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Abstract

Automated corrective feedback (ACF), in which a computer system helps language learners

identify and correct errors in their writing or speech, is considered an important tool for language

instruction by many researchers. Such systems allow learners to correct their own mistakes, thereby

reducing teacher workload and potentially preventing issues related to grammatical error fossilization.

Research in this area has led to the development and widespread adoption of tools such as Grammarly

for English learners. However, research in grammatical error correction (GEC) and other forms

of ACF in languages other than English has been much more limited. This dearth of research is

in part due to the large demand for English instruction, but is also driven by the limited training

data available for non-English languages. However, a new corpus of learner Spanish collected at UC

Davis, COWS-L2H, provided me with an opportunity to explore development of ACF for students

studying Spanish. In my dissertation work, I explore the error patterns present in writing by

students of Spanish in COWS-L2H, and use this information to inform a novel data augmentation

technique to generate synthetic data for training language models capable of correcting learner

errors in Spanish text. I then use this synthetic data, along with learner data from COWS-L2H, to

train an AI-based GEC model for Spanish learners that is adaptable to learner L1 and proficiency

level. Finally, I explore how this automatically corrected writing can be used to present feedback to

learners in a pedagogically motivated way. To that end, I combine the GEC model trained using

data from COWS-L2H with hand-written templates and feedback produced by generative LLMs to

craft appropriate feedback for learners using the system. The end goal is a grammar-checker that is

able to not only explain why something a student wrote is potentially incorrect, but is also able to

guide the student to make the correction themselves. I demonstrate this novel system, CorreGram,

and further discuss details of its implementation and proposals for how the system may be effectively

utilized in the language classroom.
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CHAPTER 1

Introduction

Providing meaningful, constructive feedback to students as part of a second language education

program is a challenging and time-consuming task for language instructors. The quality and

appropriateness of feedback can be affected not just by the content of the feedback itself, but also

by the proficiency level, linguistic background, confidence, and other individual characteristics of

the target student. For this reason, not all feedback is equally beneficial to all students. This

dissertation explores the diversity of students in a large university Spanish language program, how

that diversity affects student writing and the types of errors students make, and finally discusses

the development of an automated written corrective feedback system that takes these factors into

account when generating corrective feedback for student writing. I show that effective feedback

for learners of Spanish can be automatically generated with modern natural language processing

techniques, and that taking the linguistic properties and error patterns found in real-world student

data into consideration when implementing such a system results in better system performance and

more targeted feedback for individual students.

1.1. Linguistic diversity in the language classroom

One key challenge faced by language instructors in a large university setting is the diversity of

linguistic experience among students, which affects both student expectations and learning outcomes

when studying a second, third, or Heritage language. In the United States, most universities enroll a

large number of international students whose first language is not English. By far the largest group

of such students is native speakers of Mandarin from China [iie.org]. Additionally, students from

the United States come to the table with a diverse set of linguistic experiences. The most common

non-English native language for American students is Spanish, given the large Spanish-speaking

population in the US [Bureau, 2018]. This is especially evident in states with large Spanish-speaking

populations, such as California [Statisticalatlas.com]. When these students (Spanish-speaking

students who grew up in a non-Spanish-dominant area) are studying Spanish, which is the focus

1



of the present dissertation, we refer to them as “Heritage learners.” Thus, three primary groups

of students are frequently seen in Spanish language instruction courses in American universities:

Monolingual L1 (first-language) speakers of English, bilingual L2 (second-language) speakers of

English (whose most common L1 is Mandarin, followed by Hindi), and Heritage speakers of Spanish

who are also bilingual in English [Lacorte and Suárez-Garćıa, 2016]. Of course, with these broad

definitions, some overlap between these student groups is likely. Given the differences in linguistic

background in the student population, a major question arises: how does a student’s prior language

experience affect her acquisition of Spanish? While understanding these differences is important

in its own right, a better understanding of the variation seen across the learner population may

contribute to the development of improved teaching methods. Additionally, the underlying reason

that I pursue these studies is to model specific aspects of variation between student groups which

can be utilized in developing automated feedback systems, proficiency tests, and other evaluation

tools which are tuned to students’ linguistic experience. Although the question “how does linguistic

experience impact language acquisition” is far too broad to address as a whole, researchers have

begun to tease apart various aspects of this question. For example, Montrul and Ionin [2012] offers

a review of experimental research comparing the acquisition of Heritage learners to that of L2

learners in terms of phonology, lexicon, and morphosyntax. While corpus studies examining specific

aspects of Spanish Heritage, L2 and L3 (third or greater language) learner speech and writing are

prevalent, corpus studies which explicitly study variation between these learner groups are much

more limited, likely due to the sparsity of high-quality learner corpora of Spanish. This dissertation

seeks to explore some of the differences in learning trajectories based on demographic factors like

L1, previous language learning experience, and proficiency level. I then apply these findings to help

inform a student-adaptable written corrective feedback model for students learning Spanish.

1.2. Automated Corrective Feedback

Automated corrective feedback (ACF), in which a computer system helps language learners

identify and correct errors in their writing or speech, is considered an important tool for language

instruction by many researchers [Li et al., 2015, Tatawy, 2002, Ranalli, 2018]. ACF tools can provide

both automated synchronous (provided while students write) and asynchronous (provided after

writing is complete) feedback to students, allowing learners to correct their own mistakes [Shintani,
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2016], thereby reducing teacher workload and potentially preventing issues related to grammatical

error fossilization [Tajeddin et al., 2017]. This research has led to the development and widespread

adoption of tools such as Grammarly1 for English learners. However, research into the development

of grammatical error correction (GEC) and other forms of ACF for the classroom in languages other

than English has been quite limited. This dearth of research is in part due to the large demand

for English instruction, but is also driven by the limited training data available for non-English

languages. Even for English, the amount of training data is often not sufficient to train the large

neural models now used for GEC. To overcome these challenges, I propose a method for building

synthetic training data that more closely replicates the error patterns seen in learner data.

Specific steps are necessary in generating synthetic data which attempts to replicate the lexical,

syntactic and error distributions of Spanish learners at different levels of proficiency and with

diverse linguistic backgrounds. First, I need a large quantity of text from corpora or online sources

which are somewhat similar to learner text in terms of length, lexical patterns and use of various

morphosyntactic forms, such as verb tense and subordination. The most obvious source of such

data is real learner text drawn from existing unannotated, uncorrected learner corpora, such as

CEDEL2 [Lozano et al., 2009]. However, even the largest error-annotated learner corpora (all of

which are in English), such as the Cambridge English Write & Improve + LOCNESS corpus [Bryant

et al., 2019], are generally considered too small to train an automated feedback system from scratch

[Grundkiewicz and Junczys-Dowmunt, 2019]. Even with the advent of large pretrained models such

as T5 [Raffel et al., 2020a], the most successful systems for GEC are trained in a multi-stage process

that involves using synthetic data to align the model with the GEC task [Rothe et al., 2021]. When

attempting to train such a GEC model for Spanish, the size and number of available learner corpora

drops dramatically. Thus, much training text must be selectively extracted from web data, such as

that available in the Corpus del Español [Davies, 2016]. However, this data is unlikely to replicate

the linguistic patterns seen in learner writing. In an attempt to remedy this situation, I propose to

filter the data based on the distribution of lexical and syntactic features to generate a large corpus

of text which “looks like” learner data. Once I have gathered a corpus of such text, I need to inject

errors into the text which replicate, as nearly as possible, the distribution of errors seen in real

1https://www.grammarly.com/
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learner data. In order to achieve these goals, I must first identify, as specifically as possible, how

the target student groups vary across several dimensions: lexical usage, syntax, and error rates.

While recent work [Li et al., 2015, Stevenson and Phakiti, 2014] has shown that automated

corrective feedback shows promise as a tool for improving student writing competency, a key criticism

of current automated corrective feedback systems for language education is the fact that most such

systems take a “one-size-fits-all” approach to identifying and suggesting corrections for potential

errors. That is, many systems are designed with little-to-no consideration of the proficiency and

error patterns of the students who will be using the system, rather targeting some abstract “typical”

student. Thus, I propose to use student error patterns to inform a GEC-based automated written

corrective feedback (AWCF) system for adult learners of Spanish, particularly those learning Spanish

in an academic setting, that is adaptable to a student’s L1, proficiency, and previous language

learning experience. The proposed system is, to my knowledge, the first GEC-based, data-driven

error correction system designed for the Spanish classroom. I argue that an automated feedback

system which is better able to adapt to both student linguistic experience (such as that presented

in Nadejde and Tetreault [2019]) and the instructor’s pedagogical goals will prove beneficial to

students and result in better learning outcomes. The code for the proposed feedback system is

available on GitHub2.

In order to better understand the linguistic diversity of students in a university Spanish language

program, I first report on several studies designed to answer the following questions:

(1) Does the lexical diversity and density of Heritage learners differ significantly from that of

advanced L2 learners, or from that of Spanish-dominant individuals?

(2) Are syntactic patterns extracted from longitudinal data sufficient to reveal differences in

syntactic usage across proficiency levels?

(3) How do the error rates of English-dominant L2 learners of Spanish differ from those of

non-English-dominant L3 counterparts?

(4) How do the error rates of Heritage learners of Spanish differ from those of their advanced

L2 counterparts?

Once I have established a baseline understanding of these factors, I seek to answer the following

research questions related to automated corrective feedback for Spanish language learners:

2https://github.com/ssdavidson/gec feedback spanish
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(1) Does a grammatical error correction system that is adapted to student attributes, such as L1

and proficiency, identify and correct errors more effectively than a baseline, “one-size-fits-all”

system that is otherwise identical?

(2) Does synthetic data built to replicate the linguistic and error patterns observed in student

data improve the GEC performance of a large language model (LLM) relative to a model

fine-tuned on real-learner data alone?

(3) How can we effectively present the errors identified by the GEC model to learners in a

pedagogically motivated manner?

In the following chapters, I answer these questions by demonstrating the linguistic diversity

found across learners in a large university language program. I then show that by taking this

diversity into account when developing automated feedback systems for students, I am able to

create a writing assistant that is effective in correcting student errors and is able to provide targeted

feedback to language learners.
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CHAPTER 2

Pedagogical Background

To provide context for the studies presented in this dissertation, this section first discusses the

student populations studied to establish the potential utility of student-adaptable AWCF systems,

as well as language transfer in these student populations. Additionally, I discuss the potential

benefits and drawbacks of using AWCF in the second language classroom, including studies of the

long-term impact of using AWCF and students’ tolerance to system errors.

2.1. Learners studied

2.1.1. Heritage Learners. As the Spanish speaking population of the United States increases,

Heritage learners of Spanish - students who come to the classroom with exposure to Spanish from

the home environment - make up an increasingly large segment of many Spanish program’s students

[Montrul, 2010a]. To understand the number of potential Heritage learners in American universities,

it is estimated that approximately 13.3% of Americans over the age of 5 speak Spanish at home,

with the population largely concentrated in the West and Southwest United States [Bureau, 2018].

For example, 28.8% of Californians speak Spanish at home [Statisticalatlas.com] and 24.8% of

undergraduates enrolled in the University of California system self-identify as Hispanic [Paredes et al.,

2021]. While not all students who self-identify as Hispanic are speakers of Spanish, these numbers

make clear the overall prevalence of the Spanish-speaking community in many higher education

institutions. While Spanish-English bilinguals have long represented a significant proportion of

students at many universities, Spanish departments have become more cognizant of the fact that

these students have needs which differ from those of their L2 learner peers. In response to this

need, Spanish departments at many Hispanic-serving institutions have developed courses specifically

designed to help Heritage learners of Spanish to retain Spanish and to introduce these learners to

Spanish in an academic register. A Google search reveals that, while the majority of schools which

offer Heritage Spanish are located in the western United States, Heritage courses are now being

offered at schools across the country.
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Although Spanish departments have sought to address the specific needs of Heritage learners

by developing courses which cater to them, this one-size-fits-all approach for Heritage learners is

problematic, as Heritage learners are a linguistically and culturally diverse group whose proficiency

in Spanish, and the dialect and register of Spanish they use, varies widely from individual to

individual. The diversity of Heritage learners can be seen in the many definitions of “Heritage

learner” or “Heritage speaker” which have been offered by researchers. The most widely used

definition, offered by Guadalupe Valdés, defines a Heritage Learner as a “language student who

is raised in a home where a non-English language is spoken, who speaks or at least understands

the language, and who is to some degree bilingual in that language and in English” [Polinsky and

Kagan, 2007]. While this definition is useful to language educators in particular, many researchers

consider this view of Heritage learners to be too narrow. Polinsky and Kagan [2007] point to two

conceptions of Heritage learners which have been proposed in the literature, and which they term

“broad” and “narrow” definitions. The “broad” conception emphasizes the connection between

cultural and linguistic heritage. For example, Fishman [2001] and Van Deusen-Scholl [2003] both

argue that a student’s status as a Heritage learner should be based on their familial and cultural

connections to the language in question. Van Deusen-Scholl refers to such students as “learners

with a heritage motivation” [Van Deusen-Scholl, 2003]. Polinsky and Kagan argue that the view

taken by Fishman and Van Deusen-Scholl is too broad, since it focuses on a student’s motivation for

studying a language, rather than on linguistic knowledge. For example, a student who is learning a

language for the first time as an adult may be culturally motivated to do so, but that does not make

that student a Heritage learner/speaker under Valdés’ definition, which requires that the student

actually acquired the language in question in the home. This dissertation will use the “narrow”

definition of Heritage learners proposed by Polinsky, and used by other researchers interested in

Heritage language as a form of early bilingualism such as Rothman [2009].

In addition, Lynch [2008] argues that the implementation of Heritage learner programs has

somewhat impeded research into Heritage speakers’ abilities, especially with reference to L2 learners,

by implying a dichotomous relationship between these two groups, when no such dichotomy exists.

Heritage learners are often treated as native speakers when this label may not reflect the true extent

of their linguistic abilities [Lynch, 2008]. For example, Rothman [2009] notes that the linguistic

competence of Heritage speakers “will differ from that of native monolinguals of comparable age.”
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Silva-Corvalán [1994] states that Heritage speakers of Spanish in the United States exist along a

continuum ranging from standard Spanish to limited, “emblematic” usage expressing social and

cultural identity. Silva-Corvalán also points out that many Heritage speakers exhibit limited domain

knowledge of their Heritage language, as the use of minority languages is frequently limited to

domestic and social interactions. This limited domain knowledge results in difficulty with abstract

topics, such as politics and science, and with complex syntactic constructions for many Heritage

speakers [Lynch, 2008]. Further, Lynch argues that the limited social use of minority languages results

in simplified grammatical systems that introduce “innovative, that is, non-normative, elements at

the lexical and discourse levels,” and that these innovative patterns are conditioned by the dominant

language [Lynch, 2008]. That is, Heritage language tends to adopt usage patterns from the majority

language surrounding it. These influences result in Heritage learners speaking a tongue that can be

markedly different from that spoken by non-Heritage native speakers of the language. O’Grady et al.

[2011] point out that past research has shown many Heritage learners to have specific linguistic

deficiencies when compared to native speakers. The extent of this type of borrowing and “deficiency”

is debated, though. For example, Pousada [1979] find that there is no evidence of convergence

between the verb systems of Puerto Rican Spanish and English in a language contact situation.

Conversely, Montrul [2004] argues for convergence in the subject and object expression of adult

simultaneous bilinguals of English and Mexican Spanish in the United States. Thus, the impact of

bilingualism on the language of Heritage speakers, and which linguistic features are most subject to

convergence, remains an open question.

It should be noted that the majority of students whom I consider in my evaluation of Heritage

learners report speaking only Spanish at home. Thus they are likely highly proficient in Spanish

as a spoken language, and are enrolled in the Heritage course series primarily to acquire a more

academic register of Spanish and to improve their writing skills. Thus, these learners’ backgrounds

may not align with the subjects studied in much of the previous literature on Heritage language

acquisition and use. That said, the COWS-L2H corpus also contains a number of students who

report some degree of Spanish exposure in the home, but who choose to enroll in the non-Heritage

course series designed for less proficient learners; however, I do not include these students in the the

present analysis due to need to more thoroughly examine the linguistic background of individual

participants.
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2.1.2. L3 Learners of Spanish. Universities in the United States have, on the whole, a

large number of international students whose first language is not English. During the 2018-2019

academic year, approximately 1.1 million international students were enrolled in U.S. degree-granting

institutions [iie.org], accounting for 5.5% of total U.S. higher education enrollment. Among these

students, the largest sub-population is students from China; approximately 370,000 Chinese students

were enrolled in U.S. universities in 2019, accounting for approximately 34% of all international

students. The proportion of Chinese students is much higher at some institutions; for example,

as of Fall 2023, 18,602 undergraduate students from mainland China enrolled in the University of

California system; this means that approximately 6.3% of UC undergraduates are Chinese nationals.

By contrast, India, which is the next highest student-sending country, sent only 4,461 undergraduates

in Fall 2023 [universityofcalifornia.edu, 2023].

This large population which speaks Mandarin and related Chinese languages poses a challenge

to language instructors due to possible effects of these students’ L1 on the way that the students

learn the target language. When dealing with such a large population of students whose L1 is

not English, do language instructors need to modify their teaching methods to accommodate L1

transfer that is different from that of the majority English-speaking students [Cummins, 2008]?

