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Inhibition of Early Biochemical Defects in Prodromal Huntington’s  
Disease by Simultaneous Activation of Nrf2 and Elevation of Multiple  
Micronutrients 

Kedar N. Prasad1 and Stephen C. Bondy2,* 

1Vital Wellness Institute, P.O. Box 8477, Santa Rosa, CA 95407, USA; 2Center for Occupational and Environmental 
Health, Department of Medicine, University of California, Irvine, CA 92697-1830, USA 

Abstract: Huntington’s disease (HD) is a progressive fatal dominant hereditary neurodegenerative disease of the brain, 
which primarily affects the cortex and the striatum. The disorder is typified by an expansion of more than 35 repeats of 
the nucleotide triplet cytosine- adenine-guanosine (CAG) which codes for the amino acid glutamine in the huntingtin 
gene. Despite studies of several decades, there are no effective means to block or postpone the appearance of symp-
toms of HD. Analysis of these studies led us to propose that increased oxidative stress and chronic inflammation are 
earliest events in the pathogenesis of HD, and together with excessive glutamate release, participate in the progression 
of the disease. This review briefly describes evidence for the involvement of oxidative stress, chronic inflammation 
and glutamate in the pathogenesis of HD. It is proposed that attenuation of these biochemical abnormalities together, 
may delay the appearance of symptoms of HD. In order to achieve this goal, the simultaneous activation of the nuclear 
transcriptional factor-2/antioxidant response elements (Nrf2/ARE) pathway that would enhance the transcription of 
target genes coding for antioxidant enzymes and phase-2-detoxifying enzymes, and an elevation of the levels of anti-
oxidant compounds by supplementation may be needed. Normal mechanisms of activation of Nrf2 requiring reactive 
oxygen species (ROS) may be impaired in HD, but certain antioxidant compounds can activate Nrf2 without ROS. Use 
of a combination of micronutrients that can activate the Nrf2/ARE pathway and enhance the levels of antioxidant com-
pounds is suggested.  

Keywords: Antioxidants, glutamate release, huntington’s disease, inflammation, micronutrients, nuclear transcriptional factor 
Nrf2, oxidative stress. 

1. INTRODUCTION 

 Huntington’s disease (HD) is an autosomal dominant 
heritable neurodegenerative disease predominantly involving 
the striatum and cortex. The symptoms primarily include 
movement disorders, cognitive dysfunction and psychiatric 
problems. The prevalence of HD in the USA is around 1,550 
new cases annually. It appears to be much less common in 
Asia [1].  
 In the huntingtin gene of normal people, the number of 
trinucleotide CAG repeats varies from 1-34; however, in HD 
the number of repeats of the trinucleotide CAG triplets is 
expanded to between 35 and 140 [2]. Individuals carrying 
39-60 CAG repeats exhibit late onset HD, whereas those 
carrying more than 60 CAG repeats have earlier onset HD 
[3-5].  
 Despite several decades of research, there are no useful 
means of preventing or slowing the appearance of symptoms 
of HD. Existing therapies provide marginal relief. Therefore 
additional preventive and therapeutic approaches should be 
developed.  

*Address correspondence to this author at the Center for Occupational and 
Environmental Health, Department of Medicine, University of California, 
Irvine, CA 92697-1830, USA; Tel: 01 949 824 8077;  
E-mail: scbondy@uci.edu 

