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ABSTRACT OF THE DISSERTATION

Event Detection and Estimation Using Distributed Population Owned Sensors

By

Ahmed Mokhtar Nagy Ibrahim

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2019

Professor Ahmed Eltawil, Chair

Smart phones are an indispensable tool in modern day-to-day life. Their widespread use has

spawned numerous applications targeting diverse domains such as bio-medical, environment

sensing and infrastructure monitoring. In such applications, the accuracy of the sensors at

the core of the system is still questionable, since these devices are not originally designed

for high accuracy sensing purposes. In this thesis, we investigate the accuracy limits of

one of the commonly used sensors, namely, a smart phone accelerometer. As a use case,

we focus on utilizing smart phone accelerometers in structural health monitoring (SHM).

Using the already deployed network of distributed citizen-owned sensors is considered a

cheap alternative to standalone sensors. These devices can capture floors vibration during

disasters, and consequently compute the instantaneous displacement of each floor. Hence,

damage indicators defined by government standards such as peak relative displacement can

be estimated. In this work, we study the displacement estimation accuracy and propose

a zero velocity update (ZUPT) method for noise cancellation. Theoretical derivation and

experimental validation are presented and we discuss the impact of sensor error on the

achieved building classification accuracy. Moreover, in spite of the presence of sensor error,

SHM systems can be resilient by adopting machine learning. Several algorithms such as

support vector machine (SVM), K-nearest neighbor (KNN) and convolutional neural network

(CNN) are adopted and compared. Techniques for addressing noise levels are proposed and

xii



the results are compared to regular noise cancellation techniques such as filtering.

Finally, since most previous work focused on modelling the sensor chip error itself, we study

other sources of error such as sampling time uncertainty which is introduced by the device

operating system (OS). That type of error can be considered a major contributor to the

overall error, specially for sufficiently large signals. Hence, we propose a novel smart device

accelerometer error model that includes the traditional additive noise as well as sampling time

uncertainty errors. The model is validated experimentally using shake table experiments,

and maximum likely-hood estimation (MLE) is used to estimate the model parameters.

Moreover, we derive the Cramer-Rao lower bound (CRLB) of acceleration estimation based

on the proposed model.
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Chapter 1

Introduction

1.1 Motivation

With the advent of the smart device era, numerous applications (apps) have emerged that

monitor a wide range of phenomena, ranging from human activities and vitals to environ-

ment sensing and infrastructure monitoring. The driving factor behind these innovative

apps is the availability of sensors such as inertial (accelerometers and gyroscopes), pressure,

temperature, humidity, light and proximity sensors.

Several apps utilize smart phone tri-axial accelerometers in bio-medical applications to de-

tect or monitor diseases. In [4], a smart phone-based app that is used to assess upper limb

tremor in Parkinson’s disease (PD) patients has been developed. That app assists physicians

remotely to evaluate the patient’s condition. Depending on a smart phone in such situations

outperforms any other biomedical device in terms of cost, since no special hardware is needed.

In [5], atrial fibrillation (AFib) detection has been proposed. A smart phone is placed on the

chest of the patient and performs a noninvasive recording. No external sensors are needed

yielding a very low cost approach. Using this method, it is possible to detect paroxysmal

1



(or silent) AFib. In [6], regular activities are detected and recorded as a main indicator of

health. Data is captured by smartphones inertial sensors, then an online classifier differ-

entiates between five common activities: cycling, running, sitting, standing, and walking.

Monitoring these activities can effectively prevent and manage chronic diseases. Moreover,

in [7] an approach for the monitoring of elders and people with neurological pathologies

(e.g., Alzheimer) has been proposed. Multi-sensor approaches are used to recognize critical

events, such as falls or prolonged inactivity, that can be used to alert caregivers. Algorithms

have been developed and applied on data provided by inertial sensors embedded in the user

device. Other than alerts, the information provided by the proposed system can be used

to track the evolution of diseases, and to track rehabilitation progress. In [8], smart watch

accelerometers have been used to capture workout data which can assist users and physi-

cians in monitoring health status and rehabilitation tasks. The proposed framework MiLift,

automatically performs exercise identification, in addition to start/stop detection to remove

user burdens of manual data entry.

On the other hand, smart phone apps also target environment and public safety and structural

health monitoring (SHM) monitoring. For instance, in [9], a method to compute the grav-

ity orientation using a smart phone accelerometer was presented. In [10], a crowd sensing

application to estimate road conditions (CRATER) was presented. The app uses accelerom-

eter data to detect speed bumps and potholes, and reports the locations to a cloud-based

application engine.

In fact, smart devices are not originally designed for high accuracy sensing purposes, as a

result, the system performance is questionable. In this thesis, we investigate the accuracy

limits of a smart device accelerometer, and its application in SHM which is explained in

section 1.2.
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1.2 SHM

Infrastructure monitoring systems that use a smart device in the sensing mechanism have

been studied recently. Smart phones offer a cheap attractive alternative to standalone sen-

sors, since the phones network is already deployed. Moreover, the system is upgraded auto-

matically since users are regularly purchasing new phones which are equipped with higher

accuracy sensors. As mentioned, we focus on SHM application as a use case of smart phone

accelerometer. Related work in this field is summarized below.

1.2.1 Related Work

In [11], community seismic network (CSN), an earthquake detection system was developed

using phone accelerometers.CSN is a dense open seismic network based on cheap standalone

micro electro mechanical system (MEMS) sensors owned by citizens as well as smart devices.

The measurements are sent to a cloud server for processing. It was shown that CSN is

capable of generating a seismic map, i.e. map that displays peak acceleration, and that is

generated shortly after the event. The system is able to capture the s-wave in addition to

the much harder to detect p-wave. CSN was built to replace the United States Geological

Survey (USGS) earlier system ”Did You Feel It” (DYFI)? which basically asks people if they

have felt shaking and how strong the shaking was. People are required to grade the shaking

in a scale from 1 to 10.

In general, USGS already has its own sensing network, however CSN was intended to add

several measuring points and consequently to increase the seismic map resolution. General

earthquake parameters such as the epicenter is easily detected using the first few readings.

One of the main advantages CSN is the cheap deployment costs since smart phones are

already deployed and the used standalone sensors cost is about $100, which is much cheaper

3



compared to the multi-thousand dollar seismic-grade accelerometers. As an enhancement to

CSN, in [12] decentralized event detection was adopted followed by server level detection.

Single device detection was achieved by using a machine learning (ML) algorithm. The

researchers derived the relation between error rate of a single device and the overall system

accuracy.

Another smart phone based application, named iShake was designed by a team at UC

Berkeley[13]. iShake uses inertial sensors in smart phone to measure earthquake vibration.

The main goal of the project is also to gather more quantitative data, than DYFI. iShake

is not focusing on early warning, but it estimates some earthquake parameters, such as

Arias intensity. Further improvement to iShake has been achieved in the successive project;

MyShake [14]. This system successfully provided a 20 seconds warning for a magnitude 5

(M5) earthquake. It was also shown that mobile phone sensors can detect earthquakes of

magnitude 5 or higher. MyShake adopted machine learning algorithms for detection rather

than simple threshold mechanism used earlier in iShake. Machine learning role is to detect

earthquake shaking when it happens and to distinguish earthquake vibration from normal

activities.

In [15, 16], a mobile app was developed that utilizes phones internal accelerometers to sense

earthquake vibration and assess building damage status. The main goal was not to estimate

earthquake parameters, but to infer particular information about a given building such as

its damage level. The developed app estimates the interstory drift ratio (IDR) which is a

key damage indicator as illustrated in section 1.2.2. The system uses a central Amazon web

services (AWS) server connected to several phones located in a given building. At the advent

of a disaster, phones automatically record acceleration which is sent to the server. Then,

the server in turn uses the crowd sourced acceleration data to calculate damage indicators.

Finally, the building are tagged according to its damage severity and displayed on an online

map.
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1.2.2 Damage Indicator

Relative displacement of floors within a given building is used to calculate the IDRs for

the building as explained in chapter 2. Government federal agencies and civil engineering

societies such as Federal Emergency Management Agency (FEMA) and American Society

of Civil Engineers (ASCE) release documents that relate IDR values to building damage

level. For instance, in [2, 17, 18], two main critical thresholds of relative floor displacement

are defined, such that the building can be classified into one of three categories: immediate

occupancy (IO), life safety (LS) or collapse prevention (CP), which indicate that the building

is either safe, needs further inspection or unsafe respectively. Hence, during an earthquake,

the instantaneous relative floor displacement is a key indicator of the structure state [3].

In this work, we study the effect of sensor error on IDR calculation, and consequently its

impact on classification accuracy is also presented.

1.2.3 Machine Learning in SHM

Machine learning algorithms have been used recently to identify structural damage. For

instance, damage identification method intended for steel moment-frame buildings was pre-

sented in [19]. The method was based on artificial neural networks and modal variables.

In [20], SHM was achieved using a neuro-wavelet technique. Damage was detected based

on the continuous wavelet transform (CWT). According to [21], it is expensive to increase

the number of the measurement points, hence, one way to address that issue is to predict

the unmeasured mode shape data based on a limited number of measured data. Two-stage

neural network was adopted, the first is used to predict the unmeasured mode shape and the

second was used to localize and estimate the damage severity. Machine learning techniques

specially deep learning has shown robustness and resilience in noisy environments such as

speech recognition applications. In this work, we apply several machine learning classifiers

5



to detect damage level and investigate their resilience against noise.

1.2.4 Reliability of Measurements

One argument against adopting a smart phone based system in SHM is the chance of having

unreliable measurements. Readings are generally accompanied by two main sources of error:

1) phone related error due to the internal sensor chip or the device operating system (OS)

and 2) the fact that the devices are not fixed to the vibrating structure, for instance if the

phone is left on a horizontal surface during shaking, then there is a chance of sliding. In this

thesis we study the former source of error, and we propose several techniques for minimizing

its impact. With respect to the later, in [22] the response of a non fixed smart device placed

on a moving plane was studied. As expected, there is a chance of sliding that depends on the

friction coefficient between the phone and the underlying surface. Detecting sliding interval

was achieved by detecting sharp transitions of acceleration accompanying the change of state.

Since the sliding interval can be detected, it can be labeled as corrupted data and ignored.

For both sources of error, since nowadays it is legitimate to assume several smart phones are

located in each floor, any interval of missing or corrupted data in one phone can be recovered

from another one located in the same floor since they are subjected to the same excitation

signal. Moreover, by using averaging or more complex estimation technique accuracy can be

enhanced significantly.

1.3 Large Signal Errors

In literature, inertial sensors main stochastic error contributor is assumed to be random

additive noise [23, 24]. That assumption is acceptable for small signals or as long as two

conditions are satisfied: 1) the clock driving the sensor is stable with low jitter and 2) output
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samples are read properly, i.e. no samples are dropped or read twice. However, for a smart

device accelerometer (and other sensors as well) those conditions are not necessarily satisfied

due to the OS timing uncertainty. In [25], it was shown that Android has some limitations

to be considered as a real time OS, and the execution is expected to have some uncertainty

that strongly depends on the coding style.

Sampling time jitter was studied in [26]. Error was modelled as additive white noise and

sampling time uncertainty. Unlike additive noise, the error due to sampling time jitter is

signal dependent. It directly depends on the signal first derivative, which is proportional to

the signal amplitude and sensitive to sharp transitions. In other words, a signal of small

amplitude or slow variation is not much affected by sampling jitter and vice versa. Since

the error is signal dependent and function of its first derivative, hence deriving the optimal

estimator is almost impossible. Hence, the researchers in the same paper proposed maximum

likely-hood estimation (MLE) to estimate the model parameters and it outperformed LS

method. In [27], sampling time uncertainty in multi-channel analog to digital converters

(ADCs) was studied. An iterative MLE method was proposed and its accuracy was very

close to the best possible accuracy determined by the Cramer-Rao lower bound (CRLB)

which was also derived. We adopt similar methodology to model the accelerometer error for

large signal. An error model that takes into account sampling time uncertainty is proposed,

MLE is used to estimate the model parameters and the CRLB is derived. The proposed

model is validated experimentally using shake table experiments as explained in details in

chapter 4.