For example, Mandarin does not use articles in its syntactic system in the same way as many

Indo-European languages, including English and Spanish [Snape, 2009]. When English-speaking

students are learning Spanish, they have prior exposure to the use of articles in their L1, despite

differences in the gender systems of English and Spanish [Ionin and Montrul, 2010]. Mandarin

speakers, on the other hand, come to Spanish from an L1 which has given them little experience with

the use of articles in their native tongue [Ionin and Montrul, 2010]. Does this difference affect the

way in which Mandarin speakers acquire the use of Spanish articles relative to their native English

counterparts? But, one must also consider the fact that these students have been exposed to the use

of articles through learning English, which all have presumably studies as an L2 as a prerequisite to

admission to an American university. How does the students’ knowledge of article usage from their

L2 interact with syntactic transfer from their L1 [Cai and Cai, 2015]? Which linguistic system has

the greater impact on these students’ acquisition of Spanish as an L3 [Rothman and Cabrelli Amaro,

2010]? To answer these questions, an in-depth analysis of their writing is needed.
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2.1.3. Linguistic transfer. While many studies have considered the effect of L1 syntactic

transfer on students who are acquiring an L2 [Karim and Nassaji, 2013], fewer studies have considered

these effects when a student is learning an L3 in an L2 medium classroom. However, those studies

that have analyzed the effect of linguistic transfer in the context of L3 learning have disagreed about

the effect of L1 transfer when acquiring an L3 language. For example, Rothman and Cabrelli Amaro

[2010] and Bardel and Falk [2007] investigate four competing views of the effect of L1 transfer on

L3 acquisition:

(1) an L1 effect for all adult language acquisition [Schwartz and Sprouse, 1996].

(2) the L2 transfer, or status factor, hypothesis, which posits that learning an L2 blocks L1

transfer when acquiring an L3 [Williams and Hammarberg, 1998].

(3) the Cumulative Enhancement Model [Flynn et al., 2004] which hypothesizes transfer from

all previously learned languages.

(4) the Typological Primacy Model [Rothman, 2011] which predicts that L3 learners will

transfer the linguistic system from their L1 or L2 based on which system is typologically

most similar to the L3 they are learning.

Rothman and Cabrelli Amaro [2010] provide data which supports the L2 status factor hypothesis,

arguing that the acquisition of an L2 can, in certain cases, effectively block L1 transfer when learning

an L3. Similarly, Bardel and Falk [2007] state that “syntactic structures are more easily transferred

from L2 than from L1 in the initial state of L3 acquisition.” The results of the present analysis of

Spanish L3 learner writings also seem to support these findings.

2.1.4. Effect of target language proficiency. While the linguistic background of learners is

one major consideration in the types of errors learners make, another key component to developing

an effective AWCF system is adapting to the proficiency of learners [Ranalli, 2018, Bitchener and

Ferris, 2012, Nadejde and Tetreault, 2019]. For example, Bitchener and Ferris [2012] argue that

unfocused feedback - feedback which suggests that an error has been made without suggesting

a solution - may result in cognitive overload for lower-proficiency students. On the other hand,

more advanced students may benefit from unfocused feedback in that it does not seek to constrain

their writing style; rather, it forces them to decide how to best resolve a potential error themselves,

thereby reinforcing language learning [Bitchener and Ferris, 2012]. While a first year Spanish student

may make many grammatical and stylistic errors in their writing, pointing out errors that are
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beyond the scope of their learning objectives may serve to confuse the student and reduce the utility

of the AWCF system. This weakness can be overcome by designing a GEC-based AWCF system

that provides output aligned to student L1, proficiency, and specific pedagogical goals. Additionally,

the limited research available that investigates the role of corrective feedback in improving the use

of specific linguistic forms has shown that simple errors, such as gender agreement and use of past

tense, are more readily learned from corrective feedback [Bitchener and Ferris, 2012], though it

should be noted that the study in question used teacher-provided asynchronous feedback rather

than synchronous AWCF.

The linguistic diversity and differing proficiencies of students brings to light one of the major

criticisms of most AWCF systems: that they use a “one-size-fits-all” approach which “takes little

or no account of individual differences” [Ranalli, 2018]. According to Ranalli [2018], “Current-

generation AWE tools are not designed to differentiate among users’ with different L2 proficiencies,

L1s, writing skills, or educational backgrounds.” This weakness of many AWCF tools leads to

the issue, pointed out by Koltovskaia [2020], that more proficient students under-utilize and lower

proficiency users over-rely on AWCF recommendations. Bitchener and Ferris [2012] specifically

called on researchers to investigate the impact of L2 proficiency and other student-specific factors

on the utility of AWCF for language learning.

2.2. Automated Written Corrective Feedback

When proposing to build a ACWF system for L2 and Heritage language learners of Spanish, one

must ask how such a system will benefit students and instructors in the classroom setting. According

to Ferris [2012], a longstanding debate exists around the benefits of corrective feedback (in most

studies, provided by instructors) to L2 student writing development. For example, Truscott and

Hsu [2008] finds no lasting improvement to the number of grammatical and lexical errors in student

writing when students who have been previously provided corrective feedback are asked to write

without the aid of feedback. However, Bitchener and Ferris [2012] more closely investigate Truscott

and Hsu’s claims and find that, over time, students who are given corrective feedback actually do

make fewer lexical and grammatical errors. Corrective feedback is considered an essential part of

second language learning by many researchers. For example, Gass [1991] and Ellis [2002] see CF in

the role of “noticing”; in order to acquire a second language, learners must be able to notice the
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differences between their production and the correct form in the target language [Tatawy, 2002]. Of

additional note is the fact that very little research exists related to the use of written corrective

feedback in Heritage learner writing instruction. For example, Park et al. [2016] focuses on the

provision of corrective feedback to Heritage learners of Korean whose relative proficiency in Korean

is much lower than the proficiency of those Heritage learners of Spanish involved in the present

research.

So, the benefit of corrective feedback in terms of improving student grammar and lexical

choice remains an open question. But, as any writing instructor would tell you, there is much

more to writing than grammar and word choice. As Ferris [2012] points out, “L2 writing is a

(sub)discipline informed by language and composition studies as well as other disciplines, including

rhetoric, communication, and cultural studies, among others.” Even if a student is able to write a

grammatically “perfect” essay, if her communicative and rhetorical skills are lacking, the composition

may still be ineffective. It is teaching these communicative and rhetorical skills that Truscott and

Hsu [2008] and Truscott [1996] argue should be the goal of instructor feedback in the L2 writing

classroom. However, students sometimes “fail to meet practical goals because of their lack of

progress in producing more linguistically accurate texts” [Ferris, 2012], thus supporting the utility

of feedback related to grammatical and lexical choices. However, Ferris [2012] further points out

that most writing instructors view corrective feedback as one tool in a larger toolbox of pedagogical

methods designed to improve overall student writing effectiveness.

As with the use of corrective feedback in general, the use of automated written corrective feedback

in the second language classroom has a relatively short but controversial history. Providing CF to

students, especially in a written format, is an extremely time-consuming prospect for instructors

[Shintani, 2016], and the potential automation of the provision of feedback concerning grammatical

and lexical errors can free up instructor time to more effectively focus on the providing instruction

related to rhetorical and composition skills [Li et al., 2015]. Particularly, AWCF can provide

the type of real-time feedback to students which is simply impossible for instructors to provide,

thus allowing students to immediately take advantage of the proposed suggestions and gain more

confidence in their independent expressive abilities [Barrot, 2021]. Heift and Hegelheimer [2017]

further explain that the “usefulness of computer-generated corrective feedback largely lies in enabling

learner self-study and practice of the target language by identifying and explaining error sources
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and, with regard to L2 essay writing, allowing for draft revision”. This type of rapid feedback is

in many ways similar to the “dynamic feedback” method described in Hartshorn et al. [2010], in

which students write frequent short essays, are provided with immediate feedback, and given an

opportunity to revise their writing based on this feedback. According to Hartshorn et al. [2010],

this type of feedback is particularly effective in instilling lasting benefits to student writing. AWCF,

such as the model I propose, allows for exactly this type of real-time corrective feedback which

would otherwise be unavailable to students. However, some researchers [Cheville, 2004] and teacher

groups, such as the National Council of Teachers of English [NTCE, 2014] oppose the use of ACF

and other types of computer-mediated automated assessment. According to the NTCE:

Automated assessment programs do not respond as human readers. While they

may promise consistency, they distort the very nature of writing as a complex and

context-rich interaction between people. They simplify writing in ways that can

mislead writers to focus more on structure and grammar than on what they are

saying by using a given structure and style [NTCE, 2014].

In a study motivated by the NTCE statement and other critics of the use of automated feedback,

Li et al. [2015] demonstrate the utility of automated written feedback in improving student writing,

as indicated by both number of correct revisions made by students and by teacher evaluation of the

feedback system. Additionally, Stevenson and Phakiti [2014] demonstrate modest improvements

to error rates in student texts written using AWCF; however, the authors note that there is little

evidence that these improvements transfer to the students’ writing when not using AWCF [Li et al.,

2015, Bitchener and Ferris, 2012]. Stevenson and Phakiti [2014] state that more research is needed

to establish that AWCF actually leads to improvement in overall student writing proficiency.

Another key criticism of current AWCF systems is that they use a “one-size-fits-all” approach

that “takes little or no account of individual differences” [Ranalli, 2018]. According to Ranalli

[2018], “Current-generation AWE tools are not designed to differentiate among users’ with different

L2 proficiencies, L1s, writing skills, or educational backgrounds.” This weakness of many AWCF

tools leads to the issue pointed out by Koltovskaia [2020] in which more proficient students under-

utilize and lower proficiency users over-rely on AWCF recommendations. The prevalence of the

“one-size-fits-all” approach to AWCF is despite previous work in the use of corrective feedback

generally which indicates that corrective feedback is most effective when instructors consider not
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only proficiency, but also factors such as previous language learning experience and the nature of the

learning environment [Ferris and Hedgcock, 2013]. This finding raises an important question: how

can AWCF systems, specifically those driven by GEC, be better adapted to differences in learner

groups, such as proficiency level, L1, and previous language learning experience, to improve the

ability of students to utilize AWCF systems? For example, Bitchener and Ferris [2012] specifically

called on researchers to investigate the impact of L2 proficiency and other student-specific factors on

the utility of AWCF for language learning. Additionally, it should be noted that nearly all research

in ACF has focused on English as a second language; this dissertation proposes a GEC-based

AWCF system built for use by Spanish language learners. However, the proposed method should be

applicable to any language for which a small amount of annotated learner text is available for error

distribution analysis, and for which a larger amount of unannotated text is available for generation

of synthetic training data.

2.2.1. Synchronous and asynchronous feedback. One of the major advantages of AWCF,

beyond the potential time savings to instructors [Stevenson and Phakiti, 2014], is the fact that

it facilitates synchronous feedback to student writers - that is, tagging of errors and suggesting

corrections in near-real-time while students are writing [Dikli, 2006]. In a study which analyzed

differences between synchronous (SCF) and asynchronous (ACF) corrective feedback, Shintani [2016]

found:

(1) SCF created an interactive writing process similar in some respects to oral

corrective feedback; (2) both the SCF and ACF promoted noticing-the-gap, but

self-correction was more successful in the SCF condition; (3) focus on meaning and

form took place contiguously in the SCF condition while it occurred separately

in the ACF condition; and (4) both types of feedback facilitated metalinguistic

understanding of the target feature, reflecting the unique features of writing (i.e.,

its slow pace, its permanency and the need of accuracy) [Shintani, 2016].

Shintani [2016]’s study did not use AWCF to provide synchronous feedback, but rather used

Google Docs to allow instructors to provide synchronous feedback as students wrote. However, their

findings clearly highlight the benefits of synchronous feedback, assuming that the feedback provided

is of sufficiently high quality and well targeted to the student’s proficiency level.
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2.2.2. Error tolerance in AWCF. The question of high quality feedback raises an additional

question regarding the use of GEC-based AWCF in the language classroom: what is the error-

tolerance of students and instructors using AWCF systems. Unfortunately, I am unable to find

significant research into how much error students are willing to accept when using AWCF and how

much errors made by such systems impact their usability. The fact is that the errors identified

and corrections suggested by a GEC model will include some number of errors; for example, one

state-of-the-art GEC system, GECToR [Omelianchuk et al., 2020] achieves a precision of 78.9 and a

recall of 58.2 (for an F0.5 73.6) on the BEA-2019 English GEC shared task test set [Bryant et al.,

2019]. The relatively low recall for these systems, indicating that the systems are missing a large

portion of the errors identified by human annotators in the texts, is one reason that general-purpose,

domain agnostic GEC systems have not been fully integrated into commercial AWCF systems such

as Grammarly and Criterion. While the usability of general-purpose GEC for AWCF may still be

somewhat limited by system performance, a more fine-grained analysis is necessary to determine

which error types these systems are good at identifying and correcting, and if their performance

with this subset of error types outperforms more well-established and less computationally expensive

statistical and rule-based models. This analysis should be contrasted with the types of corrections

made by instructors. Instructors are unlikely to correct every error in a student text, either to target

particular learning objectives or to avoid overwhelming students [Hendrickson, 1980]. Similarly,

an automatic system that does not catch every error may still be quite useful, if the system is

consistent, targets more impactful errors types, and shows high precision.
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CHAPTER 3

Technical Background

In addition to the practical and pedagogical considerations outlined in the previous chapter,

several technical aspects of data-driven grammatical error correction influence the development of

workable GEC systems for the language classroom. Data-driven GEC, the machine learning problem

of identifying and correcting writer errors in text, is a difficult task due to the non-deterministic

nature of error correction. For many types of errors, there are multiple possible ways to correct the

target error; how to resolve the error is largely a matter of choice for the corrector. Traditional

methods of dataset and prediction evaluation, such as inter-annotator agreement and BLEU score

[Papineni et al., 2002], are not applicable to the GEC task [Bryant and Ng, 2015] due to the fact

that agreement between annotators or alignment to a specific correction is not necessary for an

edit to be an appropriate correction of an error. While the correction of some errors is relatively

straightforward, such as subject-verb agreement, even these scenarios are open to interpretation

and subject to corrector choice. Should we change a pronoun to make it agree with the verb, or

change the verb to agree with the pronoun? For example, should the agreement error in “They

reads the paper” be corrected to “They read the paper” or to “She reads the paper”? While many

instructors may assume the student used the wrong verb form, an incorrect choice of pronoun is

a reasonable alternative. More difficult decisions arise when considering non-standard forms that,

while acceptable in certain registers or dialects, do not conform to an academic standard. For

example, do we correct a student who writes “I get to work at 8am” versus “I arrive at work at

8am”? While this choice may be considered stylistic rather than grammatical [Fraser and Hodson,

1978], the line between the two is often not clear. These questions are of particular relevance in the

L2 teaching field, in which grammatical error correction tools have the potential to provide rapid

feedback to students and expand instructor bandwidth.

Fraser and Hodson [1978], make the following distinction between grammar and usage:

Each language has its own systematic ways through which words and sentences

are assembled to convey meaning. This system is grammar. But within the
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general grammar of a language, certain alternative ways of speaking and writing

acquire particular social status, and become the conventional usage habits of

dialect groups.

While this distinction is easy to maintain in rule-based GEC systems, neural and statistical

systems learn transformations from training data; thus, if a correction to style or usage is prevalent in

the training data, that correction will likely be enforced by the resulting system. This is particularly

true of language model based systems which learn the structure of the language in an unsupervised

manner from large amounts of unannotated text.

In an effort to ameliorate the issue that multiple possible valid corrections causes when evaluating

GEC systems, several benchmark GEC datasets, particularly those commonly used to evaluate

English GEC, provide corrections written by several independent annotators. For example, the

BEA 2019 dataset [Bryant et al., 2019] provides three reference corrections for each sentence in its

evaluation set. This approach improves the odds of an edit generated by the GEC system being

evaluated being present in at least one of the reference sentences, and thus judged as valid [Bryant

et al., 2019]. To demonstrate this point, Bryant and Ng [2015] augmented the CoNLL 2014 GEC

dataset [Ng et al., 2014] (which contains two reference corrections for each evaluation sentence)

with eight additional reference corrections, for a total of ten possible corrections for each evaluation

sentence. They evaluate their system using the F0.5 measure, which weights recall at half the value

of recall, indicating a preference for systems that may miss corrections, but are more accurate with

the predictions they make. See Formula 3.1 for a formal definition. With their additional reference

corrections, Qorib and Ng [2023] achieve an F0.5 of 85.21, as opposed to 71.12 on the original

two-reference evaluation set. This improvement makes clear a key weakness in GEC evaluation,

and demonstrates that GEC systems that are performing “poorly” on some evaluation set, may be

generating far more valid correction edits than the evaluation metrics would indicate. It is important

to understand this weakness in current evaluation methods of GEC systems when deciding if a

system is “good enough” for practical use, and that in all cases human evaluation should be the

final judge of a system’s efficacy.

