in state ST4 are executed
only when the condition c is true, while operations in the
state ST2 is executed only when the condition c is false.
That is there is one clock cycle where there is no opera
tion being executed. This wasted clock cycle can be elim
inated by rewriting the state transitions. In this instance,
the user can factor out the condition c and use it as the
state transition condition to enter the state ST4. The

result of rewriting the state transitions is shown in Fig
ure 3(d). Notice that the resultant behavior consists of two
execution paths: STl —• ST4 —* ST3 when c is true and
STl —<• ST2 —• 5T3 when c is false. When either of the
two paths is taken, the number of cycles is three. Hence,
the execution time is reduced from 180 ns to 135 ns. Unlike
state merging, rewriting state transitions will not increase
state delay. Nevertheless, rewriting state transitions usu
ally makes the control unit become more complicated and
may consequently increases the clock period.

3.3 Quality Metrics
Having presented the methodology for performance op

timization, we will now summarize the quality metrics and
hints required to help the user utilize the proposed method
ology.

Since the clock period of a synchronous design can be es
timated by finding the maximum state delay over all states
in the design, we use state delay as a quality metric. As
shown in the previous example, the state delay metric not
only gives the clock period of the current design, but also
shows the slack in each state. Thus, it is one of the most
important metrics in performance optimization.

Moreover, knowing from the methodology that the
clock slacks can be reduced by selecting a shorter clock
period and executing the states with longer delays in sev
eral clock cycles, it is clear that a useful design hint for the
user is a shape function showing clock periods versus
the execution time of the behavior. The reason for a
shape function instead of a single point representing the
period with minimum execution time is that there may
exist more than one clock period that can produce designs
that satisfy the performance constraint. In such a case,
question of which clock period to choose is left to the user.

A scheduled behavior may contain state branches or it
erations constructs (such as loops). This makes it difficult
for the user to determine or observe execution paths. In
addition, in our methodology each state in the scheduled
behavior can now be executed in more than one clock cy
cle when different clock periods are available, the longest

execution path iriay be different. If the user is to reduce ex
ecution time, the longest execution paths must be known.
We provide the user with execution paths hint which
highlights the states on aU execution paths in a state tran
sition graph display. The user can start from the longest
path and go through each path. There are two reasons
that we provide the user all the execution paths instead
of only the longest one. First, there may be more than
one path whose lengths are maximum. In this case, the
maximum execution time of the behavior can be reduced
only when all the paths are shortened. Second, the length
of the second longest execution path usually gives an in
dication of what the execution time will be if the longest
path is shortened.

In summary, to assist the user in optimizing perfor
mance of a design in interactive behavioral synthesis, we
need to provide the execution paths of the scheduled be
havior, the length of each execution path, the shape func
tion of clock periods versus execution time, and the state
delay metric. The state delay metric can be obtained by
simply summing up all the operation delays in the critical
path in each state, and we will not elaborate it further in
this report. In the next section, we shall formulate the
solution for our requirement.

4 Problem Definition and Algorithm
Outline

Our problem can be defined as follows:
Given the following:

• a component library,

• a behavioral description which could contain state in
formation,

• and a range of clock periods to be examined by the
algorithm (with clkmin as a lower bound, and clkmax
as an upper bound)

The goal of our algorithm is to determine the shortest
possible execution time for each clock period within the
clkmin and clkmax range; given that the resulting design
can use any number of components from the library as
needed.

Figure 4 illustrates our problem definition. Given are
a state transition graph STG, where the states are repre
sented using data flow graphs, DFGq,DFGi,DFG2 and
DFGz, a component library, and the range of clock peri
ods allowed (20, 200 ns). Our cdgorithm then produces a
shape function in terms of clock periods versus execution
times.

Our algorithm generates the shape function of clock pe
riod versus execution time in four basic steps.

1. Execution path identification. The first step in
our algorithm is to identify all the execution paths in
a given scheduled behavior.

2. State shape function generation. Next, our al
gorithm generates a shape function of clock period

CH-

^ /

component library;

[eem3detey(ns)]

ccmstraints:

clkmax: 200 ns

dkmin; 20 n«

Figure 4: An example illustrating the inputs and outputs
of the problem

versus number of cycle for each state in the given
scheduled behavior. In this step, only the datapath
delay is considered.