1.4 Thesis Contributions

In this thesis we study the feasibility of using a smart device accelerometer as a core sensing

device in structural health monitoring applications. We focus on accelerometer error mod-
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elling for small and large signals. We also develop noise cancellation techniques in addition

to applying machine learning for classification even in the presence of errors. The main

contributions of this thesis can be summarized as follows:

1. Adopting the simple accelerometer error model that includes only additive noise error

in SHM to classify buildings according to damage severity, and we focus on:

(a) Studying how acceleration error affects displacement estimation, which in turn

affects the accuracy of building damage classification.

(b) Deriving a zero velocity update (ZUPT) technique which is applied to minimize

displacement estimation error; a theoretical derivation is presented and validated

by shake table experiments. .

(c) Comparing the performance of a number of commercially available sensors includ-

ing the accelerometer chip used in most of smart devices; Invensense MPU6500

[28].

2. To develop resilient SHM system and mitigate sensor error, we apply machine learning

and compare between several algorithms. In particular we:

(a) Create a dataset of buildings response to historical earthquakes and label the

response of each floor as according to its damage severity.

(b) Demonstrate the effect of sensor noise on the classification accuracy.

(c) Present an approach to train classifiers using both ideal and noisy measurements

to enhance accuracy.

(d) Propose classification using convolutional neural network (CNN) that uses the

raw input instead of extracted features.

3. For large excitation signals, the simple additive noise error model is shown not to be

accurate, and we propose a more general error model that takes into account sampling
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time uncertainty introduced by smart devices operating systems. Hence, the main

contributions are:

(a) Proposing a novel and experimentally validated error model for smart device

accelerometer that includes sampling time uncertainty.

(b) Proposing a MLE technique to estimate the model parameters.

(c) Showing that linear estimation accuracy is close to the best achievable estimation

accuracy determined by the CRLB.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, accelerometer simple error

model is presented and applied to the SHM use case. Damage detection mechanism is

presented and the effect of sensor error is investigated. Error cancellation using ZUPT is

derived and sensor selection methodology is illustrated. Chapter 3 discusses the application

of machine learning in SHM to mitigate the effect of sensor error. Several machine learning

algorithms are compared and we propose a CNN architecture that uses raw input rather

than handcrafted features. Besides, noise mitigation using machine learning is compared to

conventional high pass filter (HPF) techniques. In chapter 4, we propose a large signal error

model that takes into account sampling time jitter caused by the device operating system.

Finally, the conclusions and future work are presented in chapter 5.

9



Chapter 2

Small Signal Accelerometer Error

Model: A Case Study

Smart devices are equipped with accelerometers which are capable of capturing vibration.

Hence, systems that depend on vibration to assess damages using smart phone based system

has been studied recently [29, 14, 30]. In this chapter, we focus on SHM as a use case for

smart device accelerometer, including error modeling of the sensor itself, and reflecting how

this error affects the damage assessment accuracy.

2.1 Problem Statement

Monitoring the structural health of buildings during and after natural disasters, such as

earthquakes provides the public and policy makers with a clear view of the state of critical

infrastructure that affects the safety and well being of the population. Previous research on

building damage assessment generally falls into one of two main categories: remote sensing

techniques and sensor-based technology. In the former, optical images are captured using
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spacecraft or aircraft, where before and after image comparisons are performed to assess the

damage. This technique is effective in detecting partial to complete collapse of buildings,

however it cannot reliably detect incipient collapse because the resolution is too low [31].

On the other hand, sensor based technology uses an internet of things (IoT) network of pre-

installed sensors to capture the movement of a building during an event, enabling distributed,

accurate and instantaneous monitoring of structures In [32], examples of using sensors such

as vibration, temperature, tilt and accelerometer sensors, for SHM targeting bridges are

presented, where sensors are interconnected in a wireless sensor network (WSN) configuration

to detect damage.

One of the well known methodologies used for damage detection is tracking the shift in

the natural frequency of a given structure, which can be measured by an accelerometer.

For instance, long term monitoring of Gabbia tower in Mantua showed effectiveness of de-

tecting non reversible structural damages based on frequency shifts [33]. In [34], low cost

MEMS accelerometers were used to estimate the fundamental normal mode frequency of

steel buildings. A dynamic acceleration measurement system with an accelerometer inte-

grated semipassive radio-frequency identification (RFID) tag was presented in [35], where

the network was used to remotely monitor the natural frequency of the structure. In [36],

a low-cost distributed system for SHM based on MEMS accelerometers was developed. To

enhance the accuracy and reduce the effect of noise and drifts, redundant accelerometer chips

were used and online averaging as well as on-board filtering features were available. Data

transmission after processing was achieved using a WiFi transceiver. The proposed system

focused on real-time monitoring of building dynamic behaviour represented by normal modes

of building oscillation. Another similar wireless sensor node was demonstrated in [37]. The

main node components were a low-cost accelerometer chip, microcontroller, wireless module

and a storage card. The measured parameters are mainly natural frequencies, damping ratios

and last floor modal displacement of a tower. In [15, 16], structural health monitoring using

a network of smart phones was presented. A mobile app was developed that utilizes the
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phones internal accelerometers to sense disaster vibration. Synchronization between devices

was addressed using network time protocol (NTP).

The work presented in this chapter is based on the fact that other than natural frequency,

the IDR is an indicative feature that can be used for SHM as mentioned in [34]. Relative

displacement of floors within a given building is used to calculate the IDRs for the building

using (2.1). Documents released by the United States federal agencies and civil engineering

societies such as FEMA and ASCE relate IDR values to building damage level. Basically,

these documents define two main critical thresholds of relative floor displacement of a given

building, such that the building can be classified into one of three categories: IO, LS or CP,

which indicate that the building is either safe, needs further inspection or unsafe respectively.

In other words, measuring the instantaneous relative floor displacement of a given building

during an earthquake event is a good indicator of the structure state [2, 3].

IDR =
DisplacementFloor −DisplacementNextF loor

FloorHeight
(2.1)

The cost of an accelerometer depends on several parameters such as dynamic range, linearity,

bandwidth, output data rate, output noise and output type, i.e. analog or digital. Based on

those specifications, cost ranges from a few dollars to a few thousand dollars. According to

[38], sensor output noise is a major contributor to displacement measurement error, which

is accentuated by double integration required to calculate displacement from acceleration.

While other technologies such as global positioning system (GPS) are widely used for local-

ization and position estimation, accuracy becomes a major limiting factor in their suitability

for structural health monitoring. As will be discussed later, to be useful, IDR values need

to be estimated with an accuracy that is within a few centimeters from ground truth. This

degree of accuracy is not possible using GPS alone, unless high-end GPS receiver is used,

which is much more expensive than a standard GPS receiver [39, 40]. Furthermore, GPS
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signals are not available indoors, which mandates outdoor installation for the sensing de-

vices. Another approach to estimate position is to use vision based displacement estimation

techniques as mentioned in [41]. Although this approach does not suffer from error accu-

mulation, it faces other challenges such as, measurement error due to heat haze and ground

motion, in addition to errors due to dim lighting and optical noise.

Therefore, in this chapter, we focused on studying the limits of using accelerometers to esti-

mate structural displacement for a number of reasons: 1) earthquake event time is relatively

short (∼20-30 seconds) which results in bounded accumulated error that can be quantified,

2) accelerometers can work indoors which is not the case of GPS, and 3) accelerometers are

not affected by ambient light conditions as compared to cameras.

As mentioned earlier, accelerometer inherent noise is one of the main challenges in displace-

ment estimation. However, noise cancellation can be achieved if some of the disaster signal

characteristics are known, such as the fact that a disaster vibration intensity fades gradually

and eventually stops at zero velocity and acceleration. In this case, the measured velocity

at the end of shaking (EOS) reflects the accumulated error in the preceding samples, which

can be used to minimize the estimation error. This technique is known as ZUPT [42, 43].

2.2 Noise Cancellation

An earthquake signal is characterized by stopping at zero acceleration and zero velocity. The

EOS instant can be detected when the absolute acceleration is below a certain threshold δ

within a specified window of time W as illustrated in figure 2.1. The selection of W is

arbitrary, whereas δ is dependent on the sensor noise. If the sensor noise standard deviation

(STD) is σ, then we believe selecting δ = 3σ is a reasonable assumption, which indicates

that the noise is below that threshold most of the time, In this region, the sensor has true
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zero velocity. Any non-zero velocity measured at this time is due to the sensor noise, and is

correlated with the noise at shaking time. As mentioned before, using such characteristic in

noise cancellation is known in the literature as ZUPT [42, 43].

ZUPT has been used in inertial navigation systems, specifically pedestrian ones [44]. In

such systems, navigation devices are mounted on a pedestrian’s foot, which is known to be

stationary on the ground once every step. The goal of applying ZUPT in that case is to

reset the velocity and prevent further error accumulation, which in turn reduces the error in

upcoming velocity samples and consequently reduces the error in displacement estimation

as well. However, in this work, we are only concerned in correcting displacement estimation

for the time window prior to the EOS instant, since that window contains the peak relative

displacement which reflects the damage state.

2.2.1 Noise cancellation using ZUPT

Accelerometer Model

We use a linear model for accelerometer which has a scale factor and a constant bias. In

addition, the model parameter values drift with temperature as mentioned in [23]. In our

application, the measurement time window is short and temperature can be assumed to be

constant throughout the measurement. Hence, the temperature dependent bias is estimated

right before -or after- each measurement using a narrow band low pass filter to be subtracted

from the readings and hence, the temperature effect on bias is minimized. On the other hand,

the scale factor error in acceleration results in the same scale error in displacement. Usually,

scale factor variation versus temperature is constrained by the manufacturer to be small and

reported in the device datasheet. Therefore, the error in displacement due to scale factor

temperature dependence is negligible compared to other sources of error such as double

integration of additive noise.
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Figure 2.1: EOS instant detection.
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Misalignment

In this work, we are concerned with measuring floors’ horizontal displacement. Hence, we

assume that accelerometers will be oriented to measure only horizontal motion, i.e. gravity

will not affect the reading. However, to account for miss-orientation, we consider a constant

bias g × sin(θ) is added to the measurement and a scale factor cos(θ) is multiplied by the

measurement, where g is the gravitational constant and θ is the misalignment angle, i.e.

ideally θ = 0. Assuming linear motion, θ is constant throughout the measurement, hence

g×sin(θ) is constant and be removed with the sensor temperature varying bias as explained

in section 2.2.1. With respect to the scale factor error, assuming θ is small enough, then

similar to the temperature effect on scale factor, the scale factor error due to misalignment

is negligible compared to other sources of error. More information about orientation and

misalignment is found in [24]. However, in case of curvilinear motion, θ is not constant, and

removing the gravity component in this case is more complex and can be addressed by using

techniques described in [45]. Curvilinear motion is out of the scope of this work and will be

investigated in future work.

ZUPT Algorithm

Using rectangular numerical integration method [46], true velocity is expressed by (2.2),

where atrue[k] is the ground truth kth horizontal acceleration sample and ∆t is the sampling

time. True displacement is obtained by (2.3) which can be simplified as shown in appendix

B to be calculated by (2.4), and the vector form is expressed by (2.5), where Atrue is the

true acceleration vector and P = [i− 1/2, i− 3/2, ...1/2]T .
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vtrue[i] =
i−1∑
k=0

atrue[k] ∆t (2.2)

strue[i] =strue[i− 1] + vtrue[i− 1]∆t

+
1

2
atrue[i− 1]∆t2 (2.3)

=
i−1∑
k=0

(i− k − 1

2
)atrue[k] ∆t2 (2.4)

=P TAtrue[0 : i− 1]∆t2 (2.5)

Measurement noise z[k] is considered additive with zero mean, since constant bias is es-

timated by long term averaging and then subtracted from the measurement [38]. Hence,

measured acceleration is expressed by (2.6). Consequently, measured displacement is shown

by (2.7). As a result, displacement error is shown by (2.8), where Z is the noise vector.

a[i] =atrue[i] + z[i] (2.6)

s[i] =
i−1∑
k=0

(i− k − 1

2
)a[k] ∆t2

=
i−1∑
k=0

(i− k − 1

2
)(atrue[k] + z[k]) ∆t2

=strue +
i−1∑
k=0

(i− k − 1

2
)z[k] ∆t2 (2.7)

e[i] =
i−1∑
k=0

(i− k − 1

2
)z[k]∆t2

=P TZ[0 : i− 1]∆t2 (2.8)

Let the shaking window length be n samples, where the shaking window is defined as the
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time window starting from the beginning of earthquake shaking to the end of shaking (EOS)

instant. v[n] is the measured velocity at the EOS instant, which is equal to the accumulated

noise since the true velocity at that instant is zero. As shown by (2.9), ZUPT is applied at

any given sample i, by multiplying v(n) by coefficient ci and then adding the result to the

displacement measurement.