 Using animal models and human HD, some biochemical 
defects associated with this disorder have been identified. 
These include increased oxidative stress [6-11], mitochon-
drial dysfunction [12-14], chronic inflammation [15-18], 
elevated glutamate levels [19-21], higher density of gamma-
aminobutyric acid receptors [22-24], reduced levels of do-
pamine receptors [25-29] and cannabinoids [30-32], tran-
scriptional dysregulation [33, 34], and posttranslational 
modification of the HD protein [35, 36]. Although the tem-
poral and causal relation between these changes and HD 
development and progression is not clear, critical examina-
tion of these data leads us to put forward a hypothesis that 
increased oxidative stress, prolonged inflammation and 
heightened glutamate discharge, primarily contribute to the 
development of HD. Previous attempts to improve the symp-
toms of HD have utilized individual antioxidants, such as 
vitamin E [37], vitamin C [38], N-acetylcysteine [39], alpha-
lipoic acid [40], coenzyme Q10 [41-43], L-carnitine [44, 45], 
lycopene and epigallocatechin [46], melatonin [47], curcu-
min [48], resveratrol [49, 50] Ginkgo biloba [51], nicotina-
mide [52], probucol [53] and a combination of carnosine 
plus vitamin E and betaine [54]. Vitamin E had some bene-
fits in early phase of this disease. In animal models of HD, 
studies with individual antioxidants reduced oxidative stress 
and some symptoms. It is possible that a single antioxidant  
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does not adequately reduce oxidative stress, inflammation or 
glutamate release in humans. This review proposes that si-
multaneous enhancement of the levels of antioxidant en-
zymes and phase-2- detoxifying enzymes by activation of a 
nuclear transcriptional factor-2 (Nrf2), together with eleva-
tion of the levels of antioxidants compounds by dietary sup-
plementation, may help to reduce these biochemical defects. 
Concurrent reduction in glutamate release may also be 
needed to improve clinical outcomes.  
 The normal mechanism of activation of the Nrf2 /ARE 
pathway by way of reactive oxygen species (ROS), can be 
impaired during chronic oxidative stress. This pathway 
must be activated for increasing the levels of cytoprotective 
enzymes (antioxidant enzymes and phase-2-detoxifying 
enzymes). The means of regulation of Nrf2 and identifica-
tion of agents that activate the Nrf2/ARE pathway without 
the need for ROS are discussed here. A combination of 
micronutrients that can activate the Nrf2/ARE pathway, 
enhance the levels of antioxidant compounds, and reduce 
excessive release of glutamate simultaneously is also sug-
gested. 

2. SYMPTOMS OF HD  

 Generally, symptoms of HD are initially evident in the 
young adult and then a progressive worsening takes place. 
Signs include movement disorders, failure of cognitive func-
tion and psychiatric abnormality. The order of their appear-
ance of these symptoms can be variable (http://www. health-
communities.com/huntington-disease/symptoms.shtml). 
Movement disorders include abnormal involuntary tics in 
various appendages and in the face. These are more pro-
nounced when the patients are stressed. As the disorder ad-
vances, other difficulties appear, including, jaw clenching 
(bruxism), increasing failure of motor coordination, unclear 
speech, difficulty in swallowing, spasticity and dystonia. 
Weight loss also generally takes place. There is a progressive 
failure of memory, ability to answer questions and identify 
familiar objects. Intellectual deficits generally develop later 
as the disease becomes more advanced. Damage to the stri-
atal region is found initially in HD, and degenerative 
changes in other cerebral areas including the cortex, and 
thalamus are found subsequently. The medium spiny projec-
tion neurons of the striatum degenerate early in the disease 
while interneurons are maintained relatively intact [37]. De-
pression is found early in the course of the disease and can 
include aggression, irritability, lethargy, and anhedonia. Bi-
polar manic-depressive disorder and psychotic sequelae in-
cluding, hallucinations, and paranoia may also develop.  

3. ANIMAL MODELS OF HD 

 Animal models of HD have been developed which can 
permit study the events underlying HD and allow the testing 
of new approaches to the treatment of HD. Both pharmacol-
ogical and genetic strategies have been used. Quinolinic 
acid, agonists of the N-methyl-d-aspartate receptor site, and 
3-nitropropionic acid, an inhibitor of mitochondrial dehydro-
genase, can all induce changes in the striatum of experimen-
tal animals resembling those found in human HD [55-56]. 
Injection of quinolinic acid directly into the striatum leads to 
biochemical, histological and behavioral alterations in the rat 

that resemble those found in human HD, including elevated 
activity of NADPH oxidase that promotes superoxide anion 
generation in the striatal neurons. Quinolinic acid and 3-NP 
also increase the oxidative and nitrosylative stress that pre-
cede subsequent neurodegeneration.  
 A series of genetic mouse variants have been established 
in recent years that incorporate the defective human gene of 
construct excessive CAG triplet number into the mouse hunt-
ingdin gene. The neuropathology and behavior of these mice 
resemble those found in human HD. Transgenic HD mouse 
models expressing either short N-terminals fragments (R6/1 
and R6/2) or the full length HD gene (YAC128) show a pat-
tern of gene expression in striatal neurons paralleling that 
found in human HD [57].  