3. Shape function merging. After the shape function
of each state is obtained, the algorithm then tries to
merge the shape functions of all the states on e2u:h
execution path. Then, all the shape functions of the
execution paths are merged into a single shape func
tion representing clock periods versus the number of
clock cycles for the entire behavior.

4. Control unit delay estimation: Finally, our algo
rithm estimates the control unit delay and updates
the shape function accordingly. Then the shape func
tion of clock periods versus execution times can be
generated by multiplying the clock periods to the cor
responding number of cycles.

Details of each of the steps above will be discussed in
the following sections.

5 Algorithm
Before we present the algorithm, we will show the un

derlying design model used for clock period calculation.

5.1 Design Model
The design model for clock period computation, shown

in Figure 5, is similar to the one presented in [5]. In
this model, the datapath consists of registers, functional
units and tri-state drivers. A two level bus structure is

assumed for the interconnection across the registers and
functional units. A typical datapath operation involves
reading operands from the registers, computing the re
sult in the functional units, and writing the result into

a destination register. Operation chaining is supported in
this model by allowing connections from the output ports
of functional units to the input ports of other functional
units. In addition, multi-cycled operations are allowed.

I cnticn!
I ri.w I

Figure 5: Design model for clock period calculation

The control unit consists of the state register, a decoder,
the control logic to drive the control lines for the datapath
components, and the next-state logic to compute the next
state to be stored in the state register. Status lines from
the datapath carry the results of comparison operations to
the next-state logic.

The clock period is determined by the longest register-
to-register delay. Typically, the path through the control
logic has the largest delay, as shown in Figure 5. Conse
quently, the minimal clock period is equal to or greater
than the sum of all the delays associated with the compo
nents and the wires in the path. We can formulated the
computation as follows:

clk=TpsR + Tdec + Tcl + Ttr + Tpv -f Tns + Tssr + Tw%

where:

TpsR and Tssr are the propagation delay and
the setup time of the state register, respectively,
Tdbc is the delay of the decoder,
Tcl is the delay of the control logic,
Ttr is the delay of the tri-state driver,
Tpu is the delay of the functional units,

Tns is the delay of the next-state logic, and
Twire is the total delay of the wires in the path.

However, the wire delay cannot be meaningfully rati-
mated without a lloorplan, which is not available at this
early stage of synthesis. Therefore, the clock period elk is
approximated using the following equation:

clk=TDP + Tcu

Tdp=Ttr + Tpu

Tcv=TpsR + Tdbc + Tcl + Tns + Tssr

where Tdp is the delay of the datapath, and Tcv is the
delay of the control unit.

5.2 Execution Path Identification

In the genera] case, a scheduled behavior may consist
of state branches or loops constructs in the behavior. We
assume the structured behavior, that is, goto constructs
are not allowed.

Let STG denote a state transition graph which consists
of a set of states {50, 51, •• •, 5n}. Assume that state 50
is the initial state. An end state is defined as a state that

transits back to the initiai state or does not transit to any
other state. There may be more than one end state in an
STG. An execution path of STG is a sequence of states
that connect the initial state 50 to an end state 5c. Note

that there may exist loops in an execution path. We denote
a loop that starts from state Si and loops back or exits
at state Sj as (Si, •• •, Sj)*. For example, consider the
state transition graph STG shown in Figure 6. We can see
that the initial state is 50 and there is only one end state
53. Clearly, there exist two execution paths, as shown in
Figure 6: 50 — 51 — 53, and 50 (52)* 53.

pathi paths

Figure 6: An example to illustrate the execution paths in
the state transition graph

Our algorithm uses a depth-first traversal, starting from
the initial state and finishing when all the states are vis
ited, to identify loops in a state transition graph. During
the traversal, if a state which has already been visited be
fore is visited again then there exists a backward edge,
which indicates a loop. The algorithm marks all the states
in the loop, deletes the backward edge, and continues the
traversal. After the depth-first traversal, the state transi
tion graph is now an acyclic graph since all the backward
edges have been deleted.

