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Abstract

Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid 

oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and 

carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain 

FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma 

metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, 2 CPT2) and 11 healthy 

age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with 

FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while 

matched controls consume a typical American diet. 832 metabolites were identified in plasma, and 
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partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables 

that discriminated FAOD subjects and controls. FAOD individuals had significantly higher 

triglycerides and lower specific phosphatidylethanolamines, ceramides and sphingomyelins. 

Differences in phosphatidylcholines were also found but the directionality differed by species. 

Further, there were few differences in non-lipid metabolites indicating the metabolic impact of 

FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 

deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide 

powerful clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild 

phenotype, and provide clues regarding the biochemical and metabolic impact of FAOD that could 

be relevant to the etiology of FAOD symptoms.

Introduction

Mitochondrial fatty acid oxidation disorders (FAOD) are a family of inherited autosomal 

recessive disorders [1] whose patients suffer from a metabolic defect in fatty acid 

catabolism, with an estimated incidence of one in every 5,000–10,000 births [2]. Diagnosis 

is made through tandem mass spectrometry profiling of blood or urine lipid metabolites, 

acylcarnitines, since unique patterns of acylcarnitines track acyl-CoA metabolite pools 

upstream and downstream of specific enzymatic lesions [3]. The inability to efficiently or 

completely combust fatty acids leads to a number of symptoms and complications affecting 

multiple tissue systems with a wide range of severity [4]. Symptoms can include fatigue, 

muscle weakness, hypoketotic hypoglycemia, hepatic steatosis, cardiomyopathy, peripheral 

neuropathy, rhabdomyolysis and, if not recognized and treated, sudden unexpected death [4]. 

For FAODs involving enzymes that participate in the catabolism of long-chain fatty acids 

(LCFAs), treatment can include decreased consumption of fats containing LCFAs, increased 

intake of medium-chain triglycerides (MCT) that provide fatty acid fuel downstream of the 

enzyme lesions, carnitine supplementation to maintain carnitine status in light of higher 

tissue acylcarnitine generation and loss, and avoidance of fasting or strenuous exercise that 

can trigger lipolysis and thus increase tissue LCFA load [5, 6].

Examples of FAODs affecting LCFA β-oxidation at its earliest stages include the long-chain 

3-hydroxyacyl-CoA dehydrogenase (LCHAD), a of the mitochondrial trifunctional protein 

(TFP) complex required for β-oxidation of LCFA with chain length >12, and carnitine 

palmitoyltransferase 2 (CPT2). Once LCFA are transported into the mitochondrion as a 

LCFA-carnitine, CPT2 exchanges the carnitine moiety for a CoA molecule, providing the 

LCFA-CoA substrate for subsequent β-oxidation. Dysfunction of either of these proteins 

leads to increases in tissue, plasma and urine long-chain acylcarnitine derivatives of 

saturated, unsaturated, and hydroxy-LCFA-CoA metabolites [7].

While plasma acylcarnitine profiles have been well-characterized as diagnostic for specific 

FAODs, little is known regarding the broad-scale impact of human long-chain FAOD on the 

fates of other metabolite and lipid classes, especially in the asymptomatic condition. In the 

case of LCHAD or CPT2 deficiency, such an effort could reveal how attenuation of 

mitochondrial LCFA oxidative catabolism impacts intermediary metabolism of other fuels 

and LCFA trafficking in cells and tissues. To address these outstanding questions, we 
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analyzed the fasting plasma lipidome and metabolome of 12 individuals with FAOD (10 

LCHAD and 2 CPT2) and 11 healthy control age-, sex-, and body mass index (BMI)-

matched subjects. Using both univariate and multivariate statistical methods, novel lipid and 

metabolic signatures were identified that readily differentiate asymptomatic individuals with 

FAOD compared to age-, sex- and BMI-matched controls.

