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Abstract— This paper argues that tree based protocols
can have packet delivery ratios comparable to mesh based
protocols if the tree construction algorithm can fix and detect
broken links quickly, and at the same time have a much lower
data packet overhead due to the absence of redundancy.

We present such a protocol and call itrobust multicasting
in ad hoc networks using trees (ROMANT). ROMANT does
not require a unicast routing protocol or the preassignment
of cores to groups. We compare ROMANT with ODMRP
and MAODV which are the state of the art in mesh based
and tree based protocols respectively. The results from a
wide range of scenarios of varying mobility, group members,
number of senders, traffic load and number of multicast
groups show that ROMANT attains a comparable or better
packet delivery ratio than ODMRP and MAODV, and a
much lower control overhead which is almost constant
for a fixed number of groups, and varies sublinearly with
increasing groups.

Keywords— Ad hoc networks, routing, multicasting,
multicast mesh, multicast tree.

I. I NTRODUCTION

Mobile ad hoc networks have applications in a wide
range of areas including disaster relief and military. Most
of these scenarios need one to many or many to many
communication. In fact, some networks may need multicast
routing only and not need unicast routing at all. This makes
multicasting a very important feature in such networks. As
a result, it is important to have a multicasting protocol
that provides a high packet delivery ratio even in extreme
conditions (e.g., high mobility and high traffic load). It is
equally important for such protocols to have a low over-
head, because bandwidth and battery power are extremely
precious in these kinds of networks.

Over the past few years, several multicast routing proto-
cols have been proposed for ad hoc networks [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. For the purposes of our discussion, the approaches
taken to date can be classified into tree-based and mesh-
based approaches.

A tree-based multicast routing protocol establishes and
maintains either a shared multicast routing tree or multiple
source-based multicast routing trees (one for each group
source) to deliver data packets from sources to receivers of
a multicast group. Recent examples of tree-based multicast
routing approaches are the multicast ad hoc on-demand
distance vector protocol (MAODV) [4], and the adaptive

demand-driven multicast routing protocol (ADMR) [8]. In
contrast, a mesh-based multicast routing protocol maintains
a mesh consisting of a connected component of the network
containing all the receivers of a group. Two well-known
examples of mesh-based multicast routing protocols are the
core assisted mesh protocol (CAMP) [1] and the on-demand
multicast routing protocol (ODMRP) [2].

MAODV maintains a shared tree for each multicast
group, consisting of only receivers and relays. Sources
wishing to send to the group acquire routes to the group on
demand in a way similar to the ad hoc on demand distance
vector (AODV) [17] protocol. Each multicast tree has a
group leader, which is the first node to join the group in the
connected component. The group leader in each connected
component periodically transmits a group hello packet to
become aware of reconnections. Receivers join the shared
tree with a special route request. The route replies coming
from different multicast tree members specify the number
of hops to the nearest tree member. The node wishing to
join the tree joins through the node reporting the freshest
route with the minimum hop count to the tree.

ADMR maintains source-based trees, i.e., a multicast
tree for each source of a multicast group. A new receiver
performs a network-wide flood of a multicast solicitation
packet when it needs to join a multicast tree. Each group
source replies to the solicitation, and the receiver sends a re-
ceiver join packet to each source answering its solicitation.
An individual source-based tree is maintained by periodic
keep-alive packets from the source, which allow routers
to detect link breaks in the tree by the absence of data
or keep-alive packets. A new source of a multicast group
also sends a network-wide flood to allow existing group
receivers to send receiver joins to the source. MZR [15]
like ADMR, maintains source based trees. MZR performs
zonal routing; hence, the flooding of control packets is less
expensive. Compared to approaches based on shared trees,
the use of source-based trees creates much more state at
routers participating in many groups, each with multiple
sources.

ODMRP requires control packets originating at each
source of a multicast group to be flooded throughout the
ad hoc network. The control packet floods help repair
the link breaks that occur between floods. The limitations
of ODMRP are the need for network-wide packet floods
and requiring that the sources of multicast packets for a



group be part of the group’s multicast mesh, even if such
sources are not interested in receiving multicast packets
sent to the group. DCMP [14] is an extension to ODMRP
in that it designates certain senders as cores and reduces
the number of senders performing flooding. NSMP [16] is
another extension to ODMRP aiming to restrict the flood of
control packets to a subset of the entire network. However,
both DCMP and NSMP do not entirely eliminate ODMRP’s
drawback of multiple control packet floods per group.

CAMP avoids the need for network-wide floods from
each source to maintain multicast meshes by using one
or more cores per multicast group. A receiver-initiated
approach is used for receivers to join a multicast group by
sending unicast join requests towards a core of the desired
group. The drawbacks of CAMP is that it needs the pre-
assignment of cores to groups and a unicast routing protocol
to maintain routing information about the cores, and this
may incur considerable overhead in a large ad hoc network.