4. EVIDENCE FOR ELEVATED OXIDATIVE STRESS 
AND PERSISTENT INFLAMMATION AS PRIMARY 
EVENTS IN THE DEVELOPMENT OF HD 

 Increased markers of oxidative stress, mitochondrial fail-
ure and persistent inflammation have been repeatedly found 
in brain tissues from HD patients [6]; however, it is difficult 
to conclude whether these biochemical defects are the cause 
or the consequence of the disease. Strongest support for the 
idea that the defects are at least in part, causal to HD comes 
from individuals possessing the aberrant HD gene but not yet 
with obvious disease symptoms and also from animal simu-
lations of HD.  

4.1. Increased Oxidative Stress in Asymptomatic and 
Symptomatic HD 

 Analysis of indices of oxidative stress in patients with 
HD found that levels of plasma lipid peroxidation increased 
and levels of glutathione decreased in HD patients relative to 
those of healthy controls. It is noteworthy that parallel 
changes in these parameters were already apparent before the 
appearance of disease symptoms in HD carriers [7]. The ac-
tivities of proteolytic aminopeptidases, decreased in the 
plasma of both asymptomatic individuals possessing the HD 
gene and in those patients with active HD [58]. Such pepti-
dases cause release of glutamate and aspartate from the pro-
teins, thus increasing their concentrations. Elevated levels 
extracellular of these excitatory neurotransmitters secondar-
ily promote cerebral oxidative damage. In HD patients, indi-
ces of free radical activity, including leukocyte 8- hydroxy-
deoxyguanosine and plasma malondialdehyde, are elevated 
relative to control subjects, while levels of Cu/Zn superoxide 
dismutase and glutathione peroxidase in red blood cells are 
depressed. Plasma MDA concentrations are proportional to 
the severity of HD [8]. An increase in the degree of mito-
chondrial DNA damage is apparent in brains from HD pa-
tients, and this may have been induced by HD protein. Post-
mortem analysis of brain tissues from HD victims shows 
levels of enzymes relating to oxidative phosphorylation to be 
depressed. This is most apparent in the basal ganglia [9] 
where indices of oxidative stress are also elevated. Further-
more, evidence of oxidized DNA bases was found in the 
plasma of patients with HD [59]. The levels of carbonyls, a 
marker of oxidized protein damage was increased, while 
aconitase, a protein involved in the energy metabolism de-
creased in the autopsied striatal tissue of HD patients [60]. 
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Thus, heightened pro-oxidant activity may contribute to the 
pathogenesis of HD.  
 Increased oxidative stress leads to the accumulation of 
HD protein and this promotes neuronal death [61]. Oxidant 
events also inhibit the functioning of proteasomes in neurons 
expressing the abnormal HD gene. This inhibition of protea-
some operation can be reversed by overexpression of the 
gene for Cu/Zn-superoxide dismutase [61].  

4.2. Accumulation of HD Protein 

 Protein aggregation is one of the early neurodegenerative 
events in HD. The insoluble HD protein aggregates are toxic 
to neurons [62]. These aggregated forms of HD proteins 
promote generation of reactive oxygen species (ROS). 
Treatment with MW7 antibody to HD protein inhibited HD 
protein coalescence and diminished production of ROS [63]. 
In both the mouse model of HD and human HD, caspase-1 
and caspase-3 are excessively activated and the degree of 
activation correlates with the state of development of neuro-
logical deficits [64]. Caspase-2 cuts the HD protein into 
smaller fragments which can easily aggregate. Since aggre-
gated HD protein fragments are not readily removed, they 
gradually bring about neuronal cell death in both human HD 
transgenic HD mouse model containing the full-length hu-
man HD gene (YAC72 mice) [65]. Caspase inhibitors can 
delay the appearance of pathology in this transgenic HD 
mouse model.  

