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The common property nature of production in ocean fisheries results in

the dissipation of economic rents and has led to the development of marine

regulatory agencies throughout the world. These agencies face the problem of

managing a fishery when the stock of fish is not-directly observable. The use

of total harvest as an indicator of stock biomass is widespread, although the

way in which harvest is used as a statistic of biomass varies from one appli­

cation to the next. Since the agency's management decisions dep~nd critically

upon the estimates of the fish stock, and since these estimates are usually

inferred from the actions of economic agents, more efficient methods of making

such inference have high potential for improving the management of fish popu­

lations.

This paper attempts to circumvent the problem of unobservable stock by

testing the applicability of the extended Kalman filter to infer stock size

and allow for maximum likelihood estimation of the unknown parameters of a

fishery model representing the Pacific Halibut Fishery. The Kalman Filter

algorithm provides unbiased, minimum variance estimates of the stock biomass

in each time period. The success of this filter in providing estimates of

biomass is measured through the prediction error of each equation in each time

period. The unknown parameters of the fishery model can then be estimated

using the technique of maximum likelihood through the use of prediction error

decomposition. This technique has the advantage over other stock production

models in that it incorporates the stochastic variability of stock size,

catch, effort and all other relationships included in the model. It can also

estimate time varying parameters, allow for a variety of functional forms and

employ all available information pertinent to the biology and economy of the

halibut fishery to explain and predict the level of catch, effort and price.

The validity of the model can be tested using the classical statistical
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techniques.

TheQretical Model

The Kalman filter algorithm is used to provide us with an unbiased esti­

mate of the stock biomass that minimizes the squared difference between the

actual and predicted biomass in any time period. This section will explain

this algorithm for a general model of a fishery.

The state equation describes the relationship between the unobservable

variable and past values of this variable and other observable variables. The

measurement equations describe the behavior of the observable variables that

are dependent on the stock biomass.

Let the n state variables, Xt and Xt-1 be vectors of the unobservable

variables at time t and t-1, respectively. They represent the stock biomass

of the fishery. Let Nt _ 1 be a vector of the observable variables that affect

the state variables. Examples are water temperature, salinity and strength of

currents. This vector also inclUdes catch in time t-l when escapement, stock

minus catch, 1s appropriate for predicting the population biomass in the next

time period. Let Q be a vector of the parameters In the state equation and wt

be a vector of white noise variables.

The state equation is

Wt - N(O,Q)

The r measurement equations describe the relationship between the vari­

ables of interest (eg. catch, price, effort, season length) and the factors

affecting these variables. Some equations will include stock, others will
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not. Let Zt be the rx1 vector of observed variables of interest -- catch,

exvessel price and inp~ts used in production. Let Lt be the vector of

observed exogenous and endogenous variables affecting Zt' -- management res-

trictions, prices and effort. Let a be the vector of parameters of the meas-

urement equations, and vt be a vector of white noise variables.

The measurement equations are

Vt - N(O,R)

The error terms from the state and measurement equations, wt and Vt' are

assumed uncorrelated.

If these equations are linear, the expectations of the state equations

and error covariance equation can be derived regardless of the probability

distribution of the state variables. In the case they are nonlinear, the true

expectation of the state variable is unknown without some a priori deterroina-

tion of the probability distribution of Xt • In order to obtain practical

where

estimation algorithms for nonlinear systems, the extended Kalman filter

requires the expansion of f in a Taylor series about an estimate of Xt _1 or

Xt-llt-1. Nt _1 1s an observation of the variables Nt _1 and Q is fixed.

where Fx contains elements in row i column j equal to ~fi/~Xj lx t

t.t-1

R1 represents the remaining terms of this expansion. Dropping all but the

first order approximation, the expectation of the state vector is

(4)

where
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with variance

(6)

where

Equations (4) and (6) provide estimates of the state vector and error

covariance matrix given all past observations. Given a prior estimate of the

state, Xt : t - 1 , we seek an updated estimate, denoted Xtl t given the actual

observation of Zt. Xt~t contains all information up to and including time t.