ROMANT is based on a receiver-initiated group joining
scheme that does not require an underlying unicast routing
protocol to operate or the pre-assignment of cores to
groups. The first receiver joining a group becomes the core
of the group and starts transmitting core announcements
periodically. An election takes place if more than one
receivers join at the same time. Each such announcement
specifies a sequence number, the address of the group, the
address of the core, the sending node, and the distance to
the core. Routers use the best core announcements they
receive to send their own core announcements to their
neighbors, and over time each router has one or multiple
paths to the elected core of each known group in the ad hoc
network. To join a multicast group, a receiver sends a join
announcement to its next-hop towards the core of the group,
which it learns from core announcements. Nodes receiving
join announcements intended for them join the group and
also send a join announcement periodically to their next-
hops for the group core. In this way join announcements
propagate from each receiver towards the core, establishing
the various branches of the tree. Similarly, a multicast data
packet for a group is forwarded from its source towards
the core of the group, using next-hop information obtained
in core announcements, and is flooded within the tree of
the group as soon as it reaches the first tree member. As
Section II-E shows, multicast data packets do not have to
be encapsulated in unicast data packets to reach a mesh
member from a given source outside the group.

Section II describes ROMANT in detail. Section III
compares ROMANT to ODMRP [2] and MAODV [4].
Comparison with ODMRP serves to illustrate why the
packet delivery ratio of ROMANT matches or exceeds that
of ODMRP even though ROMANT has far less redundancy.
As expected the data packet overhead of ROMANT is
much lower than that of ODMRP as ROMANT is a tree
based protocol. However even the control packet overhead
for ROMANT is much lower. Comparison with MAODV
explains why ROMANT is able to maintain a high packet
delivery ratio in a wide range of simulation scenarios while

MAODV is not, even though both are tree based protocols.
We did not compare ROMANT with CAMP, because

our approach is intended to work without the need of
any unicast routing protocol or predefined cores. We did
not compare ROMANT with DCMP, MZR, ADMR and
NSMP because the improvement of these approaches over
ODMRP in terms of control packet overhead as described
in [14], [15], [8] and [16] and is significantly lower
than what we achieve in ROMANT. MZR also had a lower
packet delivery ratio at high mobility. Our main objective
of comparing ROMANT with MAODV was to illustrate
some of the reasons as to why tree based protocols have
not been able to match mesh based protocols in terms of
packet delivery ratio, and how ROMANT corrects those
problems.

Section IV presents our conclusions.

II. ROMANT D ESCRIPTION

A. Overview

ROMANT supports the IP multicast service model of
allowing any source to send multicast packets addressed
to a given multicast group, without having to know the
constituency of the group. Furthermore, sources need not
join a multicast group in order to send data packets to the
group.

Like CAMP and MAODV, ROMANT uses a receiver-
initiated approach in which receivers join a multicast group
using the address of a special node (core in CAMP or group
leader in MAODV), without the need for network-wide
flooding of control or data packets from all the sources
of a group. Like MAODV, ROMANT eliminates the need
for a unicast routing protocol and the pre-assignment of
cores to multicast groups.

ROMANT implements a distributed algorithm to elect
one of the receivers of a group as the core of the group, and
to inform each router in the network of at least one next-hop
to the elected core of each group. The election algorithm
used in ROMANT is essentially the same as the spanning
tree algorithm introduced by Perlman for internetworks of
transparent bridges [18]. Within a finite time proportional
to the time needed to reach the router farthest away from
the eventual core of a group, each router has one or multiple
paths to the elected core.

Every receiver connects to the elected core alongany one
shortest path between the receiver and the core. All nodes
on such a shortest path between any receiver and the core
collectively form the tree. A sender sends a data packet
to the group also alongany oneshortest path between the
sender and the core. When the data packet reaches a tree-
member, it is flooded within the tree, and nodes maintain
a packet ID cache to drop duplicate data packets.

ROMANT uses two kinds of control packets. Thecore
announcementand thejoin announcement. Each core an-
nouncement specifies a sequence number, the address of
the group (group ID), the address of the core (core ID), the
distance to the core, and the sending router. Successive core



announcements have a higher sequence number than previ-
ous core announcement announcements sent by the core.
With the information contained in such announcements,
nodes elect cores, and each node in the network learns
of one or more routes to the core. A join announcement
specifies the sender, the intended group (group ID), and
the parent of the node sending the announcement, in the
multicast tree. Join announcements help create and maintain
the multicast tree.

B. Core Election

When a receiver joins the group, it checks to see if it
has ever received a core announcement for that group. If so,
then it does not participate in a core election and the current
core of the group remains unchanged. On the other hand, if
it has never received a core announcement for that particu-
lar group, then it considers itself the core of the group and
starts transmittingcore announcementpackets periodically
to its neighbors stating itself as the core of the group and a
0 distance to itself. Nodes propagate core announcements
based on the best core announcements they receive from
their neighbors. A core announcement with higher core
ID is considered better than a core announcement with a
lower core ID. Eventually, each connected component has
only one core. If one receiver joins the group before other
receivers, then it becomes the core of the group. If several
receivers join the group concurrently, then the one with the
highest ID becomes the core of the group.