4.3. Mitochondrial Dysfunction in Asymptomatic and 
Symptomatic Patients with HD 

 In asymptomatic individuals and patients with HD symp-
toms, the expression of genes for aconitase-2 (ACO-2) and 
3-oxoacid CoA transferase-1 (OXCT-1) that regulate mito-
chondrial function, was low in peripheral leukocytes [10]. 
These changes can impair mitochondrial function that can 
enhance the formation of free radicals during oxidative 
phosphorylation. HD proteins accumulate in mitochondria 
leading to mitochondrial dysfunction [12]. This could be due 
HD proteins binding to the respiratory chains complexes 
leading to the inhibition of mitochondrial energy production, 
which is a characteristic feature of HD. Defective mitochon-
drial function has been found in the autopsied striatal tissues 
of HD patients [11]. Mitochondrial transcription factor A and 
peroxisome proliferator-activated receptor- co- activator 
gamma- 1alpha (PGC-alpha), an important regulator of en-
ergy metabolism and of mitochondrial synthesis are gradu-
ally decreased as the severity of HD is increasingly mani-
fested [66]. The soluble and aggregated N-terminal frag-
ments of HD protein inhibit mitochondrial axonal transport 
in hippocampal neurons in culture [67]. Oxidative damage to 
mitochondrial enzymes responsible for generating energy 
causing decrease in energy is found in the autopsied samples 
of HD brain striatum [68]. 

4.4. Chronic Inflammation in Asymptomatic and Symp-
tomatic Individuals with HD 

 Inflammation occurs early in pathogenesis of HD and is 
already evident at the preclinical stages of HD. An increase 
in microglia activation has been found in asymptomatic HD 

carriers, using a non-invasive PET- based procedure as an 
index of inflammation [15]. Atrophy of the striatum, sub-
stantia nigra, and anterior prefrontal cortex are also found in 
asymptomatic HD carriers. Plasma concentrations of the 
inflammatory cytokine, interleukin-6 are already high in as-
ymptomatic persons carrying the HD gene even 16 years 
before the appearance of symptoms of HD. Monocytes from 
those carrying the HD gene are hyperactive in their reaction 
to stimulation [16]. The cerebrospinal fluid from HD patients 
also shows elevation of immune activity. The immune acti-
vation facilitated by microglia may be critical in the devel-
opment of HD. The levels of other inflammatory cytokines 
were high in the plasma of asymptomatic individuals carry-
ing HD gene and their concentrations correlated with disease 
progression. Oxidative damage to DNA activates the IkB 
kinase ß (IKKß) involved in regulation of immune responses 
in the brain. This activation then initiates caspase-dependent 
cleavage of both wild-type and HD proteins causing in-
creased formation of oligomeric peptides [69]. The N-
terminal peptide fragments of huntingtin proteins can also 
activate IKKß, resulting in more fragmentation of the HD 
proteins and more insoluble oligomeric peptides that are 
toxic to neurons. Elevated IKKß activity is present in the 
brain of mouse model of HD, but it is initially confined to 
the striatum in the asymptomatic mice carrying HD protein. 
Inhibitors of IKKß subdue the toxic effects of HD peptides 
in the striatum [69]. Activated microglia are found in the 
regions of neuronal loss in the autopsied HD brain samples, 
and these cells can produce disproportionate amounts of neu-
rotoxic materials, including free radicals, pro-inflammatory 
cytokines and prostaglandins. Using PET methodology with 
asymptomatic HD carriers, microglia activation was found to 
occur primarily in the striatum and cortex early in the devel-
opment of HD [15, 18]. The density of activated microglia is 
higher around neurons producing aberrant HD proteins, in 
both brain tissue slices and in neuronal cultures. As neurode-
generation progresses, increased amounts of interleukin-6 
and complement protein 1q are present [70]. Circulating pro-
inflammatory cytokine IL-23 and the soluble human leuko-
cyte antigen- G are increased in the advanced stages of HD 
and there is a relation between IL-23 levels and the severity 
of the disease [71]. Administration of an anti-inflammatory 
drug, Celecoxib, an inhibitor cyclooxygenase-2 to rats previ-
ously treated with quinolinic acid leads to behavioral and 
biochemical attenuation of damage cause by quinolinic acid. 
Thus, overall the progression of HD seems to involve activa-
tion of inflammatory responses in the brain [72]. Treatment 
with calcium channel, blockers verapamil and diltiazem, 
reduces oxidative damage and levels of pro-inflammatory 
cytokines (TNF-alpha and interleukin-6) and caspase-3 in a 
rat model of HD [73].  

