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Abstract: L-type voltage-gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) interact with the Ca2+

sensor proteins, calmodulin (CaM) and Ca2+ binding Protein 1 (CaBP1), that oppositely control Ca2+-
dependent channel activity. CaM and CaBP1 can each bind to the IQ-motif within the C-terminal
cytosolic domain of CaV, which promotes increased channel open probability under basal conditions.
At elevated cytosolic Ca2+ levels (caused by CaV channel opening), Ca2+-bound CaM binding to CaV
is essential for promoting rapid Ca2+-dependent channel inactivation (CDI). By contrast, CaV binding
to CaBP1 prevents CDI and promotes Ca2+-induced channel opening (called CDF). In this review, I
provide an overview of the known structures of CaM and CaBP1 and their structural interactions
with the IQ-motif to help understand how CaM promotes CDI, whereas CaBP1 prevents CDI and
instead promotes CDF. Previous electrophysiology studies suggest that Ca2+-free forms of CaM
and CaBP1 may pre-associate with CaV under basal conditions. However, previous Ca2+ binding
data suggest that CaM and CaBP1 are both calculated to bind to Ca2+ with an apparent dissociation
constant of ~100 nM when CaM or CaBP1 is bound to the IQ-motif. Since the neuronal basal cytosolic
Ca2+ concentration is ~100 nM, nearly half of the neuronal CaV channels are suggested to be bound to
Ca2+-bound forms of either CaM or CaBP1 under basal conditions. The pre-association of CaV with
calcified forms of CaM or CaBP1 are predicted here to have functional implications. The Ca2+-bound
form of CaBP1 is proposed to bind to CaV under basal conditions to block CaV binding to CaM,
which could explain how CaBP1 might prevent CDI.

Keywords: calmodulin; CaBP1; CaV1.2; CaV1.3; L-type Ca2+ channel; EF-hand; IQ-motif

1. Introduction

1.1. Voltage-Gated L-Type Ca2+ Channel Structure and Function

Synaptic transmission and neuronal excitability are regulated by the L-type voltage-
gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) expressed in the brain and heart [1–4].
CaVs display slow voltage-dependent gating characteristics (L-type) and are sensitive
to a number of different dihydropyridine (DHP) antagonists and agonists [5]. Under
resting basal conditions, intracellular Ca2+ concentration is kept low (100 nM) due to
the powerful action of Ca2+ pumps and exchangers [1,6] and Ca2+ sequestration into
stores [1,7]. The opening of CaV channels causes intracellular Ca2+ levels to increase into the
micromolar range [8]. This Ca2+ influx triggers a wide range of Ca2+-dependent processes
including gene transcription [9], neurotransmitter release [10], neurite outgrowth [11], and
the activation of Ca2+-dependent enzymes [12]. Prolonged elevation of intracellular Ca2+

levels is cytotoxic [13], and CaV channels are negatively regulated by a process known as
Ca2+-dependent inactivation (CDI) [14–16]. Dysregulation of CaVs are linked to various
types of neurological disorders, including epilepsy, migraine, and chronic pain [17].

The CaVs are a heteromultimeric protein complex formed by a pore-forming α-subunit
and regulatory β and δ subunits (Figure 1). The α-subunit contains four major transmem-
brane domains (Figure 1A), each with six membrane-spanning helices (termed S1–S6) and
a positively charged S4 segment that controls voltage-dependent activation [18]. The trans-
membrane domains are connected by long cytoplasmic linkers (III-IV inactivation gate [19]),
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bracketed by cytoplasmic N-terminal and C-terminal domains [20]. The C-terminal domain
(residues 1508-1665, called CT1) is important for Ca2+-dependent regulation of channel
function and contains important sites (EF-hand and IQ motifs) for protein–protein inter-
actions [21–23]. A three-dimensional structure of the skeletal muscle CaV (called CaV1.1)
in the absence of CaM was solved by cryo-EM (Figure 1C) [24,25]. The CaV1.1 structure
reveals long-range contacts between the inactivation gate (III-IV linker) and the channel
EF-hand domain (orange in Figure 1C), which may undergo Ca2+-induced conformational
changes during CDI (see Section 3 below).
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Figure 1. Structure of CaVs. (A) The α-subunit consists of 4 transmembrane domains (I-IV) that contain 6 helices (yellow)
and pore loop (red). The III-IV linker is the inactivation gate. The cytosolic C-terminal domain (CT1) is comprised of an
EF-hand domain (orange) and IQ-motif (red). (B) CaV is composed of pore-forming α-subunit attached to β- and δ-subunits.
(C) Cryo-EM structure of CaV1.1 (PDB ID: 5GJW) showing the inactivation gate (III-IV linker in blue) connected to the
EF-hand domain (orange). The IQ-motif is structurally disordered and missing in the cryo-EM structure of CaV1.1.