Results

Participant Characteristics

Twenty-three participants were included in the final study analysis, including 11 control and 

12 FAOD (10 LCHAD, 2 CPT2) (Table S3) subjects. We preserved our small sample size by 

assessing LCHAD and CPT2 subjects together and focusing our investigation on identifying 

metabolites that can distinguish overnight-fasted asymptomatic long-chain FAOD subjects 

relative to healthy age-, sex- and BMI-matched controls. Furthermore, although it is well-

known that patients with LCHAD and CPT2 defects display disparate acylcarnitine profiles 

(i.e., patients with LHCAD deficiency have elevations in long-chain hydroxylated 

acylcarnitines not observed in patients with CPT2), the global changes in the metabolome 

have not been assessed for the family of long-chain FAODs. As previously described for the 

LCHAD subjects [8], there were no significant differences in age or body mass index (BMI) 

between controls and long-chain FAOD subjects; however, there were modest differences in 

total and high-density lipoproteins cholesterol (Table 1).

Metabolomics Results

A total of 822 metabolites were detected by metabolomics assessment of complex lipids and 

primary metabolism and used in statistical analyses (Table S1): 481 complex lipids were 

detected in the untargeted lipidomics platform and 341 small molecules in the untargeted 

metabolomics analysis of primary metabolism. Of all of the metabolites detected between 

both platforms, 349 metabolites were structurally identified and annotated. The remaining 

as-yet non-annotated metabolites are identified by either a BinBase (BB) number [9] or 

similar LipidBlast identifying number [10] and were included in all statistical analyses. 

Univariate assessment of all metabolites revealed 167 metabolites that statistically differed 

between FAOD and control subjects; after correction for multiple comparisons, only 74 

metabolites remained statistically significant (Table S1). The vast majority of metabolites 

differing between FAOD and control subjects were of lipid origin (Table S1). In fact, only 5 

unknown metabolites were statistically different after correction for multiple comparisons 

(BB223548, BB223521, BB223597, BB943961, and BB223675).

Multivariate statistical analysis of plasma metabolites discriminate individuals with FAOD 
from controls

Our goal in this study is to identify novel markers of FAOD, independent of acylcarnitines, 

using two analytical metabolomics platforms. We first modeled results from the 

metabolomics assessment of primary metabolism and found only 10 metabolites (γ-

tocopherol, malic acid, BB223597, BB223548, BB223521, BB267805, BB223675, 

BB944107, and BB214533) that accurately discriminated FAOD subjects from matched 

controls (Model 1), illustrated by a subjects scores plot showing separation of the groups 
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(Figure 1A). The small number of metabolites included in Model 1 mirrored the results in 

the univariate analysis where very few non-lipid metabolites were found to be significantly 

different between FAOD and control subjects. Interestingly, γ-tocopherol and malic acid 

were found to be significant before adjustment for multiple comparisons in univariate 

analyses (Table S1).

We then modeled results from the metabolomics assessment of complex lipids (Model 2). 

Projection of subjects in the PLS-DA scores plot illustrates that metabolites selected in 

Model 2 successfully discriminated controls from individuals with FAOD (Figure 1B). 

Contrary to the small number of metabolites identified in Model 1, 117 variables were 

featured in Model 2 (Table S2). Model 2 featured multiple complex lipids derived from 

triglycerides, phosphatidylcholines, sphingomyelins, ceramides, unknowns, and a single 

representative glycerophospholipid and phosphatidylethanolamine (PE36:3ox).

We further filtered features obtained from multivariate analyses, based on univariate results 

adjusted for multiple comparisons, thus identifying only the most robust discriminating 

variables. A total of 36 annotated metabolites in 6 distinct classes met these criteria (Figure 

2), all derived from the lipidomics platform. An additional 36 unknown metabolites also met 

these criteria (Figure 2). Examining the FAOD fold changes in these metabolites revealed a 

FAOD-associated increase in 7 TG species, 2 PC metabolites, and 12 non-annotated 

metabolites indicated by orange shading in Figure 2. All TG species but TG14:0/14:0/14:0 

had total carbon lengths between 44 and 58, and a wide range of double bonds (1 – 9). Both 

PC species increased in FAOD were 40 carbons long with 5 double bonds. All other 

metabolites were decreased in FAOD subjects relative to controls. These included the 

remaining PCs and unknown lipids, ceramides, a PE, a glycerophospholipid, and all of the 

unknown metabolites as indicated by blue shading (Figure 2). These results strongly support 

the notion that FAOD involving LCFA enzymes can affect complex lipid metabolism.