5. EXCITOTOXICITY IN HD 

 Free extracellular glutamate release also appears to play a 
part in the progression of HD. Activation of mGluR2/3 re-
ceptors present in the corticostriatal terminals inhibits the 
release of glutamate. Daily subcutaneous injections of 
LY379268, a mGluR2/3 receptor agonist, produce no appar-
ent changes in normal mice. However, in a mouse model of 
HD (R6/2), it delays mortality, improves motor functions 
and enhances the survival of cortical and striatal neurons. 
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The protective effect of LY379268 is affected by up-
regulation of the levels of brain- derived growth factor 
(BDNF) in cortical regions [74]. Glutamate-promoted excito-
toxicity is one of the events involved leading to death of stri-
atal neurons in HD. Treatment of a striatal cell line with N-
methyl-d- aspartate (NMDA) a glutamate agonist, acceler-
ates death in cells containing the aberrant HD gene (STHdh 
(Q111/Q111) relative to cells expressing wild-type hunting-
tin gene (STHdh (Q7/Q7) [19]. Using another mouse line 
replicating some features of HD (YAC128), striatal neurons 
exhibit heightened sensitivity to excitotoxicity prior the onset 
of the signs of HD [20]. Glutamate- effected stimulation of 
NMDA receptors may be the cause of much of the neuronal 
disruption found in HD. Striatal neurons containing a high 
density of NMDA receptors die relatively early in HD due to 
this excitotoxic effect. Correspondingly, injection of gluta-
mate receptor agonists into the striatum of normal animals 
can produce HD–like pathology [21]. As HD progresses, 
there is reduced dopaminergic and glutamatergic neuro-
transmission [75] attributable to death of these neurons. 
Thus, restoring the equilibrium between dopaminergic and 
glutamatergic transmission may help in alleviating the clini-
cal manifestations of HD [75]. The glutamate content of the 
extracellular fluid is increased in HD probably due to a de-
crease in the glutamate transporter protein-1-dependent re-

uptake of glutamate. Glutamate transporter -1 and glutamate-
aspartate transporter are largely present in the astrocytes, and 
are important in maintaining low levels of extracellular free 
glutamate. 
 In the mouse model of HD, the rate of release of ascor-
bate into the extracellular fluid is also reduced [76]. Thus 
levels of extracellular ascorbate are decreased while those 
glutamate are increased in the extracellular fluid of the dis-
eased striatum. Both of these processes could exacerbate the 
adverse milieu surrounding striatal neurons. In R6/2 mice, 
administration of ascorbate restores extracellular levels to the 
values found in normal wild-type mice, and also stabilizes 
neuronal function [76].  
 The proposed interactions between the deficits discussed 
above are summarized in Fig. (1). 

6. REDUCTION OF PRO-OXIDANT EVENTS, 
CHRONIC INFLAMMATION AND EXTRACELLU-
LAR GLUTAMATE LEVELS AS A THERAPEUTIC 
APPROACH 

 The nuclear transcriptional factor Nrf2 (nuclear factor-
erythroid 2-related factor-2) can enhance the expression of 
genes for antioxidant enzymes, phase-2-detoxifying enzymes 