(3.1) F0.5 = ((1 + 0.52) ∗ Precision ∗Recall)/(0.52 ∗ Precision + Recall)
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3.0.0.1. Rule-based and Classifier-based GEC. The simplest GEC systems, and, until quite

recently, those most commonly encountered by end-users in tools such as Microsoft Word and Google

Docs, use hand-crafted rules, regular expressions, and classification to correct specific grammatical

errors. For example, a simple regular expression can be used to enforce the correct use of “a” or

“an” depending on the following phoneme. Similarly, spelling correction can be implemented by

checking words in a text against a dictionary list, then identifying the most-similar word based on

edit-distance. However, many grammatical errors, such as subject-verb agreement mismatches, are

too complex to be identified and corrected with simple string matching rules. To overcome this

challenge, most rule-based GEC systems take advantage of part-of-speech (POS) information and

parse trees derived from automated tagging and parsing algorithms [McCoy et al., Sidorov et al.,

2013]. For example, as discussed in Bryant et al. [2017] and Sidorov et al. [2013], subject-verb

mismatches can be identified by a rule which checks that the nominal subject (nsubj ) of the sentence

has the same person and number as the verb. The grammatical relation between the subject and

the verb can be obtained from a dependency parser, while the person and number are often encoded

in POS tags. The example in Figure 1.1 demonstrates how dependency and POS tag data can be

used in rules to identify grammatical errors. Sidorov et al. [2013] further demonstrates the use of a

rule to identify the correct verb form from a verb list to resolve identified subject-verb agreement

errors. Rules to correct other types of errors can be constructed in a similar way.

A major benefit of rule-based GEC systems is that they do not require training data to

implement. This fact allows rule-based systems to be quickly built to identify and correct specific

errors in low-resource languages and domains with little available training data [Bryant et al.,

2017]. Additionally, the rules tend to be straightforward to implement and can be precisely targeted

[Bryant et al., 2017]. Such rules are effective when designing a system which targets a specific type

or set of errors. However, designing a system which is able to identify and correct a broad range of

errors can quickly become unfeasible due to the number of rules, as each error type requires its own

set of potentially complex hand-crafted rules.

While rules must be implemented manually, statistical classifiers attempt to learn the function

which determines the appropriate token in a given position from training data. Like rule-based

methods, classifier-based methods must restrict the class of errors which they attempt to correct in

order to limit the number of categories into which a token can be classed [Bryant, 2019]. Much work
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has focused on the correction of errors in article, verb, and preposition usage [Rozovskaya and Roth,

2014]. These parts-of-speech are particularly appropriate for classifier-based GEC, as the number of

potential targets is relatively small. For example, an article classifier only need determine if the

article before a verb should be a, an, the, or omitted. Similarly, a verb classifier, which relies on

information drawn from verb inflection databases, need only determine whether the given verb eat

should be classified as eat,eats, ate, eating, or eaten. Obviously, this task becomes more complex in

languages which have richer verb morphology. The learning of the classification function can be

done using various statistical approaches, such as naive Bayes, logistic regression, decision trees,

support vector machines, and other statistical methods [Bryant, 2019].

Figure 3.1. “cat” is the nominal subject (nsubj ) of “chases” and the POS tags
show that both words are singular (NN (singular noun) and VBZ (third person
singular verb)) rather than NNS (plural noun) and VBP (non-3rd person present).
Figure taken from Bryant et al. [2017].

3.0.0.2. Language Model-based GEC. Using language models to identify and correct errors

relies on the fact that, when analyzed using a well-trained language model, the probability of an

ungrammatical sentence should be lower than that of a grammatical one [Bryant and Briscoe, 2018].

For example, the probability of the sentence *“I seed the cat” should be lower than the probability

of “I saw the cat.” Current techniques in LM-based GEC involve correcting errors for only a limited

subset of items in a given sentence; for example, Bryant and Briscoe [2018] target only non-word

errors (spelling errors which result in a non-word), morphological errors such as noun number and

verb tense, and articles and prepositions. The method used by Dahlmeier and Ng [2012], Lee and

Lee [2014] and Bryant and Briscoe [2018] involves creating confusion sets for each token in a sentence

which falls into one of their predefined categories based on the part-of-speech of the token. They

create the confusion sets using various external resources, such as spell-checkers for non-words and

inflection databases for morphological errors. Once the confusion sets have been generated, they

iterate through the various changes proposed in the confusion sets and re-score the sentence using
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the trained LM. They then choose the resulting sentence with the lowest LM perplexity score as the

best correction of the target sentence [Bryant and Briscoe, 2018].

Most available work which uses LMs to rank proposed corrections use N-gram LMs such as

KenLM [Heafield, 2011]. However, more recent work utilizes large neural language models like BERT

[Devlin et al., 2018] to rerank proposed corrections [Kaneko et al., 2019], or to generate corrections

using BERT’s masked LM framework [Li et al., 2020]. Li et al. [2020] propose a two-stage process

in which they first label each token in the sequence with one of four labels: remain, substitution,

insert, delete. They then mask all tokens labeled “substitution” and insert a mask token for the

“insert” labels, allowing the BERT model to propose corrections for these items.

They key advantage of LM-based GEC is that it does not require annotated training data of

human-corrected sentences; confusion sets can be built for any language for which the necessary

linguistic resources such as spell-checkers exist. In Bryant and Briscoe [2018]’s system, annotated

data is used only for system tuning, though system tuning is not a strict requirement of an LM-based

GEC system. The drawbacks of this type of system are that 1) they require linguistic resources

such as spell-checkers and inflection databases to generate confusion sets necessary to generate

alternate proposals for scoring; and 2) since theses systems, at least as proposed, make changes

only on the token level, they are not capable of correcting multi-word grammatical and stylistic

errors. Additionally, as pointed out by Bryant [2019], probability is not always a perfect proxy for

grammaticality; for example, the sentence “I is the ninth letter of the alphabet” would have a lower

probability than “I am the ninth letter of the alphabet” according to most LMs, despite the fact

that the former sentence is actually the more appropriate in context [Bryant, 2019].

3.1. NMT-based GEC

The most common approach to the GEC task in recent literature frames error correction as a

monolingual machine translation task in which the source and target languages are “language with

errors” and “language without errors,” respectively [Ng et al., 2014]. Grammatical error correction

can be viewed as a noisy-channel model, a task to which machine translation is particularly well

suited [Flachs et al., 2019]. Specifically, an input sentence containing errors can be said to be a

corrupted version of its grammatical counterpart that has been passed through a noisy channel.

20



The goal of the GEC task, then, is to reconstruct the correct sentence from the erroneous input

[Bryant et al., 2023].

Because GEC is often framed as a machine translation task, the development of GEC systems

has largely mirrored progress in MT more broadly. The first MT-based models for GEC were

built using statistical machine translation (SMT) frameworks (for example, Yuan and Felice [2013],

Felice et al. [2014], Junczys-Dowmunt and Grundkiewicz [2014]). While these systems were a major

improvement over the previous rule-based and classifier-based GEC systems, they often generate

ungrammatical output and make unnecessary corrections to align their output with common wording

seen in their training data [Bryant et al., 2023]. As SMT gave way to deep learning in machine

translation (and other sequence-to-sequence applications), so have neural networks become the

dominant approach to GEC. Yuan and Briscoe [2016] demonstrated the potential for this approach

by applying and RNN-based encoder-decoder architecture with an attention mechanism to English

GEC. More recently, Transformers [Vaswani et al., 2017] have become a common architecture for

development of GEC systems, as demonstrated by Junczys-Dowmunt et al. [2018] and Grundkiewicz

et al. [2019], among many others.

While framing the problem of error correction as a monolingual translation task is promising,

the approach requires parallel training data [Rei et al., 2017], which if not publicly available, must

be created by manually correcting text containing errors or by artificially generating errors in

grammatical text. Kasewa et al. [2018] demonstrate the potential of using of artificial errors to

train a GEC system; however, their method requires real-world parallel text to train their noise

model used to generate artificial errors in grammatical text. Similarly, Xie et al. [2018] use a noising

model trained on a “seed corpus” of parallel sentences to build a GEC system trained on artificially

generated parallel noised data. Junczys-Dowmunt et al. [2018] show that effective neural GEC

can be achieved with a relatively small amount of parallel training data when techniques such as

transfer learning are employed. Each of these approaches were applied to error correction in English

only. Grundkiewicz and Junczys-Dowmunt [2019] expands this work, demonstrating a GEC system

for German and Russian that uses small corpora of corrected text to fine-tune a baseline system

trained on artificial data. Most transformer models are pretrained either on a language modeling

task [Junczys-Dowmunt et al., 2018] or, more commonly, on this type of synthetically generated
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erroneous/correct sentence pairs [Grundkiewicz and Junczys-Dowmunt, 2019, Stahlberg and Kumar,

2021].

Recent work in NMT-based GEC harnesses the predictive power of pretrained language models,

such as RoBERTa and T5, which are further fine-tuned on GEC data (real, synthetic, or both). For

example, Stahlberg and Kumar [2021] and Rothe et al. [2021], achieve state-of-the-art results on

the JFLEG [Napoles et al., 2017] and CoNLL-2014 [Ng et al., 2014] datasets, respectively. Both

models achieve these results by combining innovative methods of synthetic data generation with

large pretrained transformer language models. Rothe et al. [2021] presents an effective multilingual

GEC model based on the “text-to-text-transfer-transformer” (T5) [Raffel et al., 2020a] model. They

further pretrain the model on a large number of synthetic erroneous-correct sentence pairs that cover

four languages, before finetuning on real learner data in the target language. In this dissertation, I

adopt this approach, using mT5 [Xue et al., 2021] as the base model, which I pretrain on synthetic

Spanish GEC data and fine-tune on corrected learner data from the COWS-L2H corpus [Davidson

et al., 2020].

3.2. Sequence tagging-based GEC

As with many NLP tasks, the current state-of-the-art in GEC involves using large masked

language models such as BERT [Devlin et al., 2018]. For example, Omelianchuk et al. [2020] achieve

an F0.5 of 73.6 on the combined Write & Improve [Yannakoudakis et al., 2018] and LOCNESS

[Granger, 1998] test corpus used for the BEA 2019 Shared Task on Grammatical Error Correction

[Bryant et al., 2019]. Specifically, Omelianchuk et al. [2020]’s GECToR reframes the GEC task as a

sequence labeling task rather than a sequence transformation task. For example, the transformation

{go→goes} would instead be tagged as $VERB FORM VB VBZ, indicating to indicate the

change of a base verb form to a third person singular form. Their best performing sequence tagging

model encodes input sentences using a fine-tuned version of the XLNet language model [Yang et al.,

2019], then passes the encoding through additional softmax layers to assign tags to tokens. The

fact that the sequence tagging approach uses an encoder only, rather than an encoder-decoder

architecture used in seq2seq models, results in significantly reduced runtimes compared to alternative

neural GEC approaches [Kaneko et al., 2019].
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Omelianchuk et al. [2020] uses a three-stage fine-tuning protocol. Starting with a pretrained

Transformer encoder, they first train the model on a large dataset of synthetically generated

grammatical errors. Next, they fine-tune on actual learner data that has been annotated for errors.

Finally, they fine-tune on a mixture of correct and erroneous sentences, which causes the model to

more correctly predict the $KEEP tag [Omelianchuk et al., 2020]. Once predicted, error tags can

be applied using post-processing to generate the target corrected tokens. The information in the

error tags is also useful in providing feedback to learners about the types of errors they made, and

in making the edits generated by the system more transparent.

While the tagging model proposed by Kaneko et al. [2019] and Omelianchuk et al. [2020] is

able to achieve impressive results in GEC tasks, the approach is limited in that, even with iterative

decoding that allows multiple changes to the source text, such models are ultimately dependent

on token-level transformations rather than larger, stylistic changes that may help improve learner

writing. Additionally, the fact that the error tags are atomic on the token level means that only one

change can be made to a given token in a single run of the system. In Omelianchuk et al. [2020],

the authors run the system iteratively to be able to apply multiple corrections to individual tokens.

Finally, the relative complexity of the error-tagging approach, as compared to the seq2seq approach,

makes this approach somewhat less attractive. First, parallel error data must be preprocessed to

convert all corrections between two parallel sentences into a sequence of tags, with a tag generated

for every token in the input sentence. Next, once error tags are generated, the output must be

post-processed to apply the predicted changes to the input sentence. This step requires outside

resources, such as a verb conjugation dictionary, to determine the correct verb form to use based on

the generated tag. Given that not all languages have such resources readily available, the tagging

approach may not be suitable to lower-resourced languages.

3.3. Use of Augmented Learner Data

Much previous work on adapting error correction systems to user attributes, such as L1 and

proficiency level, have depended on large corpora of annotated learner data [Chollampatt et al.,

2016, Nadejde and Tetreault, 2019]. However, such corpora simply do not exist for most languages,

and even for English the largest such corpus, the Cambridge Learner Corpus (CLC) [Nicholls, 2003],

is not publicly available. To help address the dearth of quality training data for learner GEC,
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much previous work has demonstrated the efficacy of synthetic training data in the development of

user-adapted GEC systems. For example, Takahashi et al. [2020] show that training data created

by injecting errors which simulate the error patterns seen in learner data improves a neural GEC

system’s ability to identify and correct errors in learner text, when compared to previous methods

of generating artificial data, such as those presented in Xie et al. [2018] and Grundkiewicz and

Junczys-Dowmunt [2019]. The use of artificially generated training data is even more necessary when

accounting for fine-grained learner attributes, since with each attribute you wish to include, you

reduce the number of examples from the target group. As with Takahashi et al. [2020], Stahlberg

and Kumar [2021] use error rates extracted from learner corpora using the ERRANT system to

inform their synthetic error generation method for data augmentation. They train a model that

generates an “errorful” sentence given an error tag and a correct sentence. This method thus allows

them to adapt their error augmentation to the error rates extracted from real learner data; their

results show a significant performance improvements for English GEC. Here, I expand the work of

Stahlberg and Kumar [2021] to Spanish, a language that has much richer morphology than English,

and which I hypothesize will require more fine-grained error categories to effectively use error rates

to inform data augmentation. Additionally, my dissertation explores generating artificial training

data that replicates the errors made by students of various linguistic backgrounds and proficiency

levels, thereby creating a GEC model that is tuned to these student attributes. Although I use L1

and proficiency level to categorize students, the approach could be expanded to account for any

identifiable learner attribute which is shared by a reasonably-sized cohort of students.

3.4. Application of Generative LLMs to GEC

Recently, pretrained large language models (LLMs) such as BERT, XLNet, and T5 have

heavily influenced nearly all areas of NLP, vastly improving the fluency of generated language and

demonstrating advanced, seemingly human-like, capabilities [Minaee et al., 2024]. These models

have also had a profound impact in GEC tasks, being used in all currently leading models on

popular benchmarks like the BEA-2019 [Bryant et al., 2019] and CoNLL-2014 Ng et al. [2014]

evaluation sets. However, unlike many areas of NLP, the state-of-the-art in GEC has been less

influenced by the release of large generative language models like Claude23 and GPT-44. While

3https://www.anthropic.com/news/claude-2
4https://openai.com/index/gpt-4/
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multiple papers have explored the possibility of using in-context learning with pretrained generative

LLMs to correct learner text, the reported performance varies widely across test datasets and

prompts. Specifically, large generative LLMs are “known for over-correction where results obtain

higher recall measures than precision measures” [Zeng et al., 2024]. That is, generative LLMs tend

to make more edits than human annotators. For example, Coyne et al. [2023] report that the

performance of GPT-3.5 and GPT-4 on GEC tasks largely depends on the types of edits seen in

the evaluation dataset. When evaluating on the JFLEG dataset [Napoles et al., 2017], Coyne et al.

[2023] achieve state-of-the-art GLEU scores using GPT models (GLEU is the standard evaluation

metric used for evaluation of the JFLEG benchmark). However, when evaluating on the BEA-2019

dataset [Bryant et al., 2019] the authors report F0.5 scores that are more than 20 points below those

achieved using a modified version of the GECTOR model [Yasunaga et al., 2021]. In evaluating

these results, the authors state their belief that this marked difference in performance relates to

the types of edits that occur in the two datasets. In JFLEG, edits are intended to improve fluency,

not just make the sentences strictly grammatical: the corpus “uses holistic fluency edits to not

only correct grammatical errors but also make the original text more native sounding” [Napoles

et al., 2017]. The BEA-2019 dataset, on the other hand, includes primarily minimal edits designed

only to make ungrammatical sentences grammatical [Coyne et al., 2023]. According to Coyne et al.

[2023], GPT-3.5 and GPT-4 are adept at rewriting sentences to make them sound more fluent (and

grammatical), but they tend to over-correct when the goal is minimally editing source sentences

for grammatical errors only. Similarly, Fang et al. [2023] report that ChatGPT is adept at making

sentences sound more fluent, but that the model fails to adhere to the principle of minimal edits,

even when this principle is clearly explained in the prompt. I found the same trend when analyzing

output from GPT-4 when I used it for Spanish GEC with data from the COWS-L2H corpus. Thus,

while GPT-3.5 and GPT-4 can be quite effective in sentence editing tasks, care must be taken

when minimal edits are desired. For this reason, the model I primarily use for experiments in this

dissertation is a fine-tuned version of the mT5 model.