CaV channels inactivate rapidly by a process known as CDI (Figure 2) that depends
critically on CaM [16,26] and CaBP1 [27,28]. Ca2+-free CaM is believed to be pre-associated
with the CT1 domain such that the C-lobe of CaM interacts with the “IQ” domain and the N-
lobe may interact with the EF-hand in order to increase the channel open probability under
basal conditions [29–31]. Membrane depolarization causes CaV channel opening, which
promotes a rise in intracellular Ca2+ that causes a conformational change in the CaV/CaM
complex and gives rise to rapid channel inactivation called CDI [29,32–34]. CaBP1 competes
with CaM for binding to CT1 [2,35], which prevents channel pre-association of CaM and
abolishes CDI (Figure 2B).
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Figure 2. Ca2+-dependent Inactivation (CDI) of CaV. (A) Schematic representation of the electrophysiology experiment used
to record CDI. (B) Normalized Ca2+ and Ba2+ currents evoked by 1 s pulse (−80 to +10 mV). Adapted from [2]. Fast decay
of Ca2+ current due to CaM (black trace in left panel, CDI). The decay of the Ca2+ current is much slower in the presence of
CaBP1 (black solid trace in the right panel, CDI abolished). Dotted line is the Ca2+ current in the absence of CaBP1, caused
by endogenous CaM. Red traces are Ba2+ currents that lack fast inactivation because Ba2+ does not bind to CaM.
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1.2. CaM Is a Ca2+ Sensor for CaVs

CaM is a 16.7 kDa Ca2+ sensor protein that belongs to the EF-hand superfamily [36].
CaM contains four EF-hand motifs (EF1, EF2, EF3, and EF4) that are grouped into two
domains that are separately folded (EF1 and EF2 form the CaM N-lobe, while EF3 and
EF4 form the CaM C-lobe) [37]. The CaM C-lobe and N-lobe each bind to Ca2+ with a
dissociation constant of ~1 µM and 10 µM, respectively [38]. Thus, Ca2+ binding to CaM is
an ordered process in which two Ca2+ bind to the C-lobe first before binding to the N-lobe.
The Ca2+-bound form of CaM is known to bind to hundreds of different target proteins,
including dozens of enzymes, receptors, ion channels, and other Ca2+ transporters [39].
The Ca2+-induced binding of CaM to its various target proteins usually serves to augment
the biological activity of the target protein.

The binding of CaM to CaVs is critically important for promoting CDI [16,26]. In
particular, CaM has been shown to bind to the IQ-motif (residues 1640–1665, highlighted
red in Figure 1A) within the C-terminal cytosolic domain of CaVs [40], because deletion
of the IQ-motif prevents CaV binding to CaM [26]. The NMR structure of Ca2+-free CaM
(apoCaM) bound to the IQ-motif reveals that the IQ peptide forms an α-helix that interacts
solely with the CaM C-lobe, while the IQ helix does not interact with the apoCaM N-lobe
(Figure 3A). The most prominent intermolecular contacts involve IQ residues I1654 and
K1662, and the mutations I1654E and K1662E each weaken apoCaM binding by nearly
10-fold [41]. The crystal structure of Ca2+-bound CaM bound to the IQ-motif reveals that
both CaM lobes bind to opposite sides of the IQ helix (Figure 3B). The CaM C-lobe forms
hydrophobic contacts with IQ residues I1654 and Q1655 that are essential for binding [42],
hence the name IQ-motif. The CaM N-lobe forms hydrophobic contacts with aromatic IQ
residues (Y1649 and F1652) that are essential for N-lobe binding. CaV mutations in the
IQ-motif (I1654E and I1654M) that weaken CaM binding abolish CDI [43]. Much is known
about how CaM interacts with the IQ-motif, but less is known about how the CaM-IQ
interaction leads to channel inactivation. In this review, I present the possible molecular
mechanisms of CDI to suggest how conformational changes in CaM and CaV might lead
to CDI.
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Figure 3. Atomic-level structures of CaM and CaBP1. (A) NMR structure of Ca2+-free CaM C-lobe (cyan) bound to the
CaV1.2 IQ-motif in red (PDB ID: 6CTB) [41]. (B) Crystal structure of Ca2+-bound CaM (cyan) bound to the CaV1.2 IQ-motif
in red (PDB ID: 2BE6) [44]. (C) Structural model of the crystal structure of CaBP1 (PDB ID: 3OX6) [45] bound to the CaV1.2
IQ-motif (red). Bound Ca2+ are indicated by orange spheres.