 
Fig. (1). Diagram of biochemical defects in Huntington’s disease. 
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and mitochondrial enzymes. For this reason, the activation of 
Nrf2 is being used as a target in the development of new 
agents for treatment of several neurodegenerative diseases 
[77-80]. However, such activation alone may not suffice to 
reduce levels of oxidative stress sufficiently, because the 
levels of dietary and endogenous antioxidant compounds, 
which scavenge free radicals, can be depressed in the highly 
pro-oxidant environment of HD. Therefore, the levels of 
Nrf2 and antioxidant may thus need to be increased simulta-
neously. Antioxidant enzymes reduce free radical level by a 
mean that differs from that of antioxidant compounds, they 
catalyze the free radicals, while antioxidant compounds re-
move free radicals by direct scavenging. Elevated levels of 
antioxidant enzymes, together with dietary and endogenous 
antioxidants applied in combination, may most beneficially 
mitigate against pro-oxidant damage to the cell. In addition 
to increased oxidative stress, augmented accumulation of 
damaged proteins in the neurons plays a role in neuronal 
death. Thus, the levels of phase-2-detoxifying enzymes re-
sponsible for removing damaged molecules must also be 
increased. 
 In addition to scavenging free radicals, antioxidants can 
also reduce inflammation [81-85], and the release of gluta-
mate [86-91] leading to a reduction of its neurotoxicity [91-
93]. Vitamins B6, B12 and riboflavin can also curtail the 
release of glutamate [94, 95].  
 Since prolonged inflammation and excess extracellular 
glutamate are also key factors in the development of HD, it 
may be beneficial to reduce all these activities concurrently. 
Antioxidant compounds and B-vitamins may be increased by 
oral supplementation; however, increasing levels of antioxi-
dant enzymes and phase-2-detoxifying enzymes requires an 
activation of Nrf2 leading to its translocation and binding to 
the nuclear antioxidant response elements (AREs).  

7. THE ROLE OF Nrf2  

7.1. Activation of Nrf2 by a ROS-dependent Mechanism 
During Acute Oxidative Stress 

 Normally, heightened ROS activates Nrf2, which disso-
ciates itself from the Keap1- CuI-Rbx1 complex in the cyto-
plasm and translocates itself in the nucleus. After forming a 
heterodimer with a small Maf protein, this complex can then 
bind to the antioxidant response elements (AREs). This re-
sults in increased transcription of target genes coding for 
several antioxidant enzymes, phase-2-detoxifying enzymes 
and regulators of mitochondrial biogenesis [77, 78, 96-98]. 
Acute oxidative stress such as that observed during exercise 
is thought to activate Nrf2 by a mechanism that is dependent 
on ROS production [99]. Treatment with n-acetylcysteine 
(NAC) can actually block such ROS-initiated activation of 
Nrf2 [100]. Presumably, since NAC scavenges ROS effec-
tively, insufficient ROS are present to promote activation of 
the Nrf2/ARE trajectory. This suggests that during acute 
oxidative stress, treatment with a single antioxidant may not 
be an effective means of preventing oxidative injury. In addi-
tion, repeated application of a solitary antioxidant before 
strenuous exercise may be harmful because it could be oxi-
dized in a highly electrophilic environment, and in the ab-
sence of effective recycling, could then act in a pro-oxidant 
manner. 

7.2. Impaired Binding of Nrf2 to ARE in Aged Animals 

 In order to enhance expression of antioxidant genes, acti-
vated Nrf2 must bind to the nuclear ARE. This binding ca-
pacity is reduced in aged rats but this depression can be re-
versed by administration of alpha-lipoic acid [101]. It is not 
yet known whether the ability of activated Nrf2 to bind to the 
ARE is normal in HD. 

7.3. Defects in Normal Activation of Nrf2 by ROS During 
Chronic Oxidative Stress 

 Activation of Nrf2 becomes resistant to induction by 
ROS during prolonged oxidative stress yet activation by 
other means can still occur. Indeed, certain antioxidant com-
pounds can activate Nrf2 without requiring ROS [102-104]. 
Consequently, such agents could be of use in reducing the 
progression of HD.  

7.4. Regulation of the Levels and Activity of Nrf2 

 Nrf2 regulates the transcription of Keap1, and Keap1 
reciprocally controls Nrf2 levels by modulating its pro-
teosomal breakdown [105]. The immediate early response-3 
(IER-3) gene, which responds to stress, can also modify Nrf2 
activity. Deletion of this gene increases Nrf2 activity, while 
overexpression of IER-3 diminishes Nrf2 functioning [106].  
 The levels of Nrf2 are epigenetically controlled by meth-
ylation of the nucleotide residues CpG (cytosine-phosphate- 
guanosine) and by acetylation of histone3. Excessive methy-
lation of CpG (107) and hyperacetylation of histone 3 [108] 
stimulate the expression of the Nrf2 gene, while reduced 
methylation and acetylation decrease it. Thus, pharmacologi-
cal compounds that cause hypermethylation of CpG or hy-
peracetylation of histone3 may have utility in the mitigation 
of HD.  