While pretrained generative LLMs struggle to abide by the principle of minimal edits required by

many GEC tasks, other work has shown them useful in related applications. For example, Kobayashi

et al. [2024a] demonstrates that generative LLMs can be effectively used as evaluators of output from

other GEC models. Specifically, they use GPT-4 to assess the quality of corrections from the SEEDA
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dataset [Kobayashi et al., 2024b] on several dimensions; for the edit-level: edit difficulty and edit

impact, and for the sentence level: grammaticality, fluency, and meaning preservation [Kobayashi

et al., 2024a]. They report that in all dimensions, GPT-4’s judgments show higher correlation with

human judgments than alternate metrics such as the ERRANT F0.5 score [Bryant, 2019]. The

correlation is strongest when the model is asked to judge the overall fluency and grammaticality of

the edited sentence. This finding aligns with other work related to the use of generative LLMs in

the GEC task; that is, that these models are particularly proficient at fluency-related tasks. Overall,

Kobayashi et al. [2024a] argue that larger-scale generative LLMs, like GPT-4, may be a useful

alternative to the rule-based metrics currently used to evaluate GEC systems.

One additional application that generative LLMs have found in the realm of GEC and AWCF

is their utility in generating explanations for edits made by other GEC models. From a pedagogical

standpoint, simply providing proposed error corrections to students with no explanation or context

is sub-optimal [Ferris, 2012, Barrot, 2021, Ellis et al., 2006], as discussed in detail in Chapter 2.

Thus, to effectively integrate GEC models into an AWCF system, such as the one proposed in this

dissertation, feedback must be generated based on the edits made by the GEC model. For example,

if a GEC model suggests the insertion of a missing preposition, the AWCF system must provide

feedback explaining why the preposition is needed in that position. Until recently, most AWCF

systems used a complex set of feedback templates to provide targeted implicit feedback to learners

(see, for example, Liang et al. [2023]). This approach, while effective, is brittle and limited in scope,

given that only so many error types can feasibly be considered. Additionally, writing a large number

of templates is time consuming for developers, leading to economic constraints that may effect the

availability of effective AWCF systems for lower-resourced languages. Recent work, however, has

applied the generative power of LLMs to create fluent, grounded explanations of error corrections

that can be used to provide implicit feedback to writers. Initial steps in this direction have been

taken by two recent works - Song et al. [2023] and Kaneko and Okazaki [2023] - which use GPT-4

and GPT-3.5, respectively, to write explanations of error corrections that can then be presented to

learners. Song et al. [2023] shows that GPT-4 is not effective at identifying and explaining errors

directly from parallel original/corrected sentence pairs; when presented with a dataset consisting of

such sentence pairs, GPT-4 was only able to identify only 60.2% of errors, and was then only able to

effectively explain 67.5% of those identified [Song et al., 2023]. Thus, the authors propose a two-step
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prompting strategy in which the GPT-4 is first asked to identify all atomic edits between parallel

sentences; these atomic edits are then appended to the original sentence pair as input to a second

prompt that asks GPT-4 to generate explanations for why each edit is needed. Human evaluation

shows that this approach is quite effective at generating correct explanations; 93.9% and 98% of

error explanations were judged as correct in German and Chinese, respectively. In this dissertation,

I expand the approach described in Song et al. [2023] to Spanish by combining a template-based

feedback approach with LLM-generated explanations to improve feedback diversity and to expand

the number of error types that can be effectively covered by the proposed AWCF system, while

preserving the control afforded by template-based feedback.
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CHAPTER 4

COWS-L2H Corpus

While annotated learner corpora of English are widely available, large learner corpora of Spanish

are less common, and as a result, the field has seen little data-driven research on the developmental

processes that underlie Spanish language learning, or on the development of computational tools to

assist teachers and students of Spanish. This may come as unexpected, considering the fact that

there exists a relatively high demand for learning Spanish; in 2013, fifty-one percent of students

enrolled in university language courses in the United States studied Spanish [AAAS, 2016] and

there are over 21 million learners of L2 Spanish across the globe [Cervantes, 2019]. This paucity of

non-English data is especially evident with respect to error annotated and corrected data in Spanish

for use in error analysis or training of automated feedback systems.

4.1. Current Spanish Learner Corpora

Text written by fluent Spanish speakers is widely available (e.g. Wikipedia and other corpora,

such as the Corpus del Español [Davies, 2002] and the various corpora organized by the Real

Academia Española). Additionally, several corpora of transcribed spoken Spanish produced by L2

learners, such as CORELE [Campillos Llanos, 2014], the Corpus Oral de Español como Lengua

Extranjera, and SPLLOC [Mitchell et al., 2008], the Spanish Learner Language Oral Corpus, are

available to the research community. However, few corpora of written learner Spanish are available

for use by researchers, and those corpora of written learner Spanish that have been compiled do not

include parallel corrected text or annotations to facilitate analysis of error patterns or the training

automated correction systems. For example, CAES, the Corpus de Aprendices de Español [Rojo and

Palacios], is searchable via a concordancer, but it is not error-annotated and raw text is not easily

downloadable. Other potentially promising corpora of L2 Spanish for researchers include Aprescrilov

[Buyse and González Melón, 2012] and the “Corpus Escrito del Español como L2”, or CEDEL2

[Lozano et al., 2009], which contain approximately 1 million and 750,000 tokens, respectively. In

addition, CEDEL2 contains a subset of essays written by native Spanish-dominant participants for
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comparative purposes. Where appropriate, I use Corpus del Español and CEDEL2 for analysis of

native writing.

4.2. COWS-L2H

Due to the paucity of available data in learner Spanish, researchers in the Spanish and Linguistics

departments at the University of California, Davis developed the Corpus of Written Spanish of L2

and Heritage Learners (COWS-L2H) [Yamada et al., 2020, Davidson et al., 2020]. This corpus of

over 1,367,000 words is composed of 5,383 personal essays written by 1,934 unique participants

enrolled in various levels of undergraduate Spanish instruction at UC Davis. The corpus contains

4,804 essays from L2 (and L3) learners of Spanish in various instruction levels ranging from beginner

(SPA 1, 2, 3) to upper division, as well as 579 essays written by Heritage learners at three levels

of instruction (SPA 31, 32, and 33). The distribution of the essays across levels, as detailed in

Table 4.1 is uneven due to the distribution of students enrolled in Spanish courses; because more

students enroll in beginning Spanish courses than in advanced levels, a larger number of essays

submitted to the corpus come from these beginner-level courses. During each academic quarter

(ten weeks of instruction), participants are asked to write two essays in Spanish that adhere to a

minimum of 250 and a maximum of 500 words, though students enrolled in Spanish 1 are allowed

to write essays with a lower minimum word count, due to the fact that many of these students are

true beginners in L2 Spanish who possess relatively little vocabulary and grammatical resources

of their own. Participants are asked to write each essay they submit in response to one of two

short prompts. Participants of all levels followed the same two prompts during the same academic

quarter, to allow lexical and syntactic comparisons across levels which are not influenced by topic

variation in the writing samples. Both prompts are presented with a distinct brevity, to allow for a

broad degree of creative liberty and open-ended interpretation on the part of the writer. To test the

effect of prompt on student writing and promote diversity in our corpus, we periodically change

the prompts presented to students. To date we have presented eight essay prompts. For the first

set of compositions, collected from 2017 to 2018, participants were asked to write about “a famous

person” and “the perfect vacation.” For essays collected from 2018 to 2019, the prompts were “a

special person in your life” and “a terrible story”. For more recent compositions, collected from

early 2020 late early 2021 ask students to write “a description of yourself” and “a beautiful story”.
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Course Level Essays Tokens
Beginner (SPA 1-3) 3,018 711,630
Intermediate (SPA 21-22) 562 150,279
Composition (SPA 23-24) 883 248,746
Heritage (SPA 31-33) 579 164,723
Upper Division 222 62,404
Unknown level 119 29,476
Total 5,383 1,367,258

Table 4.1. Summary of corpus composition by instruction level.

Finally, our current collection effort, begin in early 2021, asks students to describe “a place you

dislike” or to write a description of a Charlie Chaplin movie clip we ask students to watch. We have

collected an average of 900 essays in response to each of the prompts we have used to date (with

the exception of the those most recently collected).

Given the diverse backgrounds of our students, identifying the specific variety of Spanish in the

essays is challenging. This is especially true for those students who enroll in courses for Heritage

speakers. However, our courses are generally taught using a standard variety of academic Spanish,

so we expect this to be the predominant variety in the corpus. Students provide information

about their linguistic background that is included as metadata in the corpus; this metadata may

elucidate variability in usage resulting from students’ past experience with Spanish. The metadata

also allows us to test the effects of variables such as L1 on student writing. Finally, the linguistic

metadata facilitates the use of subcorpora, filtered by specific student attributes, to conduct targeted

analysis of potential errors and language development. Additionally, these subcorpora may be

useful in the training of NLP systems; for example, as mentioned previously, Nadejde and Tetreault

[2019] demonstrate that grammatical error correction systems benefit from adaptation to L1 and

proficiency level. Similar improvements to GEC performance based on adapting GEC systems to L1

and proficiency level are reported by Rothe et al. [2021] and Zeng et al. [2024].

4.3. Longitudinal data

One of most important features of the COWS-L2H corpus is the inclusion of large amounts

of longitudinal data submitted by students who participated in the project for multiple quarters,

allowing researchers to study the writing development of individuals or cohorts of students as

they progress through a university Spanish language program. While the LANGSNAP corpus
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Number of Texts Num. of participants
1 text 298
2 texts 998
3 texts 99
4 texts 308
5 texts 47
6 texts 112
7 texts 14
8 texts 34
9+ texts 25
Total 1,935
Total 3+ 639
Total 6+ 185

Table 4.2. Summary of COWS-L2H Longitudinal Participation

[Tracy-Ventura et al., 2016] contains longitudinal written data gathered from L2 learners of Spanish,

the scale of the longitudinal data in COWS-L2H and the annotations available in the corpus make it

a unique resource to researchers. Overall, a total of 250 students participated for at least 3 quarters,

and 30 students participated for 5 or more quarters. In terms of number of essays submitted,

639 participants submitted 3 texts or more, while 185 wrote 6 texts or more. These numbers are

summarized in Table 4.2 Due to the nature of our prompt-based data collection method, many

students who participated over multiple quarters responded to the same prompt several times at

different points in time, making the resulting essays readily comparable.

In an effort to make this longitudinal data more valuable to language researchers, all essays

submitted by students who participated for more than 3 quarters (consisting of 1,628 essays) have

been corrected and annotated for selected errors by graduate-level Spanish instructors, as described

in more detail below. Thus the COWS-L2H corpus represents the first dataset of error-corrected

and annotated longitudinal text written by L2 and Heritage learners of Spanish available to the

research community.

4.4. Error Annotation

In an effort to facilitate research in language development, the designers of the corpus and

their research partners have annotated a large portion of the corpus for several specific types of

grammatical error of interest to project collaborators. Out of the 5,383 texts in COWS-L2H, 2,948
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have been both holistically corrected (providing parallel text for machine learning training) and

error annotated for the following types of errors:

• Incorrect gender and number agreement in nouns, adjectives and articles

• Undue presence or absence of personal pronouns or articles

• Incorrect use of the prepositions por and para or the verbs ser and estar

• Incorrect word order in noun-adjective pairs

• Verb form errors related to:

– Mood, tense or aspect selection

– Person and number selection

– Regularization of irregular verbs

As previously mentioned, we have annotated all longitudinal data of students who participated

in more then 3 quarters, as well as a portion of the cross-sectional data, for a variety of error types of

interest to project collaborators. Additionally, we have designed a detailed error annotation schema

which can be readily adapted to other error types of interest to researchers using the corpus. The

instructions provided to annotators, which describe each annotation target in detail, are available

in the corpus GitHub repository. We encourage researchers interested in adding additional error

annotations to the corpus to use the proposed annotation schema, available in the corpus repository,

to facilitate inclusion in the corpus.

Annotators are graduate student instructors of Spanish, either at the university where the

essays were collected (UC Davis) or at a partner university in Spain (Universidad de Salamanca).

To ensure reliability of the annotations, we conducted multiple rounds of training with annotators,

allowing them to discuss areas of disagreement. Once we achieved an acceptable Cohen’s κ, we

proceeded to annotation of the remaining target data. Overall, our annotators achieved a Cohen’s κ

of 0.62, indicating reasonable inter-annotator agreement.

4.5. Correction & Automated Error Tagging

Manual error annotation, while accurate and reproducible, is an extremely time consuming

process. We therefore, supplement our error annotation with parallel corrected text, from which

we are able to extract a much larger set of errors based on instructor corrections of student essays.

When creating the corrected versions, annotators followed the principle of minimal edits. They were
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Course Level Essays Sentences Tokens
Beginner 1,566 35,980 432,290
Intermediate 356 7,537 110,490
Composition 438 8,598 141,353
Heritage 337 5,487 110,313
Other 225 4,112 68,393
Total 2,922 61,714 862,839

Table 4.3. Summary of corrected essays in the COWS-L2H corpus. Note that these
numbers do not count both of the double-corrected essays, hence the discrepancy
between the 70,397 sentence count above and the numbers in this table.

instructed to correct spelling, grammatical and lexical errors while refraining from making significant

stylistic changes to the original texts, particularly avoiding changes that alter the meaning of a

sentence.

The present version contains 2,922 corrected essays for 70,397 corrected sentence pairs. Our

corpus represents the largest parallel dataset of corrected Spanish text available to researchers.

The distribution of corrected essays by student level is shown in Table 7.2. 572 essays have been

corrected by two annotators, providing two references for more flexible evaluation of GEC systems.

The parallel nature of the corrected essays allows errors to be automatically tagged using tools

such as ERRANT [Bryant et al., 2017], which I have modified and demonstrated to work effectively

with Spanish in Davidson et al. [2020]. As such, the parallel data can be used to study errors that

have not been specifically annotated, providing far more flexibility when conducting error analysis.

To measure annotator agreement, we compare the corrections made by two different annotators

using ERRANT, achieving an F0.5 of 0.53, with precision of 0.54 and recall of 0.51.

4.6. Additional corpora used

To examine the lexical richness and formulaic language use of native Spanish speakers residing

in Spanish-majority countries, I use a 2 million token sample of the Web/Dialects portion of Corpus

del Español [Davies, 2002]. This freely-available sample contains Spanish texts collected from online

articles published in 21 different hispanophone countries. In addition to raw text, the Corpus del

Español has been annotated with part-of-speech and lemma tags, making analysis of lexical diversity

and lexical density far easier and more reliable.

Finally, to further compare the learners in the COWS-L2H corpus to non-Heritage native

speakers of Spanish, I utilize a portion of the CEDEL2 corpus [Lozano et al., 2009] which contains a
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prompt identical to one used in COWS-L2H (the COWS-L2H prompt was modeled on the CEDEL2

prompt). However, this subcorpus is small, thereby limiting the inferences which can be drawn from

this analysis.

4.7. Studies conducted using COWS-L2H

In the following three chapters, I present corpus-driven studies conducted primarily using data

from COW-L2H to identify differences between L2, L3 and Heritage learners of Spanish along three

dimensions:

• Lexical development, including the acquisition and use of formulaic language.

• Syntactic and morphological development in cross-sectional and longitudinal corpus data.

• Distribution of errors in parallel corrected data. It is important to note that “errors” are

defined by instructor corrections, whether or not the corrections represent true errors in

production or simply non-standard usage.

Although these studies may seem disparate, they can also in many ways be viewed as a unified

whole, both informing and reinforcing their respective findings. Additionally, all three are useful as

a means of investigating optimal methods of generating synthetic “learner-like” data for the training

of student-adaptable corrective feedback systems. While recent work [Li et al., 2015, Stevenson and

Phakiti, 2014] has shown that automated corrective feedback shows promise as a tool for improving

student writing competency, to date it has largely been a blunt instrument that does not consider

student background or instructor pedagogical goals. I argue that an automated feedback system

which is better able to adapt to both student linguistic experience (such as that presented in Nadejde

and Tetreault [2019]) and the instructor’s pedagogical goals will prove beneficial to students and

result in better learning outcomes. The results presented in the following chapters lend further

understanding to how the writing of students of different linguistic backgrounds are likely to differ,

and are an important step toward building a feedback system which can be adapted to the learning

needs of a diverse student population.
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CHAPTER 5

COWS-L2H Study I: Lexical development

In the this chapter, I present findings comparing the lexical development of Heritage learners of

Spanish to that of their advanced L2 learner peers.

5.1. Measuring lexical development

One known deficiency in Heritage Learners is vocabulary [Montrul, 2012]; however, other

related deficiencies, such as Heritage learners’ acquisition and use of formulaic language, remain

largely unexplored. Recent research [Ellis et al., 2015] has demonstrated that formulaic language

is stored as part of a speaker’s mental lexicon, so it is plausible that a deficiency in vocabulary

would also manifest as a deficiency in formulaic language use. Much research in language learner

lexical development is based on the premise that “vocabulary use directly taps into learners’ lexical

knowledge and is closely aligned with language proficiency and levels of vocabulary acquisition”

[Crossley et al., 2017]. However, this view does not take into account the role of holistically stored,

multi-word units which play a significant role in language acquisition, and help shape the lexicon of

language learners [Paquot and Granger, 2012].

Previous research comparing L2 and Heritage learners has found that, when compared to

advanced L2 learners, Heritage learners tend to be stronger in verbal communication but weaker in

writing [Montrul, 2012]. This fact is not surprising, given that for many Heritage students, Heritage

Spanish courses are their first formal education in Spanish. Interestingly, though, Montrul [2012]

also reports that Heritage learners tend to use more low-frequency words in their writing than their

L2 learner peers, as they often write using the same vocabulary they would use in speaking, thus

demonstrating lexical patterns more similar to those of Spanish-dominant individuals.