Correlation of long-chain acylcarnitines and other lipid species

We then asked the question, “How do non-acylcarnitine markers of FAOD disorders 

associate with more traditionally-used acylcarnitine clinical markers?” Correlations among 

plasma long-chain acylcarnitines that were significantly different between FAOD and 

controls (Table S4), and annotated lipid species identified in univariate and multivariate 

statistical analyses were determined (Figure 3). FAOD and control subjects were analyzed 

separately to determine if metabolite correlation patterns are altered by FAOD status, and 

this revealed differences. First, 10 lipids correlated with acylcarnitines (ACs) in the 

individuals with FAOD, in contrast to 18 in the controls. Second, FAOD subjects displayed 

negative associations among several acylcarnitines and 3 TGs (TG46:2, TG42:0, and 

TG44:1), while 3 other TGs (TG52:6, TG52:6.1, and TG46:3) mainly lost their negative 

association with acylcarnitines, or, in the case of TG52:6, reversed its negative association in 

FAOD compared to associations in controls. Third, a small sub-set of associations were 

shared by both controls and individuals with FAOD, including (correlation directionality in 

parentheses): C12:1-OH-AC and PC35_3 (negative); C12-OH-AC and PC40:5B (positive); 

C18:1-AC and TG44:1 (negative); C14-AC, C18:1-AC and TG46:2 (negative); C18:1-AC, 

C18:2-AC and TG14:0/14:0/14:0 (negative). Finally, there was one correlation that differed 
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in direction comparing controls to FAOD: C16-OH-AC was positively correlated with 

TG52:6 in individuals with FAOD, but this relationship was negative in controls. In controls, 

there was also a consistent negative correlation of PE36:3Ox with acylcarnitines >C12. 

Interestingly, the triglycerides overwhelmingly had negative correlations with many 

acylcarnitines in the control subjects.

Discussion

Elevated plasma and blood spot acylcarnitines are a hallmark of FAOD [7, 8], but 

comprehensive assessments of other metabolites is rarely considered. Thorough examination 

of metabolomics patterns may yield additional FAOD diagnostic markers and provide 

further insight into disease pathology. Thus, we leveraged metabolomics technologies to 

compare plasma from a cohort of overnight-fasted asymptomatic long-chain FAOD subjects 

relative to age-, sex- and BMI-matched control subjects [8]. While it was anticipated that 

defects in mitochondrial long-chain fatty acid combustion would impact lipid homeostasis, it 

is not known which lipid classes are impacted and whether non-lipid pathways are 

concomitantly distressed. The data from the current study support the idea that LCFA 

partitioning into complex lipids in FAOD is dramatically altered, with much more limited 

effects seen on plasma non-lipid metabolites.

To our knowledge, the current study represents the first metabolomics evaluation of an 

inborn error of long chain fatty acid oxidation metabolism. A recent manuscript by Najdekr 

et al. showed elevated oxidized phosphatidylcholines in patients with medium-chain acyl-

CoA dehydrogenase deficiency [11], a result not seen in this study. Nevertheless, our 

findings and those of Najdekr et al indicate that compromised mitochondrial fatty acid 

oxidation clearly impacts complex lipid homeostasis.

A number of distinct lipid classes were altered during the fasting FAOD condition, which we 

hypothesize is due to differential flux of fatty acids through complex lipid pathways. 

Specifically, a number of triglyceride (TG) species were significantly elevated in fasting 

FAOD plasma compared to controls. Previously, plasma clinical measurements identified 

only a modest difference in total TG between groups (Table 1); however, we can conclude 

from our metabolomics data that increases occur in TG containing fatty acid chains with a 

sum of 44 carbons or more (e.g. TG46:3, Figure 2), which would be expected given the 

specific genetic blockades in enzymes associated with LCFA metabolism in these subjects. 

It remains to be determined which lipoprotein class or classes drive the plasma TG 

phenotype in FAOD.

Individuals with long-chain FAOD also showed a significant reduction in many specific 

sphingomyelins (SMs); critical sphingolipids produced from de novo synthesis of ceramide 

(Cer) in the endoplasmic reticulum [12]. Considering the close relationship between SM and 

Cer biochemistry, it is perhaps not surprising that both types of metabolites were 

concurrently decreased in FAOD. Therefore, it seems plausible that there could be an 

FAOD-associated alteration in enzymology affecting either Cer production or degradation. 