7.5. Reducing Oxidative Stress and Chronic Inflamma-
tion, and Improving Removal of Damaged Protein, by 
Activation of ROS-resistant Nrf2  

 Most antioxidant compounds inhibit oxidative damage in 
cells by scavenging free radicals directly, while some reduce 
it by also directly activating ROS-resistant Nrf2. Such agents 
include ascorbate [109] α-tocopherol and genistein [110], α-
lipoic acid, [101], curcumin [111], resveratrol [112], omega-
3-fatty acids [113, 114], glutathione [115], NAC [116], and 
coenzyme Q10 [117]. Several plant-derived materials in this 
group include epigallocatechin gallate, cafestol, lycopene 
and carnosol [118-120], allicin, present in garlic [121], sul-
foraphane, a component of cruciferous vegetables [122], and 
a range of kavalactones [123].  
 The activation of Nrf2 also suppresses chronic inflamma-
tion [124, 125] and increases the levels of phase-2-
detoxifying enzymes for the removal of damaged molecules 
from the cells. 

7.6. Nrf2 in Huntington’s Disease 

 Abnormal HD protein disturbs the Nrf2 signaling route in 
striatal neurons expressing the HD gene, thus, promoting 
mitochondrial failure and increasing susceptibility to oxida-
tive stress [126]. Treatment of animals with 3-nitropropionic 
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acid (3 -NP) also lowered the levels of cytoplasmic and nu-
clear Nrf2. Application of the complex II mitochondrial in-
hibitor dimethylfumarate to mouse models of HD (R6/2 and 
YAC128) is protective of cortical and striatal neurons, slows 
weight loss, and helps to maintain motor function. The 
mechanism underlying this appears to involve the Nrf2 sig-
naling system [127]. Mice and cells with the Nrf2 gene de-
leted (Nrf2-/Nrf2-) are very susceptible to complex II inhibi-
tors such as 3-nitropropionic and malonic acids, and admini-
stration of these can rapidly lead to death of striatal neurons. 
Intrastriatal insertion of astrocytes over-expressing Nrf2 is 
protective against the damage caused by these metabolic 
inhibitors [128]. After induction oxidative damage in rat 
striatal slices, with quinolinic acid, the Nrf2 pathway is rap-
idly upregulated, probably representing a protective re-
sponse. Striatal sections derived from Nrf2-/- mice are more 
susceptible to the deleterious effects of quinolinic acid than 
those from Nrf2+/+ mice [129]. This suggests that stimula-
tion of the Nrf2/ARE pathway may be of utility in the treat-
ment of HD. 
 The means by which activated Nrf-2 acts broadly as a 
neuroprotectant are delineated in Fig. (2). 

CONCLUSION 

 Increased pro-oxidant activity, chronic inflammation and 
excessive glutamate release pay an important role in the ini-
tiation and progression of HD. Diminution of these events 
may slow down the development of clinical symptoms of 
HD. Although the utilization of a single antioxidant im-
proved some symptoms in animal models of HD, this strat-
egy was ineffective in human HD. In order to optimally de-
crease oxidative stress, chronic inflammation and glutamate 
release, it may be necessary to simultaneously enhance the 
levels of antioxidant enzymes by activating the Nrf2/ARE 
pathway together with application of dietary antioxidant 
compounds. Using this multi-targeted approach, a prepara-
tion of micronutrients vitamins that would accomplish the 
above goal is proposed. These should include vitamin A, 
ascorbic acid, α-tocopherol, vitamin D, α-lipoic acid, coen-
zyme Q10, curcumin, resveratrol, omega-3-fatty acids, sele-
nomethionine and several B-vitamins. 
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Fig. (2). Diagram of the role of activation of Nrf-2 in protection of cellular elements. 
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