Note that in traditional inertial systems, ZUPT is triggered when zero velocity is de-

tected to cancel noise at this time instant in order to decrease the error in the next ve-

locity/displacement samples. However, in our work we focus on using the zero velocity

information to minimize the error in the preceding samples to the zero velocity moment

rather than the next ones. We use the fact that measuring the velocity at the zero velocity

instant reflects the accumulation of noise of all the acceleration samples that precede the

zero velocity instant. Hence, the displacement error at any time instant is correlated to the

velocity measured at the EOS instant.

Thus, the modified displacement error is calculated by (2.10), where Q is an n× 1 vector of

ones.

sZUPT [i] =P TA[0 : i− 1]∆t2 + civ[n]∆t (2.9)

eZUPT [i] =P TZ[0 : i− 1]∆t2 + ci

n−1∑
k=0

z[k]∆t2

=P TZ[0 : i− 1]∆t2 + ciQ
TZ[0 : n− 1]∆t2 (2.10)

Let σ2
S[i] and σ2

S ZUPT [i] be the mean squared error in displacement at sample i without and
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with applying ZUPT respectively as shown by (2.11) and (2.12).

σ2
S[i] = E[e2] =P TE[Z[0 : i− 1]Z[0 : i− 1]T ]P∆t4

=P TRiiP∆t4 (2.11)

σ2
S ZUPT [i] =E[e2ZUPT ]

=P TE[Z[0 : i− 1]Z[0 : i− 1]T ]P∆t4

+ c2iQ
TE[Z[0 : n− 1]Z[0 : n− 1]T ]Q∆t4

+ 2ciP
TE[Z[0 : i− 1]Z[0 : n− 1]T ]Q∆t4

=P TRiiP∆t4 + c2iQ
TRnnQ∆t4

+ 2ciP
TRinQ∆t4 (2.12)

where E[.] denotes the expectation operator and the noise covariance Rin and Rnn are given

by (2.13) and (2.14) respectively. The value of ci is calculated such that σ2
S ZUPT is minimized

as shown by (2.15) and (2.16).

Rin =



r0 r1 . . . ri−1 . . . rn−1

r1 r0 . . . ri−2 . . . rn−2
...

...
. . .

...
. . .

...

ri−1 ri−2 . . . r0 . . . rn−i


(2.13)

Rnn =



r0 r1 . . . rn−1

r1 r0 . . . rn−2
...

...
. . .

...

rn−1 rn−2 . . . r0


(2.14)
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∂σ2
S ZUPT

∂ci
=0 (2.15)

0 =2ciQ
TRnnQ+ 2P TRinQ

⇒ ci =− P TRinQ

QTRnnQ
(2.16)

Assuming that the noise can be modeled as a stationary process as will be illustrated in

section 2.3.1, then as shown in appendix A, for noise processes that are characterized by

having decaying covariance coefficients, i.e. r0 >> r1 >> ... RQ ≈ Qη, where η is calculated

by (2.17). Hence, equation (2.16) can be simplified as shown by (2.18). The resulting mean

squared error σ2
S ZUPT is expressed by (2.19).

η =
∞∑

k=−∞

rk (2.17)

ci =− P TQ[0 : i− 1]η

QTQη
≈ − i2

2n
(2.18)

σ2
S ZUPT [i] =(P TRiiP +

i4

4n2
QTRnnQ−

i2

n
P TRinQ)∆t4 (2.19)

It is clear that the resulting mean squared error is a function of R which depends on the

noise characteristics. For example, in case of white noise, R = σ2I and η = σ2, where I is

the identity matrix and σ2 is the noise variance. By substituting in (2.11), the mean squared

error without applying ZUPT is calculated by (2.20) and can be simplified by (2.21) for

sufficiently large i.
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σ2
S[i]

∣∣∣∣
white

=σ2P T I P∆t4

=σ2P TP∆t4

=σ2∆t4
i−1∑
k=0

(k +
1

2
)2

=σ2∆t4
i−1∑
k=0

k2 + k +
1

4

=σ2∆t4(
(i− 1)(i)(2i− 1)

6
+

(i− 1)i

2
+
i

4
) (2.20)

≈σ2∆t4(
i3

3
) (2.21)

Similarly, by substituting in (2.19), the mean squared error with applying ZUPT is calculated

by (2.22), where G is an i × (n − i) matrix of zeros. For sufficiently large i, (2.22) can be

simplified as shown by (2.23).

σ2
S ZUPT [i]

∣∣∣∣
white

=σ2(P T I P +
i4

4n2
QT I Q− i2

n
P T [I G]Q)∆t4

=σ2(P TP +
i4

4n2
QT Q− i2

n
P TQ[0 : i− 1])∆t4

=σ2(
i−1∑
k=0

(k +
1

2
)2 +

i4

4n2

n−1∑
k=0

1−i
2

n

i−1∑
k=0

(k +
1

2
))∆t4

=σ2∆t4(
(i− 1)(i)(2i− 1)

6
+

(i− 1)i

2

+
i

4
+
i4

4n
− i2

n
(
(i− 1)i

2
+
i

2
)) (2.22)

≈σ2∆t4(
i3

3
+
i4

4n
− i4

2n
)

=σ2∆t4(
i3

3
− i4

4n
) (2.23)
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At the EOS instant, i.e., at i = n, the mean squared error without and with applying ZUPT

are expressed by (2.24) and (2.25) respectively. Comparing both equations, it is concluded

that using ZUPT reduces the mean squared error by 75% at the EOS instant, i.e. σS ZUPT

is smaller than σS by 50%. For the rest of the chapter we will refer to σS ZUPT as σS.

σ2
S

∣∣∣∣
white & EOS

=σ2∆t4(
n3

3
) (2.24)

σ2
S ZUPT

∣∣∣∣
white & EOS

=σ2∆t4(
n3

12
) (2.25)

2.2.2 Experimental Validation

In order to validate the developed algorithm, shake table experiments have been performed.

We have used different amplitudes of sinusoidal, frequency sweep and random vibration

profiles for a duration of 20 seconds. The sensing device is a smart phone that captures

acceleration using its internal accelerometer and transmits the data to a PC. The phone

internal accelerometer chip is Invensense MPU6500 which is a 6-axis inertial module that

contains 3-axis accelerometer and 3-axis gyroscope sensors, and is widely used in commercial

devices [28]. Figure 2.2 shows the experimental setup. MPU6500 chip noise is measured and

characterized such that a complete noise model is developed that includes not only white

noise, but also bias instability (BI) and rate random walk (RRW), which is described in

details in section 2.3.1. That noise model is used to apply ZUPT method.

The motion starts and ends by zero velocity to mimic a seismic event. For each experiment, a

vibration profile is selected. Then the whole experiment is repeated for 20 times to generate

repeated acceleration measurements for the same vibration profile. Without applying ZUPT,

for each trial the displacement is calculated by double summation of acceleration. At each
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Figure 2.2: Shake table experiment setup.

time sample, the error is calculated by evaluating the standard deviation of the calculated

displacements for all the trials of the same experiment. Then, ZUPT is applied to get

better displacement estimate from acceleration, and similarly, the error is calculated by

evaluating the standard deviation of the calculated displacements. Table 2.1 summarizes

the experimental results and reports the error of each experiment at t = 20 sec, and figure

2.3 shows the STD of theoretical and measured error in displacement σS versus time. It

is clear that the measured error follows the theoretical one with and without applying the

ZUPT algorithm. It is worth noting that the white noise approximation leads to pessimistic

results in terms of error reduction performance. As shown in figure 2.3, when using the

full noise model, the noise reduction exceeds the expected 50% reduction achievable by only

white noise assumption mentioned in section 2.2.1. It is also worth noting that there is

a slight difference between the measured and the theoretical model results, the measured

error is slightly larger. This is attributed to other sources of error such as time jitter and

nonlinearity that have not been included in the model.
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Figure 2.3: Experimental and theoretical displacement error with and without using ZUPT.
The error bars represent 99% confidence interval.

Table 2.1: Summary of experimental results. The displacement error is measured at the end
of the experiment i.e. at t = 20 sec.

Experiment Amplitude
(m/sec2)

Frequency
(Hz) Error Without

ZUPT (cm)

Error With
ZUPT (cm)

Reduction
(%)

Sine 2 3 32 7 77

Sine 2 4 24.3 8.2 82

Sine 2 5 27.1 7.1 74

Sine 2 7 46.1 5.7 87

Sweep 1 1-30 25 6.6 73

Sweep 2 1-30 42.7 9.3 78

Random 2 - 26.5 9.1 65.4
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Table 2.2: Relation between IDR and building state for steel moment frame buildings [2, 3].

IDR % Building State Tag

< 0.7% Immediate occupancy (IO) Green
0.7%− 5% Life safety (LS) Yellow
> 5% Collapse prevention (CP) Red

2.3 Building Classification

According to government documents, buildings are classified according to their damage state

as IO, LS or CP buildings. For instance, table 2.2 lists the IDR limits for steel moment

frame buildings which are stated in [2, 3], and the corresponding physical tag used to signal

the buildings’ post-event condition. Hence, a building’s performance can be assessed by

comparing its peak IDR to the predefined thresholds. Knowing the floor height, which is 4m

in typical US construction, thresholds in IDR corresponds to certain thresholds in relative

floor displacement that we denote by d0 and d1.

Let the true displacement of the two floors be denoted as S1 and S2, then the relative

displacement D is expressed by equation (2.26). Since each displacement measurement has

its own error, then the measured relative displacement De is calculated by (2.27), where e1

and e2 are the measurement error for S1 and S2 respectively.

D = S2 − S1 (2.26)

De = S2 + e2 − (S1 + e1) (2.27)

De = S2 − S1 + (e2 − e1) (2.28)

let X = e2 − e1 then
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De = D +X (2.29)

and knowing that the errors in both measurements are not correlated, then the mean squared

error in relative displacement measurement is expressed by (2.30). If identical sensors are

used, then σ2
S2 = σ2

S1 = σ2
S and (2.30) reduces to (2.31).

σ2
X = σ2

S2 + σ2
S1 (2.30)

= 2σ2
S (2.31)

To evaluate classification accuracy, let B and Btrue be the building’s estimated and true states

respectively. Equation (2.29) shows the measured relative displacement of two consecutive

floors. The accuracy of the true classification of a building is obtained by evaluating the

conditional probability P (B|Btrue) as shown by (2.32).

P (B|Btrue) =
P (B ∩Btrue)

P (Btrue)
(2.32)

where P (B ∩Btrue) and P (B) are expressed by (2.33) and (2.34).

P (B ∩Btrue) =

∫ ∫
fX,D(x, d) dd dx (2.33)

P (Btrue) =

∫
fD(d) dd (2.34)

where fX,D(x, d) is the joint probability density function (PDF) of X and D, and fD(d) is

the marginal PDF of D. The integral in (2.33) is done over the area shown in figure 2.4.

Besides, limits of the integral in (2.34) is given by table 2.3.

26



Figure 2.4: Integration regions for different P (B|Btrue).

Table 2.3: Integration interval of equation (2.34) for different P (B|Btrue).