In analyzing lexical development among language learners, researchers often employ three

simple metrics: lexical diversity, lexical density, and lexical sophistication [Gregori-Signes and

Clavel-Arroitia, 2015]. These three metrics are designed to indicate the richness and variety of a

student’s vocabulary and how well she uses this vocabulary to convey information.
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5.1.1. Lexical diversity. Lexical diversity is a relatively straightforward measure of how

many unique words a student uses in a text relative to the overall number of words [Johansson,

2008]. The motivation for using such measures is the assumption that a person who uses more

diverse vocabulary in his or her writing possesses greater lexical knowledge. In addition, indices

of lexical diversity are correlated with issues as diverse as Alzheimer’s onset and socioeconomic

status [McCarthy and Jarvis, 2010]. The present study explores how lexical diversity can be used to

measure differences in vocabulary knowledge between Heritage learners and their L2 learner peers.

The most basic measure of lexical diversity, which was widely used in the past (see, for example,

Bates et al. [1991]), is the “type-to-token ratio” (TTR) [Templin, 1957] which simply counts the

number of unique words (types) in a text and divides it by the total number of words (tokens).

However, TTR shows significant text-length effects; as texts grow longer, their TTRs tend to

decrease, thereby greatly reducing the value of TTR as a metric of lexical diversity. The reason for

this trend is simple: people, in general, have a limited working vocabulary, and therefore tend to

repeat words throughout a given text. So, while the length of a text can grow without bound, the

number of unique words used tends to grow at an increasingly slower rate as the text gets longer.

In addition, function words, such as articles, as well as common verbs and nouns, are repeated

many times in a longer text; while these words continue to contribute to the token count, they stop

contributing to the type count after their first appearance. Thus, longer texts generally have lower

TTR scores than do shorter texts; this makes comparison of texts using TTR difficult, especially in

developmental studies where students are likely to write longer texts as their proficiency increases

[Johansson, 2008]. Therefore, Johansson argues, TTR in its basic form is only useful for comparing

texts of similar length.

Several modifications of TTR have been proposed to mitigate the text-length effect on TTR

scores, allowing researchers and instructors to compare students’ lexical diversity in a more meaningful

and robust way. One such measure, which I will use for my analysis in this dissertation, is the

Measure of Textual Lexical Diversity (MTLD) [McCarthy and Jarvis, 2010], which seeks to normalize

TTR for text length, allowing comparison of texts with differing lengths. I will further describe the

implementation of MTLD later in this dissertation. Other proposed measures of lexical diversity

include VocD [Malvern and Richards, 1997], which compares the predicted decrease in lexical

diversity with increasing text length with the observed decrease by randomly sampling portions
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of text, and theoretical vocabulary [Broeder et al., 1986], which calculates TTR for a fixed length

sample from texts of varying length, thereby approximating comparable TTR values.

5.1.2. Lexical density. Another commonly used metric of lexical development is lexical

density [Ure, 1971]. In its simplest form, lexical density is a ratio of the open-class words (nouns,

verbs, adjectives, adverbs) to total words in a given text. By comparing the number of words

carrying significant semantic content with the number of function words in a text, we are able to

conceptualize the “information content” of a text; writing with a higher ratio of content words

is more informationally dense than a text with relatively more function words (such as pronouns,

articles, and prepositions) [Johansson, 2008]. Halliday and Halliday [1989] further refined Ure’s

concept of lexical density in the context of child language development. Specifically, Halliday

discusses the fact that, in children, lexical density decreases as the child’s fluency in the language

develops. While this may seem counter-intuitive, it is due to the fact that young children begin

speaking in short utterances that consist of only content words. As the children begin to speak

in longer phrases and, eventually, in sentences, they begin to use more function words, thereby

reducing the content word to function word ratio of their language [Halliday and Halliday, 1989].

Interestingly, I find a similar pattern among L2, and to a lesser extent, Heritage learners in this

study.

Laufer and Nation [1995] argue that lexical density is not a reliable measure of lexical de-

velopment, stating that “fewer function words in a composition may reflect more subordinate

clauses, participial phrases and ellipsis, all of which are not lexical but structural characteristics of

a composition.” While this argument may be true, we must consider the fact that corpus studies,

such as the present study, analyze aggregate data. An individual text may show high lexical density

for the reasons mentioned by Laufer and Nation, but it is unlikely that, as a group, students are

going to write in a way that confounds the demonstrated correlation between lexical density and

overall lexical development.

In order to improve upon the reliability of lexical density measures, researchers have proposed

various modifications of the metric. For example, Wolfe-Quintero et al. [1998] discuss subdividing

lexical density by function; for example, they propose noun density as a possible alternative to

the more general lexical density. However, none of these variations in the lexical density metric

seem to have been widely adopted by the research community. For this study, I will use the basic
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measure of lexical density as proposed by Ure [1971] in which each orthographic word is treated as

an individual item (Halliday, by comparison, tends to treat fixed items like “turn down” as a single

lexical item, rather than as one lexical and one function item), and in which lexical (content) words

are defined as all nouns, verbs, adjectives, and adverbs.

5.1.3. Lexical sophistication. Lexical sophistication is simply a measure of the proportion

of “advanced” words a learner uses in his or her output. Many researchers have defined “advanced”

words to mean “infrequent” words [Laufer and Nation, 1995], though others have developed specific

“advanced” word lists. For example, the Academic Word List developed by Coxhead [2000] is used

in some measures of lexical sophistication [Kyle and Crossley, 2015]. The most common measure

of lexical sophistication uses a word frequency list, generally extracted from a large corpus, to

assess the sophistication of the words in a text. Using this approach, researchers select some word

frequency list (or extract their own from a corpus) and set some frequency cut-off after which

words are considered “advanced.” More fine-grained metrics, such as the Lexical Frequency Profile

[Laufer and Nation, 1995], subdivide more frequent words into bands of frequency - so a word in the

top 1000 most-frequent words would be considered less “advanced” than a word in the 1001-2000

most-frequent words.

One important caveat to using lexical sophistication as a measure of lexical development is

the fact the definition of “advanced” is at the researcher’s discretion, and the researcher must

choose an appropriate frequency list to make the results meaningful [Laufer and Nation, 1995]. For

example, a list of words considered advanced for a first-year L2 learner may not be appropriate

when assessing the lexical sophistication of advanced Heritage learners. A related issue is the effect

of genre; the selected word list must be genre-appropriate, or words that are actually quite common

in a genre-specific setting may be inappropriately counted as “advanced.” As Bell [2003] points out:

“problems remain when this form of assessment is applied to the evaluation of the freely-produced

language of learners. One reason for this is the difficulty of producing a frequency list which is

appropriate to the situation of the learners.”

I note that little work has been done in assessing lexical sophistication in Spanish learners. In

fact, I found only one study [Waldvogel, 2014] that specifically investigates the lexical sophistication

of L2 Spanish learners. I found no studies that specifically analysed the lexical sophistication of
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Heritage learners of Spanish. Developing and testing a tool to analyze the lexical sophistication of

Spanish L2 and Heritage learners is beyond the scope of this study.

5.1.4. Formulaic language use. According to Bybee [2008], grammar and lexicon are the

“cognitive organization of one’s experience with language.” This emergentist view of language,

which states that humans have no innate language capacity beyond our general cognitive abilities,

allows for both L1 and L2 to emerge from experience with language alone [Tomasello and Rakoczy,

2003]. As an extension of this theoretical viewpoint, Hall [2017] argues that when language learners

repeatedly experience multi-word formulaic language with fixed meaning, they are able to store

these strings holistically in their mental language representation in a manner similar to words. Wray

[2009] defines formulaic language as follows: “a sequence, continuous or discontinuous, of words or

other elements, which is, or appears to be, prefabricated: that is, stored and retrieved whole from

memory at the time of use, rather than being subject to generation or analysis by the language

grammar.” The use of formulaic language consists of using “semi-preconstructed” phrases which

are actually single choices by the speaker, though they appear to be analyzable into component

parts [Sinclair and Sinclair, 1991]. Formulaic language consists of recurrent multi-word items such

as idioms, collocations, and lexical bundles [Conklin and Schmitt, 2012].

The amount of language, written and spoken, which consists of formulaic language is up

for debate. Conklin and Schmitt [2012], citing numerous studies, state the following about the

prominence of formulaic language:

Oppenheim (2000) counted the multiword stretches of talk that occurred iden-

tically in practice and final renderings of a short speech on the same topic and

found between 48 percent and 80 percent (overall mean of 66 percent) consisted

of identical strings. Sorhus [1977] calculated that speakers in her corpus of sponta-

neous English Canadian speech used an item of formulaic language once every five

words. Erman and Warren [2000] calculated that 52–58 percent of the language

they analyzed was formulaic, and Foster [2013] came up with a figure of 32 percent

using different procedures and criteria. Biber et al. [1999] found that around 30

percent of the words in their conversation corpus consisted of lexical bundles,

and about 21 percent of their academic prose corpus. Howarth [1998] looked at

frequent verbs in a social science/academic corpus and found that they occurred
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in either restricted collocations or in idioms in 31–40 percent of the cases. Rayson

[2008] found that 15 percent of text is formulaic according to a Wmatrix analysis.

Based on these studies, Conklin and Schmitt draws the conclusion that formulaic language

makes up somewhere between one-third and one-half of all discourse. As a result of its prominence in

discourse, the ability to correctly use formulaic language is an important step in acquiring native-like

competence in any language; the use of collocations, idioms, and other types of formulaic language

directly impacts the three dimensions of language proficiency — complexity, accuracy, and fluency

[Housen and Kuiken, 2009].

As with lexical development, formulaic language is often studied using large corpora, as

identifying words which co-occur with a high frequency is a straightforward procedure given modern

corpus methods.

5.1.4.1. Idioms. Idioms are a type of formulaic language in which the semantics of the words are

non-compositional; that is, the meaning of the phrase cannot be derived from the individual meanings

of the words. For example, “kick the bucket” does not literally mean to kick a bucket; the actual

meaning “to die” has no clear relationship to the component words. Due to their non-compositional

semantic nature, which results in an arbitrary meaning-phrase relationship, idioms are stored in the

minds of native speakers in a manner similar to individual words [Tremblay et al., 2011]. Language

learners must also learn and store the non-compositional meanings of idioms if they want to achieve

native-like language fluency [Ellis et al., 2008].

5.1.4.2. Collocations. Collocations are words that occur together at a rate higher than would be

expected by chance. In addition, lexical choice restrictions apply with collocations; speakers are not

free to replace a member of the collocate with a semantically similar word to get a similar meaning.

For example, while one can say “heavy rain,” it would sound non-native to say “weighty rain” or

“strong rain,” even though these have the same semantic meaning in this context. Paquot and

Granger [2012] define collocations as “usage-determined lexical combinations that are characterized

by restricted co-occurrence of elements.” Common types of collocations include verb + noun

(“commit suicide” and “answer a question”), adjective + noun (as in “fast food”) and verb + adverb

(as in “run rapidly”), though any combination may exist that is grammatical in the language in

question. Clearly, native speakers are either storing collocation frequencies in some manner or are

storing common collocations as fixed lexical units. For example, native English speakers know to
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say “made a mistake” rather than “did a mistake;” while the latter is perfectly grammatical, any

native speaker of English would recognize this immediately as a non-native error.

5.1.4.3. Lexical bundles. Lexical bundles are “recurrent expressions, regardless of their idiomatic-

ity, and regardless of their structural status” [Biber et al., 1999]. Paquot and Granger [2012]

clarify this definition, stating that lexical bundles are “contiguous strings of words of a given

length (e.g., bigrams, trigrams)” which occur at a much higher than chance probability in language.

The key difference between lexical bundles and collocations is that lexical bundles do not involve

restricted lexical choice; rather lexical bundles are simply emergent patterns of fixed-length strings

of words that are often repeated. While any fixed-length string can be viewed as a lexical bundle

if it is frequently used, lexical bundles often serve as referential markers, text organizers, stance

markers, or interactional discourse markers [Biber et al., 2003]. Unlike idioms, lexical bundles are

semantically compositional; the meaning of lexical bundles can be derived from the meaning of their

component words. And unlike collocations, components of lexical bundles can often be replaced

with semantically related words without changing the meaning or creating a non-native-like form.

For example, the four-word lexical bundle “it should be noted” can be similarly expressed as “it

must be noted,” “it should be said,” and “it must be said,” among the many possible variants.

Lexical bundles are quite easy to identify given corpus methods; one need simply look at all n-grams

in a corpus and count the number of times each one occurs. Given this information, and the size of

the corpus, one can readily calculate the frequency of each n-gram in the corpus. While one can

analyze lexical bundles of any length, researchers generally focus of bundles ranging from two to six

words [Paquot and Granger, 2012].

5.1.4.4. Frequency. When considering the prevalence of a formulaic string, be it an idiom,

collocation, or lexical bundle, one must first consider the frequency with which the form occurs.

Generally, this is expressed as a normalized frequency, such as occurrences per million words

[Bestgen, 2020]. However, because words and word sequences are distributed in a Zipfian manner

(the distribution is not normal; some words, such as function words, occur very frequently, while

most other words and word sequences occur infrequently), normalizing frequencies in this manner is

potentially problematic. Studies have shown that, due to the irregular distribution of words and

n-grams, smaller corpora tend to show significantly more high-frequency lexical bundles than do

larger corpora [Bestgen, 2020]. While empirical evidence to support this claim is scarce, one must

41



still be careful when comparing corpora of different sizes. In an attempt to control for this effect, I

use sub-corpora of approximately equal size when extracting lexical bundles and collocates in this

study.

5.1.4.5. Pointwise mutual information. Computational linguists often measure the association

between words using a measure termed pointwise mutual information (PMI). This measure, derived

from information theory, is useful in determining how likely two or more words are to co-occur in a

given corpus [Church and Hanks, 1990]. Given two words, the mutual information is a measure

of how much more (or less) likely the two words are to occur together than would be expected

by chance alone. This is calculated using the following formula, which calculates bigram mutual

information:

PMI(x, y) = log
P (x, y)

P (x) × P (y)

When we are seeking to find the mutual information of a trigram or larger n-gram, we must

expand the above formula using the chain rule [Su et al., 1994]. Thus, we calculate trigram mutual

information as follows:

PMI(x, y) = log
P (x, y, z)

P (x) × P (y) × P (z) + P (x) × P (y, z) + P (x, y) × P (z)

PMI tells us how much the presence of one word predicts the presence of another [Church and

Hanks, 1990]. Collocations, as defined above, which have lexical choice restrictions, thus tend to

have the highest PMI, since the presence of the root word is highly predictive of the collocate (e.g.,

“think about”, in which the presence of “think” is highly predictive of “about”). Lexical bundles

which frequently occur will also tend to have higher-than-chance PMI, though bundles which consist

of purely grammatical words tend to have lower PMI, as the frequency of the component words are

often quite high independent of the bundle. For example, the construction “if it is” is a common

lexical bundle, but its PMI would tend to be low as the component words also frequently occur in

other contexts. According to Ellis et al. [2008] phrases with higher PMI are more likely to be rated

as “formulaic” by human annotators. In this study, I will use PMI to help identify differences in
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usage patterns between native L1, L2, and Heritage learners of Spanish to determine if, as predicted,

the language use of Heritage learners shows similar patterns to that of L2 learners.

5.2. Previous work

As mentioned previously, Guadalupe Valdés defines a Heritage Learner as “language student who

is raised in a home where a non-English language is spoken, who speaks or at least understands the

language, and who is to some degree bilingual in that language and in English” [Polinsky and Kagan,

2007, Valdés, 2000]. While this definition is useful, it omits an important factor in the Heritage

learner equation - the fact that, at least in the United States, most children from non-English

speaking homes have been forced, until quite recently, to attend English-medium schools5. Thus,

their Heritage language was not supported in the educational environment, resulting in significant

language attrition for many of these students. O’Grady et al. [2011] acknowledge the issues that

public education policy causes for Heritage learners: “in the typical case, Heritage learners receive

ample exposure to the home language early in life, only to have that exposure end or undergo a

dramatic reduction within a matter of years—often at the point where formal schooling begins”

[O’Grady et al., 2011].

O’Grady et al. [2011] further argue that many Heritage language learners suffer specific defi-

ciencies in their language proficiency as a result of the limited exposure that these students have to

their Heritage tongue, and point to numerous previous studies which detail specific deficiencies.