Importantly, the SM and Cer are being measured in the plasma lipid fraction which almost 

certainly stems from lipoproteins [13] and it remains possible that Cer and SM are 
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sequestered in membranes in the FAOD condition and are not reaching the plasma as 

components of lipoproteins. Although subjects were tested in the overnight-fasted state, an 

important consideration is that there were dietary differences between controls and FAOD 

subjects (i.e., high carbohydrate, low fat diet in FAOD); this might have impacted 

lipoprotein dynamics and hence contributed to differences in blood complex lipid profiles.

There were also significant changes in metabolites from another membrane lipid class, 

phosphatidylcholines (PC), that contain two fatty acid chains esterified to glycerol and a 

phosphodiester linkage to choline [14]. PCs are one of the most abundant lipid classes in cell 

membranes [15] and comprise between 60–80% of lipoprotein shells [14]. Interestingly, 

different classes of PC had opposing directionality in plasma concentrations in FAOD 

subjects. PC species with 33–36 carbons (two acyl chains whose carbons added together 

equal 33–36, i.e. PC33=C16+C17) were decreased or unchanged, and two with 40 carbons 

were increased in the FAOD plasma. These differences in odd long-chain fatty acids (i.e. 

C17) could be due to likely greater intake of dairy fat in the control subjects [16] or 

differences in gut microbial metabolism [17]. The totality of these findings again point to the 

potential impact of FAOD on lipid enzymology and fatty acid partitioning.

One hypothesis regarding FAOD-associated increase in PC40 metabolites and several 

species of TGs, suggests a reflection of enhanced LCFA elongation, somehow channeled 

toward incorporation into PCs and TGs. In contrast, SM40 and Cer40 metabolite 

concentrations were generally reduced, further suggestive of a preferential incorporation of 

products of LCFA elongation into PCs and TG. It is possible that only certain classes of fatty 

acids are more robustly utilized (via trafficking/channeling, differential enzymatic 

regulation, etc.) by the FAOD liver for incorporation into very low-density and HDL [18]. 

Future analysis into specific lipoprotein pools would prove fruitful in identifying such 

alterations in the FAOD condition.

We had anticipated much more broad shifts in intermediary metabolism of non-lipid 

pathways in individuals with FAOD [19], i.e., carbohydrates and amino acids. Changes in 

alanine have been noted in fed CPT2 patients vs. healthy controls post-exercise, although no 

differences were seen at rest [20]. Although only plasma, and not tissue, concentrations of 

alanine were lower in overnight fasted and post-absorptive murine LCAD knockout mice, 

Houten et al. postulated that systemic amino acid metabolism was altered due to a 

dysregulation in tissue alanine aminotransferase activity [19]. Further, cardiac glucose 

uptake was increased in cardiac tissue of VLCAD KO mice compared to wild-type animals 

[21]. Yet, our novel global metabolomics data support the idea that in well-controlled 

overnight fasted FAOD individuals, there is only a limited effect on non-lipid pathways. 

Notably, although our results for organic acids (citrate, isocitrate, aconitate and malate) 

involved in TCA function did not meet stringent statistical significance in an omics-based 

study, differential effects of FAOD on TCA metabolites have been previously observed in 

cardiac tissue of fasted LCAD knockout mice [22]. A form of vitamin E that is found 

predominantly in seeds, γ-tocopherol, was also reduced in the individuals with FAOD but 

did not achieve statistical significance in this study. The FAOD-associated reduction is likely 

due to low dietary intake.
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These data have been assessed with a few limitations that may impact interpretation. FAOD 

subjects were fed a low-fat diet compared to controls and had been taking MCTs prior to 

study participation, which may have an impact on plasma lipids. We obtained plasma 

samples after a 10 h overnight fast in order to minimize post-prandial difference in the diet; 

however, this period of fasting may not completely remove the effect of diet. Interestingly, 

Tucci et al. observed elevated cardiac concentrations of ketone bodies in post-prandial 

VLCAD KO and wild-type mice fed 12% of total energy from MCT [21]. They did not 

measure plasma concentrations of ketone bodies, but it would suggest that post-prandial 

production of ketone bodies would have been substantially increased following MCT 

feeding. In contrast, we found no differences in plasma 3-hydroxybutanoic acid between 

post-absorptive FAOD subjects and controls, even though FAOD subjects consumed 

supplemental MCT at 9–12% of total energy intake. This would suggest that plasma 

concentrations of ketone bodies normalize after an overnight fast, and, perhaps tissue 

concentrations could serve as a more sensitive marker of MCT consumption. Regardless, it 

is likely that a combination of genetic and nutritional factors are driving nutrient partitioning 

in patients with long-chain FAOD, but future studies controlling for dietary intake will be 

required to de-convolute genetic-specific differences.