P (B|Btrue) Integration Region

P (B|IO) |D| < d0
P (B|LS) d0 < |D| < d1
P (B|CP ) |D| > d1
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The measurement error only depends on the accelerometer itself and its inherent sources of

noise, which is not related to the excitation signal. Hence, noise distribution is considered

independent of IDR distribution. As a result, the joint PDF of X and D is expressed by

(2.35).

fX,D(x, d) =fX(x)fD(d) (2.35)

where fX(x) is the marginal PDF of X. We will illustrate below how fX(x) and fD(d) can

be modeled.

2.3.1 Modeling

Sensor Noise

Acceleration measured by an accelerometer sensor is contaminated by several sources of

noise. Referring to [38], noise can be modeled as: constant bias, angle random walk (ARW)

(or velocity random walk), BI, and RRW (or acceleration random walk), where each of these

is considered an independent Gaussian noise source with certain power spectral density.

Since we are only concerned with relatively short durations, higher order noise sources such

as drift rate ramp (DRR) are ignored and removed with the constant bias.

According to [47], different noise sources can be modeled as white Gaussian noise shaped

with a shaping finite impulse response (FIR) function Hf (z). Since the input of the FIR filter

is white Gaussian noise, i.e., wide sense stationary (WSS) noise process, then the generated

noise is also WSS.

Case Study : For instance, we consider the Invensense MPU6500, which is a 6-axis inertial

module that contains 3-axis accelerometer and 3-axis gyroscope. MPU6500 is widely used in
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Figure 2.5: PSD of accelerometer real and modeled noise. Real noise is recorded from the
sensor x-axis.

commercial devices such as smartphones. To characterize the noise profile of the sensor, the

output of the chip was recorded for 12 hours without motion. Using methods described in

[48], noise can be modeled as ARW, BI and RRW, and the overall noise covariance matrix R

is calculated. Figure 2.5 shows the real (measured) and modeled noise density of MPU6500

accelerometer sensor. It is clear that the noise model matches the real one at low frequency,

whereas there is some discrepancy at high frequency, which is due to the fact that the sensor

has a low pass filter in the output. However, since in our application the data is double

integrated, the low frequency content is the main contributer to the displacement error.

Therefore, the discrepancy at high frequency is irrelevant.

In order to provide a reference for comparison, we selected a number of sensors with different

noise characteristics as summarized in table 2.4. Figure 2.6 shows the noise spectral density
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Table 2.4: Sensors noise characteristics according to their data sheets (except for MPU6500,
noise is measured and characterized).

Sensor Noise Density
(µg/

√
Hz)

In-run Bias
Stability (µg)

Detailed PSD
(µg/

√
Hz)

MPU6500
(measured)

- -
700@0.01Hz
200@0.1Hz
150@10Hz

MTI-100 [49] 60 15 -

AXO215 [50] 15 3 -

Mistras1030 [51] - - 0.09@10Hz
0.03@100Hz

KB12VD [52] - -
0.3@0.1Hz
0.06@1Hz
0.03@10Hz

of the selected sensors based on their data sheets. From the figure, it is clear that some of

the sensors noise can be approximated as white noise such as MTI100 and AXO215 sensors,

whereas for other sensors higher order noise sources as BI and ARW should be considered.

IDR Distribution

Simulation of building response is conducted in order to model the IDR distribution as a

result of earthquake excitation. We consider four and eight-story buildings designed by NIST

[53] in Seattle to be representative of steel frame buildings. The buildings have 42.7 m x 30.5

m plans as shown in figure 2.7a. Three-bay perimeter steel special moment frames (SMFs) on

each side of the building are used for the lateral load resisting system. The SMFs are designed

with reduced beam sections (RBS). With respect to the type of soil, we consider site class

D which includes mixtures of dense clays, silts, and sands, which is the most common site

class throughout the United States [54]. The seismic design category is Dmax, i.e., structures

are expected to suffer from considerable rotational loads during strong earthquakes [55]. As

shown in figure 2.7b, finite element models of the SMFs are created using HyperMesh [56]

and analyzed using the commercial code LS-DYNA [57]. The steel is ASTM-A992 and its
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Figure 2.6: Noise density of several accelerometers based on their data sheets (except
MPU6500, the x-axis is measured and modeled).

(a) Building plan. (b) SMF model

Figure 2.7: Building plan and finite element modeling details of perimeter frame.
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(a) 50% in 50 years hazard level (b) 10% in 50 years hazard level (c) 2% in 50 years hazard level

Figure 2.8: Histogram of peak relative displacement of four and eight-story moment frame
steel buildings.

engineering stress-strain properties are converted into true stress-strain data then assigned

to the finite elements as done in [58]. Gravity loads from the tributary area shown in figure

2.7a are directly applied to the frame and the remainder of the gravity loads are applied to

a leaning column connected to the SMF by truss members. Mass weighted damping of 2.5%

is assumed at the first mode period of the SMFs. Additional modeling details can be found

in [58].

The distributions of peak relative displacement are computed for three seismic hazard levels:

2% probability of exceedance in 50 years, 10% in 50 years, and 50% in 50 years. Eleven

seismic records are selected from the Far-Field ground motion record set in FEMA [59] and

scaled to the three specified hazard levels at the first period of each building, resulting in

33 records for each building. The first period spectral accelerations corresponding to the

three hazard levels are 0.55g, 0.26g, and 0.07g for the four-story building and 0.41g, 0.17g,

and 0.04g for the eight-story building, respectively. Each building is then subjected to the

scaled seismic records for each hazard level and the peak relative displacement is computed.

The histogram of peak relative displacement is shown in figures 2.8a through 2.8c. The

distribution can be approximated as Gaussian with mean µD and variance σ2
D that depend

on the hazard level, with slight variation depending on the building type.
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Figure 2.9: CDF of strong motion duration of 140 horizontal components of earthquake
ground motion recorded in California reported in [1].

Earthquake Strong Motion Duration

Damage prone buildings will suffer damage during the strong shaking part of the seismic

event. As mentioned in [1], there are several definitions for the strong motion duration,

which is calculated based on acceleration magnitude or cumulative energy obtained by inte-

grating squared acceleration. In [1], strong motion duration of 140 earthquake records were

evaluated, and figure 2.9 shows the cumulative density function (CDF) of strong motion

duration.
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Figure 2.10: Sketch of peak relative displacement Gaussian distribution.

2.3.2 Probability of Classification Error

As mentioned in section 2.3.1, relative displacement measurement error can be modeled as

zero mean Gaussian of variance σ2
X , and relative displacement distribution can be modeled

as Gaussian of mean µD and variance σ2
D which varies according to the hazard level. As a

result, substituting into (2.35), the joint probability distribution fX,D(x, d) can be expressed

by (2.36).

fX,D(x, d) =N (0, σ2
X)N (µD, σ

2
D) (2.36)

where N (µ, σ2) is a Gaussian distribution with mean µ and variance σ2. Figure 2.10 shows

a sketch of Gaussian peak relative displacement distribution. Classification boundaries are

highlighted, where error is expected to occur.
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Substituting (2.36) in (2.32) and (2.33), conditional probabilities can be calculated. For

instance, for IO buildings, the probability of correct classification is defined as P (IO|IO),

whereas probability of error is defined as P (IO|IO), i.e. P (LS ∪ CP |IO). Similarly, for

LS buildings, the probability of correct classification is defined as P (LS|LS), whereas the

probability of error is defined as P (IO ∪ CP |LS), and with respect to CP buildings, the

probability of correct classification is defined as P (CP |CP ), whereas the probability of error

is defined as P (IO∪LS|CP ). The probability of error of the system is calculated by (2.37),

and will be used later in section 2.4 for sensor selection.

pe =(P (LS|IO) + P (CP |IO))P (IO)+

(P (IO|LS) + P (CP |LS))P (LS)+

(P (IO|CP ) + P (LS|CP ))P (CP ) (2.37)

2.4 Sensor Selection

In section 2.3 we showed that the probability of classification error is a function of displace-

ment measurement accuracy, hazard level and strong motion duration. In this section, we

demonstrate how a sensor can be selected based on the acceptable probability of error pe

which is calculated by (2.37). The probability of classification error is calculated for each of

the sensors mentioned in section 2.3.1.

Figure 2.11 shows the probability of error in buildings classification as a function of strong

motion duration in case of 50% in 50 years hazard level. As expected, it is clear that the

high accuracy seismic sensors such as Mistras1030 and KB12VD have very small probability

of error, and the probability of error increases as sensor accuracy decreases. In the same
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figure, we also compare between the simple white noise model, and the more complex model

that takes into account other noise components as explained in section 2.3.1. It is worth

noting that for high accuracy sensors, using white noise model results in negligible probability

of error which is not plotted in the figure. Hence, only the more complex noise model is

plotted for the two high accuracy sensors Mistras 1030 and KB12VD. However, for MTI-

100 and AXO215, using only the simple white noise model results in probability of error

slightly smaller but comparable to the complex model. With respect to MPU6500, there is a

larger discrepancy between white noise model and complex noise model results. Intuitively,

that result was expected, as mentioned in section 2.3.1 by comparing the noise density

curves shown earlier in figure 2.6, it is clear that only MTI-100 and AXO215 noise can be

approximated as flat white noise. Similarly, figures 2.12 and 2.13 show the probability of

error in case of 10% in 50 years and 2% in 50 years hazard levels respectively. Depending

on the acceptable probability of error, the curves presented in figures 2.11 to 2.13 can be

used to evaluate the maximum accepted noise density, hence an appropriate sensor can be

selected.

2.5 Conclusion

Monitoring structural health of buildings during and after natural disasters is crucial, and

directly impacts public safety. Buildings can be added to an IoT network by deploying iner-

tial sensors in civil infrastructure, which facilitates post disaster identification of structurally

unsound buildings. In this work, we illustrated how accelerometer sensors can be employed

to identify buildings damage state. We presented a theoretical derivation of a ZUPT algo-

rithm that is used to increase displacement measurement accuracy, and consequently increase

buildings classification accuracy. The developed algorithm has been validated experimentally

using shake table experiments. We investigated the effect of sensors inherent noise on the
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Figure 2.11: Probability of error in classification pe versus strong motion duration time T
for several sensors, for 50% in 50 years hazard level. Sensors noise is modeled according to
their data sheets except for MPU6500 we used the noise model mentioned in section 2.3.1.

overall building classification accuracy. The probability of error was calculated as a function

of sensor noise density, earthquake duration time and IDR distribution.
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Figure 2.12: Probability of error in classification pe versus strong motion duration time T
for several sensors, for 10% in 50 years hazard level. Sensors noise is modeled according to
their data sheets except for MPU6500 we used the noise model mentioned in section 2.3.1.
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Figure 2.13: Probability of error in classification pe versus strong motion duration time T
for several sensors, for 2% in 50 years hazard level. Sensors noise is modeled according to
their data sheets except for MPU6500 we used the noise model mentioned in section 2.3.1.

39



Chapter 3

Using Machine Learning for Sensor

Error Mitigation

In the aftermath of a natural event such as an earthquake, rapid and accurate informa-

tion from SHM systems enables first responders and reconnaissance teams to address the

most vulnerable structures first, and consequently avoid loss of lives and property. Auto-

mated monitoring is achieved by using an IoT network of pre-installed sensors to capture the

movement of a building during an event, enabling distributed, accurate and instantaneous

monitoring of structures [60].

Measuring instantaneous relative displacement of floors within a given building is used to

calculate the IDRs for each floor of the building, where IDR is the ratio of the relative

floor displacement to the floor height. Documents released by government agencies and civil

engineering societies such as FEMA and ASCE relate IDR values to building damage level.

These documents define two main critical thresholds of relative floor displacement of a given

building, such that the building can be classified into one of three categories: IO, LS or CP,

which indicate that the building is either safe, needs further inspection or unsafe respectively
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[2, 3].