A core election is also held if the network is parti-
tioned. The election is held in the partition which does
not have the old core. A node detects a partition if
it does not receive a fresh core announcement for 3
x core announcementinterval. Once a receiver detects a
partition, it behaves in exactly the same way it would upon
joining the group, and participates in the core election.

C. Connectivity Lists and Core Announcement Propagation

A node that believes itself to be the core of a group
transmits core announcements periodically for that group.
As the multicast announcement travels through the network,
it establishes aconnectivity listat every node in the net-
work. Using connectivity lists, nodes are able to establish
a mesh, and route data packets from senders to receivers.

A node stores all the core announcements it receives
from its neighbors in the connectivity list. Fresher core
announcements from a neighbor (i.e., one with a higher
sequence number) overwrite entries with lower sequence
numbers for the same group. Hence, for a given group,
a node has only one entry in its connectivity list from a
particular neighbor.

Each entry in the connectivity list, in addition to storing
the core announcement, also stores the time when it was
received, and the neighbor from which it was received. The
node then generates its own core announcement based on
the best entry in the connectivity list.

For the same core ID, core announcements with higher
sequence number are considered better. For the same core
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Fig. 1. Dissemination of core announcements

ID and sequence number, core announcements with smaller
distances to the core are considered better. When all those
fields are the same, the multicast announcement that arrived
earlier is considered better. After selecting the best core
announcement, the node generates the fields of its own core
announcement in the following way:

� Core ID: The core ID in the best core announcement
� Group ID: The group ID in the best core announce-

ment
� Sequence number: The sequence number in the best

core announcement
� Distance to core: One plus the distance to core in the

best core announcement

Connectivity lists store information about the one or
more route that exist to the core. When a core change
occurs for a particular group, then the node clears its old
connectivity list and builds a new one, specific to the new
core. Hence the group ID and core ID entries are same
for all neighbors, and are not stored separately. Figure 1
illustrates the propagation of core announcements and the
building of connectivity lists. The solid arrows indicate
the neighbor from which a node receives its best core
announcement. Node 6 has three entries in its connectivity
list for neighbors 5, 1, and 7. However it chooses the entry
it has received from 5 as the best entry, because it has the
shortest distance to core and has been received earlier that
the one from node 1. It uses this entry to generate its own
core announcement. When a node node wants to send data
packets to the group it forwards it to the node from which it
received its best core announcement. If that link is broken
then it tries its next best and so on. Hence each node in
the network has one or more routes to the core. The core
announcement sent by the core has distance to core set to
zero.

Fresh core announcements are generated by the core
every three seconds, after which they are disseminated



throughout the network within a relatively short time.
A node thus receives all core announcements with the
latest sequence number within a short period of time from
all its neighbors. After receiving a core announcement
with a fresh sequence number, nodes wait for 100 ms
to collect core announcements from multiple neighbors
before generating their own core announcement. A node
may send its core announcement before receiving the core
announcements of some of its neighbors with the same or
longer distance to core. e.g. in Figure 1 node 6 generates its
core announcement at time = 12252ms, which is 100 ms
after it receives its first core announcement of sequence
number 79. It receives a core announcement from node 7
later, at time = 12260ms.

D. Tree Establishment and Maintenance

Initially only receivers consider themselves tree-
members. In order to establish a connection to the core each
receiver periodically transmits join announcements. i.e.
once every three seconds. To generate a join announcement
a node also accesses its connectivity list to obtain its best
core announcement. A node generates the fields of the join
announcement in the following way :

� Group ID: The ID of the group it wants to join
� Sender: Its own ID
� Parent : The node from which it received its best core

announcement.

If a non-member receives a join announcement with its
node ID in the parent field, it considers itself to be a tree
member, and similarly generates periodic join announce-
ments. Hence a join announcement sent by each receiver,
triggers the generation of join announcements by all nodes
lying on a shortest path between the receiver and the core.
As all receivers establish a path to the core it follows that
the resulting multicast tree connects all receivers together.
This is illustrated in Figure 2. The tail of the arrow indicates
the node sending the join announcement. The head of the
arrow indicates the node in the parent field of the join
announcement. If a node which is already a tree member
receives a join announcement from a new node, it does
not need to generate an additional join announcement as it
already has established a path to the core. e.g. if node N3
decides to join the group it directs its join announcement
towards node N4. This does not trigger the generation of
join announcement in N4 as it is already a tree member.
It only generates a join announcement once three seconds
have elapsed since it generated its last one.