Motivated by the linear relationship of the ordinary and generalized recur-

sivve least squares estimator, we seek a filter in the linear recursive form:

Xt;t = at + KtZt (7)

where at and Kt , the gain matrix, is to be derived given the conditions of

unbiasedness and minimim variance. at is chosen from the conditon that the

estimate Xt be unbiased (i.e., E(Xtl t - Xt) = 0). This implies that at =

Xt1t- 1 - Ktn(a,Xt,L t ) or

Xt1t = Xtlt-l + Kt[Zt - n(a,XttLt)]

where n denotes the expected value of h.

(8)

The optimal gain matrix, Kt , is chosen to minimize an appropriate func­

tion of the error covariance matrix, Pt.

Pt = E«(Xtl t - Xtl[Xtl t - Xt]T) (9)

SUbstituting equation (8) for Xt and equation (2) for Zt into equation (9) and

using the relationship Pt:t-1 : E«Xt l t - 1 - Xt )(X t l t - 1 - Xt )), Rt = E(VtV~)'

vt is uncorelated with Xt l t - 1 and Xtt and Pt is independent of Zt we obtain



Pt = Pt l t -1 + Kt

[h(a,Xt,Lt)

+ E«(Xt1t_1

+ KtE(th(O)

+ KtRKt
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E«(h(Xt,Lt,a) - n(a,Xt,L t )]

- nCa,XttLt)1T)Kt

_ Xtl*~h(O) - n(C)l T)K t

fi(O)J[X t : t _ 1 - Xt,T)

(10)

We want an estimate of the (approximate) conditional mean of Xt that is

minimum variance estimate; that is, it minimizes the class of functions:

J t = E[(Xtlt - Xt)TS(Xt1t - Xt )l

for any positive semidefinite matrix S. We can choose S = I and choose Kt to

minimize

J t = E«(Xtl t - Xt1T[Xt:t - Xt) = tracetPt 1 (11)

Taking the trace of both sides of equation (10), substituting the result into

equation (11) and solving the equation ~J/OK = 0 for Kt gives us the desired

optimal gain matrix:

Kt = -E«(Xt lt-1 - Xt lCh(a,L t ,Xt) - n(a,Lt,Xt)]T)*

tE([h(O) - n(e)l(h(o) - n(a),T) + Rl-1

(12)

From the substitution of equation (12) into equation (10) and some manipula-

tion the result is,

Equations (8), (12), and (13) provide updating algorithms when a measure-

ment, Zt, is taken. The expectations inside these algorithms depend on the

probability density function of Xt to calculate n(a,Xt,L t ). For the same

reason used in finding the expectation of the state variables, expand
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h(a,Lt,Xt ) = h(Xtlt_1,Lt,a) + Hx(Xt:t_l,Lt,a)fXt - Xt : t _l 1 + R2

where Hx(O) is the r x n matrix whose ijth element is equal to

bhi/~Xj:X=Xt:t_l. Truncating the remainder, R2, substituting this approxima­

tion for h(a,Xt,L t ) into equations (8), (12), and (13) and carrying out the

expectations produces the extended Kalman filter measurement update equations.

In summary we have:

Xt = f(Xt_l,N1,Q) + Wt Wt - N(O,Q) (A)

Zt = h(a,Lt,X t ) + Vt Vt - N(O,R) (B)

Xt : t _ 1 = f(X t - 1Jt-l,N t -1,Q) (a)

Pttt-1 = Fx(Xt-1lt-l,Nt-l,Q)Pt-1Fx(Xt-1lt-l,Nt11,Q) + Q (b)

Kt = Pt:t_1H~(Xt:t_1,Lt,a)*(Hx(O)Pt~t_1Hx(.)T + R)-1 (e)

Xt = Xt l t - 1 + KttZt - h(a,Xtlt_ltLt)l (d)

Pt = [I - KtHx(Xtlt-l,Ltta)1Ptlt_l (e)

This system of equations will provide us with an estimate, Xtltt that is

a minimum mean squared unbiased estimator fot-the state vector Xt _ Given Xt~t,

Nt, and Lt +" we can predict Xt + 1 l t by Xt+1 and Zt+1 by Zt+l:t.