3.1 Previous Work

In the last two decades, using machine learning algorithms to identify structural damage

has been studied extensively. For instance, in [61], a Bayesian probabilistic approach is

presented for smart structures monitoring based on the pattern matching approach, neural

networks are used for matching the damage patterns for the purpose of detecting damage

locations and estimating their severity. Damage was defined as the reduction of inter-story

stiffness which induced changes in modal parameters. To add the effect of noise, white noise

is added to the simulated acceleration time history of the structure subjected to wide band

excitation. Similarly, in [62] a bi-level damage detection algorithm that utilizes dynamic

responses of the structure was presented. The approach utilized a neural network as a

classifier. Anomaly index (SAI) was proposed to express the amount of changes in the shape

of frequency response functions (FRFs) or strain frequency response function (SFRF). SAI

was calculated by using the acceleration. Damage was detected from the magnitude of the

SAI value, and the location of the damage was identified using the pattern matching achieved

by the neural network. In addition, noise was added to prepare a large number of training

sets and to examine how noise affects the damage detection results.

A damage identification method intended for steel moment-frame buildings was presented

in [19]. The method was based on artificial neural networks and modal variables. The

inputs of the network were the mode frequencies and the outputs was the stiffness. After

an earthquake, damage index at each story was determined by comparing the stiffness to

the initial one which is evaluated in the beginning, i.e. without damage. A simplified finite

element model was used to generate the data needed to train the nets. The method was

simulated on a 5-story office building under conditions as close as possible to reality. In
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addition, white noise was added to simulate the effect of sensor noise.

The selection of the internal nodes activation functions of a neural network was addressed

in [63], IASC-ASCE benchmark structure was used, and it was concluded that the best

performance was achieved by training neural networks using modal parameters rather than

Ritz vectors. Measurement noise is already included in part of the benchmark dataset,

specifically case study 2, 4 and 5. In [20], SHM was achieved using a neuro-wavelet technique.

Damage was detected based on the continuous wavelet transform (CWT). The input of the

system was the mode shapes of structure elements. With respect to noise, Gaussian noise

was added and the neural network was trained with noisy and noise free data. We use a

similar approach, however our system utilizes acceleration traces rather than deflection, since

accelerometers are cheaper and already found in most smart devices nowadays. According

to [21], it is expensive to increase the number of the measurement points, hence, one way to

address that issue is to predict the unmeasured mode shape data based on a limited number

of measured data. Two-stage neural network was adopted, the first is used to predict the

unmeasured mode shape and the second was used to localize and estimate the damage

severity. In [64], combining neural networks with genetic algorithm for damage detection

was presented. A neural network was used to identify the structural main frequencies and

mode shapes, then a genetic algorithm was used to identify the damage areas.

In [65], unsupervised learning approach for structural health monitoring self-organizing map

(SOM) which is a class of neural networks that is used to create a two-dimensional rep-

resentation of highly dimensional data. SOM’s training process relies only on the internal

properties between the inputs and does not require input-output samples and hence a non-

parametric damage detection algorithm was proposed, i.e. the algorithm does not depend

on system parameters such as modal frequency and employ statistical approaches such as

machine learning on raw acceleration traces and extract damage indicators.

In [66], an automated crack detection algorithm using image processing was presented. The
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algorithm used machine learning to automatically tune the threshold parameters to iden-

tify cracks more accurately. In [67], statistical procedures addressing the feature extraction

process were used to identify features capable of detecting structural damage based on ac-

celerometer data. Similarly, [68] focused on automatic fault diagnosis for rotating machinery

using machine learning, and recommended support vector machine (SVM) and K-nearest

neighbor (KNN) algorithms for classification. In [69], several variants of KNN were proposed

for SHM. Furthermore, in [70], SVM was used for SHM, where the residual error (RE) of an

auto-regressive (AR) model of acceleration time series was used for damage detection. More-

over, in the same paper the authors used optimization algorithms to find the best parameter

values of the SVM. In [71], an online version of SVM for structural health monitoring was

proposed. The input to the SVM are the statistical features of the acceleration, velocity

and displacement. Calculating velocity and displacement is done by numerical integration of

acceleration, and low frequency noise is cancelled by a HPF. In [72, 73], CNN were used to

estimate damage severity based on accelerometer data. CNN was used as a better alternative

to other algorithms that depend on hand-crafted features. In addition, the same concept was

applied to wireless sensors networks in [74]. The damage detection method operates directly

on the raw vibration signals without filtering or pre-processing. A decentralized damage

detection algorithm was proposed based on 1D CNN and it involved training an individual

1D CNN for each wireless node.

Some of the prior work assumed the use of high quality accelerometers to generate accel-

eration traces. However, a key point to note is that recently there has been a shift from

using sparse, high quality accelerometers, to using a larger number of distributed lower qual-

ity, cheaper sensors. For example, the feasibility of using smart phones to quantify seismic

damage to buildings has been studied in [75, 16]. In addition, in [22], the planar response

of a smart device subjected to friction forces induced by an underlying moving plane due

to an earthquake motion has been studied. In [29], built-in smart phones accelerometers

were used to estimate buildings displacement during shaking. Since these accelerometers
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Table 3.1: Relation between IDR and building state for steel moment frame buildings [2, 3].

IDR % Building State Tag

< 0.7% Immediate occupancy (IO) Green
0.7%− 5% Life safety (LS) Yellow
> 5% Collapse prevention (CP) Red

are low quality consumer grade ones, noise cancellation was achieved by using HPF. While

filtering does improve system performance by reducing integrative noise, it comes at a risk

of removing significant information from the signal as well.

Most of the prior work used change in modal parameters to detect damage. In this work,

we use IDRs as a damage indicator. We created a finite element model of a 4 and 8-story

buildings, which is excited by historic earthquake traces and the response of each floor

is simulated. Based on the IDRs, each floor is labeled by its damage level. We use the

generated dataset to train several machine learning classifiers. We also focus on the effect of

noisy measurements on classification accuracy. We present alternative methods to mitigate

the effect of noise, without resorting to HPF.

3.2 Dataset Creation

According to government documents, buildings are classified per their damage state as IO,

LS or CP buildings. For instance, table 3.1 lists the IDR limits for steel moment frame

buildings which are stated in [2, 3], and the corresponding physical tag used to identify the

buildings’ post-event condition. Hence, a building’s status can be assessed by comparing

its peak IDR to the predefined thresholds. Knowing the floor height, thresholds in IDR

correspond to thresholds in relative floor displacement.
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Figure 3.1: Noise density of MPU6500 accelerometer.

3.2.1 Buildings Simulation

Simulation of building response is conducted in order to generate training samples. We

consider four and eight-story buildings designed by NIST [53] in Seattle to be representative

of steel frame buildings. Three-bay perimeter steel special moment frames (SMFs) on each

side of the building are used for the lateral load resisting system as shown earlier in chapter

2 in figures 2.7a and 2.7b. The SMFs are designed with reduced beam sections (RBS).

With respect to the type of soil, we consider site class D which includes mixtures of dense

clays, silts, and sands, which is the most common site class throughout the United States

[54]. Finite element models of the SMFs are created using HyperMesh [56] and analyzed

using the commercial code LS-DYNA [57]. The steel is ASTM-A992 and its engineering

stress-strain properties are converted into true stress-strain data then assigned to the finite

elements. More details about the simulation setup are found in [58, 30].

Based on the resulting IDRs, and using table 3.1, a dataset is created that includes relative

floor acceleration labeled with damage level, i.e. either IO, LS or CP. In order to model real
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Figure 3.2: Datasets creation block diagram.

cheap sensors, we have recorded the output noise of MPU6500 accelerometer chip [28] which

is an off-the-shelf inertial sensor chip used in consumer devices such as smart phones. Figure

3.1 shows the power spectral density of the MPU6500 sensor. According to [38, 30] we have

assumed an additive noise model and added the recorded noise to the simulated acceleration

data. Hence, two datasets are created: 1)Non-noisy dataset and 2)Noisy dataset. For each

dataset, 70% of the data is used for training and 30% is used for validation.

Figure 3.2 summarizes the proposed dataset creation technique.

3.3 Classification Algorithms

3.3.1 Features Selection

Typically, acceleration data time series is represented by its discriminative features which are

more convenient as inputs to classifiers. In [70], the following features were extracted from

the RE of AR model: maximum, minimum, difference of maximum and minimum, mean,

mean of absolute, standard deviation, skewness, kurtosis, root mean squared, form factor,

crest factor, kurtosis factor, pulse factor, margin factor, upper and lower control limits.
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The formulas needed to calculate each of them are mentioned in [70]. These features are

assumed to be relevant to damage information. However, since in this work we are concerned

with additive noise that contaminates the measured acceleration. Hence, we propose three

different methodologies to mitigate the effect of additive noise: 1) Identification of noise

sensitive features, 2)Using all the features while training using noisy and non-noisy datasets

and 3)Using raw noisy and non-noisy datasets and allow the machine learning algorithm to

identify the discriminative features that are immune to noise. The results of the proposed

methods are presented in section 3.4.

3.3.2 Classification Algorithms

Since the dataset was created by comparing the peak relative displacement to certain stan-

dard thresholds, then the ordinary technique to estimate the damage label is to calculate

relative displacement from relative acceleration, i.e. by double integration, and then com-

pare the maximum value to the threshold. Ideally, without adding any noise to acceleration,

that technique achieves 100% accuracy, which can be demonstrated by applying it to the

non-noisy dataset. However, the same technique is not expected to achieve high accuracy

when applied to the noisy dataset, since double integration of noise introduces large errors,

that severely reduce classification accuracy.

Machine learning classifiers have significant potential in processing noisy data. Several ma-

chine learning classifiers have been recommended for SHM in literature. For instance, in [69],

several variants of KNN were proposed. Besides, SVM was used in [70] for damage detection

where several optimization algorithms were used to find the best parameters of the SVM,

and it was concluded grid search outperforms other searching algorithms.

As mentioned in [72, 74], CNN is an appropriate method to capture damage patterns in the

response of buildings to vibration. In this work, we propose a CNN to classify buildings
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according to the level of damage based on relative floor acceleration. In addition, for the

sake of comparison, we also use the the grid search SVM algorithm described in [70], KNN

algorithms and double integration (DI) with HPF noise cancellation which is illustrated later.

Proposed CNN Architecture Based on earthquake strong motion durations reported

in [1], we assumed the maximum monitoring duration is 50 seconds, which indicates that

the number of time samples is 5000 at 100Hz sampling rate. The CNN consists of 7 layers

that are described in details in table 3.2. We also use one-hot encoding to the output, i.e.

the three classes are represented by three output nodes. The network uses two convolutional

and maxpooling layers.

Table 3.2: CNN network architecture.

Layer Type Parameters Activation

0 input size = 5000 -

1 Conv1D
Kernel size=50
Filters=4 relu

2 Maxpooling Pool size=20 -

3 Conv1D
Kernel size=10
Filters=10 relu

4 Maxpooling Pool size=2 -

5 Flatten - -

6 Dense Size=2 tanh

7 Dense Size=3 tanh

Noise Cancellation Using HPF For the sake of comparison, we illustrate how HPF

is used to minimize the effect of noise on classification using the ordinary DI method. As

mentioned in [30], acceleration is contaminated with additive white noise. Evaluating dis-

placement from acceleration requires double integration which amplifies the low frequency

noise significantly. Hence, using a HPF reduces the effect of noise in the DI method if a

proper cut-off frequency is selected. We denote this method as DI+HPF. The higher the

cut-off frequency, the more noise cancellation is achieved. However, increasing the cut-off
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Figure 3.3: Effect of changing HPF cut-off frequency on classification accuracy.

frequency affects the signal and removes its low frequency content, which in turn introduces

an error.

Therefore, accuracy is expected to increase by increasing the cut-off frequency due to noise

cancellation, and then decrease when removing the low frequency content of the signal be-

comes the dominant source of error. Figure 3.3 shows the effect of changing the HPF cut-off

frequency on the classification accuracy.
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(a) DI

(b) SVM

(c) KNN

Figure 3.4: Confusion matrices in the presence of noise without applying any noise cancel-
lation technique.
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3.4 Results and Discussion

As expected, applying DI on the noisy dataset results in low classification accuracy due to

the accumulated error and is demonstrated by the confusion matrix shown in figure 3.4a.

In addition, training machine learning algorithms with the non-noisy dataset and validating

using the noisy one results in poor performance as illustrated by figures 3.4b and 3.4c. Below

we discuss three different techniques to enhance the classification accuracy in the presence

of noise.