1.3. CaBP1 Promotes Activation of CaVs

Neuronal Ca2+-binding proteins (CaBP1-5 [46]) represent a sub-branch of the CaM
superfamily [39] that regulate various Ca2+ channel targets. Multiple splice-variants
and isoforms of CaBPs are localized in different neuronal cell types [47–49] and perform
specialized roles in signal transduction. CaBP1, also termed caldendrin [50], has been
shown to modulate the Ca2+-sensitive activity of L-type channels [51], and the transient
receptor potential channel, TRPC5 [52]. CaBP1 contains four EF-hands, similar in sequence
to those found in CaM [39]. By analogy to CaM [37], the four EF-hands are grouped into
two domains connected by a central linker that is four residues longer in CaBP1 than in
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CaM. In contrast to CaM, the first and second EF-hands of CaBP1 lack critical residues
required for high affinity Ca2+ binding [46]. CaBP1 binds Ca2+ only at EF3 and EF4,
whereas it binds Mg2+ at EF1 that may serve a functional role [53]. In addition to binding
Ca2+, CaBP1 also binds tightly to the CaV IQ-motif [35]. A crystal structure is known for
CaBP1 with Ca2+ bound to EF3 and EF4 (Figure 3C) [45]. A structural model of CaBP1
bound to the IQ-motif (Figure 3C) was generated here by homology modeling that was
calculated based on the crystal structure of the CaM-IQ complex [44]. In this model, the
Ca2+-bound CaBP1 C-lobe makes hydrophobic intermolecular contacts with IQ residues
I1654 and Y1657, whereas the CaBP1 N-lobe does not make any intermolecular contacts.
Future structural and mutagenesis studies of CaBP1 bound to the IQ-motif are needed to
test the validity of the structural model in Figure 3C.

The binding of CaBP1 to CaV has been shown to increase the channel open probability
and to abolish or prevent CDI. Unlike CaM, CaBP1 appears to cause CaV channel activation
at high cytosolic Ca2+ levels, which gives rise to CaV channel CDF [45]. CaBP1 has been
suggested to bind to multiple sites within CaV [54]; however, CaBP1 binding to the IQ-
motif is believed to cause CDF [55]. The CaBP1 binding to the IQ-motif under basal
conditions [35] may serve to block CaM binding to CaV, which may explain how CaBP1
prevents CDI. Schematic mechanisms are presented below to speculate how CaBP1 binding
to CaV might activate channel open probability and prevent CDI.