In summary, we have for the first time applied metabolomics tools to determine broad 

metabolic shifts that accompany long-chain FAOD (LCHAD or CPT2 deficiency). The 

results clearly indicate that limited mitochondrial LCFA oxidation triggers selective re-

partitioning of LCFA into specific complex lipids, especially TGs and PCs, in liver and 

possibly other tissues, with a reduced partitioning toward the SM/Cer pathways. The specific 

mechanisms by which this takes place remain unknown, but may involve altered metabolite 

channeling or enzyme activities associated with complex lipid flux (i.e., in pathways 

associated with ceramide and sphingolipid metabolism). Prospective studies that control for 

the potential confounder of diet and that assess enzyme flux should help better define the 

origins of FAOD-associated metabolite patterns. It remains to be seen if under more 

challenged conditions in which lipolysis is triggered (i.e., illness, heavy exercise, poor 

nutritional control or prolonged fasting), metabolomics patterns would be even more 

dramatically altered in FAOD, with the possibility of local long-chain acylcarnitines 

impacting membrane-associated enzyme systems leading to changes in blood SM, Cer, PC 

and TG signatures [23]. The specific metabolites altered in FAOD, described herein, might 

enable development of new diagnostic tools (complementary to traditional acylcarnitine 

profiling) with the potential to identify disease risk, FAOD sub-types or severity.

Methods

Subjects

Detailed information regarding the study and subject recruitment has been published 

previously [8]. Briefly, age-, sex-, and BMI-matched FAOD and control subjects were 

recruited to Oregon Health & Science University (OHSU) for a study approved by the 

OHSU Institutional Review Board (IRB no. 817). There were 11 subjects (6 male, 5 female) 

in the control group and 12 subjects in the FAOD (7 male, 5 female) with average ages of 

15.7 and 14.7 years, respectively. FAOD was confirmed via medical record reviews and 
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diagnostic evidence, except for one subject who did not present clinically with metabolic 

disease by traditional measures, but was diagnosed via genotype following diagnosis of a 

sibling’s disease. All subjects were admitted to the OHSU Clinical and Translational 

Research Center for completion of the study procedures. FAOD subjects were all following a 

low-fat diet upon admission for 1.5 days prior to fast (10–20% total energy from long-chain 

triglycerides – LCT, 9–13% medium-chain triglycerides (MCT), 56–76% carbohydrate, 8–

15% protein); 11 subjects regularly consumed oil supplements containing MCT (9–12% of 

total energy from MCT), 10 subjects were on prescribed carnitine supplementation (0.9 to 4 

grams per day) and no subjects were consuming triheptanoin. The control subjects were 

consuming their regular diet (approximately 31% total energy from lipids, 10% from protein 

and 59% from carbohydrates). The participants were subjected to a 10 h overnight fast after 

which plasma was collected in EDTA, frozen at −80°C, and subjected to one to two freeze-

thaw cycles prior to metabolomics and lipidomics analysis. Blood samples were stored in a 

study-specific data repository and released with prior subject consent for this analysis 

(OHSU IRB 817).

Plasma metabolomics and lipidomics analyses

Plasma acylcarnitines were determined by electrospray tandem mass spectrometry at the 

Mayo Clinic Biochemical Genetics Laboratory as described previously [8, 24]. An 

exemption for a full board review was obtained from the UC Davis IRB (625805–1) for the 

plasma metabolomics analysis portion of the study, as de-identified samples were used. 

Plasma samples were thawed on ice, aliquoted and submitted to the West Coast 

Metabolomics Center at the University of California Davis for an untargeted metabolomics 

analysis. Briefly, plasma samples (15 μL) were extracted using 1 mL of degassed 

acetonitrile:isopropanol: water (3:3:2; v/v/v) at −20°C, centrifuged, decanted, and dried. 