Every time a node receives a fresh batch of core an-
nouncements, the best entry in its connectivity list may
change depending on the mobility of the network in the
last three seconds. Thus, every time a node sends a join
announcement, the parent field of the join announcement
may vary depending on the latest “best entry” in the
connectivity list. Thus every three seconds each branch of
the tree is established afresh, and each receiver connects to
the core along the “best path”. As a result, certain nodes
which were at one time on the best path from a receiver
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Fig. 2. Tree formation in ROMANT

to the core, may no longer be on it. Such nodes will no
longer receive join announcements with their node ID in
the parent field. If no such join announcement is received
by the node for a period of 3 x joinannouncementinterval,
then the node no longer considers itself to be a tree member
and stops generating join announcements.

E. Data Packet Forwarding

Similar to how join announcements are send, a node
sends a data packet to the node from which it received its
best core announcement. A node learns the MAC address
of its neighbors simply by examining the MAC headers of
their core announcements.. When a node forwards a data
packet, it sets the destination MAC address to the MAC
address of the node from which it received its best core
announcement. A non-member on receiving a data packet,
drops the packet if the destination MAC address is not the
same as its own MAC address. Otherwise it sets the MAC
address to the address of the node from which it received its
best core announcement. This process continues, until the
data packet reaches a tree-member. From there, the packet
is flooded throughout the tree, with a packet ID cache used
to drop duplicate packets. Tree-members forward all data
packets without looking at their MAC addresses. Unlike
PIM sparse mode [19], where a multicast data packet is
encapsulated inside a unicast packet till it reaches the
rendezvous point, there is no need for encapsulation in
ROMANT as the data packet moves from sender to the
tree member.

F. Implicit Acknowledgments

The routing of data packets from senders to receivers is
also used to detect broken links and update the connectivity
list. Assume node X transmits a data packet to node
Y, from whom it received its best core announcement.



Because all communication is broadcast, X also receives
the data packet when it is forwarded by Y. This serves
as an implicit acknowledgment of the packet transmission.
If X does not receive an implicit acknowledgment within
ACK TIMEOUT, then it detects that the link X-Y is broken
and removes Y from its connectivity list. The ability of
nodes to detect broken links as an integral part of routing
data packets, is another key contribution of ROMANT.

G. Multiple Groups

When multiple groups exist, nodes aggregate all the fresh
core announcements they receive, and broadcast them ev-
ery core announcementinterval. However, core announce-
ments representing groups being heard for the first time or
resulting in a new core are forwarded immediately, without
aggregation. This is to avoid delays in critical operations
like core elections.

H. Recycling Sequence Numbers

Like other unicast or multicast routing protocols using
sequence numbers, ROMANT needs to recycle sequence
numbers and handle failures that cause a core to reset the
sequence number assigned to a multicast group.

Because the sequence number of a core announcement
is only increased by the core of the group, the same
mechanisms used for the handling of sequence numbers in
such link-state routing protocols as OSPF or in the spanning
tree algorithm [18] suffice to ensure that nodes can trust the
most recent core announcement. In particular, when a node
recovers from a failure, it must apply a hold-down time
long enough to ensure that no node in the MANET still
considers the recovered node to be the core of any group.

III. PERFORMANCECOMPARISON

We compared the performance of ROMANT against
the performance of ODMRP [2] and MAODV [4] which
are the state of the art mesh based and tree multicast
routing protocols for ad hoc networks. ODMRP has been
implemented in Qualnet as part of the Qualnet distribution.
The MAODV code for Qualnet was obtained from a third
party1 who wrote the code independently of our effort
following the MAODV IETF Specification [20]. We have
used the same simulation parameters as [3], where the
designers of ODMRP compare the performance of ODMRP
with several other protocols. Figure 3 lists the details about
the simulation environment.

We employed RTS/CTS when packets were directed
to specific neighbors. All other transmissions used
CSMA/CA. Each simulation was run for four different seed
values. To have meaningful comparisons, all timer values
(i.e., interval for sending JOIN requests and JOIN tables in
ODMRP and the interval for sending core announcements
and join announcements in ROMANT) were set to 3
seconds. We have also implemented and tested ROMANT
in Linux 2.4.20-8, Red Hat Release 9, with the code having
derived from our Qualnet implementation.

1We thank Venkatesh Rajendran for providing the simulation code of
MAODV.
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The metrics used for our evaluation werepacket deliv-
ery ratio , control overheadandtotal overhead, which are
defined in Figure 4.Total overhead is a more important
metric thancontrol overhead because we are concerned
about the number of packets transmitted to get a certain
number of data packets to the receivers, regardless of
whether those packets were data or control.

A. Simulation Scenarios

Several experiments were carried out to determine the
effect of mobility, number of senders, number of mem-
bers, traffic load and number of multicast groups on the
performance metrics for each protocol. The details of each
experiment performed are as follows:

� Experiment 1 : Mobility varied acrossf0, 5, 10, 15,
20g m/s. Senders = 5, Members = 20, Traffic Load =
10 pkts/sec, Multicast groups = 1.

� Experiment 2 : Senders varied acrossf1, 2, 5, 10,
20g. Mobility = 5 m/s, Members = 20, Traffic Load =
10 pkts/sec, Multicast groups = 1.