This algorithm is called the extended Kalman filter. The gain matrix in

equation (c) contains random variables that depend on the estimate Xt : t - 1

through the matrices Fx (X t l t - 1,Nt-1,Q) and Hx (X t l t _1,Lt,a). This is because

we have chosen to linearize f{.) and h(.) about the current estimate of Xt _

Also, the (approximate) estimateion error covariance matrices, ~t, are also

random, depending on the time-history of Xt--i.e_, the actual estimation accu­

racy is trajectory dependent. Therefore, the sequence Kt and Pt must be com­

puted in real time inserting the values for Xt : t - 1 and Xtl t at each iteration.
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Since the matrix Pt in equation (e) is an approximation to the true

covariance matrix due to the linearization of f(.) and h(.), actual filter

performance should be verified by Monte Carlo simulation. Estimation accuracy

is increased by using higher orders in the Taylor series expansion of f(.) and

h(.). According to Gelb, the extended Kalman filter has been found to yield

accurate estimtes in a number of important applications.

The use of this algorithm requires initial 0~t~~ites of X, and Pl. They

can be obtained through some knowledge of the stock size or estimated using

maximum likelhood estimation to be discussed next.

Maximum LikelihoQd Estimation .w: ..the. Unknown Parameters

Now that we have chosen a technique for estimating the stock biomass in

each time period. we want to estimate the unknown parameters in the state and

measurement equations. If wand v are normal and Xo has a normal distribution

with mean, x and variance Po, then the joint density of Z is

LogL(Z) = -(TN/2)log2" _ (T/2}loglR: _ (TI2)(Z-E(Z»TR-1(Z-E(Z»

This likelihood function can be rewritten using the definition of conditional

probability.

log L(Z) =

The first term on the right hand side of this equation is the distribution of

each Zt conditioned on past values of this variable. The second term is the

unconditional distribution of 21• This expression allows us to write the

likelihood function in terms of the errors associated with the prediction of

Zt given Zt-1' ••• ' Z1- We denote this prediction as Ztlt-1. These errors are
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e t = Zt - Ztlt-1

e t = Zt - h{a,X t :t_1,Lt )

Ztlt-1 is the optimal predictor of Zt given Xt:t-1. The variance of et is

Ft = Et e t e£l : E~(Zt - Ztlt-1)(Zt - Ztlt_l)l

Ft = E(h(a,Xt,Lt ) - h(a,Xtlt_1,Lt»)*h(a,Xt,Lt) - h(a,X t :t_1,Lt »1 + R

Since the expection in the above equation is nonlinear in the stock biomass,

we need to use the probability distribution of Xt in order to evaluate this

expectation. We avoid this, however, by expanding h in a Taylor series about

Xt1t- 1• We substitute the first order of this expansion for h(a,Xt,Lt) in the

previous equation and take the expectation. The result is

Ft = Hx * Ptlt-1 * Hi +R t

where Hx and Ptlt-1 is as described above and Hx is evaluated at Xt : t - 1

Given the normality assumptions above, the likelihood function is

T T
log LCZ" ••• ,ZT) = -(TN/2)log2~ - 1/2 1 loglFtl - 1/2 J eTtF-t1et

t=1 t=1

Given initial estimates of the parameters, Q and a, we choose the values of

these parameters to maximize this likelihood function. Under regularity con-

ditions it can be shown that the parameters are asymptotically normal with

mean Qo and Ao and variance equal to the inverse of the informatio~ matrix.

It is assumed that the random variables are asymptotically independent. If

the initial parameter estimates are consistent, then the maximum likelihood

estimates will be asymptotically unbiased and asymptotically efficient.
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Application .t..Q.~ Pacific Halibut Fishery

The International Pacific Halibut Commission (IPHC) was established in

1923 by a treaty between Canada and the United States. IPHe's purpose is to

rehabilitate and maintain Pacific Halibut stocks at or near maximum sustain­

able yield. Since they cannot directly observe the stock of halibut, they

rely on changes in catch per unit effort and age composition studies to manage

the resource. The Halibut fishery is divided into three management areas in

the North Pacific Ocean as shown in figure 1. The management tools used by

IPRe are gear restrictions, size limits, the regulation of incidental catch

and an annual quota on total catch. The Quota is enforced by closing the

halibut fishing season when the Quota is met.

Although halibut are exploited by a variety of vessel types that are

shared with other fisheries, only one type of gear, longline skate, has been

in use since the early days of the fishery. Halibut are processed as fresh or

frozen and are marketed through channels that have changed slowly over time.

Management of the fishery began in 1924.