Membrane lipids and triglycerides were removed by adding 500 μL of acetonitrile/water 

(1:1; v/v), followed by evaporation to dryness. Internal standards were added (13 C8–C30 

fatty acid methyl esters) and samples were derivatized by 10 μL methoxyamine 

hydrochloride in pyridine followed by 90 μL MSTFA for trimethylsilylation of acidic 

protons. Samples were injected into an Agilent 6890 gas chromatograph and separated using 

a 30 m long, 0.25 mm i.d. Rtx5Sil-MS column at a constant flow of 1 mL/min while 

ramping the oven temperature from 50°C to 330°C with 22 min total run time. Mass 

spectrometry was conducted on a Leco Pegasus IV time of flight mass spectrometer with a 

280°C transfer line temperature, electron ionization at −70eV and an ion source temperature 

of 250C. Mass spectrometer operated between m/z 85–500 at 17 spectra s−1. The resulting 

data were annotated using the BinBase method using an automated database at the West 

Coast Metabolomics Center [9]. The BinBase database matches the sample mass spectrum 

information and retention index against the Fiehn lab mass spectral library of over 1,200 

authentic standards spectra and NIST05 commercial library. Metabolites were reported if 

they met the following criteria: they must be present in greater than 25% of all of the 

samples and true peak detection must have occurred in at least 50% of a given condition (i.e. 

FAOD or control) [25]. Reliably measured peaks found in some samples, but not of the 

quality matching others, were replaced by searching the raw data for the highest signal with 

2 s of the target retention time minus the lowest signal within 5 seconds of the target 

retention time. Individual metabolites were normalized by the sum of identified metabolite 
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quantifier ion peak heights (QIPH) present in each sample. These relative abundances were 

used for all subsequent statistical analyses. In depth details of the protocol can be found 

elsewhere [26].

Plasma lipidomics were also analyzed at the West Coast Metabolomics Center by charged-

surface hybrid column-electrospray ionization quadrupole time of flight tandem mass 

spectrometry (CSH-ESI QTOF MS/MS) in both positive and negative modes using methods 

described previously [27]. Samples were extracted using the Matyash protocol using methyl 

tert-butyl ether (MTBE) [28]. Briefly, 20 μL of plasma was mixed with 225 μL of ice cold 

degassed MeOH and vortexed for 10 s, 750 μL of ice-cold degassed MTBE was then added 

followed by 10s vortex and shaking (6m at 4°C). MilliQ water was added (188 μL) followed 

by vortexing (20 s) and centrifugation (2min; 14,000g). The resulting upper phase is then 

transferred (350 μL) to separate tube, dried, and reconstituted with 65 μL MeOH:toluene + 

CUDA (9:1, v/v). Aliquots of 30 μL were transferred to two separate vials with micro-inserts 

for UHPLC-QTOF-MS analysis. Samples (3 μL) were injected at 65°C and separated using 

a Waters Acquity UPLC CSH C18 column (100 mm × 2.1 mm) with a particle size of 1.9 

μm and a flow rate of 0.6 mL/min. Mass spectrometry was conducted for positively charged 

ions (PC, lysoPC, PE, and PS) with an Agilent 6530 QTOF MS (resolution: 10,000) and for 

negatively charged ions (free fatty acids and phosphatidylinositols) with an Agilent 6550 

QTOF MS (resolution: 20,000). Both mass spectrometers operated at full scan range m/z 

65–1700. Peak identification was processed in MassHunter Qual (Agilent) using the MS/MS 

information and Fiehn laboratory LipidBlast spectral library [10] and then imported to 

MassProfilerProfessional for peak alignment. Results are provided as quantifier ion peak 

heights and normalized to the sum of all peak heights for all identified metabolites for each 

sample. In-depth details of the protocol can be found through the Metabolomics Workbench 

under protocol number 163 (http://www.metabolomicsworkbench.org/protocols/

protocoldetails.php?file_id=163).

Statistical analyses

All statistical analyses were performed in R version 3.0.2 [29]. Group differences among 

clinical characteristics were assessed previously [8]. Clinically-relevant acylcarnitines were 

assessed for normality using Anderson-Darling tests. Acylcarnitines that were not normally 

distributed were log transformed and again assessed for normality using Anderson-Darling 

tests. If normality was still not achieved after log transformation, then non-parametric tests 

were used on un-transformed data. Group differences in acylcarnitine data were assessed 

with independent t-tests for normally distributed data (including log-transformed data) and 

Mann Whitney U tests for non-normally distributed data. Metabolomic and lipidomic data 

were assessed for group differences by Mann Whitney U tests. P-values from group 

comparisons were corrected for false discovery rate [30] at Q = 0.05. Associations among 

acylcarnitines and lipidomics/metabolomics data were assessed with Spearman’s 

correlations. All statistical tests were significant at α = 0.05.