� Experiment 3 : Members varied acrossf5, 10, 20, 30,
40g. Mobility = 5 m/s, Senders = 5, Traffic Load =
10 pkts/sec, Multicast groups = 1.

� Experiment 4 : Traffic Load varied acrossf1, 2, 5, 10,
25, 50g pkts/sec. Mobility = 0, Senders = 5, Members
= 20, Multicast groups = 1.

� Experiment 5 : Multicast Groups varied acrossf1,
2, 5, 10g. Mobility = 5 m/s, Senders = 5 per group,
Members = 20 per group, Traffic Load = 20 pkts/sec.



Experiments 1, 2, 3, 4 and 5 determined the effect of
mobility, number of senders, number of members, traffic
load, and number of multicast groups respectively. For the
traffic load test we set mobility to 0 because we wanted
to focus of packet drops caused by congestion. Both the
senders and members were chosen randomly from among
the 50 nodes. Traffic load was equally distributed among
all senders. For the multiple groups experiment, random
allocation of nodes to groups could result in a single node
being a member of multiple groups. Experiments 1, 2, 3
and 4 are the same that were carried out in [3] where
the designers of ODMRP [2] compare its performance to
CAMP [1], AMRIS [7] and AMROUTE [6]. Experiments 5
is an additional experiment that we have carried out which
we believe is important in evaluating the effectiveness of a
multicast protocol.

B. Core Stability

The stability of a core is important for the effective per-
formance of ROMANT. Frequent core changes in addition
to leading to control overhead, would also lead to a signifi-
cant number of packet drops because the tree would always
be in a state of reconstruction. This is avoided because
ROMANT satisfies two properties: a) Core elections are not
triggered if the partitions and reconnections are occurring
rapidly b) Nodes do not detect a partition when one has
not occurred.

The first condition is met because nodes detect a
partition in ROMANT only if they fail to receive a
core announcement from a core for three consecutive
coreannouncementinterval’s i.e. 9 seconds. Hence if parti-
tions and reconnections are frequently occurring then nodes
will not detect a partition. Only when a node is partitioned
from the core for a period of 9 seconds consecutively does
it detect a partition, and participate in the election if it is a
receiver.

Nodes may detect a partition when it has not occurred
if they consistently don’t receive core announcements from
the core. Other multicasting protocols would face similar
problems if important control information was consistently
lost. Providing an analytical model to predict erroneous
partition detection, based on the probability of successful
packet delivery per link is beyond the scope of this paper.
Please note that a node receives a core announcement
along all paths connecting it to the core. It detects a
false partition only when it is not able to receive even a
single core announcement on any path, for three consec-
utive coreannouncementinterval’s. For each experiment
we carried out we also measured the average number of
core changes detected by each node during the course
of the experiment. In addition to experiments described
in Section III-A we carried out an experiment with the
following parameter values: mobility = 0 m/s, senders =
5, members = 20, traffic load = 10 pkts/sec, and multicast
groups = 1. We varied the terrain size from 800 m X 800 m
to 12800 m X 12800 m. We wanted to detect the occurrence
of false partitions in sparser networks where the average

mobility(m/s) 0 5 10 15 20
core changes 0 5.78 3.86 5.14 5.14

senders 1 2 5 10 20
core changes 4.5 4.5 5.79 4.5 4.5

members 5 10 20 30 40
core changes 0 1.29 5.79 5.79 10.93

terrain-
size(m)

800
X
800

1600
X
1600

3200
X
3200

6400
X
6400

12800
X
12800

core changes 0 0 0 0 0

traffic-load
(pkts/sec)

1 2 5 10 25 50

core changes 0 0 0 0 0 0

TABLE I

CORE CHANGES FOR DIFFERENT SCENARIOS

number of neighbors per node would be significantly lower.
The idea was to distinguish the real core changes from
the false core changes. The core changes detected when
the nodes are mobile may be real or false. The core
changes detected when nodes are not moving have to
be false. Having zero core changes in situations of zero
mobility is a strong indicator that false core changes do not
occur. The results are shown in Table I. Table I indicates
that the core changes are zero for all scenarios with no
mobility. viz. mobility experiment for mobility = 0, traffic
load experiment, and the terrain-size experiment with zero
mobility. Even for scenarios with mobility core changes are
relatively small for a 900 second simulation time.

C. ROMANT vs MAODV

1) Broken routes: Data packets may be lost due to
broken routes as a result of mobility, or due to collisions.
Greater packet losses due to collisions would occur in a
protocol with a higher overhead. Data packet loss due to
broken routes is expected to be larger for a tree based
protocol like ROMANT as it offers only a single route
between senders and receivers as opposed to a mesh based
protocol like ODMRP which offers multiple routes. In
ROMANT, packets flow from senders to receivers in two
steps as described in Section II-E. In the first step they
are routed to the tree using connectivity list information
and in the second step they are flooded within the tree.
ROMANT is able to significantly restrict its losses due to
broken routes, because in both steps it ensures that links
do not remain broken for long.