3.4.1 Removing Noise Sensitive Features

As mentioned in [76], noise in measurements is hard to model and is therefore challenging to

separate signal from noise. Specifically, for classification-oriented problems, such as activity

recognition, appropriate features are derived from raw sensor data, which is then hand-

crafted and fed into a classifier for training. This process is time consuming and requires

extensive experiments to generalize well, besides being data dependent, i.e. features selection

must be repeated if the dataset is changed.

Hence, we apply the same approach of hand crafted features, and each of the features men-

tioned in section 3.3.1 is studied in the absence and presence of noise to identify those most

sensitive to noise. The study includes the distribution of the data represented by its his-

togram. We focus on two main things in the histogram: 1) the effect of additive noise on the

feature distribution, which is indicated if there is a significant change in the histogram of

the feature with and without noise and 2) the ability of the feature to discriminate between

classes, and this is indicated by comparing the histograms of the feature across classes. This

methodology is applied to the structural health monitoring dataset created in section 3.2

and the two most affected features by adding noise are pulse factor and margin factor which
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are calculated by (3.1) and (3.2) respectively, where N is the window size [70]. Histograms

of these features are shown in figures 3.5 and 3.6 respectively. By removing these features

from the features list, better immunity to noise is achieved without much loss in classification

accuracy since these features are slightly discriminative as shown by figures 3.7 and 3.8. It

is clear that these two features are not well differentiating between IO and LS classes, while

marginally useful to identify CP class.

PulseFactor =
max(RE)−min(RE)

1/N
N∑
i=1

|REi|
(3.1)

MarginFactor =
max(RE)−min(RE)

[1/N
N∑
i=1

√
|REi|]2

(3.2)

Figure 3.5: Histogram of the pulse factor feature.

SVM and KNN are trained using the non-noisy dataset after removing the noise sensitive
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Figure 3.6: Histogram of the margin factor feature.

features, then validated by the noisy one. This technique results in performance enhancement

as shown by figures 3.9 and 3.10 respectively. The performance enhancement is clear by

comparing the figures to figures 3.4b and 3.4c.

3.4.2 Training Using Both Datasets

Another approach is to train the classifier using both noisy and non-noisy training datasets,

and validate using the noisy validation dataset. In this case, the classifier automatically

ignores the noise sensitive features while keeping the discriminative ones. The validation

confusion matrices of SVM and KNN are shown in figures 3.11 and 3.12 respectively. It is

clear that training using both datasets results in better performance when compared to the

base case, however manually removing the noise sensitive features results in better accuracy.
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Figure 3.7: Histogram of the pulse factor feature across the three classes.

Figure 3.8: Histogram of the margin factor feature across the three classes.
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Figure 3.9: Confusion matrix of SVM after removing the sensitive noise features. Algorithm
is trained using the non-noisy training dataset and validated using the noisy validation one.

Figure 3.10: Confusion matrix of KNN after removing the sensitive noise features. Algorithm
is trained using the non-noisy training dataset and validated using the noisy validation one.
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Figure 3.11: Confusion matrix of SVM trained using the noisy and non-noisy training
datasets and validated using the noisy validation one.

Figure 3.12: Confusion matrix of KNN when trained using the noisy and non-noisy training
datasets and validated using the noisy validation one.
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3.4.3 Proposed CNN

The CNN network described in section 3.3.2 is trained using both datasets similar to the

approach mentioned in section 3.4.2. However, instead of training using features, the raw

input data is used. The CNN network is assumed to be capable of identifying the discrimi-

native features automatically. As shown in figure 3.13, the proposed algorithm outperforms

the other techniques mentioned earlier.

3.4.4 HPF Noise Cancellation

As mentioned in section 3.3.2, HPF can be used for noise cancellation. Then, regular double

integration is performed on the filtered data to calculate displacement which is directly used

for classification. Figure 3.14 shows the confusion matrix after applying this technique, when

using the optimal cut-off frequency.

3.4.5 Effect of Noise Level on Classification Accuracy

It is clear that the proposed CNN method outperforms other methods. We demonstrate

how changing the noise power affects the classification accuracy in the proposed CNN and

the traditional DI+HPF techniques by multiplying the additive noise by a scale factor as

shown in figure 3.15. It is clear that the accuracy of the DI+HPF technique is less than but

comparable to the proposed CNN technique at low noise levels. However, at high noise levels,

the proposed CNN method results in better classification accuracy and is more resilient.

The CNN method achieves high accuracy regardless of filtering the training data. As shown

in figure 3.16, high pass filtering the data prior to training results in almost the same accuracy

regardless of the high pass filter cut-off frequency, which outperforms the DI+HPF method.
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Figure 3.13: Confusion matrix of the proposed CNN when trained using the noisy and
non-noisy training datasets and validated using the noisy validation one.

Figure 3.14: Confusion matrix of DI method after applying HPF to remove noise.
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Figure 3.15: Classification accuracy versus noise scale factor for the HPF and the proposed
CNN techniques.

Figure 3.16: Classification accuracy versus high pass filter cut-off frequency with and without
using the proposed CNN method.
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3.5 Conclusion

Monitoring structural health of buildings during and after natural disasters is crucial, and

directly impacts public safety. Buildings can be added to an IoT network by deploying inertial

sensors in civil infrastructure, which facilitates post disaster identification of structurally

unsound buildings. In this work, we illustrated how machine learning techniques can be

employed to identify buildings damage state based on accelerometer readings in the presence

of noise. We demonstrate how to address the effect of noise by using machine learning

methods such as SVM and KNN, and that removing the noise sensitive features enhances

the classification accuracy. In addition, we proposed a CNN method that is applied directly

on raw data instead of the extracted features which outperformed KNN, SVM and traditional

HPF noise cancellation methods.
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Chapter 4

Large Signal Smart Device

Accelerometer Error

Smart device sensors are designed for a consumer electronics market, not as a specialized

sensing system, thus it is natural to expect that the specifications are lower than standalone

sensors. In chapter 2, we presented an error model that is assumes small excitation signal.

However, for large signals other errors arise which are significantly higher than additive noise

as will be explained later.

Inertial sensors error is modelled in previous work [23, 24] as: 1)Scale factor error, 2) con-

stant bias, 3) non-linearity and 4) additive random noise. While the first three error types

are deterministic and can be compensated by calibration, the random noise cannot be cal-

ibrated and can only be characterized as mentioned in [30, 77]. However, using the above

traditional error model for a smart device accelerometer (or other sensors as well) does not

capture the OS timing uncertainty. In [25], it was shown that Android has some limitations

to be considered as a real time OS, and consequently when a mobile app polls the internal

accelerometer chip every constant time period, the execution is expected to have some un-
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certainty that strongly depends on the coding style. Hence, the main contributions of this

work can be summarized as follows:

4.1 Smart Device Accelerometer Proposed Noise Model

4.1.1 Notation

Throughout this chapter, vectors are denoted by boldface lowercase letters, e.g. x, and

matrices by boldface uppercase letters, e.g. A. We use (·)T for transpose of a vector or a

matrix. Vector elements are denoted by lowercase normal font letters with subscript that

indicates the element index, e.g. xi represents the ith element in vector x. In addition, the

ith column of the matrix A is given by A[:, i]. We also use E[·] as an expectation operator.

The PDF of single variable yi and a vector y are denoted as p(yi; x) and p(y; x) respectively,

where x is a nonrandom parameter vector. Identity matrix of K elements is denoted by IK .

Finaly, diag(x) is a diagonal matrix whose diagonal entries correspond to the elements in

the vector x:

diag(x)[i, j] =


xi i = j

0 i 6= j

.

4.1.2 Model

Most prior work modeled the non-deterministic inertial sensor error as additive noise and

characterised it using either power spectral density or Allan variance techniques as mentioned

in [30, 77]. Sampling time uncertainty was neglected due to the fact that using a stable clock

and proper sampling, results in negligible sampling time jitter error. While this is true in a
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general case, it is not true in smartphone systems, since reading acceleration data using a

smart device is done by polling the sensor periodically using an OS timer. As mentioned in

section 1, smart device OS such as Android has limitations to act as a real time OS. Hence,

it is expected to have sampling time uncertainty while polling the sensors. Therefore, we

propose an error model for smart device accelerometer that includes additive noise as well

as sampling time jitter error.

Let the measured acceleration at any sampling time i be calculated by (4.1).

ai = αx(iT + zi) + wi (4.1)

where x(t), T , zi and wi are the true acceleration, sampling period, sampling time jitter and

additive noise at time sample i respectively, and α is the scale factor that is ideally equal

to one. Without loss of generality, we use normalized sampling frequency, i.e. let T = 1.

Error due to sampling time jitter was introduced in [26] by using the first order terms of

Taylor series expansion of (4.1) and ignoring higher order terms. However, we found that

this approach leads to erroneous values at low values of |ẋ|, as will be illustrated later in this

chapter.

Taylor expansion of (4.1) is given by (4.2), where dn

dtn
(.) is the nth derivative operator. Both

noise sources z and w are modeled as zero mean Gaussian noise with variance σ2
z and σ2

w

respectively [26]. As mentioned in [27], nth derivative is approximately evaluated by (4.3),

where sinc(n) is the nth derivative of the cardinal sine function defined by (4.4), and K is the

number of time samples. For simplicity, let dx
dt

, and d2x
dt2

be denoted as ẋ and ẍ respectively.
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ai = αxi + wi + α

∞∑
n=1

1

n!

dnx(t)

dtn
|t=izni (4.2)

dnx(t)

dtn
|t=i =

K−1∑
k=0

xksinc
(n)(i− k) (4.3)

sinc(t) =
sinπt

πt
(4.4)

Based on the negligible terms of (4.2) we investigate the following two models:

1. M1 First order: neglect n > 1 terms in (4.2).

2. M2 Second order: neglect n > 2 terms in (4.2).

M1: In this model, higher order terms (n > 1) of (4.2) are neglected, hence measured

acceleration is expressed by (4.5), and the vector form is given by (4.6), where Z = diag(z).

The joint PDF of a is given by (4.7), where σ2
i is the error variance at sample i expressed

by (4.8). The log likely-hood (LL) function is given by (4.9).

ai = αxi + wi + αẋizi (4.5)

a = αx + w + αZẋ (4.6)

p(a; x, ẋ, σw, σz)

∣∣∣∣
M1

=

K−1∏
i=0

1√
2πσ2

i

exp

(
−(ai − αxi)2

2σ2
i

)
(4.7)

σ2
i = α2ẋ2iσ

2
z + σ2

w (4.8)
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LL(a; x, ẋ, σw, σz)

∣∣∣∣
M1

= log(p(a; x, ẋ, σw, σz)) =

−1

2

K−1∑
i=0

(
log(2πσ2

i ) +
(ai − αxi)2

σ2
i

)
(4.9)

M2: In this model, higher order terms (n > 2) of (4.2) are neglected, hence measured

acceleration is expressed by (4.10), and the vector form is given by (4.11). The joint PDF of

a is given by (4.12). p(ai;xi, ẋi, ẍi, σw, σz) is calculated by (4.13) where ∗ is the convolution

operator, N (0, σ2
w) is a zero mean normal distribution with variance σ2

w and yi is a random

variable defined by (4.14). Since the PDF of z is N (0, σ2
z) and y is a function of z then

p(yi; ẋi, ẍi, σz) is calculated numerically as described in [78]. The LL function of M2 is given

by (4.15).

ai = αxi + wi + αẋiz + α
ẍi
2
z2i (4.10)

a = αx + w + αZẋ +
1

2
αZZẍ (4.11)

p(a; x, ẋ, σw, σz) =

K−1∏
i=0

p(ai;xi, ẋi, ẍi, σw, σz) (4.12)

p(ai;xi, ẋi, ẍi, σw, σz) =

N (0, σ2
w) ∗ p(yi; ẋi, ẍi, σz) (4.13)

yi = αẋizi + α
ẍi
2
z2i (4.14)

LL(a; x, ẋ, σw, σz)

∣∣∣∣
M2

=

K−1∑
i=0

log(p(ai;xi, ẋi, ẍi, σw, σz)) (4.15)

As mentioned in [26], MLE is applied to estimate the model parameters, i.e. σw and σz.
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However, since σw can be estimated while the device is at rest as described in [30, 77], hence,

we assume σw is known.