It is by now well established that children in this situation manifest linguistic

deficiencies in the heritage language in a wide range of areas, including vocabulary

[Polinsky and Kagan, 2007], gender classification [Polinsky, 2008a], tense, aspect,

and modality [Montrul, 2002, Lynch, 2003, Silva-Corvalán, 2006, Polinsky, 2008b],

case paradigms [Polinsky and Kagan, 2007], the interaction between case and

word order [Song et al., 1997], relative clauses [O’Grady et al., 2001, Kim, 2005],

agreement [Bolonyai, 2007](for Hungarian), reflexive pronouns [Song et al., 1997,

Kim et al., 2009], differential object marking [Montrul, 2004, Montrul and Bowles,

2009], the semantics of unaccusativity [Montrul, 2005], the contrast between overt

and null subjects in “pro drop” languages [Montrul, 2004], quantifier placement

5In California, bilingual education was largely curtailed by Proposition 228 in 1998, and reinstated by Proposition 58
which was passed by voters in November, 2016.
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[Polinsky and Kagan, 2007], and filler-gap dependencies [Polinsky and Kagan,

2007]. [O’Grady et al., 2011]

As stated previously, this section will focus on the development of lexicon and formulaic language

in Heritage learners of Spanish, and how their development compares to that of L2 students and

native-born Spanish speakers. Both Lynch [2008] and Montrul [2011] argue that Heritage language

speakers show deficiencies in their vocabulary development due to the limited context and register of

the Heritage language to which they are exposed in the home environment. According to Montrul,

“Heritage language speakers know many words in their heritage language, but most often these are

words related to common objects used in the home and childhood vocabulary. In fact, heritage

language speakers also have significant gaps in their vocabulary and find it difficult to retrieve words

they do not use very frequently” Montrul [2011]. When compared to L2 learners, Montrul [2012]

finds that there is no overall speed or accuracy advantage for Heritage learners in lexical decision

tasks [Montrul, 2012], indicating that the lexical development of Heritage learners may be more

similar to L2 learners than to that of non-Heritage native speakers. In addition, limited social use

of minority languages results in simplified grammatical systems that introduce “innovative, that is,

non-normative, elements at the lexical and discourse levels,” and that these innovative patterns are

conditioned by the dominant language [Lynch, 2008]. Although little work has focused on the use

of formulaic language by Heritage learners, recent research has demonstrated that all speakers are

likely to store formulaic language in their mental lexicon alongside individual words [Ellis et al.,

2015]. If the lexicon and grammar of Heritage speakers is being negatively impacted by the limited

domain of exposure to the Heritage language, it stands to reason that they will also demonstrate

similar gaps in knowledge of native-like formulaic language.

Analyzing the lexical development of language learners is an important aspect of assessing

overall language proficiency. Beyond the fact that lexical proficiency is a key part of L2 learning

[David, 2008], Kyle and Crossley [2015] have demonstrated that, at least for L2 learners of English,

those students with higher degrees of lexical diversity are generally judged by human evaluators to

have greater lexical and overall language proficiency. Polinsky and Kagan [2007] has demonstrated

that similar correlations can be seen in Heritage populations; she reports that, in her study of

Heritage learners of Russian, speakers who knew more vocabulary words demonstrated better control
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of agreement, case markers, and subordination during spontaneous speech [Polinsky, 1995, Montrul,

2011].

Similarly, analyzing the acquisition and use of formulaic language is an important part of

assessing language proficiency in L2 learners. Being able to use idioms, collocations, and other

recurrent forms effectively is a major part of learning fluent, native-like command of a language

[Paquot and Granger, 2012]. L2 learners often have considerable difficulty with collocations and

idioms [Nesselhauf, 2003, Paquot and Granger, 2012]. Thewissen [2008] found that even in advanced

L2 learners, production of error-free idioms and collocations continues to be difficult. Foster [2013]

found that, when compared to native speakers, L2s tend to neglect formulaic phrases in favor of

individual words. However, Ping [2009] found that L2 learners of Chinese use four times the number

of recurrent 4-grams as do native Chinese speakers. So, while L2s seem to be struggling with

formulaic idioms and restricted collocations, they seem to be overusing recurrent lexical bundles.

According to Paquot and Granger [2012] “the overall picture that emerges from learner-corpus-based

studies is that learners’ use of co-occurring combinations is characterized by a mixture of underuse,

overuse, and misuse.”

Native speakers, on the other hand, seem to gain observable processing advantages from the

use of formulaic language, indicating that natives store idioms, collocates, and common lexical

bundles in their minds as single units [Sosa and MacFarlane, 2002]. Siyanova-Chanturia et al. [2011]

found that natives are able to process figurative idioms significantly faster than non-figurative

controls in an eye-tracking task. Similarly, Arnon and Snider [2010] found that natives are able

to reliably process common 4-grams faster than non-native speakers. According to Conklin and

Schmitt [2012] past studies reliably indicate that the use of formulaic language imparts of processing

advantage to native speakers, but that this advantage is much less prevalent among L2s; only the

most advanced L2s in Conklin & Schmitt’s study showed some processing advantage from the use

of formulaic language. So, where do Heritage learners fit into this picture? Are they, like native

speakers, receiving a distinct processing advantage from the use of formulaic language? Or has

their mastery of formulaic language been impaired by a somewhat restricted experience with their

Heritage language?

The use of corpora to study L2 language development is well supported (see Asención-Delaney

and Collentine [2011]). However, according to Montrul [2011], there are very few studies which
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address lexical knowledge of Heritage learners. Further, I have been unable to find any studies which

specifically address formulaic language use among Heritage learners. While L2 writers are assumed

to have a more limited lexicon than native speakers, both in terms of individual words [Crossley

and Skalicky, 2019] and stored fixed expressions and lexical bundles [Paquot and Granger, 2012],

the relationship between the lexical development of L2 learners and Heritage learners has not been

thoroughly investigated. Montrul [2012] states that “another area of interest that remains highly

unexplored is lexical knowledge and representation” in L2 and Heritage learners. The present study

seeks to begin to address this gap in the literature. According to Montrul [2011], the “relationship

between grammar and the lexicon needs to be explored more closely” as it has important implications

for future pedagogical and assessment research.

5.3. Methods and implementation

To analyze the lexical diversity and lexical density of L2 and Heritage learners of Spanish in the

COWS-L2H corpus, I first extract essays from the accompanying metadata. Next, all essays in the

corpus were automatically part-of-speech (PoS) tagged and lemmatized using FreeLing [Padró and

Stanilovsky, 2012]. FreeLing is a good choice as it was initially developed at Universitat Politècnica

de Catalunya specifically for processing and analyzing Spanish text; more commonly used NLP

toolkits, such as Spacy and Stanford’s CoreNLP, were initially focused on processing English text

and were later expanded to include additional languages. Further, an informal comparison of the

output of FreeLing and Spacy by graduate student researchers in Spanish found the output of

FreeLing to be superior to that of Spacy. After processing the text with FreeLing, the resulting

output consists of a tab-separated text file in which each line contains a word from the text followed

by its corresponding lemma form and PoS tag.

Once the essays are lemmatized and PoS tagged, I am able to analyze lexical density and lexical

diversity. Lexical density is measured using a simple count of nouns, verbs, adjectives and adverbs

in each text, divided by the total number of tokens in the text. Due to the fact that the COWS-L2H

data is annotated for PoS using automated annotation, it is likely that the accuracy of its PoS tags,

and the lexical density score derived therefrom, is less reliable than those in hand-annotated corpra,

such as the Corpus del Español. It is also important to note that, while FreeLing was developed

to process Spanish language texts, the system was trained using native speaker writing; since I
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am using the system to tag and lemmatize learner writing, the language distribution differences

between FreeLing’s training data and my corpus data may be a source of additional error. Data

drawn from CEDEL2 is also annotated for POS and lemma using FreeLing. Because Corpus del

Español is annotated for lemma and PoS tag, automated annotation of this data was not needed to

calculate lexical density.

To calculate lexical diversity, I use the Measure of Textual Lexical Diversity (MTLD) [McCarthy

and Jarvis, 2010], which seeks to normalize type-token ratio (TTR) for text length, thereby allowing

a meaningful comparison of texts with differing lengths. MTLD is the “mean length of sequential

word strings in a text that maintain a given TTR value” [McCarthy and Jarvis, 2010]. For each

such span of words in the text, the “factor count” is incremented by one and the running TTR is

reset to zero. Once the end of the text is reached, the total number of tokens in the text is divided

by the total factor count to give the final MTLD score. While the “given TTR value” on which an

MTLD is based can be set by the researcher, in their research McCarthy and Jarvis found that the

“given TTR value” which results in the most stable MTLD score across texts of varying lengths is

0.720 [McCarthy and Jarvis, 2010]. In a AAAL presentation in 2019, Kristopher Kyle stated that,

while the optimal index TTR value is dependent on the texts being evaluated, the default MTLD

index of 0.720, as proposed by McCarthy & Jarvis, is generally a stable and reliable choice [Kyle,

2019]. Therefore, I also use an index TTR value of 0.720 in calculating the MTLD of the texts

in this study. McCarthy & Jarvis also demonstrate that MTLD is generally only stable for texts

with lengths greater than 50 tokens; therefore, I limit my analysis to texts longer than 50 tokens.

This restriction results in only a handful of exclusions from my analysis because students in the

COWS-L2H corpus are asked to write essays between 250 and 500 words. To calculate MTLD, I

use the Python package “Lexical Diversity” by John Frens [Frens et al., 2018]. Because Corpus del

Español is drawn from internet data, there are many instances of unusual punctuation throughout

the corpus, such as words preceded by hashtags (ex., “#FotoMovil”) and stray “@” symbols. In

order to consider only words in my analysis, I excluded all non-alphabetic symbols, and strings

containing non-alphabetic symbols, from my analysis of lexical diversity.

To compare the differences in lexical diversity between advanced L2 learners and Heritage

learners, and between Heritage learners and Hispanosphere residents, I conduct simple independent-

sample t-tests. I conduct a similar analysis for lexical density measurements on the same two
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groups. To analyze the use of formulaic language use of L2 and Heritage learners of Spanish in the

COWS-L2H corpus, I extract all 3-grams and 4-grams from essays written by advanced L2 learners

(those enrolled in SPA21, 22, 23 or 24 – a total of 104,906 tokens) and Heritage learners (those

enrolled in SPA31, 32, or 33 – a total of 67,799 tokens). In order to reduce duplicate n-grams and

to avoid n-grams which include punctuation, I removed all punctuation, and lowercased all text.

During extraction, I tracked all occurrences of each n-gram to identify the most commonly recurring

strings. Thus, I built a list of all 3-grams, and 4-grams used by these two groups of students in

descending order of frequency. Once all n-grams were extracted for each group, I calculated the

Mutual Information of each n-gram to aid in identifying those phrases which are truly collocates, as

defined above, versus those that are recurring lexical bundles. Finally, I calculated the normalized

frequency of each n-gram (normalized to occurrences per million tokens).

To identify the n-grams most frequently used by native Spanish speakers living in hispanophone

countries, I repeated the above process for a randomly selected 100,000 token sub-corpus of the

Corpus del Español, to control for the Zipfian distribution effect described by Bestgen [2020]. To

ensure that the 100,000 sub-corpus is a representative sample of the full Corpus del Español, I

extracted n-grams from the full corpus (which contains 1,983,822 tokens) for comparison. I compared

the full corpus n-grams to those extracted from the randomly selected sub-corpus, and found that

these two methods result in a similar most-common n-gram list with similar normalized frequencies.

5.3.1. Findings. As shown in Figure 5.1, the lexical diversity of L2 and L3 students in the

COWS-L2H corpus increases at a steady rate as these students progress through the Spanish course

series. While this is a testament to the fact that students and instructors are successful in fostering

lexical development among L2 and L3 students, the same pattern of lexical growth cannot be seen

among Heritage learners (see Figure 5.1). Rather, the average lexical diversity of Heritage learners

remains rather flat throughout the three-course Heritage course series. In addition, the difference in

mean lexical diversity between students enrolled in SPA24, the most advanced L2 course (mean LD

of 56.04) and Heritage learners enrolled SPA31, the first course of the Heritage learner series (mean

LD of 59.63) is not statistically significant at the 95% confidence level (p = 0.1075).

To compare with our Heritage learners with Spanish-dominant writers, I draw data from

CEDEL2 [Lozano et al., 2009], which includes relatively small portion of data written to an identical

prompt used in COWS-L2H. Comparing data written in response to the same prompt avoids task
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Figure 5.1. Lexical diversity by course in COWS-L2H essays.

effects and allows a more direct comparison between student groups. In this subset of data, MLTD

values are generally lower than in the full COWS-L2H corpus; however, similar trends emerge, as

shown in Figure 5.2. Advanced learners (those enrolled in SPA 21+) show a significantly higher

MTLD than their lower-proficiency colleagues (44.0 versus 36.8, p-value: 0.003), while the advanced

L2 learners show no significant difference with the Heritage cohort (44.0 versus 44.4, p-value: 0.872).

Of note is the fact that both Heritage and advanced L2 learners have MLTD values significantly less

than that of Spanish-dominant students whose mean MTLD is 50.26. This is significantly higher

than both the advanced L2 (p-value: 0.005) and the Heritage learner (p-value: 0.015) groups. This

finding seems to concur with previous work, such as Montrul and Ionin [2012], which indicates that

the lexicon is highly susceptible to language attrition in Heritage speaker populations.

As mentioned previously, I find that lexical density in both L2 and Heritage learners in COWS-

L2H decreases as students progress through the course series, as shown in Figure 5.3. Interestingly,

this pattern is similar to the pattern Halliday and Halliday [1989] found in children acquiring their

L1. According to Halliday, in children, lexical density decreases as the child’s fluency in the language

develops due to the fact that young children begin speaking in short utterances that consist of only

content words. As the children begin to speak in longer phrases and, eventually, in sentences, they
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Figure 5.2. Lexical diversity by category in Chaplin essays from COWS-L2H and
CEDEL2.

begin to use more function words, thereby reducing the content word to function word ratio of

their language [Halliday and Halliday, 1989]. Thus, the decreasing pattern seen in L2 and Heritage

learners may be indicative of increasing grammatical complexity in sentence formation.

I find that the mean difference between the lexical density of the advanced L2 learners (mean =

0.523) and Heritage learners (mean = 0.534) in COWS-L2H is small, but the difference of .011 is

statistically significant (p = 0.016) at the 95% confidence level. In order to compare the Heritage

population from COWS-L2H to a Spanish-dominant native speakers, I extract a subset of essays

from both CEDEL2 and COWS-L2H, all of which were written in response to the same prompt.

Students were asked to watch the same short clip of a movie and write a description of the scene; I

refer to this subcorpus as the “Chaplin data.” The Chaplin data consists of 69 lower-proficiency

student essays (SPA 1-3), 26 advanced essays (SPA 21+), 23 Heritage essays, and 151 essays

written by Spanish-dominant native speakers. The lexical density observed in this subcorpus is

lower across-the-board than that observed in the corpus-wide data from COWS-L2H, as show in

Figure 5.4. The first interesting observation is the fact that there is no statistically significant

difference between the mean lexical density of lower-proficiency students (mean = 0.439) and their
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Figure 5.3. Lexical density by course in COWS-L2H essays.

more advanced counterparts (mean = 0.441); this finding is surprising, as in the larger corpus

data a significant difference is observed between these same two groups (p-val <0.001). Second,

the significant difference between advanced and Heritage learners observed in the Chaplin data

concurs with observations across the corpus as a whole. In the Chaplin data, the advanced learner

mean lexical density is 0.441, while the Heritage mean is 0.424; the p-value of 0.004 indicates that

this relatively small difference is nonetheless statistically significant. The most interesting finding,

though is the fact that, on the Chaplin task, the lexical density of Heritage learners (mean = 0.424)

is very similar to that of Spanish-dominant native speakers (mean = 0.426), and the difference

between the two groups is not statistically significant (p-value: 0.690). The present finding that

the lexical density of Heritage and Native populations is statistically identical, even in this small

sub-corpus, indicates that the Heritage students’ writing may be more grammatically sophisticated

that previously thought. Further research is needed to elucidate this finding, especially in comparison

with the findings regarding syntactic development presented in Chapter 6

On the subject of formulaic language use, clear similarities between the L2 and Heritage groups

emerge, as do differences between these two groups and the Spanish-dominant group. While the

results are not clear enough to draw any overall conclusions, I found potentially revealing patterns
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Figure 5.4. Lexical density by category in Chaplin essays from COWS-L2H and
CEDEL2.

which require further investigation. First, it is clear that many of the recurrent n-grams in the

COWS-L2H data are the result of task effects; that is, we are seeing specific n-grams recur because

they are common to the topic which students are being asked to write about, not because learners

use these phrases more frequently in general. For example, one of the most common trigrams in the

COWS-L2H data, for both L2 and Heritage learners is “una vacación perfecta” with a normalized

frequency of 467.08 per million for L2 and 560.48 per million in the heritage data. Of course, Spanish

learners in general are not using this phrase with such a high frequency; rather, the high frequency

of this particular n-gram is due to the fact that, as one of the prompts in the COWS-L2H data

collection, students are asked to describe their idea of a perfect vacation. When I remove those

n-grams from the COWS data which are clearly the result of task effects, I still find that learners,

both L2 and Heritage, use formulaic language at a higher rate than do native, Spanish-dominant

speakers. For example, the lexical bundle “que se llama” is used at a normalized frequency of 18.65

in the Corpus del Español, but this same expression is used at a frequency of 266.91 and 147.49 for

L2 and Heritage learners, respectively, in the COWS data. Not all differences are so consistent; the

collocation “todo el mundo” is used at a frequency of 125.51 in the native speaker data, and at a
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rate of 495.68 and 162.24 for L2 and Heritage learners, respectively. While both groups of learners

use this collocation more frequently than do native Spanish-dominant writers, the L2 learners use

it far more often than do the Heritage learners. On the other hand, with some collocations, such

as “al mismo tiempo,” the Heritage learners are more similar in usage to the Spanish-dominant

speakers than to L2 learners. However, with the collocation “por los menos,” the L2 learners are

actually more similar to the native speakers than are the Heritage speakers. Finally, with the lexical

bundle “la mayoŕıa de,” all three groups use the expression at roughly the same rate. Clearly, these

inconsistent findings require additional analysis to determine if an underlying pattern of usage exists

among these three groups of speakers.