In the first step, only one data packet is lost per broken
link, as the link break is immediately detected if an implicit
acknowledgment is not received as described in Section II-
F. A new route to the tree does not have to be established,
as subsequent data packets are simply directed towards
the next best entry in the connectivity list. In contrast, in
MAODV three hello packets sent once every three seconds
have to be lost before a link break is detected. The broken



link is then fixed by transmission of route requests and route
replies. In this interval, a significant number of data packets
could be lost depending on the rate of traffic generation.

In the second step, ROMANT does not detects link
breaks in the multicast tree nor does it fixes them.
It simply generates a brand new tree once every
coreannouncementinterval. i.e. three seconds. (Depending
on the mobility of the nodes a large number of nodes
than were present in the old tree may also be in the new
tree). This global, proactive approach to tree maintenance as
opposed to a local, reactive approach as in MAODV where
individual link breaks are detected and fixed also results
broken links existing for a shorter time. As a brand new
tree is built every three seconds as described in Section II-
D, a link may remain broken for a time between 0 and 3
seconds depending on when it is broken. In the MAODV
approach on the other hand, with an allowedhello loss of
two it means than only when three hello packets are lost
is a link break detected. Hence it takes between 6 and 9
seconds for a broken link to be detected. Fixing a link break
takes further time as it involves sending RREQ, RREP, and
MACT packets. Probably the most important reason for the
lower broken links in the case of proactive tree maintenance
as in ROMANT is because the average link life for the
chosen simulation parameters (radio range, mobility, and
terrain size) is significantly more than 3 seconds. Thus the
tree is rebuilt before its links have a chance to break.

2) Control Overhead:Although intuitively we feel that
the proactive maintenance of the multicast tree in RO-
MANT would result in a higher overhead compared to an
on-demand approach as in MAODV, that is not correct.
The global, proactive approach to tree maintenance adopted
by ROMANT is possible because of the periodic flood
of core announcements by the core, which establishes
connectivity lists at each node as described in Section II-D.
Periodic flood of a control packet in core based protocols
is needed anyway to detect partitions and reconnections.
MAODV also has a similar packet which is flooded called
the “group hello”. MAODV does not utilizethis flooding
for tree maintenance. Hence the overhead incurred in fixing
broken links i.e. RREQ, RREP and MACT packets is an
additional overhead having no counterpart in ROMANT.
In order to maintain tree connectivity only tree members
in ROMANT transmit join announcements. However in
MAODV all nodes transmit hello packets.

3) Analysis of Results:Based on simulation results
shown in Figs. 5(a), 5(c), 5(d) and 8(b) we can
see that the packet delivery ratio of MAODV is low in
scenarios with high mobility, large numbers of members,
high traffic loads or multiple multicast groups. We also note
that the drop in the packet-delivery ratio is not gradual.
When a certain threshold is crossed in terms of mobility,
number of members, traffic load or multicast groups, we
see from these figures that the packet-delivery ratio drops
drastically. We call this threshold the “stress threshold”.
This is accompanied by a corresponding increase in packet
overhead, as shown in Figs. 7(a), 7(c), 7(d) and 8(d)

A careful analysis of the packets sent in all four scenarios
show that a large number of RREQ (with Join flag set),
RREP and MACT packets are sent. These are the packets
associated with tree reconstruction. This indicates that the
multicast tree is unstable and needs significant reconstruc-
tion activity. A multicast tree becomes unstable when the
likelihood of links breaking increases. Links are assumed to
break if neighbors do not hear each other’s hello packets.
The multicast tree can become unstable due to different
reasons. In the case of high mobility, links actually break
when nodes move in and out of each other’s range. In the
case of large numbers of members, the multicast tree is
much larger. Assuming that a certain fraction of links are
broken, a larger number of links means that a larger number
of links are broken. In the case of higher traffic load,
the links are not really broken; however, a larger number
of packets are lost due to collisions. Hence, when hello
packets are lost due to collisions, nodes infer erroneously
that links have been broken. We call this phenomenon an
“apparent link break”. In case of multiple multicast groups
multiple trees are maintained, one for each group. The
tree maintenance packets of one tree interfere with another
which also leads to apparent link breaks.

Our analysis leads us to believe that MAODV’s response
to fixing broken links is its greatest limitation. The fact that
nodes believe that links are being broken indicates that the
network is operating in stress mode, and MAODV responds
by injecting three kinds of packets, i.e., RREQ, RREP and
MACT packets. As a result, many RREQ packets may be
flooded if a RREP packet is not received soon enough.
The injection of these packets may in fact lead to more
apparent link breaks due to the loss of more hello packets
in collisions, which in turn leads to the injection of more
RREQ, RREP and MACT packets, in an attempt to fix
these new link breaks. As a result of this cyclic nature
of congestion, there is sharp decrease in packet delivery
ratio and a sharp increase in control overhead as the
network crosses a certain “stress threshold.” ROMANT on
the other hand is less susceptible to link breakages because
it proactively maintains the multicast tree as explained in
section III-C.1. Even when a link breaks, a node does not
need to inject control packets to rebuild it. It is able to
lookup an alternate route using its connectivity list.