2. CaV Channel Function Regulated by CaM and CaBP1
2.1. CaM Is Both an Accelerator and a Brake for CaV Channel Activity

Neuronal excitability is modulated in part by the Ca2+-dependent activity of CaV chan-
nels localized at the synaptic membrane. CaM binding to CaV serves to increase channel
activity at low cytosolic Ca2+ levels under basal conditions ([Ca2+]i = 100 nM). Conversely,
CaM decreases CaV channel activity at higher cytosolic Ca2+ levels (([Ca2+]i = 1.0 µM)
caused by neuronal stimulation. Thus, CaM acts as both an accelerator and a brake to
control CaV channel opening [16]. Ca2+ influx through CaV channels causes elevated intra-
cellular Ca2+ levels that in turn promote a rapid negative feedback channel inactivation
(called Ca2+-dependent inactivation or CDI [16]), mediated by CaM (Figure 4). Rapid CDI
requires CaM to be pre-associated with CaV under basal conditions [29,33]. The channel
has been suggested to be pre-associated with apoCaM under basal conditions (Figure
4A) [35], and apoCaM binding to CaV may increase Ca2+ currents (ICa) and channel open
probability (Po) [56], whereas ICa is dramatically decreased at elevated Ca2+ levels, because
Ca2+-bound CaM inactivates the channel [15,16]. As a result, apoCaM binding to CaV in
which the CaM C-lobe is bound to the IQ motif (red box in Figure 4) and CaM N-lobe is
bound to the channel EF-hand (orange box in Figure 4) is believed to stabilize the channel
in the open state at low Ca2+ levels under basal conditions (Figure 4B). At elevated Ca2+

levels (caused by neuronal stimulation), Ca2+-saturated CaM has been suggested to bind to
the full-length CaV at two different sites: The N-lobe binds to the NSCaTE domain [15,57]
and the CaM C-lobe binds to the IQ motif [44], which is hypothesized to stabilize the
channel in the inactive state (Figure 4C). Atomic-level structures are known for Ca2+/CaM
bound to IQ [44] and NSCaTE [57] domains. However, structures are not yet known for
apoCaM and Ca2+/CaM each bound to the entire C-terminal cytosolic domain of CaV
comprised of the channel EF-hand and IQ-motif (called CT1 domain, Figure 4C). Future
studies are needed to elucidate the structural interaction of apoCaM and Ca2+/CaM each
bound to the full-length channel to further test the model in Figure 4.
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Figure 4. Conventional Model of CDI from CaV regulated by CaM and CaBP1. (A) Under resting conditions
([Ca2+]i = 100 nM), CaV (dark blue) is in the closed channel state, which has been suggested to be pre-associated with
Ca2+-free forms of CaM (cyan) or CaBP1 (yellow). (B) Membrane depolarization causes channel opening, which causes Ca2+

influx. Initially at low cytosolic Ca2+ levels (([Ca2+]i < 300 nM), CaV is bound to Ca2+-free forms of CaM or CaBP1, which
stabilize the active open state. (C) After sufficient Ca2+ influx, the cytosolic Ca2+ level increases to above 1 micromolar,
which causes Ca2+ binding to CaM and the Ca2+-bound CaM promotes channel inactivation (CDI). Alternatively, CaV
binding to CaBP1 (yellow) displaces CaM and prevents CDI (bottom panel). (D) The binding of Ca2+-bound CaBP1 to CaV
promotes channel opening at elevated Ca2+ levels (called CDF). Bound Ca2+ are indicated by red circles.

2.2. CaBP1 Binding to CaV Prevents CDI and Activates Channel Opening

The upregulated expression of excess CaBP1 in particular neuronal cell types is known
to abolish CDI of CaV [2,28,35,51] (Figure 4B, lower panel). The Ca2+-bound CaBP1 also
increases CaV channel activity (Figure 4D) during Timothy Syndrome [58] and CaBP1
binding to CaVs could be targeted by therapeutics for the disease. CaBP1 was shown
to compete with CaM for binding to the IQ-motif [35]. Thus, excess CaBP1 binds to the
IQ motif and displaces apoCaM by mass action at low basal Ca2+ levels to prevent CaM-
mediated CDI (Figure 4B, bottom panel). Previous studies have suggested that CaBP1 may
bind to additional sites within CaV [54]. However, CaBP1 binding to the IQ-motif alone
(as depicted in Figure 4) is believed to cause increased NPo under basal conditions and
suppress CDI [28,55]. Future studies are needed to elucidate the atomic-level structural
interactions between CaBP1 and CaV to further test the model in Figure 4.