Having obtained an acyclic state transition graph, the
next step is to find out all the paths in the graph starting
from the initial state and ending at one of the end states.
This is done by another depth-first traversal. This traver
sal starts from the initial state and continues traversing
the next states until it reaches an end state. Reaching
an end state indicates that an execution path has been
found. The traversal routine then back-tracks to the clos

est predecessor state which has branches that haven't been
traversed, and continues the traversal from another branch
until it finally reaches an end state again. Clearly, after
all the state branches are traversed at least once by the
depth-first traversal routine, all existing execution paths
in the state transition graph have been identified.

5.3 State Shape Function Generation
Given a data flow graph DFGt of the state 5, and the

range of clock period allowed, (clkmin, clkmax), the goal of
thb step is to generate the shape function of clock periods

versus the minimum number of cycles that the state Si
requires.

Since the clock periods are in the real number domain,
clearly it is infeasible to attempt to go through aU possible
clock periods and estimate the minimum number of cycles
that the state requires for each of them. However, the pos
sible numbers of cycles are in integer domain. Therefore,
instead of computing the minimum number of cycles re
quired for all possible clock periods, the shape function
is generated incrementally by fixing the number of cy
cles, and then computing the minimum clock period for
the fixed number of cycles using the procedure MinClkPe-
nod outlined in Figure 7. This process produces one point
(clock period, number of cycles) in the shape function. To
obtain the entire shape function, we iteratively increase
the number of cycles until the clock period produced by
the procedure MinClkPeriod is smaller than clkmin. If we
assume that the algorithm estimates that the shortest pos
sible clock period for executing the data flow graph in t cy
cles is clki and similarly, the shortest clock period for i-f 1
cycles is c/fc,+i, then we can conclude that for any clock
period clkj, clki+i < clkj < clki, the minimum number of
cycles that the data flow graph would be scheduled into by
using clkj is »-I-1.

Procedure: MinClkPeriod

Inputs: a data flow graph DFG, the number of cycles N\
Output: the minimum clock period

begin Procedure
Cstep — 1;
ComputePathLength(DFG);
MaxPatkLengih = delay of the longest path in DFG',
MinClk = MaxPathLength/AT;
InsertReadyOps{DFG, PList);
while (PLisi ^ 0) do

if Cstep = N then
schedule all the non-scheduled operations;
MinClk —maximtim state delay;
PList = 0;

else

op = Firat(PList);
if op is a single-cycled operator then

determine chaining or non-chaining;
schedule op and update Min Clk;

else

determine the ntimber of cycles of op;
schedule op and update MinClk;

end if;
InsertReadyOps{DFG, PLiat);
Cstep = Catep + 1;

end if;
end while;
return MinClk,

end Procedure

Figure 7: The procedure to estimate the minimum clock
period, given N cycles

The procedure MinClkPeriod is adapted from ASAP
scheduling except that, instead of minimizing the number

of cycles given a clock period, it minimizes the clock period
given the number of cycles. A brief explanation follows.

Given a data flow graph DFG, the procedure
MinClkPeTtod first computes the path length for each of
the operations in DFG. The path length of an operation is
defined as the longest path delay from this operation to an
output node. Therefore, the maximum path length, Max-
PathLength, of all operations in DFG is the critical path
length. The next step of the procedure involves determin
ing whether a ready operation can be scheduled. In ASAP
scheduling, all ready operations are scheduled as soon as
possible, as long as the clock period constraint is not vi
olated. In our procedure, whether a ready operation can
be scheduled or not and whether chaining or multi-cycling
should be performed depends upon its effect on the clock
period.