Another possible reason for the fast degradation of
MAODV after a certain threshold value may be due to
looping of multicast packets. Whether our previous con-
jectures or multicast looping are the reasons for MAODV’s
poor performance, it is clear that ROMANT offers a much
better alternative.

D. ROMANT vs ODMRP

1) Comparison of the protocols:ROMANT is a tree
based protocol whereas ODMRP is a mesh based proto-
col. There are however a number of additional aspects
which merit closer inspection. An important difference
between the two protocols is in the construction of the
routing structure. i.e. the mesh in ODMRP and the tree
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in ROMANT. The establishment of the mesh in ODMRP
is sender initiated and whereas the establishment of the
tree in ROMANT is receiver initiated. Figures 9 and 10
illustrate the mesh established by ODMRP and ROMANT
respectively, where nodes R1, R2 and R3 are receivers
and nodes S1, S2 and S3 are senders. The forwarding
group of ODMRP contains 16 nodes whereas the tree of
ROMANT contains only 6 nodes. Hence, a data packet
sent by node S3 is retransmitted by 16 nodes in ODMRP,
whereas in ROMANT is is retransmitted only by 7 nodes
(mesh members and node N15). The mesh in ODMRP (i.e.,
the forwarding group) is simply the union of the shortest
paths connecting all senders to all receivers. This can lead
to a significant and unnecessary data packet overhead if
all senders are not also receivers. For example, as Fig. 9
shows, nodes N4, N8 and N12 retransmit packets from
every sender, whereas they need to retransmit packets only
from sender S1. Similarly, nodes N17, N18 and N19 need
to retransmit packets only from node S3.

In addition to a higher data packet overhead, ODMRP
also has a higher control packet overhead compared to
ROMANT. Both ROMANT and ODMRP have two kinds
of control packets. Core announcements and join announce-
ments in the case of ROMANT and JOIN requests and
JOIN2 tables in the case of ODMRP. Both Core announce-
ments and JOIN requests are flooded throughout the the
network. Depending on the number of senders, the overhead
of JOIN requests can be significantly more because JOIN
requests are flooded byevery senderwhereas the core
announcements are flooded by only the core. Every tree
member in ROMANT transmits a join announcement and
every mesh member transmits a JOIN Table. Because the
number of tree members in ROMANT is significantly less
than the number of mesh members in ODMRP, as we have
shown in figures 10 and 9, the overhead of JOIN Tables
is also more than that of join announcements.

Data packets may be lost due to broken routes as a
result of mobility, or due to collisions. As ODMRP has
a significantly higher overhead as described above, packet
loss due to collisions can be expected to be higher in
ODMRP. Though packet loss because of broken routes is
expected to be lower in ODMRP as it offers multiple routes
from sender to receiver, ROMANT does a good job in
fixing broken links quickly as described in Section III-C.1.

2) Analysis of Results:As we can see from Figs. 5(a)
and 5(c), the packet delivery ratio of ROMANT is compa-
rable to that of ODMRP for varying mobility and number
of multicast members. However, for increasing numbers of
senders, increasing traffic load, and increasing number of
multicast groups, the packet delivery ratio ROMANT is
much better than that of ODMRP, as shown in Figs. 5(b),
5(d), and 8(b).

As described in Section III-D.1 and as can be seen
from figures 6(a), 6(b), 6(c), 6(d), 8(c), 7(a), 7(b),

2In order to distinguish between the join’s of ROMANT and ODMRP
lowercase “join” refers to ROMANT and uppercase “JOIN”refers to
ODMRP.

N1

R3

R2

R1
S3

S2S1 N2

Non−Member

Forwarding Group Member

Indicates the propagation of a JOIN Table

N19

N18N17

N16N15N14N13
N12

N11

N10N9
N8

N7N6N5
N4

N3

Fig. 9. Mesh establishment in ODMRP

N13

N12

N11
N10N9N8

N7

N6N5N4

N3N2N1

R3

R2

R1

S3

N14

connectivity list by setting MAC address
Propagation of Data Packet towards best entry in 

Propagation of Join Announcement towards best entry
in connectivity list.

Tree−Member

Non−Member

Distance to core = 1 

Distance to core = 1 

Distance to core = 1 

Distance to core = 2

Distance to core = 2 Distance to core = 2 

Core

N19N18N17

N16N15

S2S1

Fig. 10. Tree establishment in ROMANT

7(c), 7(d), 8(d) the control as well as total overhead of
ODMRP is always higher than that of ROMANT. However
for the scenarios involving varying mobility and number
of multicast groups it is not enough to precipitate packet
drops, as is shown in Figures 5(a) and 5(c). The main
reason for ROMANT showing a high packet delivery ratio
is that it is able to restrict packet losses due to broken routes
as described in Section III-C.1.