The biology of the fishery is such that fishermen exploit a large number

of year classes simultaneously. For this reason, Crutchfield states that the

Halibut fishery is "ideally characterized by the traditional biomass-fishery

model." Halibut are demersal and are found on the continental shelf of the

North American coast from Santa Barbara, California to Nome, Alaska.

Although the stock of halibut in anyone time period is not directly

observable, it plays a role in the determination of catch, effort and season

length. By developing a systematic filter that uses this information to infer

the biomass in each time period, we can estimate a simultaneous equations
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describes the effect of effort and stock biomass on total catch in area 2.

biomass, and the quota on the amount of applied effort. The season length

The catch equation

vals formed using maximum likelihood estimation.

equation. The parameters of this model can be estimated and confidence inter-

observations of the observable variables and the hypothesized stock biomass

through the use of the expected value of stock biomass conditioned on all past

time period. A prediction error is the difference between the actual value of

biomass in each time period. This filter provides prediction errors for each

The unobservable stock biomass in area 2 is represented as an equation

The price demand equation describes how exvessel price is determined

catch, effort, price and season length and the predicted value obtained

equations discussed above, a Kalman filter for nonlinear equations has been

developed that provides an unbiased, minimum variance estimate of the stock

and indirect catch in area 2. Using this state equation and the measurement

relating biomass in the current year to past escapement (biomass minus direct

fish. the effort equation describes the effect of halibut price, stock

Effort is measured using the number of skate soaks employed in harvesting the

equation relates season length in days to the quota, stock biomass and effort.

given harvest, income, and cold storage holdings.

describing the behavior of the stock biomass over time. The measurement equa-

tions include a price demand equation, a harvest equation, an effort equation

and a season length equation.

model of the Pacific Halibut fishery. The model includes a state equation
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PACIFIC HALIBUT FISHERY MODEL

STOCK

CATCH

EFFORT

SEASON LENGTH

seaSODt = sl(1) + 81(2) * stockt + sl(3) * effortt + s1(4) • quotat + 'sIt

HALIBUT PRICE

halpricet = h(1) + h(2) * (catch t + catch3t + catch4 t )

+ h(3) • pincomet +h(4) * holdingst + 'ht

The initial parameters are nonlinear two stage least squares estimates

using IPHC estimates of stock biomass in area 2 obtained from. migratory cohort

analysis. After each iteration, the parameters are used to obtain et and Ft

from the Kalman filter algorithm.

Results

The conditional and updated estimates of biomass in the area 2 Pacific

Halibut Fishery are presented in Tables 1 and 2. The parameter estimates
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obtained from the numerical optimization are presented in Table 3.
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TABLE 1: CONDITIONAL ESTIMATES OF PACIFIC HALIBUT BIOMASS 1936-1982
With Standard Deviations (in round weight/metric tons)

YEAR

1936
1931
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1951
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1913
1974
1975
1976
1971
1978
1979
1980
1981
1982

STOCK(t/t-l)

56324.1
45858.9
40922.6
42675.4
40855.0
40952.0
43309.5
45813.9
46749. 1
49133.7
53446.2
51493.7
53059.2
55157.2
56419.6
56709.4
54002.9
53749.0
55117.0
54937.5
59190.5
55185.1
54749.0
53528.8
52247.2
50147.0
50369.9
48083.3
43520.2
47330.4
42835.1
43394.9
42643.9
44200.1
38944.0
37102.0
36227.7
34716.7
34407.1
32850.2
28601.9
26363.6
32090.6
33329.5
34294.0
35430.6
35320.6

STn DEV

3505.6
4597 .9
4807.6
4838.2
4819.4
4808.2
4807 •1
4803.6
4805.9
4808.5
4784.9
4774.5
4175.4
4765.9
4760.6
4757.3
4754.9
4763.0
4796.2
4796.8
4786.8
4795.9
4779.2
4787.2
4791 .5
4807.9
4808.7
4802.3
4847.9
4851.2
4889.5
4880.4
4912.2
4931.3
4940.7
4964.0
5005.2
5024.3
5050.0
5085.1
5116.6
5112.6
5101.3
5102.0
5086.0
5092.8
5096.5
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TABLE 2: UPDATED ESTIMATES OF PACIFIC HALIBUT BIOMASS 1936-1982
With Standard Deviations (in round weight/metric tons)