The variable MinClk is initialized to the optimal clock
period MaxPathLength/N, where N is the number of cycles
that DFG would be scheduled into. Then, for each opera
tion in the ready list PList, we first determine whether it
would be a single-cycled operation or multi-cycled opera
tion using the delay of the operation and the current clock
period MinClk. If the operation delay is less than or equal
to MinClk, which means it is a single-cycled operation,
we then need to decide whether it could be chained with

its predecessor in the current state or should be deferred
to the next cycles. If the operation delay is larger than
MinClk, which means that it is a multi-cycled operation,
we must decide whether to schedule it across [(operation
de\a.y)/MinClk\ or [(operation de\&y)/MinClk] cycles. If
the scheduling of an operation increases the clock period,
the variable MinClk is updated. Once an operation is
scheduled, other non-ready operations become ready and
are inserted into the ready list. When the process reaches
the last cycle, all non-scheduled operations are scheduled
and the procedure returns the variable MinClk, which now
contains the longest delay of all cycles, that is, the clock
period.

num ol cycles - S
mult S6 ns

ad(l:24n«

Figure 8: Determining the minimum clock period

Clearly, the quality of this algorithm depends upon how
it determines chaining and multi-cycling. We now illus
trate how chaining and multi-cycling are determined with
the example in Figure 8.

Given that a multiplication operation takes 56 ns and an
addition takes 24 ns, the procedure computes a maximum

path length of 136 ns. Since the data flow graph would be
scheduled into five cycles, the optimal clock period, that
is, the current MinClk, is 136/5=27.2 ns. In the first
iteration of the procedure, it would attempt to schedule
the operation a. Given that the delay of operation a is
56 ns and the current clock period is 27.2 ns, a should
be a multi-cycled operation and the procedure needs to
determine whether to schedule it across [56/27.2J=2 cycles
or [56/27.2]=3 cycles. If a is scheduled across two cycles,
this means that average delay of the first two cycles would
be 56/2=28 ns each. Furthermore, if a is finished in two
cycles then there will be 3 cycles left (out of the maximum 5
states selected for this example) to schedule c and d, which
results an estimated delay per cycle of (24-j-56)/3=26.7 ns.
Thus, the clock period in this case, would be 28 ns. On the
other hand, if a is scheduled across three cycles, this gives
an average state delay of 18.7 ns for the first three cycles.
However, operations c and d now need to be finished within
two cycles, which gives an estimated delay per cycle of
(24-f-56)/2=40 ns. Since scheduling the operation a into a
two-cycled operation gives an estimation of shorter clock
period, the procedure decides to schedule o across the first
two cycles as shown in Figure 8(b).

The next iteration involves the scheduling of the oper
ation b. Note that the clock period MinClk has now been
updated to 28 ns. Since the delay of the operation b is less
than 28 ns, it is a single-cycled operation and its schedul
ing does not change the current clock period. The result
of this iteration is shown in Figure 8(c). The procedure
continues this process for the rest of the operations c and
d, and the final result is shown in Figure 8(d). The mini
mum clock period for scheduling the data flow graph into
five cycles is 28 ns.

Similarly, we can estimate that the minimum clock pe
riods for scheduling the data flow graph in Figure 8(a) into
one, two, three, or four cycles are 136 ns, 80 ns, 56 ns and
56 ns respectively. Therefore, we can conclude that for any
clock period larger than 136 ns, the minimum number of
cycles that DFG requires is one; for any clock period be
tween 136 and 80 ns, the minimum number of cycles that
DFG requires is two, etc. Figure 9(c) shows the resultant
shape function.

The algorithm above is repeated for each state in the
state transition graph. Finally, one shape function of clock
periods versus the number of cycles is generated for each
individual state. For example, the shape functions of the
states 50, 5l,S2 and 53 in Figure 4 are shown in Fig
ure 9(a), (b), (c) and (d) respectively.

5.4 Shape Function Merging
The shape function merging algorithm contains two

steps. It first produces the shape function for each exe
cution path by merging the shape functions of the states
on the path. It then tries to merge the shape functions
of all the paths into one shape function of clock periods
versus the number of cycles for the entire state transition
graph. Afterwards, the shape function of clock periods ver
sus execution times can be computed by multiplying the

24

dock period (ns)

24 26 56 80 136

ctock period (ns)

dock period (ns)

dockperiod (ns)

Figure 9: The shape functions of states 51,52,53 and
54

clock periods to the corresponding number of cycles.
If there exists loops in an execution path, the loops have

to be bounded and the number of iterations of each loop
has to be given to the algorithm, in order to compute the
total number of cycles this execution path requires. The
approach that we adopt is that our algorithm would iden
tify all the loops in the state transition graph, as discussed
in previous section, and then the user should specify the
number of iterations of each loop.