3. Functional Role of Ca2+-Bound Forms of CaM and CaBP1 under Basal Conditions

Previous Ca2+ binding studies reveal that Ca2+/CaM binds to the IQ-motif with a
dissociation constant (Kd = 10−12 M [35,40]) that is a million times smaller than the Kd
for apoCaM binding to the IQ [40]. The huge stabilization of Ca2+/CaM caused by IQ
binding implies that CaM-IQ should bind to Ca2+ with much higher affinity than CaM
alone. Indeed, on the basis of previous binding data [38,40], the apparent Ca2+ binding
dissociation constant of the CaM C-lobe in the CaM-IQ complex (KD

app) can be calculated

to be ~100 nM (Kapp
D =

√
1

K1K2K3
), where K1 = 1012 M−2 for the binding of two Ca2+ to the

CaM C-lobe alone [38], K2 = 107 M−1 for Ca2+/CaM C-lobe binding to the IQ-motif [40],
and K3 = 10−5 M for the apoCaM C-lobe dissociation from the IQ peptide [40,41]. The



Biomolecules 2021, 11, 1811 6 of 10

predicted 100 nM binding of Ca2+ to the C-lobe of CaM-IQ implies that ~50% of the
CaM-IQ complex should have Ca2+ bound to the CaM C-lobe under basal conditions

([Ca2+]i = 100 nM, Kapp
D = 100 nM, and Y =

([Ca2+ ]i
Kapp

D +([Ca2+ ]i
= 0.5). By contrast, the CaM

N-lobe in the CaM-IQ complex is estimated to bind to Ca2+ with an apparent dissociation

constant (Kapp
D ) equal to ~1 µM (Kapp

D =
√

1
K1K2K3

), where K1 = 1010 M−2 for the binding of

two Ca2+ to the CaM N-lobe alone [38], K2 = 106 M−1 for Ca2+/CaM N-lobe binding to the
IQ [40], and K3 = 10−4 M for apoCaM N-lobe dissociation from the IQ [40]. This relatively
low affinity Ca2+ binding to the CaM N-lobe predicts that the CaM N-lobe in the CaM-IQ
complex should be devoid of Ca2+ under basal conditions. Therefore, I propose that a half
saturated state of CaM with two Ca2+ bound to the C-lobe may exist under basal conditions
([Ca2+]i = 100 nM) (see Figure 5A). This calcified CaM species would allow its Ca2+-bound
C-lobe to be anchored tightly to CaV under basal conditions, which would enable tight
CaM pre-association that is needed for rapid CDI. By contrast, the CaM N-lobe is predicted
to be in the Ca2+-free state at basal Ca2+ levels that can switch to the Ca2+-bound state
upon Ca2+ influx and serve as a Ca2+ sensor during CDI (Figure 5B). Future experiments
are needed to measure the apparent Ca2+ binding affinity of CaM-IQ and CaM-CaV to
experimentally verify whether the CaM C-lobe in these complexes can bind to Ca2+ with a
Kapp

D near 100 nM as predicted above. Future studies are also needed to test whether Ca2+

binding to CaM is required to cause increased CaV channel open probability under basal
conditions. In particular, the model in Figure 5 predicts that EF-hand mutations in CaM
(that disable Ca2+ binding to the third and fourth EF-hands in the C-lobe) should prevent
CaM pre-association, abolish CDI, and prevent the increased channel open probability
observed under basal conditions [56]. Future electrophysiology and in vivo functional
studies on CaV should be carried out in the presence of these CaM mutants to test the
predictions in Figure 5.

A similar analysis performed here using the previous Ca2+ binding data for CaBP1
suggests that the binding of the IQ-motif to CaBP1 should allow the CaBP1-IQ complex to
bind to Ca2+ in the nanomolar range, in contrast to the micromolar Ca2+ binding observed
for CaBP1 alone [35,53]. The apparent Ca2+ binding dissociation constant of CaBP1 in

the CaBP1-IQ complex (KD
app) can be calculated to be ~100 nM (Kapp

D =
√

1
K1K2K3

),

where K1 = 1012 M−2 for the binding of two Ca2+ to CaBP1 alone [53], K2 = 109 M−1 for
Ca2+/CaBP1 binding to the IQ [35], and K3 = 10−7 M for apoCaBP1 dissociation from
the IQ [35]. Future Ca2+ binding experiments are needed to verify whether the CaBP1-IQ
complex (and CaBP1-CaV) can bind to Ca2+ in the nanomolar range as predicted here.
The predicted 100 nM binding of Ca2+ to CaBP1-IQ implies that ~50% of the CaBP1-IQ
complex should have two Ca2+ bound to CaBP1 under basal conditions ([Ca2+]i = 100 nM,