However for the scenario involving multiple senders as
the number of senders is increased beyond 10, the per-
source flooding of ODMRP increases the overhead to a
level which precipitates large scale collisions and packet
drops, as shown is Figure 5(b). Similarly, when the number
of multicast groups is increased, per source flooding per
group has the same effect as shown in Figure 8(b). In both
these scenarios packet delivery ratio of ROMANT is not



effected as a) Only the core is ROMANT performs flooding
irrespective of the number of senders b) In case of multiple
groups the core announcements of the different groups
are aggregated as described in Section II-G. c) ROMANT
restricts the number of packets lost due to broken routes.
As the traffic load is increased both protocols suffer a
drop in packet delivery ratio. However, ODMRP suffers
a much larger drop because its higher control and data
packet overhead results in network saturation much earlier.
As a result, when the traffic load is increased beyond 10
packets/second, the packet delivery ratio of ROMANT is
higher than that of ODMRP, as shown in Fig. 5(d).

E. Control Overhead Bound

As we have mentioned earlier, the control overhead of
ROMANT does not vary much. As long as the core remains
unchanged nodes generate a core announcement every
time they receive a fresh announcement (one with higher
sequence number). The core generates a core announce-
ment every coreannouncementinterval, which results in
each node in the network generating a core announcement
every coreannouncementinterval i.e. every three seconds.
Additional core announcements are generated every time
a node detects a core change. This however does not
result in a significant increase because the number of core
changes that occur per node are very small as described
in Section III-B. Another source of control overhead in
ROMANT is the generation of joinannouncements by each
tree member once every joinannouncementinterval i.e.
every three seconds.

Table II shows the average control overhead, and its
standard deviation for all the three protocols. Experiments
1, 2, 3, 4 and 5 refer to the same experiments described
in Section III-A. The average number of control packets
generated per node in more than 5000 for ODMRP and
more than 6000 for MAODV. In ROMANT is in the 450
- 470 range for experiments 1 to 4. For experiment 5 it
is higher because as the number of groups is increased
although the core announcements are aggregated the join
announcements are not. The average control overhead, as
well as its standard deviation for experiment 5 is still much
lower for ROMANT compared to the other two protocols.
Low standard deviation indicates that the values do not
vary much for different experiment scenarios, indicating
that control overhead incurred by a node does not change
much on changing mobility, number of senders, number of
members or traffic load. ODMRP has the highest average
and standard deviation for experiment 2. This indicates that
the control overhead of ODMRP changes drastically on
changing the number of senders. Other than experiment
2, MAODV has high values for all other experiments, both
for the average control overhead as well as its standard
deviation.

IV. CONCLUSIONS ANDFUTURE WORK

The robust multicasting in ad hoc networks using trees
(ROMANT) protocol is based on the simple idea of using

Exp No 1 2 3 4 5

ROMANT
Avg

461.2 457.3 453.7 462.9 1033.5

ROMANT
Std

5.0 7.3 12.5 6.2 645.9

ODMRP
Avg

4690.1 8549.4 4757.1 5414.7 17590.8

ODMRP
Std

83.0 9091.6 2315.8 1290.9 10827.6

MAODV
Avg

12867.4 648.3 8807.3 10539.2 72338.8

MAODV
Std

16830.7 22.9 18253.1 16717.5 19883.9

TABLE II

CTRL OVERHEAD AVERAGE AND STANDARD DEVIATION PER NODE

core announcements to elect a core for the group and inform
all routers of their distance and next-hops to the core.
Each receiver connects to the core by periodically transmit-
ting join announcements resulting in the formation of the
multicast tree. In addition to providing the lowest control
overhead compared to ODMRP and MAODV, ROMANT
provides a very tight bound for the control overhead. In
other words, the control overhead of ROMANT is almost
constant when mobility, number of senders, number of
members, or traffic load are changed. Even though it is a
tree based protocol ROMANT provides comparable or bet-
ter packet delivery ratio than ODMRP because ROMANT’s
mechanism for building the multicast tree and forwarding
data packets from senders to receivers significantly restricts
broken links. ROMANT does not depend on the existence
of pre-designated cores or any unicast routing protocol.

MAODV’s proved to be scalable with respect to the num-
ber of senders, but the link repair mechanism in MAODV
was especially vulnerable in situations of real or perceived
link breakages (e.g., high mobility, high traffic load, or a
large multicast tree). ODMRP’s main weaknesses were the
the lack of scalability with respect to the number of senders,
and large data-packet overhead due to path redundancy.
ROMANT was also more scalable in terms of number of
multicast groups compared to the other two protocols.

Our current research focuses on the integration of direc-
tional antennas, which could result in lower data-packet
overhead because non-member nodes may not have to
receive multicast packets for a group.
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