Given the shape function of a state that is inside a loop
and the number of loop iterations, the algorithm first up
dates the shape function. That is, given a point {elk, N) in
the shape function, assume the number of iterations of the
loop is k, then the point is updated to {clk,k x A^). Con
sider the example shown in Figure 4, given that state 51 is
in a loop and the loop would iterate three times, the shape
function of DFGi is updated and shown in Figure 10.

After the shape functions of all the states inside loops
are updated, the next step of the merging algorithm is to
sum up all the shape functions of the states in an execution
path. For example, assume there are only two states in the
execution path. Given a clock period elk, if the numbers of
cycles of the states when the clock period equals to elk are
A^i and N2 respectively, then the total number of cycles
of this execution path when the clock period equals to elk
is A^i -f A^2' Figure 10 illustrates the merging of shape
functions for path 1 and path 2 identified in Figure 6.

Having obtained the shape functions of clock periods
versus the number of cycles for all execution path, the al
gorithm then tries to merge aU the shape functions by, for
each clock period, finding the maximum number of cycles
among all execution paths. For instance, assume there are
two execution paths. Given a clock period elk, if the num
bers of cycles of the paths when the clock period is equal to
elk are Ni and N2 respectively, then the maximum num
ber of clock cycles the state transition graph requires when

the dock period equals to elkis max{Ni, Nz). Figure 11(a)
showsboth of the shape functions of execution paths 1 and
2. Note that given different clock periods, the longest ex
ecution paths are different. For example, when the clock
period is 28 ns, the execution path 1 is longer than path
2; yet, when the clock period is 24 ns, the execution path
2 is longer than path 1. Figure 11(b) shows the result of
merging the shape functions of path 1 and 2, which is the
shape function of the entire state transition graph.

dock period (ns)

dock period (ns)

dock period (ns)

dock period (ns)

24

dock period (ns)

2428 56 80 138

dock period (ns)

dock period (ns)

dock period (ns)

Figure 10: An example to illustrate the merging of state
shape functions into execution path shape functions

5.5 Control Unit Delay Estimation
The control unit sequences a design through a series of

cycles, each of the cycles represents the set of datapath
operations performed concurrently in the same cycles of
the design. In general, if a shorter clock period is used,
the total number of cycles would become larger, and con
sequently, the control unit becomes more complex and the

crodrp^riM/Cns; deck pstlod (n»)

Figure 11: An example to illustrate the merging of exe
cution path shape functions into STG shape function

control unit delay is longer. When the number of cycles is
very large, the control unit delay contributes significantly
to the clock period and cannot be neglected. In the pre
vious section, an algorithm used to estimate the relation
between the clock period and the number of cycles by con
sidering only the datapath was presented. In this section,
we will explain how to estimate the control unit delay and
update the shape function accordingly.

As illustrated in Figure 5, the control unit consists
of a state register, a decoder, the control logic and the
next-state logic. The control unit may be implemented
as random-logic, a read-only memory(ROM), or a pro
grammable logic array(PLA). In this report, we will as
sume a random-logic implementation as shown in Fig
ure 12.

control I
logic I

state register

next-stale

lines

Figure 12: A random-logic implementation of the control
unit

Given a clock period elk and the shape functions of all
the states in the behavior, the number of cycles each state
will be executed in can be obtained easily. Hence, the total
number of different control words the control unit has to

generate can be determined by summing up the number
of cycles of each state. Consider each cycle in the behav
ior would be a state in the state-machine the control unit

implements. We assume that the present states are en
coded as binary valuesand are stored in the state register.
Therefore, given that the total number of cycles is N, the
state register bitwidth will be 5 = log2 N. Taking the
fi-bit output of the state register as input, the decoder
decodes it into an A^-bit output such that each bit corre
sponds to one cycle. The decoder consists of B inverters
and N AND-gates. Each inverter is used to invert one bit
of state register, and the number of inputs to an AND-gate
is B.