With regard to mutual information, I find that n-grams which represent idioms and lexically

restricted collocations, such as “todos los d́ıas,” have higher mutual information than do phrases

which represent recurrent, but lexically unrestricted, lexical bundles. This finding is consistent with

Ellis (2008), who found that phrases with higher PMI are more likely to be rated as “formulaic”

by human annotators. In addition, the average mutual information of the common n-grams in the

Heritage and L2 data is far higher than the average PMI in the native Spanish-dominant data. The

mean PMI for the L2 and heritage learners is 2.52 and 1.93, respectively, while the mean PMI for

the native Spanish-dominant data is 0.28. While I have yet to determine the underlying reason for

this difference, this may be the result of less varied lexical use among L2 and Heritage learners

compared to native speakers. Again, we must be aware that these differences may be the result of

task or genre effects; however, at minimum these findings indicate that further research into the

development and use of lexicon and formulaic language in Heritage learners is warranted.

5.4. Discussion

Given my findings, I am able to make three specific statements regarding the relative lexical

development of L2 and Heritage speakers:

(1) The difference between the lexical diversity scores of Heritage learners and L2 learners of

Spanish is statistically insignificant.

(2) The difference between the lexical density scores of Heritage and L2 learners of Spanish is

statistically significant, though it is small.
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(3) The lexical density of Heritage learners more closely resembles that of Spanish-dominant

native speakers than it does L2 learners of Spanish, though the differences between all

three groups are relatively small.

These findings potentially confirm my hypothesis that the lexical diversity of Heritage learners

may be closer to that of advanced L2 learners of Spanish than it is to that of native Spanish speakers.

However, my findings seem to falsify the similar hypothesis regarding lexical density. In addition,

while the evidence is sparse, it appears that the lower lexical diversity of L2 and Heritage learners

results in higher mutual information in the formulaic language used by these speakers. We must be

careful in interpreting these findings, however, as MTLD and other measures of lexical diversity

are known to show significant differences based on writing task alone [Yu, 2010]. I cannot rule

out the possibility that the difference in MTLD score seen between Heritage and non-Heritage

native speakers is due to differences in data collection and task presentation. The same is true

with relation to the production of specific, topic-related n-grams in the COWS corpus. Because

the COWS participants are writing about specific topics in response to specific prompts, n-grams

related to those topics appear far more frequently in the COWS data than would be expected in a

dataset covering more diverse topics.

Another possible weakness with the present study is that, in the COWS-L2H corpus, enrollment

in Heritage courses is completely voluntary. Given the metadata we collect from students, it is

apparent that a fair number of students who have significant childhood exposure to Spanish, and

who would likely be classified as Heritage learners under Valdés’ definition, are enrolled in L2 courses.

This is especially true of the more advanced-level L2 courses. Thus, these Heritage students enrolled

in L2 courses could be artificially causing the L2 population to appear more similar to the Heritage

group. While we ask students about their linguistic background, and I filter the data to remove

students who report Heritage knowledge of Spanish, the diverse linguistic background of the student

population may be muddying the waters. Future research could improve upon the present study by

categorizing student texts more carefully based on the information provided in demographic surveys.

Although this study has tentatively confirmed my hypothesis with regard to lexical diversity and

tentatively falsified my hypothesis related to lexical density, much future work is necessary to make

these findings more robust and to answer the remaining questions regarding formulaic language

use.
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CHAPTER 6

COWS-L2H Study II: Syntactic development

Having presented data related to lexical development in L2 and Heritage learners, I now turn

to a study of syntactic development in L2, L3 and Heritage learners of Spanish. Specifically, the

following study seeks to verify if it is possible to predict the relative order of essays written by the

same student from the longitudinal subset of COWS-L2H, and which syntactic features are most

important in making these predictions.

In the last few years, research on language acquisition has benefited from the use of Natural

Language Processing (NLP) technologies applied to large–scale corpora of authentic texts produced

by learners, in both the first and second language context. The empirical evidence acquired from

learner corpora, complemented with the increased reliability of linguistic features extracted by

computational tools and machine learning approaches, has promoted a better understanding of

learners’ language properties and how they change across time and increasing proficiency level

[Crossley, 2020]. A first line of research has focused on providing automatic ways of operationalizing

sophisticated metrics of language development to alleviate the laborious manual computation of

these metrics by experts [Sagae et al., 2005, Lu, 2009]. A second line of research has taken the

more challenging step of implementing completely data-driven approaches, which use a variety of

linguistic features extracted from texts to automatically assign a learner’s language production to a

given developmental level [Lubetich and Sagae, 2014].

A great amount of work has been carried out in the field of second language acquisition where

the study of L2 writings is seen as a proxy of language ability development [Crossley, 2020]. In

this respect, much related work is devoted to predicting the degree of second language proficiency

according to expert–based evaluation [Crossley and McNamara, 2012] or to modelling the evolution

of grammatical structures’ competence with respect to predefined grades, such as the Common

European Framework of Reference for Languages (CEFRL) [Zilio et al., 2018].

Given the difficulty of defining a unique indicator of linguistic complexity in the context of L2

language development, a great variety of features from all linguistic levels have been used as input
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for supervised classification systems trained on authentic learner data for different L2s. Such is the

case e.g. of Hancke and Meurers [2013] and Vajjala and Lėo [2014], dealing with L2 German and

L2 Estonian, respectively, and of Pilán [2018], who also provided a features analysis focused on

predictive features extracted from both receptive and productive texts in Swedish L2. They found

that a small number of features covering lexical and syntactic aspects are useful predictors across

all datasets regardless the type of language learning skill.

In this section, I present an innovative NLP-based stylometric approach to model writing

development in learners of Spanish as a second and Heritage language.

This study’s approach relies on a wide set of linguistically motivated features extracted from

students’ essays, which have already been shown relevant for a number of tasks related to modelling

the ‘form’ of a text rather than the content. While the majority of previous studies on the evolution

of language proficiency in L2 uses cross–sectional data, this study is the first, to our knowledge,

using a longitudinal corpus of Spanish L2 essays to model writing development. Interestingly, a

similar approach resulted in the successful prediction of the development of writing competence in a

L1 acquisition scenario for the Italian language [Richter et al., 2015].

This study presents, to the best of our knowledge, the first data–driven study which uses

linguistic features from student data to model the evolution of written language competence in

Spanish as a Second Language (SSL). The results also show that it is possible to automatically

predict the relative order of two essays written by the same student at different course levels using

a wide spectrum of linguistic features. Finally, the study investigates the importance of linguistic

features in predicting language growth at different course levels and whether they reflect the explicit

instruction students receive during each course.

6.1. Motivation and approach

Studies of L2 writing have focused on linguistic complexity as an indicator of writing development

[Lu, 2011, Ortega, 2003]. This construct, however, is still ill-defined, as evidenced by the divergent

measures of complexity utilized in different studies. Typical measures of complexity have been the

length of the T-unit [Hunt, 1965], the number of subordinate clauses in a text, or type to token

ratios, among others. Instead of considering the construct as being multidimensional [Norris and

Ortega, 2009, Bulté and Housen, 2012] and, thus, encompassing an array of different features, most
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studies have selected one or two of these measures and used them as single indicators of complexity

[Bulté and Housen, 2014]. This has prevented the development of much needed research that

associates different steps of linguistic and written development with specific sets of characteristics.

This situation has also prevented the formation of an in-depth picture of how those specific aspects

develop in relation to the grammatical, lexical or stylistic content taught in classes at different

language course levels. This second objective of characterizing writing at different proficiency

levels may provide useful insights into how writing samples could be used for placement tests or

other assessments to determine which language course is best suited to further develop a student’s

linguistic skills.

In the concrete case of Spanish as a Second Language (SSL), the literature indicates that one of

the most difficult aspects to master for learners is the language’s complex verbal morphology [Blake

and Zyzik, 2016, Salaberry, 1999], given that verbal inflections express a complex cluster of person,

number, tense, aspect and mood. Therefore, SSL courses tend to propose a step-by-step introduction

to these different aspects of verbal morphology, generally following this order: (1) person and

number in the present indicative, (2) past tenses (i.e., imperfect vs. preterite vs. pluperfect), and (3)

mood (subjunctive vs. indicative). If this typical instructional sequence had to influence students’

writing, it would be expected that learners show an increase in the variety of inflections that they

are able to use over time. Nonetheless, several studies also indicate that a linguistic feature that

has been learned in class may be mastered in exercises that focus on explicit knowledge but take

additional time to unfold in tasks that require more implicit knowledge, such as free writing [Ellis

and Shintani, 2013]. This means that a simple classification of students’ proficiency based on the

presence or absence of features studied in a particular course may not be accurate, as some students

may explicitly know the rules for a specific inflectional distinction but still be unable to use them

accurately in writing. Taking lack of use in writing as evidence for lack of explicit knowledge could

entail that students be mistakenly invited to enroll in courses where those features that do not

show in their writing are unnecessarily explained to them again. A better approach would thus be

to know what students are able to do when they are enrolled in different courses and, only then,

compare those abilities to see which match, or mismatch, the contents seen in that particular class.

By using a large set of linguistic features, it is possible to understand which phenomena change

across proficiency levels and whether they are explicitly related to the teaching guidelines.

57



This study aims at tackling some of the still open methodological issues in the literature on

Spanish acquisition by decomposing the problem into two main research questions: (i) verify if

it is possible to predict the relative order of two essays written by the same student at different

course levels using a wide set of linguistic predictors automatically extracted from Spanish L2

written productions; (ii) understand which typologies of language phenomena contribute more

to the identification of writing skills’ evolution and whether such properties reflect the teaching

guidelines of the courses.

Following the approach devised in Richter et al. [2015] we addressed the first research question

as a classification task: given a pair of essays written by the same student and ordered according to

the course level (d1, d2), we classify whether C(d2) > C(d1), where C(d1) and C(d2) correspond

respectively to the course levels during which the student wrote d1 and d2. Specifically, we model the

problem as a binary classification task, training a Linear Support Vector Machine (LinearSVM) to

predict the relative order of two essays written by the same student using a wide range of linguistic

predictors automatically extracted from the POS tagged and dependency parsed essays. We rely on

LinearSVM rather than more powerful learning algorithms, such as Neural Language Models, in

order to obtain meaningful explanations when the classifier outputs its predictions to anchor the

observed patterns of language development to explicit linguistic evidence.

We further extracted and ranked the feature weights assigned by the linear model in order

to understand which typology of linguistic features contributes more to the classification task at

different course levels. The assumption is that the higher the weight associated with a specific

feature, the greater its importance in solving the classification task and, consequently, in modeling

the student’s written language evolution.

We focused our study on the longitudinal data in the COWS-L2H corpus. We were thus able to

model the chronological development of L2 Spanish writing by monitoring how the writing quality

of an individual student’s compositions increase with time. Student participation is summarized in

Table 6.1.

6.2. Linguistic Features

The set of linguistic features considered as predictors of L2 written competence evolution is

based on those described in Brunato et al. [2020]. It includes a wide range of text properties, from
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Terms Enrolled Students Essays Tokens
2 267 984 290,399
3 111 612 179,306
4 32 242 74,956
5 5 48 13,977

Table 6.1. Longitudinal data summary.

Level of Annotation Linguistic Feature Label

Raw Text

Sentence Length tokens per sent

Word Length char per tok

Document Length n sentences
Type/Token Ratio for words and lemmas ttr form, ttr lemma

POS tagging

Distribution of UD and language–specific POS upos *, xpos *

Lexical density lexical density

Inflectional morphology of lexical verbs and auxiliaries verbs *, aux *

Dependency Parsing
Depth of the whole syntactic tree parse depth
Average length of dependency links and of the longest link links len, max links len

Average length of prepositional chains and distribution by

depth

prepositional chain len,

prep dist *
Clause length (n. tokens/verbal heads) token per clause

Order of subject and object subj pre, subj post, obj pre,

obj post
Verb arity and distribution of verbs by arity verb edges, verb edges *

Distribution of verbal heads per sentence verbal head sent

Distribution of verbal roots verbal root perc
Distribution of dependency relations dep dist *

Distribution of subordinate and principal clauses principal proposition dist, sub-
ord dist

Average length of subordination chains and distribution by
depth

subord chain len, subord *

Relative order of subordinate clauses subord post, subord prep

Table 6.2. Linguistic features according to different levels of annotation.

raw text features, to lexical, morpho-syntactic and syntactic properties, which were extracted from

different levels of linguistic annotation. For this purpose, the COWS-L2H Corpus was automatically

parsed using UDPipe [Straka et al., 2016] trained on the Spanish Universal Dependency Treebank

(GSD section), version 2.5. We rely on these features since it has been shown that they have a high

predictive power for several tasks all aimed at modelling the linguistic form of documents. This

is the case for example of the automatic readability assessment task [Dell’Orletta et al., 2011a],

of the automatic classification of the textual genre of documents [Cimino et al., 2017], or also of

the automatic identification of the L1 of a writer based on his/her language production in a L2

[Cimino et al., 2018]. Interestingly, for all mentioned tasks the set of linguistic features plays a very

important role in the classification not only of a whole document but also of each single sentence.

This is the reason why, as reported in the following sections, we modelled the prediction of the

development of writing skills both as document and sentence classification tasks.
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Although we used a state–of–the art pipeline, it is well-acknowledged that the accuracy of

statistical parsers decreases when tested against texts of a different typology from that used in

training Gildea [2001]. In this respect, learners’ data are particularly challenging for general–purpose

text analysis tools since they can exhibit deviation from correct and standard language; for instance,

missing or anomalous use of punctuation (especially in 1st grade prompts) already impacts on

the coarsest levels of text processing, i.e. sentence splitting, and thus may affect all subsequent

levels of annotation. Nevertheless, if we can expect that the predicted value of a given feature

might be different from the real one (especially for features extracted from more complex levels

of annotation such as syntax), we can also assume that the distributions of errors will be almost

similar, at least when parsing texts of the same domain. Note also that the reliability of features

checked against automatically annotated data was also empirically shown by Dell’Orletta et al.

[2011b], who compared morpho-syntactic and syntactic features extracted from a gold (i.e. manually

annotated) and an automatically annotated corpus of the same domain (i.e. biomedical language),

showing that results are highly comparable.

As shown in Table 6.2, the considered features capture linguistic phenomena ranging from the

average length of document, sentences and words, to morpho-syntactic information such as parts of

speech (POS) distribution and fine–grained features about the inflectional properties of verbs. More

complex phenomena are derived from syntactic annotation and model global and local properties of

parsed tree structure, with a focus on subtrees of verbal heads, the order of subjects and objects

with respect to the verb, the distribution of Universal Dependencies (UD) syntactic relations and

features referring to the use of subordination.