For M1 and M2 models, σz is estimated using (4.16). Without assuming negligible additive

noise, i.e. σw 6= 0, equation (4.16) has no closed form solution, hence we used a numerical

approach as explained in section 4.1.3.

σ̂z = argmax
σz

LL(a; x, ẋ, σw, σz) (4.16)

4.1.3 Simulation Results

In this section, we evaluate the estimation accuracy of the models proposed in section 4.1.2.

A sinusoidal signal is used as the ground truth acceleration x(t) whose normalized frequency

is 0.04 and amplitude 104mm/sec2. According to [30, 28], σw = 10mm/sec2 is typical for

smartphone accelerometers. Let σz be 0.2, which is the parameter to be estimated.

The simulation is repeated 1000 times to calculate the estimation accuracy of the proposed

models. Figure 4.1 compares between the exact root mean squared (RMS) error, M1 and

M2 RMS errors. It is clear that M1 and M2 match the exact error RMS at high values of

|ẋ|, however at low values, M1 underestimates the error.

Though off the shelf sensors have a calibrated scale factor α, still vendors report scale factor

error even at nominal temperature. Hence, we sweep over a range of α values to demonstrate

the resilience of the M1 and M2 to scale factor errors.

Equation (4.16) is solved numerically by sweeping on a range of values to get the σzvalue

that maximizes the LL function. Figure 4.2 shows σz estimation for M1 and M2 in case

a slight scale factor error is introduced. It is clear that M2 is less sensitive to scale factor

errors than M1. This is due to the fact that M2 is much more accurate at the low |ẋ| values
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Figure 4.1: Exact, M1 and M2 RMS (left axis). True first derivative of acceleration signal ẋ
(right axis).

as mentioned earlier, and these points are the maximum values of x, i.e. the points that

have the maximum error in case there is a scale factor error.

4.2 Experiments

In order to validate the proposed models, shake table experiments were performed using four

different smart phones: SMG900T, SMT3350 and two different SMG920V devices. A seismic

grade accelerometer PCB Piezotroincs Model393C [79] is used as a reference to measure the

ground truth acceleration.

67



Figure 4.2: M1 and M2 estimation bias due to scale factor error.

Reference 

Accelerometer

Phones

Shake Table

Figure 4.3: Shake table experiment setup.
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Up-sampling 
Interpolation 

lag

Cross-correlation 

Down-sampling 
Decimation 

error

Time shifting 
Alignment 

Smart-phone 
Accelerometer 
100 sample/s 

Reference  
Accelerometer 
20 ksample/s 

- +
100 sample/s

20 ksample/s

Figure 4.4: Smart phone accelerometer error calculation flow chart. Phone acceleration is
up-sampled to match the reference sampling rate. Cross correlation is used to align the
phone data with the reference one. Reference is down-sampled to the phone nominal rate
after alignment. Error is calculated by subtraction.
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Table 4.1: Summary of experimental results. Five experiments are performed to estimate the
proposed model M1 parameter σz for four different phones. Each experiment is a sinusoidal
wave with certain frequency.

σz1 (s)

SMG900T SMG920V
SMG920V

(2nd)
SMT3350

Sine 4Hz 0.213 0.21 0.141 0.243

Sine 5Hz 0.3 0.25 0.1160 0.3

Sine 6Hz 0.239 0.187 0.12 0.272

Sine 7Hz 0.156 0.216 0.131 0.235

Sine 8Hz 0.214 0.208 0.131 0.235

Average 0.2292 0.2166 0.1248 0.2714

Table 4.2: Summary of experimental results. Five experiments are performed to estimate the
proposed model M2 parameter σz for four different phones. Each experiment is a sinusoidal
wave with certain frequency.

σz2 (s)

SMG900T SMG920V
SMG920V

(2nd)
SMT3350

Sine 4Hz 0.187 0.185 0.131 0.208

Sine 5Hz 0.178 0.174 0.108 0.208

Sine 6Hz 0.179 0.171 0.116 0.212

Sine 7Hz 0.132 0.18 0.126 0.201

Sine 8Hz 0.163 0.167 0.109 0.2

Average 0.1689 0.1755 0.1184 0.2059

Five experiments are performed, where in each one the table is excited for 25 seconds by a

sinusoidal signal of one of the following frequencies: 4, 5, 6, 7 and 8 Hz. The four smart

devices are mounted to the shake table to avoid sliding. Figure 4.3 shows the experiment

setup.

Figure 4.4 shows the procedure followed to calculate the error of each smartphone. A nominal

sampling rate of 100 samples/s is selected for the smart phones accelerometers, whereas the

reference is sampling at 20 ksample/s. First, the smart phone data is up-sampled by cubic

interpolation to match the reference rate. Second, cross-correlation is used to estimate the

time lag that maximizes the cross-correlation. The reference is shifted by the estimated lag
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and then down-sampled to the nominal phone sampling rate. Finally, the error is calculated

by subtraction. The procedure is repeated for each of the four phones in the five experiments.

We used the proposed MLE M1 and M2 to estimate σz for each phone, and the results are

summarized in tables 4.1 and 4.2 respectively. We denote M1 and M2 estimation results as

σz1 and σz2 respectively. Based on the results, it is clear that that the estimated σz values are

not much varying across the experiments for a given device, which validates the assumption

that this parameter is not signal dependent.

It is worth noting that the models described in section 4.1 have two use cases:

1. Characterization: where a known vibration signal is used to estimate σz

2. Error estimation: where the model parameters σz and σw are known, i.e. already

estimated in the characterization phase, and then the error of measuring an unknown

signal is to be estimated using the models

Hence, for all the experiments, we compare the measurements to the following three tech-

niques:

1. M1 σz1: σz is characterized by M1 and error is estimated by M1

2. M2 σz2: σz is characterized by M2 and error is estimated by M2

3. M1 σz2: σz is characterized by M2 and error is estimated by M1

For the four phones, figures 4.5-4.8 compare the measured error represented by the time

average root mean squared (TRMS) to M1 σz1, M2 σz2 and M1 σz2 models. We also added

the traditional additive noise model to the figures which does not take into account sampling

time jitter. It is clear that the closest models to the measurements are M2 σz2 M1 σz2,

which indicates the effectiveness of using M2 in the characterization phase. However, if σz
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Figure 4.5: TRMS error versus the frequency of shaking for M1 sigmaz1, M2 sigmaz2 and
M1 sigmaz2 compared to measurments of SMG900T.

is properly estimated or given, then estimating the error using M1 and M2 result in almost

the same values. Since, M1 is a less complex model, we believe M1 σz2 is the best technique.

4.3 Acceleration Estimation

In this section we derive the CRLB of acceleration estimation based on the proposed model.

We assume that since M1 and M2 are almost equivalent in the TRMS, then we evaluate

the CRLB of M1. In addition, since we are concerned about the best achievable accuracy,

let α be equal to one. Equation (4.1) can be written as (4.17). The vector form is expressed

by (4.18), where D is a matrix whose rows are defined by (4.19).
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Figure 4.6: TRMS error versus the frequency of shaking for M1 sigmaz1, M2 sigmaz2 and
M1 sigmaz2 compared to measurments of SMG920V.
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Figure 4.7: TRMS error versus the frequency of shaking for M1 sigmaz1, M2 sigmaz2 and
M1 sigmaz2 compared to measurments of the second SMG920V.
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Figure 4.8: TRMS error versus the frequency of shaking for M1 sigmaz1, M2 sigmaz2 and
M1 sigmaz2 compared to measurments of SMT3350.
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ai = xi + wi +
K−1∑
k=0

xksinc
(1)(i− k)zi (4.17)

a = x + w + ZDx (4.18)

Hence, as described in [27], each element of the Fisher information matrix (FIM) is evaluated

by (4.20), where the covariance matrix of a is given by (4.21) and its derivative with respect

to xi is given by (4.22). Then, according to the CRLB theorem, the minimum mean squared

error (MSE) obtained by an unbiased estimator is given by (4.23).

D[i, :] =



sinc(1)(−i)

sinc(1)(1− i)

sinc(1)(2− i)
...

sinc(1)((K − 1)− i)



T

(4.19)

FIM[i, j] =
1

2
tr{∂ΣaΣaΣa

∂xi
ΣaΣaΣa
−1∂ΣaΣaΣa

∂xj
ΣaΣaΣa
−1}+ ΣaΣaΣa

−1 (4.20)

ΣaΣaΣa = σ2
z(DxxTDT ) + σ2

wIK (4.21)

∂ΣaΣaΣa

∂xi
= 2σ2

zdiag{D[:, i]� (Dx)} (4.22)

MSE

∣∣∣∣
min

= E[(x̂− x)T (x̂− x)] = tr{FIM−1} (4.23)

The CRLB is evaluated numerically assuming ground truth acceleration is a sinusoidal signal

of amplitude 104mm/s2 and normalized frequency of 0.04 Hz, σw = 10mm/sec2 and different

σz values. Figure 4.9 compares the CRLB to the linear estimation accuracy. It is worth noting

that a linear estimator as mentioned in [27], corresponds to x̂ = a, i.e. MSE|Linear = tr{ΣaΣaΣa}
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Figure 4.9: MSE of linear estimation of acceleration is plotted versus σz and compared to the
CRLB,knowing that the true acceleration signal is a sinusoidal signal of 104mm/s2 amplitude
and 0.04Hz normalized frequency. The zero-dB level corresponds to the additive noise.

in case no over sampling is assumed.

As mentioned in section 4.2, σz is approximately about 0.2, hence, it is clear from figure 4.9

that linear estimator accuracy is very close to the minimum theoretical bound. However, for

higher jitter, other estimation techniques such as maximum likelihood estimation [27] can

be adopted.
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4.4 Conclusion

Recently, smart devices have become a necessity in today’s world. Since they are equipped

with multiple sensors that measure most of the surrounding physical quantities. Lots of

apps emerged that target biomedical, environment and infrastructure applications. In this

work, we have investigated the accuracy limits of a smart device accelerometer which is

considered one of the most used sensors in such applications. We proposed a novel error

model that takes into account software sampling time error in addition to the additive noise

model developed in previous work. The proposed model has been validated experimentally

on four smart devices by several shake table experiments. It was shown that the proposed

model estimates error TRMS that is much closer to the real measured error compared to the

additive noise model which is about an order of magnitude less. In addition, with respect to

acceleration estimation accuracy based on the proposed model, it was shown that the linear

estimators are close to the CRLB at the current sampling time jitter value. Hence, using a

less computationally expensive linear estimator will not affect much the achieved accuracy.
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Chapter 5

Conclusion and Future Work

Recently, smart devices are equipped with multiple sensors that measure most of the sur-

rounding physical quantities. For instance, a smart phone has a tri-axial accelerometer, a

tri-axial gyroscope and a tri-axial magnetometer, which measure linear acceleration, rota-

tional velocity and magnetic field respectively. In addition to a pressure, humidity, light

and proximity sensors. Moreover, recent devices are equipped with sensors that measure hu-

man vitals such as electrocardiogram (ECG). Lots of apps emerged that target biomedical,

environment and infrastructure applications.

In this work, we have investigated the accuracy limits of a smart device accelerometer which

is considered one of the most used sensors in several applications. We have selected SHM as

a use case of smart device accelerometer since it is crucial, and directly impacts public safety.

Buildings can be continuously monitored by using the already available smart devices within

these buildings. For noise cancellation, we have derived a ZUPT which benefit of the fact

that an earthquake vibration eventually stops. Shake table experiments have been performed

to validate the algorithm.

We have also illustrated how machine learning techniques can be employed to identify build-
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ings damage state based on accelerometer readings in the presence of noise. We have il-

lustrated how to address the effect of noise by adopting machine learning classifiers such

as SVM and KNN. We have also shown how classification accuracy increases by removing

the noise sensitive features. In addition, a CNN method as been proposed where raw data

is used directly as an input instead of the extracted hand-crafted features. The proposed

method has outperformed KNN, SVM and traditional HPF noise cancellation methods.