One OR-gate is required for each control and next-state
line. The size, that is, the number of inputs, of an OR-gate
for a control line is identicad to the number of states dur

ing which the corresponding control line is asserted. For
example, a control line of a functional unit will be asserted
whenever the functional unit performs an operation bound
to it. In the worst case, there exist functional units that ate
used in every cycle and consequently, the OR-gates that
generate the control lines for these functional units would
have N inputs. To determine the size of an OR-gate for
a next state line, we assume that each next-state line is
"toggled" on the average during half of the states in the
design since the state values are binary encoded. Thus, the
size of each OR-gate driving a next-state line is assumed
to be equzd to N/2.

In reality, the component library usually provide AND
and OR-gates with a limited number of inputs. Thus, the
AND and OR-gates in our model need to be decomposed
into a multi-level implementation when the large AND or
OR gates are not available in the library. The multi
level decomposition aims to produce an implementation
with the minimal number of levels. This is guided by the
fact that a multi-level implementation of a large AND-gate
with / number of inputs using AND-gates with a maximum
of M inputs is in the form of an A/-ary tree. And the height
of the tree, which corresponds to the number of levels, is
equal to flogji^/]. Therefore, assume that the component
library contains AND and OR-gates with a maximum of
M inputs, and let Tand,Tor, and Tinv denote the delay
of an Jlf-input AND-gate, an Af-input OR-gate and an in
verter, respectively. The following equations are used to
estimate the decoder, the control logic, and the next-state
logic delay.

Tdec=Tinv + HogAf X Tand

-Tinv + [logA^ logj JVl x Tand
Tci=|'logji, N] X Tor

TNS=\\ogj^{N/2)] xTor

Having obtained Tdec,Tcl and Tns using the equa
tions above and the propagation delay and the setup time
of the state register from the component library, the con
trol unit delay can be computed by the equation given in
previous section.

Now let's consider a shape function of clock periods
versus the number of cycles generated by the algorithm

described in the previous section. The shape function is
basically composed of a set of (clock period, number of cy
cles) points. Each point represents a fixed number of cy
cles and the minimum datapath delay of the correspond
ing number of cycles, since the algorithm introduced in
the previous section does not take into account the control
unit delay. Given a point {clk,,N), we can use the esti
mation method discussed above to estimate the delay of
the control unit. Assume the delay of the control unit is
TcuiN), the algorithm would update the point {elk,, N) to
{clki + Tcu{^), N). Note that given two points {elk,,N)
and (c/fc,4i, N + 1), where elki < elki+i, it is possible that
elki + Tcu{N) > cffci+i -|- Tcu{^ + 1)- In this case, the
algorithm would drop the point {clki-'rTcu{^^),N).

After the shape function of clock periods versus the
number of cycles is updated, we can obtain the shape func
tion of clock periods versus the execution times by multi
plying the clock periods to the corresponding number of
cycles.

6 Experimental Results
We have implemented the proposed quality metrics and

hints in our synthesis system. Interactive Synthesis En
vironment (ISE). We have also tested our performance
optimization methodology on four examples: addr, com
pute, deqO, and plus. These examples are modules from
the MPEG algorithm, which is an ISO standard compres
sion/decompression algorithm for moving pictures.

The initial specification of the four modules contain
states which need to be further refined during interactive
synthesis process. For all examples, we have used the VLSI
Technology Inc. VDP370 1.0 micron Datapath Element Li
brary [12] to obtain the delays of the components.

Figure 13 shows the experimental results of the four
examples. The column input specification gives the clock
period, the number of clock cycles of the longest execu
tion path, and the maximum execution time of the origi
nal behavior. In the first step in our experiment, we used
our algorithm to generate a shape function of clock pe
riods versus execution times for each example, and se
lected the clock period that requires the shortest execu
tion time. The results are shown in the column slack min

imization. Also shown is the percentage in performance
improvement {imprv%). It is computed by (execution ttme
of the original behavior - execution time after slack mtn»-
mization)/ex€cutton time of the original behavior.