YEAR STOCK(t/t) STD DEV

1936 45213.6 2301.4
1931 41893.4 2510.3
1938 43303.9 2561.4
1939 42842.0 2524.2
1940 43340.6 2511.9
1941 44062.1 2537.0
1942 115582.4 2559.1
1943 41680.9 2572.3
19114 50700.3 2605.5
1945 52191.6 2611.2
1946 54049.5 2580.0
1947 53979.6 2595.7
1948 56067.2 2602.5
1949 56284.6 2606.8
1950 56559.7 2605.1
1951 56758.2 2518 .. 3
1952 56412.2 2585.3
1953 58855.7 2640.1
19514 61250.8 2639.8
1955 59853 .. 8 26614.2
1956 60884.5 2640.9
1951 51768.5 2615 .. 8
1958 5&557.2 2615.0
1959 55689.4 2608.4
1960 54700.1 2615.3
1961 53134.0 2612.0
1962 51163.9 2518.5
1963 46417.3 2588.5
1964 45522.1 2640.8
1965 45105.0 2030.0
1966 45125.3 2625.7
1967 42490.8 2654.5
1968 42081.2 2694.9
1969 41811.4 2642.4
1970 38212.0 2644.8
1911 35966.8 2619.0
1972 34520.4 2618.7
1913 31992.5 2102.4
1914 29487.1 2717.5
1975 28510.5 2680.0
1976 26683.6 2635.2
1977 28078.5 2722.3
1918 28693.4 2742.4
1979 30425.1 2739.9
1980 30271.0 2764.0
1981 30480.4 2766.5
1982 30143.6 2773.2
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TABLE 3

PARAMETER ESTIMATES OF THE PACIFIC HALIBUT FISHERY MODEL

STOCK
B(1) = 7.551
8(2) :: 0.842

CATCH
c(1) :: .0120
0(2) :: 0.810
c(3) :: 0.663

EFFORT
e{l) :: 0.017
e(2) :: 0.111
e(3) = 0.378
e(4) :: 0.879

SEASON LENGTH
sl(1) = 209.3
81(2) =-0.010
sl(3) =-0.0222
51(4) :: 0.0308

HALIBUT PRICE
h(l) :: 415.92
h(2) =-0.0101
h(3) :: 0.3897
h(4) =-0.1555

Optimal Halibut OUQta

We used dynamic stochastic policy to compute the optimal feedback rule

for the management of the area 2 Pacific Halibut Fishery. Revenue was taken as

the objective of the management agency. This 1s imperfect for several rea-

sons, the most obvious of which is the neglect of costs. More fundamentally,

the Commission is able to determine the degree of inefficiency in the fishery

by setting the quota. Quota determines season length which in turn determines

the proportion of the year that the fisherman engage in some other pursuit nnd

the capital stock is under utilized. The Commission may also wish to weight

the number of fisherman employed or the co~sumer surplus generated by the
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fishery as well as the revenue to the fisherman. Nevertheless, this study

concerns itself only with the revenues to the fisherman.

In this policy simulation only quotas are examined. As explained ear-

lier, gear restrictions and size limits are also important regulatory tools.

Both of these other tools seem to be better examined in a model where the age

structures are described.

Given the small number of state and contrOl variables, there are many

choices for the method of constructing an optimal control.. Direct use of

dynamic programming with the error terms simulated would preserve the struc-

ture of the model and provide the best answer. Since the model is somewhat

preliminary and that method is cumbersome, expanding the model in Taylor

series to produce a linear quadratic Gaussian control problem was the method

chosen. The model was expanded about its values in the last year for which

there is data, 1982. (Another possible method would be to compute the deter-

ministic optimal control and minimize variations about it as Athans, among

others suggests).