For large signal excitation, we have proposed a novel error model that considers software

timing issues in addition to the additive noise model. Four smart devices have been ex-

perimented using a shake table to validate the model. Using several shaking frequencies, it

was shown that the proposed model estimates error TRMS that is much closer to the real

measured error, specially compared to the additive noise model which underestimates the

error significantly. In spite of the complexity of the proposed model, we have shown that

a linear estimator results in an accuracy that is very close to the CRLB at the given jitter

values.

5.1 Future Work

Recently, using smart devices such as smart phones has become a daily habit for the majority

of the population. People depend on smart phones in their daily activities such as recording

notes, checking emails, and even playing games. In addition, people have moved from using

a standalone GPS device into using navigation apps, which are more convenient and continu-

ously updated with traffic information. For user security and privacy purposes, apps are not

by default having access to location, and the user is required to grant that access for each

app [80]. However, since there are sensors inside smart devices that require no permissions

to access such as accelerometer, gyroscope, pressure and magnetometer, several attempts

have been made to gather unauthorized information from smart phones by accessing these
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sensors. For instance, in [81] it was shown that the MEMS gyroscopes found on modern

smart phones are sufficiently sensitive to measure acoustic signals surrounding the phone.

Though the captured signals contain only very low-frequency information, however using

signal processing and machine learning, that was sufficient to identify speaker information

and parse speech. Even if the user has never granted the access to an app to access the

microphone, however using gyroscope, it is possible to identify speaker gender and part of

his speech.

On the other hand, in [82], a ‘zero-permission’ approach that only used motion sensors on

the device to infer the text typed was presented. It was shown, on average, that nearly 30

percent of typed bigrams from unseen words can be identified, using a very small volume

of training data. Moreover, in [83], key press inference attacks on handheld touchpads

by using smartwatch motion sensors as a side-channel were investigated. It was validated

experimentally that inference using smartwatches is comparable with similar attacks using

smartphone motion sensors. In addition, combining of both smartwatch and smartphone

motion sensors results in even better inference accuracy. According to [84], location inference

using acoustic side-channels has been studied. The attack uses acoustic information in a close

environment which is used to generate a location fingerprint. In other words, the attack

depends on the pattern of acoustic reflections of human voice at that specific location.

In this preliminary study, we use smart device pressure sensor as a side-channel to infer

the device location with ’zero-permission’. Atmospheric pressure value changes according

to the altitude at any given location. Hence, since several locations have the same altitude,

naturally they will have very close atmospheric pressure values. As a result, mathematically

though pressure can be defined as a function of location, the opposite is not true. However,

let’s focus on a regular route between two locations at separated by a few-minute driving

distance. Due to the irregular structure of the terrain, the altitude in several cities is not

expected to be constant, however each road has its own altitude profile. For instance, that
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phenomenon encouraged researchers to create bicycling friendly maps for navigation that

disfavor steep slopes in San Fransisco [85]. What we propose is to use the altitude profile of

each road as a signature that identifies that road. At any given time according to the traffic

condition, most of the cars passing through certain road will have almost the same average

speed, which implies almost the same altitude patterns. Therefore, if passengers of some cars

have granted an access to certain app to get location, it can also track the altitude change

using the pressure sensor. Then, an app in another car that has only access to pressure can

use pattern matching to infer the location.

As mentioned earlier, most popular smart devices operating systems such as Android and

iOS do not require permissions to access pressure sensor. Even if that changed in the future,

if specifically the user is asked to grant a specific application the access to pressure sensor

data, the link between pressure and location inference is not clear and might seem impossible.

Hence, in this work we focus on illustrating how pressure sensor can be used as a side channel

to infer the device outdoor location.

To validate our concept, we use data collected by a smart device mounted in one of University

of California, Irvine (UCI) transportation busses. The smart phone app records pressure data

along with the location. The data is used to train a long short-term memory (LSTM) [86]

neural network model to be used for pattern matching. LSTM has been used recently in

several applications that deal with time-series data [87, 88, 89, 90]. In addition, it was shown

that LSTM outperforms traditional approaches based on sequence mining or hidden Markov

modeling [91].

5.1.1 Dataset Creation

In order to validate the proposed concept, a dataset of location sequences accompanied by

the corresponding pressure sequences is required. We coordinated with UCI transportation
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(UCI Anteater Express) to mount smart phone devices in one of their busses to collect data.

The reason behind selecting these busses is the fact that a transportation bus follows fixed

defined route repeatedly. For instance, the bus that we selected repeats its lap about 28

times a day, which creates several measurements for the same location sequence. Since the

dataset is recorded throughout a day, it takes into account different traffic conditions. In

other words, the pressure pattern of certain road stretches if the vehicle is moving slowly

due to traffic and vice versa. This problem has been addressed in speech recognition field.

We developed an Android app that continuously records readings of pressure sensor along

with the location updates. Each measurement is stored with its time stamp so pressure data

can be aligned with the corresponding location later. The time stamp function provided

by Android is currentTimeMillis, which returns time in milliseconds since midnight of

January 1, 1970 [92].

Figure 5.1 shows the recorded pressure, latitude and longitude of several bus laps captured

by the device GPS sensor. The data is normalized by removing the bias and adjusting the

scale as shown by (5.1), where Xnormalized is the normalized version of an arbitrary vector X.

It is clear from the figure that each segment of latitude and longitude has a corresponding

pressure pattern.

Pressure is recorded at 5Hz rate, and location is updated at 1Hz rate and both are resam-

pled at 0.1Hz. As mentioned in [93], time series data is converted to dataset samples by

windowing. Hence, the recorded data is divided into 10-minute 75% overlapping windows,

where each window consists of 60 time samples. A single window is considered one sample of

the dataset with pressure sequence as an input and location sequence as an output. Figure

5.2 summarizes the dataset generation process. Then, the dataset is shuffled and divided

into three sections, 65% for training, 25% for validation and 10% for testing.
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Figure 5.1: Normalized pressure, latitude and longitude measurements of several bus laps.

Xnormalized =
X −mean(X)

|max(X)−min(X)|
(5.1)
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Figure 5.2: Dataset creation flow chart. Overlapping in the figure is 50% just for illustration.
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5.1.2 LSTM Architecture

As mentioned earlier, LSTM is one of the recently used techniques for pattern matching

which was shown to achieve better performance than traditional methods. The architecture

of the LSTM network is described in table 5.1 and was implemented using Keras Python

library. The input layer consists of 60 units since the input data is a 60-sample pressure

window. The first two layers are LSTM layers of size of 16 units, and each layer outputs

the entire sequence, hence the output size is 60x16. LSTM layer connects keeps the time

dependency of the input data and infer temporal relations between time steps. The next

layer is a dropout one where its rate is rate equal to 0.4, i.e. randomly 40% of the outputs of

the previous layer are dropped while training, which is mainly used to avoid over fitting and

forces the network to depend on several features. Then another stage of LSTM followed by a

dropout layer are used. Finally, the output layer is an LSTM of size 2 and also returning the

full sequence, i.e. the output size is 60x2. Recall that the output is the location sequence,

which consists of a 60-sample window of latitude and longitude, i.e. the output size is 60x2.

Table 5.1: LSTM network architecture.

Layer Type Parameters Activation

0 input size = 60 -

1 LSTM
units=16

return sequences=True
relu

2 LSTM
units=16

return sequences=True
relu

3 Dropout rate=0.4 -

4 LSTM
units=16

return sequences=True
relu

5 Dropout rate=0.4 -

6 LSTM
units=2

return sequences=True
linear
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5.1.3 Results and Discussion

The network described in section 5.1.2 is trained by the training section of the dataset.

Figure 5.3 shows the mean absolute error for both training and validation datasets versus

epochs. To demonstrate the efficacy of the proposed method, few data points of the test

dataset are shown in figure 5.4. The ground truth path is shown by the dashed line, whereas

GPS and pressure inferred locations are annotated. It is clear that using zero permissions

and depending on pressure traces only the device location can be inferred with fair accuracy.

Also, it is worth noting that the GPS location itself was noisy since the used devices did

not have access to the network and only used GPS for localization, which resulted in lower

accuracy and sometimes loss of GPS signal which in turn introduced sudden jumps in the

location.

It is clear that location inference with zero-permission depending on pressure sensor as a

side channel is possible. LSTM is shown to be an efficient sequence matching technique to

infer location sequence from pressure pattern. This preliminary result opens several research

areas related to augmenting several smart device sensors to infer information or to enhance

measurements accuracy.
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Figure 5.3: Mean absolute error for training and validation datasets versus epochs.
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Figure 5.4: The ground truth bus route (dashed line) is plotted on UCI map. In addition,
GPS (blue line) and pressure inferred locations (red line) are annotated.
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Appendix A

Stationary Process Covariance Matrix

Row Summation

In this appendix, we derive an approximate summation formula of rows of a covariance

matrix of a stationary random process that is characterized by having decaying covariance

coefficients, i.e. r0 >> r1 >> .... As mentioned in section 2.2.1, stationary process covariance

matrix is expressed by (2.14). Hence, the summation of covariance matrix rows is calculated

using (A.1). Let the summation of row k be denoted as ηk as shown by (A.2).

RQ =



r0 r1 . . . rn−1

r1 r0 . . . rn−2
...

...
. . .

...

rk rk−1 . . . rn−k−1
...

...
. . .

...

rn−1 rn−2 . . . r0





1

1

...

1



98



=



∑n−1
j=0 rj

r1 +
∑n−2

j=0 rj
...∑k

j=1 rj +
∑n−k−1

j=0 rj
...∑n−1

j=0 rj


(A.1)

ηk =
k∑
j=1

rj +
n−k−1∑
j=0

rj (A.2)

If the stationary noise process is characterized by having decaying covariance coefficients

values, i.e. r0 >> r1 >> r2 >> ..., then the maximum value at any row is r0, and the

values decay and can be neglected compared to r0, r1 and the first few coefficients. Hence,

approximately ηk for rows away from the boundaries is given by (A.3), and because of the

covariance symmetry, ηk can be expressed by (A.4) which does not depend on k. Hence, by

neglecting the error at the boundary rows, RQ is given by (A.5).

ηk ≈ η =
∞∑
j=1

rj +
∞∑
j=0

rj (A.3)

=
−∞∑
j=−1

rj +
∞∑
j=0

rj

=
∞∑

j=−∞

rj (A.4)
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RQ =



η0

η1
...

ηn−1


≈



1

1

...

1


η = Qη (A.5)
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Appendix B

Displacement Calculation

In this appendix, we derive the discrete time displacement as a function of acceleration,

assuming that acceleration is considered constant in the duration between any two succes-

sive time samples. Discrete time velocity is calculated by (B.1), whereas displacement is

calculated by (B.2). Equations (B.3) and (B.4) are the Z-transforms of (B.1) and (B.2)

respectively. Hence, S(z) is obtained by (B.5).

v[i] =
i−1∑
k=0

a[k]∆t (B.1)

s[i] = s[i− 1] + v[i− 1]∆t+
1

2
a[i− 1]∆t2 (B.2)

V (z) =
z−1

1− z−1
A(z)∆t (B.3)
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S(z) = z−1S(z) + z−1V (z)∆t+
1

2
z−1A(z)∆t2 (B.4)

= z−1S(z) + z−1
z−1

1− z−1
A(z)∆t2 +

1

2
z−1A(z)∆t2

=
1

1− z−1
(z−1

z−1

1− z−1
A(z)∆t2 +

1

2
z−1A(z)∆t2)

=
z−2

(1− z−1)2
A(z)∆t2 +

1

2

z−1

(1− z−1)
A(z)∆t2 (B.5)

By using the inverse Z-transform, s[i] is expressed by (B.6) knowing that a[i], v[i] and s[i]

are zeros ∀i < 0.

s[i] =
i−1∑
k=0

k−1∑
j=0

a[j]∆t2 +
1

2

i−1∑
k=0

a[k]∆t2

=
i−1∑
k=0

(i− k − 1)a[k]∆t2 +
1

2

i−1∑
k=0

a[k]∆t2

=
i−1∑
k=0

(i− k − 1

2
)a[k]∆t2 (B.6)
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