Afterwards, we tried to minimize the number of cy
cles of the longest execution path by merging the states
or rewriting the state transitions. The results are shown
in the column # of cycles minimization. The results of

is computed by (execution time after slack min
imization • execution time after minimizing the number
of cycles on the longest path)/execution time after slack
minimization. Finally, the column total imprv (%) shows
the improvement of the final performance compared to the
performance of the original scheduled behavior.

In summary, the slack minimization technique improves

the performance "of the examples by an average of 16%,
except for the compute module. We observe that this is
due to the fact that the original description of the com
pute module has very small clock slacks. Furthermore,
merging states on the longest execution path or rewrit
ing state transitions improves the performance by another
34%. The reason of this remarkable improvement is be
cause that these examples are all loop-intensive and we
are able to minimize the number of cycles inside the loops.
By reducing even a small number of cycles in the loops, the
total number of cycles are reduced tremendously. Overall,
we are able to obtain an average of 42.6% improvement of
performance compared to the manual scheduled behavior.

7 Conclusion

In summary, we have presented a methodology for per
formance optimization in interactive behavioral synthesis.
This methodology essentially attempts to improve the per
formance of a given scheduled behavior by first reducing
the clock slack in the behavior and then minimizing the
number of clock cycles required by the longest execution
path. The experimental results on several examples sup
port our methodology by showing an average of 42.6% im
provement in performance compared to manual design.

We have also proposed several quality metrics and hints
required for the user to utilize the methodology. An algo
rithm is developed to provide the user a useful hint of what
clock period can best reduce clock slacks. Currently, we
are working on design hints that can assist the user in
merging states and rewriting state transitions.

8 Acknowledgements
This work was partially supported by the Semiconduc-

ter Research Corporation grant #94-DJ-146, and we grate
fully acknowledge their support.

9 References
[1] S. Bhaltacharya, S. Dey, and F. Brglez, "Clock Pe

riod Optimization During Resource Sharing and As
signment," in Proceedings of the 31st ACM/IEEE De
sign Automation Conference, 1994.

[2] O. A. Buset, and M. I. Elmasry, "ACE: A Hierarchi
cal Graphical Interface for Architectural Synthesis," in
Proceedings of the 26th ACM/IEEE Design Automa
tion Conference, 1989.

[3] R. Camposano, and W. Wolf, High-Level VLSI Synthe
sis, Kluwer Academic Publishers, 1991.

[4] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, Bigh-Levei
Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, 1992,

[5] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Spec
ification and Design of Embedded Systems, Prentice
Hall, 1994.

[6] P. Hilfinger, and J. Rabey, Anatomy of a Silicon Com
piler, Kluwer Academic Publishers, 1992.

[7] A. Jerraya, I. Park, and K. O'Brien, "Amical: An In
teractive High-Level Synthesis Environment," in Pro-

input speafication

138 48165

130 1976

134 25865

130 1989

slaeK minimizatiofl • of cydes minrmization

2726.3

1003,2

1539 32.8

1248

Figure 13: Experimental results on four benchmarks

ceedings of the European Design and Test Conference,
1993.

[8] D. W. Knapp, "An Interactive Tool for Register-
Transfer Level Structure Optimization," in Proceedings
of the 26th ACM/IEEE Design Automation Confer
ence, 1989.

[9] D. W. Knapp, "Manual Rescheduling and Incremental
Repair of Register-Level Datapaths," in Proceedings of
International Conference on Computer-Aided Design,
1989.

[10] S. Parameswaran, P. Jha, and N. Dutt, "Resynthesiz-
ing ControUers for Minimum Execution Time," in Pro
ceedings of the 2nd Asia Pacific Conference on HDL
Standards and Applications, 1994.

[11] D. E. Thomas, E. D. Langese, R. A. Walker,
J. A. Nestor, J. V. Rajan, and R. L. Blackburn, Al
gorithmic and Register-Transfer Level Synthesis: The
System Architect's Workbench, Kluwer Academic Pub
lishers, 1990.

[12] VLSI Technology Inc., VDPS70 1.0 Micron CMOS
Datapath Cell Library, 1991.