Kapp
D = 100 nM, and Y =

[Ca2+ ]i
Kapp

D +([Ca2+ ]i
= 0.50). Therefore, I propose that upregulated

expression of CaBP1 in neurons will generate a Ca2+-bound form of CaBP1 that can exist
at low Ca2+ levels under basal conditions as well as at high Ca2+ levels following Ca2+

influx (Figure 5C). Thus, Ca2+-bound CaBP1 is proposed here to constitutively activate
CaV channels, which can both prevent CDI and promote CDF. Future experiments are
needed to test whether Ca2+ binding to CaBP1 is required to cause increased CaV channel
open probability. In particular, the model in Figure 5C predicts that EF-hand mutations in
CaBP1 (that disable Ca2+ binding to the third and fourth EF-hands) should weaken CaBP1
binding to CaV, re-enable CDI, and prevent CDF. Future electrophysiology and in vivo
functional studies on CaV should be carried out in the presence of these CaBP1 mutants to
test the predictions in Figure 5C.
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Figure 5. IQ-switch Model for CaV Regulation by Ca2+-bound forms of CaM and CaBP1. The channel EF-hand (orange) is
proposed here to undergo a Ca2+-induced conformational change in which the channel EF-hand switches contact between
the IQ-motif (red) and the III-IV linker (called IQ-switch). (A) Voltage-gated channel opening under resting conditions
([Ca2+]i = 100 nM) generates CaV (dark blue) in the open channel state, which is pre-associated with CaM that contains
a Ca2+ bound C-lobe (cyan) and Ca2+-free N-lobe (blue). In this activated open state of the channel, the IQ-motif is
hypothesized here to be sandwiched between the channel EF-hand (orange notched circle) on one side and the Ca2+-bound
CaM C-lobe on the other. (B) After sufficient Ca2+ influx, the cytosolic Ca2+ level increases to above 1 micromolar, which
causes Ca2+ binding to both lobes of CaM that enables each CaM lobe to bind to opposite sides of the IQ helix (red) and
promote channel inactivation (CDI). In the inactivated channel state, the channel EF-hand interacts with the III-IV linker
(green helix called the inactivation gate) in place of the structurally related IQ-motif. A triple mutation in the channel
EF-hand (T1591A/L1592L/F1593A) that disrupts interaction with the III-IV linker also abolishes CDI [43]. In essence, the
channel EF-hand bound to the III-IV linker is proposed here to serve as a channel plug that blocks the channel entrance
in the inactivated state (red bar in panel B). Channel opening is proposed to occur at low Ca2+ levels when the channel
EF-hand engages the helical IQ-motif (stabilized by its binding to the CaM C-lobe), which disconnects the EF-hand from
the III-IV linker to unblock the channel entrance (arrow in panel A). Therefore, Ca2+ binding to the N-lobe of CaM is
hypothesized here to switch the channel EF-hand from interacting with the IQ-motif at low Ca2+ levels (active state in panel
A) to interacting with the III-IV linker at high Ca2+ levels (inactive state in panel B) in order to promote CDI. (C) CaV binding
to Ca2+-bound CaBP1 prevents CDI and promotes channel opening at elevated Ca2+ levels (called CDF). Ca2+-bound CaBP1
in panel C resembles CaM with two Ca2+ bound in panel A. Bound Ca2+ are indicated by red circles.

4. Concluding Remarks

CaV channels are oppositely regulated by CaM and CaBP1: CaM binding to CaV
is essential for channel CDI, whereas CaBP1 binding prevents CDI and promotes CDF.
A careful analysis of available Ca2+ binding data suggests that CaV binding to CaM (or
CaBP1) causes a more than 10-fold increase in the apparent Ca2+ binding affinity of CaM (or
CaBP1). Thus, a significant fraction of CaV channels are predicted to be bound to calcified
forms of CaM (or CaBP1) under basal conditions ([Ca2+]i = 100 nM vs KD

app = 100 nM),
which may have functional implications (Figure 5). Future studies on EF-hand mutants
(that specifically abolish Ca2+ binding to either CaM or CaBP1) are needed to test whether
Ca2+ binding to the C-lobe of CaM (or CaBP1) is essential for the increased CaV channel
open probability caused by CaM (or CaBP1) under basal conditions.
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