Data used in multivariate analyses were first assessed for univariate outliers with Grubbs’ 

test for outliers at α = 0.01. Outliers were removed from analysis and all missing data 

(including removed outliers) were imputed via Indirect Least Squares [31, 32]. Outlier 
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assessment and removal effected < 0.4% of the data from the lipidomics data and < 0.6% of 

the untargeted metabolomics data. Data were log transformed, mean-centered, and scaled to 

unit variance before all multivariate analyses. Partial least squares-discriminant analysis 

(PLS-DA) was used to determine variables that discriminate individuals with FAOD from 

controls [33]. An external cross-validation scheme was used to determine PLS-DA model 

validity, where 2/3 of the subjects were randomly selected to develop the model (“training 

set”) and the remaining 1/3 was used to measure the predictive performance (“test set”). 

Feature selection was assessed with variable importance in projection (VIP) scores [34, 35] 

from bootstrapped PLS-DA models [36]. No data from the test set was utilized in model 

development or feature selection. An iterative backwards elimination strategy was utilized to 

determine final PLS-DA models. In short, variables with bootstrapped VIP scores ≥1 were 

ranked and PLS-DA models were iteratively fit with each successive model removing the 

highest ranked variable. Elimination of variables terminated when a PLS-DA model failed to 

predict at least 67% of test subjects within the first three latent variables. Remaining 

variables were considered non-important and the variables removed during the elimination 

strategy were chosen to fit the final PLS-DA from bootstrapped PLS-DA models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

We have leveraged metabolomics to assess plasma phenotypes in two distinct fatty acid 

oxidation disorders (LCHAD and CPT2) suggestive of altered lipid partitioning of long-

chain fatty acids into specific complex lipids under conditions of impaired long-chain 

fatty acid catabolism.
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Figure 1. Results from partial least squares-discriminant analysis (PLS-DA) scores plot 
displaying discrimination between control and fatty acid oxidation disorder (FAOD) subjects due 
to differences in plasma metabolite patterns after a 10 h fast
Subjects scores plot allowing visualization of individual subjects’ clustering due to 

differential metabolite-based PLS-DA scores; Illustrated are the healthy control (blue-

triangles, n=8) and FAOD (orange circles and square, n=9) cohorts. PLS-DA analysis was 

developed with training samples; therefore, subjects in the test set (3 from each group) are 

not included in the current analysis and figure. Each triangle/circle/square represents an 

individual subject. Ellipses surrounding each cluster are 95% confidence ellipses based on 

Hotelling’s T2 statistic. Each plot represents a different statistical model, i.e., only including 
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untargeted metabolomics assessment of primary metabolism (A, Model 1) and untargeted 

metabolomics of complex lipids (B, Model 2).
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Figure 2. Comparison of individuals with FAOD relative to controls in discriminant metabolites
Metabolites were featured in heatmap if selected in multivariate models and also 

significantly different between FAOD and control subjects after adjusting for multiple 

comparisons (Benjamini and Hochberg). Heatmap represents data from all individuals with 

FAOD (i.e., no training/test set split) and is separated by metabolite classes. Colors depict 

changes relative to the mean of control subjects’ concentrations for each metabolite. CPT2, 

carnitine palmitoyltransferase 2 deficiency; LCHAD, long-chain hydroxyl-acyl-CoA 

dehydrogenase deficiency.
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Figure 3. Correlation among plasma acylcarnitines (≥C12) and metabolites discriminating FAOD 
relative to control subjects
Acylcarnitine species with ≥12 carbons that were significantly different between FAOD and 

control subjects (Table S1) were correlated with metabolites selected in multivariate models 

and also significantly different between FAOD and control subjects after adjusting for 

multiple comparisons (Benjamini and Hochberg). Significant correlations are represented 

with ellipses. Directionality of ellipses represents either a positive or negative correlation, 

respectively. Thinner ellipses represent higher strength of correlation.
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