With these caveats, the control model is,

max
u

SUbject to

The values of the parameters were found by the linearization described abOve

and they are:
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Values for Optimization

name value

A 1.3

B -1.13

g 51.12

h 197.23

G .000576

H .0173

r , .01

The solution method was to use the recursion equations given in

Athans(1972). When the problem was specified as having 15 periods, we found

that the first 5 periods had essentially the same control rule, indicating

that this was also the rule for a very long horizon problem. This optimal

control was:

u = -6219 + .467x

where u is the optimal Quota and x is the stock expressed as deviations from

their values in 1982. The form of the control reflects the linearization,

variables were measured from their 1982 values. Thus, the quota is its 1982

value, 5430, less a large constant, plus .467 times the difference between the

current stock and the 1981 stock. Given this feedback rule, the optimal pol­

icy is to have a negative quota, which is impossible. Instead, the Quota

should be kept zero until stock size rises high enough.

that point by solving:

x = Ax + B (.467x - 6279)

One can calculate
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for x which gives 31,000. This implies that the optimal policy is to let the

stock grow until it is approximately double the estimated stock in 1981~

Without any fishing whatsoever, this will take about 3 years in this model.

So the policy conclusion is to undergo a moratorium for several years. Of

course the linearization of the model and the lack of consideration of steady

employment as an objective vitiate this conclusion as a serious policy

prescription.. The direction -- less fishing -- to get a higher present value

of catch is however likely correct.

Value ~ Better Information

The value of a dynamic stochastic program is well known to depend upon

the variance of the estimates of the state variable, even though, in the

linear quadratic case the optimal policy is independent of these variances.

Estimates of stock that have lower variance can then be transformed directly

into estimates of increased value of an optimal program. For our model the

formula is

dV/d(var) = .129

where V is the value of an optimal program. ThUS, for the 1973 value of

stock, the present value of the loss to having less than perfect information

was 3.25 million dollars. For comparison, the value of the fishery for one

year is about 12.0 million dollars, or its present value is about 171 million

dollars. So the value of information is about 2 >~ of the value of the

fishery.

Of course, not all of the value of information can ever be captured

because perfect information on a fishery is unobtainable. To get some idea of

how much the value could be increased through better stock estimates we
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compared an estimate of stock based on the IPHC estimate with xcond. The IPHC

made stock estimates until 1913 and we regressed the last ten years of these

estimates on xcond. The regression had a coefficient of 1.38 and a standard

error of 4296. Thus the variance of the stock estimate (1.38 times IPHC esti­

mate) is 2.61 times the variance of xcond. To put this another way, using the

affine transform of the IPHC estimate that comes closest to the filter esti­

mates would, just through the variance effect, cost an additional 5.3 million

dQllars in lost expected present value revenues. This shows that the value of

the ;lnformatiQn from filtering is potentially quite large.

The value of better stock estimates is direct as well as comming through

better information. The feedback rule developed shows that half of all mis­

takes in the stock estimates are immediately translated into mistakes in the

quota set. Thus, in the optimal feedback rule, policy is very important to

the correct stocks.

In conclusion, better estimates of stocks would change policy in the two

obvious ways shown by dynamic stochastic programming: There is a direct value

to information with less noise and there is value to choosing the right con­

trol rather than the wrong control. The stock estimates presented here use a

radically different methodology from those made by the IPHC. Basicly they

sacrifice considerable biological detail while gaining statistical method.

They formalize the notion that catch per unit effort measures stock, but give

up the age classification of the population. Under these circuIDstances it is

impossible to announce which stock estimates are right. Their differences, as

the above numbers make clear are more than worthwhile running down, which is,

of course, the topic of our further research.
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Since this analysis takes into account the dynamics of the halibut

fishery, the optimal quota is established using optimal control methods.

Because the Kalman filter provides an estimate of the variance of stock

biomass (predicted vs. actual), we can determine the degree to which addi­

tional controlled sampling of the population (as well as other factors that

may provide information of stock biomass) will reduce the variance of stock

estimates. Then we can estimate the value of reducing this variance in terms

of the difference it makes in the fishery management plan.

A Kalman filter approach to unobservable variable problems has been used

in navigation and engineering. This project is an extension of state space

models and Kalman filter theory to economic problems where there exist unob­

servable variables and time varying parameters. The results of this project

can be used by IPHC to predict the pattern of harvestteffort and prices given

various management strategies. Using optimal control theory, IPHC can deter­

mine the value of new 'information as well as optimal quotas, opening date,

size limits and other management tools that will extend the fishing season and

allow for more efficient use of the halibut resource. The methodology used in

this project can be applied to other fisheries since the Kalman filter can be

adapted to conform to the information and knowledge relevant to the biology,

economy and management of each individual fishery.
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