Since it is acknowledged that lexical proficiency plays an important role in predicting L2 writing

development [Crossley and McNamara, 2012], we also decided to add a small subset of features

that model this property in terms of word frequency. Specifically, we considered the average class

frequency of all word forms and lemmas in the essays (Words Frequency Class), where the class

frequency for each word form/lemma was computed exploiting the Spanish Wikipedia (dump of

March 2020) using the following measures: Ccw = ⌊log2
freq(MFW )
freq(CW ) ⌋, Ccl = ⌊log2

freq(MFL)
freq(CL) ⌋, where

MFW and MFL are the most frequent word form/lemma in the corpus and CW and CL are the

considered ones.
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Features SPA 1 SPA 2 SPA 3 SPA 21 SPA 22 SPA 23 SPA 24 SPA 31 SPA 32 SPA 33
Raw Text Properties

char per tok 4.3 ±.27 4.4 ±.27 4.42
±.26

4.42
±.26

4.43
±.25

4.46
±.23

4.41
±.22

4.42
±.25

4.42
±.28

4.38 ±.3

n sentences 20.0
±7.0

24.01
±7.15

23.57
±6.87

20.8
±5.99

20.17
±5.15

19.54
±6.33

17.92
±5.44

16.06
±4.05

16.31
±3.78

15.46
±3.63

tokens per sent 10.7
±3.43

13.16
±3.52

13.74
±3.7

15.71
±3.95

16.43
±3.59

17.11
±3.49

19.01
±4.27

19.95
±4.16

20.07
±3.48

20.94
±4.04

Morphosyntactic information
lexical density .51 ±.05 .5 ±.04 .5 ±.04 .49 ±.03 .48 ±.04 .48 ±.03 .47 ±.03 .48 ±.04 .47 ±.04 .47 ±.04
upos ADJ .07 ±.03 .06 ±.02 .06 ±.02 .06 ±.02 .05 ±.02 .05 ±.02 .05 ±.02 .05 ±.02 .05 ±.02 .05 ±.02
upos ADP .09 ±.04 .1 ±.03 .11 ±.03 .11 ±.02 .11 ±.02 .12 ±.02 .12 ±.02 .13 ±.03 .12 ±.02 .13 ±.02
upos NOUN .16 ±.04 .16 ±.03 .16 ±.03 .16 ±.03 .16 ±.03 .17 ±.02 .17 ±.03 .17 ±.02 .16 ±.03 .16 ±.03
upos PRON .07 ±.04 .07 ±.03 .07 ±.03 .07 ±.03 .07 ±.03 .07 ±.03 .07 ±.03 .07 ±.03 .08 ±.04 .08 ±.04
upos PUNCT .14 ±.03 .13 ±.03 .12 ±.03 .12 ±.03 .11 ±.03 .11 ±.03 .11 ±.03 .09 ±.02 .09 ±.02 .09 ±.02
upos SCONJ .01 ±.01 .02 ±.01 .03 ±.01 .03 ±.02 .04 ±.02 .04 ±.01 .04 ±.02 .04 ±.02 .05 ±.02 .05 ±.02
upos VERB .12 ±.04 .12 ±.03 .12 ±.03 .12 ±.02 .12 ±.02 .12 ±.02 .12 ±.02 .13 ±.02 .13 ±.02 .13 ±.03

Inflectional morphology
aux mood Cnd .02 ±.09 .03 ±.09 .04 ±.12 .03 ±.07 .06 ±.11 .05 ±.11 .04 ±.08 .05 ±.09 .06 ±.12 .04 ±.11
aux mood Ind .97 ±.14 .96 ±.12 .92 ±.15 .94 ±.14 .91 ±.13 .92 ±.14 .94 ±.1 .91 ±.16 .91 ±.12 .93 ±.12
aux mood Sub .01 ±.04 .01 ±.04 .03 ±.07 .02 ±.05 .03 ±.05 .02 ±.08 .03 ±.06 .03 ±.06 .03 ±.06 .03 ±.05
aux tense Imp .05 ±.16 .16 ±.25 .21 ±.26 .21 ±.25 .24 ±.25 .24 ±.26 .22 ±.24 .23 ±.28 .2 ±.27 .24 ±.29
aux tense Past .02 ±.09 .1 ±.15 .09 ±.15 .12 ±.16 .12 ±.14 .11 ±.15 .12 ±.16 .11 ±.16 .12 ±.17 .11 ±.13
aux tense Pres .92 ±.21 .73 ±.32 .69 ±.33 .65 ±.32 .63 ±.3 .65 ±.32 .66 ±.32 .63 ±.34 .66 ±.34 .63 ±.33
verbs tense Imp .02 ±.06 .08 ±.12 .11 ±.13 .13 ±.13 .16 ±.14 .14 ±.15 .13 ±.13 .17 ±.15 .15 ±.15 .14 ±.14
verbs tense Past .11 ±.19 .28 ±.23 .28 ±.22 .3 ±.2 .35 ±.22 .3 ±.22 .31 ±.19 .31 ±.21 .28 ±.18 .33 ±.19

Verbal Predicate Structure
verb edges 2.3 ±.36 2.5 ±.32 2.52 ±.3 2.62

±.35
2.67
±.28

2.63
±.28

2.7 ±.32 2.71
±.29

2.68
±.26

2.76
±.27

verb edges 4 .09 ±.08 .13 ±.07 .13 ±.07 .16 ±.07 .16 ±.07 .15 ±.08 .16 ±.07 .16 ±.06 .16 ±.06 .16 ±.07
verbal head sent 1.52

±.46
1.8 ±.53 1.92

±.52
2.13
±.54

2.26
±.54

2.3 ±.51 2.54
±.61

2.73
±.58

2.86
±.65

2.95
±.66

Global and Local Parsed Tree Structures
parse depth 2.88

±.65
3.27
±.62

3.37
±.61

3.6 ±.63 3.78
±.55

3.94
±.64

4.21
±.69

4.49
±.65

4.59
±.67

4.56
±.62

max links len .65 ±.44 .7 ±.45 .72 ±.42 .96 ±.74 .92 ±.43 .99 ±.42 1.2 ±.68 1.24
±.53

1.21
±.42

1.39
±.72

5rtoken per clause 7.17
±1.56

7.49
±1.58

7.28
±1.39

7.52
±1.51

7.41
±1.26

7.55
±1.26

7.62
±1.24

7.42
±1.3

7.16
±1.09

7.26
±1.32

Order of elements
obj post .67 ±.18 .68 ±.15 .67 ±.15 .64 ±.16 .65 ±.15 .69 ±.13 .69 ±.14 .6 ±.17 .64 ±.17 .6 ±.16
obj pre .33 ±.18 .32 ±.15 .33 ±.15 .35 ±.15 .35 ±.15 .31 ±.13 .31 ±.14 .39 ±.16 .36 ±.17 .4 ±.16
subj pre .8 ±.19 .84 ±.15 .82 ±.15 .84 ±.15 .84 ±.13 .84 ±.13 .83 ±.13 .81 ±.12 .78 ±.13 .79 ±.14

Use of Subordination
subord chain len 1.06

±.25
1.15
±.16

1.18
±.14

1.21
±.18

1.24
±.15

1.24
±.14

1.26
±.16

1.29
±.23

1.33
±.16

1.32 ±.2

subord 2 .08 ±.14 .11 ±.11 .13 ±.1 .15 ±.11 .17 ±.1 .17 ±.11 .18 ±.11 .19 ±.11 .2 ±.1 .2 ±.1
subord dist .24 ±.14 .33 ±.13 .38 ±.12 .4 ±.12 .44 ±.12 .47 ±.12 .5 ±.12 .56 ±.12 .58 ±.08 .57 ±.1

Table 6.3. A subset of linguistic features extracted for each course level. For each
feature it is reported the average value and the standard deviation.

A first overview of how and to what extent all these features vary across the documents of the

COWS-L2H Corpus is provided in Table 6.3. Essays written by students in the first course levels

are longer in terms of number of sentences but they contain shorter sentences compared with those

written in the more advanced courses. As concerns the distribution of POS, essays written in the

first years show a lower percentage of e.g. adpositions (upos ADP) and subordinate conjunctions

(upos SCONJ ) typically contained in longer and well-articulated sentences, while the use of main

content words (e.g. upos NOUN, upos VERB) is almost comparable across years. The variation

affecting morphosyntactic categories is reflected by the lexical density value, i.e. the ratio between

content words over the total number of words, which is slightly higher in beginner essays. If we
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Course Levels Num Essays
SPA 1 205
SPA 2 409
SPA 3 413
SPA 21 160
SPA 22 130
SPA 23 140
SPA 24 120
SPA 31 65
SPA 32 83
SPA 33 85

Table 6.4. Number of essays included in the longitudinal section of the COWS-L2H
corpus.

focus on differences concerning verbal morphology, a linguistic property particularly relevant in the

development of Spanish curriculum, we can see how the use of more complex verb forms increases

across course levels. Essays of the introductory courses contain a lower percentage of verbs in the

past (verbs tense Past) and imperfect tenses (verbs tense Imp) (out of the total number of verb

tenses) as well as a lower percentage of auxiliary verbs (aux * ) typically used in more complex verb

forms, such as copulative verbs or periphrastic moods and tenses. Interestingly, features related to

verb inflectional morphology have the highest standard deviation, suggesting a quite wide variability

among learners. A similar trend towards the acquisition of more complex verb structures can also

be inferred by considering features extracted from the syntactic level of annotation: essays of the

intermediate courses contain for example sentences with a higher average number of dependents of

verbs (verb edges) and in particular of verbs with a complex argument structures of 4 dependents

(verb edges 4 ).

As long as Spanish learners start mastering the second language, linguistic properties related

to the construction of more complex sentences increase. This is for example the case of the depth

of sentence tree (parse depth) and of the length of syntactic relations (max links len) as well as of

features concerning the use of subordination.

6.3. Experiments

We train a LinearSVM that takes as input pairs of essays written by the same students according

to all the possible pairs of course levels (e.g. SPA 1 - SPA 2, SPA 2 - SPA 3, etc.). Specifically,

we extract for each pair the linguistic features corresponding to the first and second essays and
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the difference between them. We standardize the input features by scaling each component in the

range [0, 1]. To test the actual efficiency of the model, we perform the experiments with a 5-cross

validation using different students during the training and testing phases. In order to provide our

system with negative samples, we expand our datasets by adding reversed samples.

Since the students were asked to write essays responding to different prompts, we devise two

set of experiments, pairing all the essays written by the same students that have: (i) the same

prompt; (ii) both same and different prompts. Also, because of the small number of training samples

for certain pairs of course levels we also decide to perform the experiments on a sentence-level,

extracting the linguistic features for each sentence in the longitudinal subset of the COWS-L2H

corpus and pairing them on the basis of the previously defined criteria. In order to obtain reliable

results both on the document and sentence configurations, we consider only datasets at different

pairs of course levels that contain at least 50 and 20 samples (including negative pairs) respectively.

All the classification experiments are performed using the majority class classifier as baseline and

accuracy as the evaluation metric.

6.4. Tracking Writing Skills’ Evolution

Table 6.5 reports the results obtained at both the document and sentence levels, pairing essays

that have the same prompt (Same columns) and both the same and different prompts (All columns).

As a general remark, we observe that best results are those obtained with the document-level

experiments. This is quite expected, since sentence-level classification is a more complex task that

often requires a higher number of features to gain comparable accuracy [Dell’Orletta et al., 2014]. If

we focus instead on the distinction between Same and All results, we notice that higher scores are

mainly achieved considering pairs of essays that also have different prompts. Again, this result is

not surprising because adding pairs of essays with different prompts within each datasets increases

the number of training samples, thus leading to better scores. Despite this, the results obtained

according to the Same and All configurations are quite similar and this allows us to confirm that

classification accuracy is not significantly harmed if the two essay’s prompts are the same, thus

showing that our system is actually focusing on written language competence evolution properties

rather than prompt-dependent characteristics.
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Course Levels Documents Sentences
Same All Same All

Score Samples Score Samples Score Samples Score Samples
All Levels 0.68 2,208 0.7 5,536 0.59 1,047,156 0.61 2,570,366
SPA 1 - SPA 2 0.88 280 0.9 624 0.7 143,660 0.71 316,264
SPA 1 - SPA 3 0.97 178 0.95 440 0.75 85,032 0.75 209,048
SPA 1 - SPA 21 # # 0.91 116 0.61 14,298 0.7 46,738
SPA 2 - SPA 3 0.62 528 0.62 1,192 0.56 323,332 0.56 724,400
SPA 2 - SPA 21 0.61 62 0.61 188 0.57 35,754 0.58 104,442
SPA 2 - SPA 22 # # 0.59 68 0.55 8,048 0.63 29,670
SPA 2 - SPA 23 # # 0.77 52 # # 0.58 27,420
SPA 3 - SPA 21 0.59 158 0.55 364 0.53 82,104 0.54 190,596
SPA 3 - SPA 22 0.61 64 0.58 186 0.54 31,886 0.6 93,486
SPA 3 - SPA 23 # # 0.89 106 0.59 13,404 0.59 45,804
SPA 3 - SPA 24 # # # # # # 0.68 11,276
SPA 21 - SPA 22 0.59 132 0.62 302 0.52 57,326 0.54 132,454
SPA 21 - SPA 23 0.52 58 0.74 154 0.54 27,038 0.57 67,634
SPA 21 - SPA 24 # # 0.7 92 0.47 9,268 0.56 35,384
SPA 22 - SPA 23 0.71 76 0.69 186 0.55 35,272 0.56 79,168
SPA 22 - SPA 24 0.69 158 0.73 164 0.5 23,446 0.56 66,184
SPA 23 - SPA 24 0.45 168 0.49 386 0.48 61,654 0.49 137,786
SPA 31 - SPA 32 0.8 100 0.63 212 0.55 27,608 0.55 57,790
SPA 31 - SPA 33 0.52 100 0.53 198 0.51 24,830 0.48 48,990
SPA 32 - SPA 33 0.54 96 0.59 256 0.5 24,154 0.55 66,466

Table 6.5. Classification results in terms of accuracy obtained both at document
and sentence levels along with number of samples for each dataset. Same and All
columns report the results obtained by pairing essays that have same prompt and
both same and different prompts respectively. Since the labels within each dataset
has been balanced, baseline accuracy is 0.50.

More interestingly, we notice that considering all the possible course level pairs at the same

time our system is able to achieve quite good results, especially at document level classification

(0.68 and 0.70 of accuracy for Same and All configurations respectively), thus showing that it is

possible to automatically predict the chronological order of two essays written by the same student

by using a wide spectrum of linguistic properties.

In general, our best scores are obtained by considering all the experiments that include essays

written by students in the Beginner category (SPA 1, 2 and 3). This is particularly evident for

the experiments that compare essays written during SPA 1 as one of the two considered course

levels, most likely because the evolution from knowing nothing at all of a specific L2 to knowing

enough to start writing is actually bigger that the difference between knowing a little and then

learning a little more. Additionally, students at this beginning stage of L2 acquisition tend to

use markedly fewer words per sentence, and the words they user are shorter; these features are
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SPA 1 - SPA 2 SPA 1 - SPA 3 SPA 2 - SPA 3 SPA 3 - SPA 21 SPA 22 - SPA 23 SPA 31 - SPA 32
aux mood Ind lexical density * aux tense dist Pres * lexical density upos PUNCT upos ADP *
aux tense Pres * upos ADP * aux mood Ind upos DET dep punct dep case *
aux tense Imp * upos VERB * aux tense Imp * dep punct upos ADV verbal head sent
aux tense Past * upos NOUN * aux tense Past upos VERB dep advmod upos PUNCT
upos ADP * upos ADJ dep punct * aux tense Pres upos CCONJ upos PRON
verbs tense Past * upos PRON upos PUNCT * upos ADJ dep cc * dep mark
upos VERB * dep det dep nsubj * upos NOUN upos VERB dep punct
upos INTJ * upos PUNCT * dep iobj dep nsubj * dep case aux tense Imp
verbal head sent * upos PROPN upos PRON upos PRON aux form Part verbs tense Pres
verbs tense Imp * dep case * verbal head sent * upos SCONJ upos ADP subord dist
upos ADJ * upos SCONJ * dep cop upos ADV * dep mark dep cop
ttr form upos AUX subj post * upos PUNCT dep compound dep cc
upos PRON * dep punct * aux form Fin aux form Fin upos INTJ * lexical density
upos PROPN * subord dist * verbs tense Imp * dep cc * dep nsubj * upos AUX
upos PUNCT * upos CCONJ * upos AUX aux tense Imp upos AUX upos ADV

Table 6.6. Feature rankings obtained with sentence-level (Same) classification
results for six different course level pairs. Features that vary in a statistically
significant way with Wilcoxon Rank-Sum test are marked with *.

particularly salient for the classifier. Observing instead the results obtained pairing student essays

belonging to the other three course level categories (Intermediate, Composition and Heritage), we

notice a considerable drop in classifier performance. For instance, if we compare essays written

by students in the Composition category (SPA 23 - SPA 24) we can see that all the classification

results are below the majority class baseline classifier. A possible reason might be that these two

courses are specifically aimed at improving learners’ writing skills, with an emphasis on academic

writing in Spanish, thus involving specific properties, such as discourse-level characteristics, which

are possibly not covered by our set of features.

6.5. Understanding Linguistic Predictors

Beyond classification results, we were interested in understanding which typologies of linguistic

phenomena are more important for solving the classification task and whether such properties

correlate to the teaching curriculum. To better explore this second research question, we perform a

feature ranking analysis along with the classification experiments, which allows us to establish a

ranking of the most important features according to the different classification scenarios. That is,

we evaluate the importance of each linguistic property by extracting and ranking the feature weights

assigned by the LinearSVM. Table 6.6 reports the feature rankings obtained with sentence-level

classification results, including pairs of essays that have the same prompt (Same configuration). We

considered in particular six different course level pairs which are mostly representative of different

stages of writing development. The focus on sentence-level results rather than document-level allows

capturing more fine-grained linguistic phenomena.
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Because the COWS-L2H corpus was collected from a single university with set curriculum,

we are able to compare the features utilized by the LinearSVM with the course curriculum. We

find that the feature rankings as obtained from the LinearSVM can in many cases be explained

by differences in curriculum at each level. For example, from SPA 1 to SPA 2 the most important

features used by the model are all related to verbal morphology, particularly morphology of auxiliary

verbs. This can be explained by the fact that SPA 1 and 2 are the courses where students are

introduced for the first time to the notions of verb tense and person. SPA 1 is focused on managing

the idea of person and number in a tense that is not particularly difficult to understand for a speaker

of English: the present tense. SPA 2, however, introduces the difficult difference between the three

tenses in the past: imperfect, preterite and plus-perfect. This fact explains why distribution of

past tense main verbs (verbs tense Past) differs between essays written during SPA 1 and SPA 2.

Additionally, SPA 2 introduces composed verb tenses that require an auxiliary. Specifically, the

auxiliary verbs “haber”, “estar”, and “ser” are introduced in SPA 2 as part of the past tense forms.

Thus, it is not surprising that the top four features used by our classifier for distinguishing between

essays written in SPA 1 and SPA 2 are related to the use of auxiliary verbs.

Classification of essays written by students while enrolled in SPA 2 and SPA 3 also relies largely

on differences in verbal morphology. While the distribution of present tense auxiliary verbs is

the most important distinguishing feature, other compound verb tenses play a role at these levels.

For example, differences in the distribution of imperfect auxiliary verbs (aux tense Imp) may be

explained by the use of the pluperfect tense.

Between SPA 1 and SPA 3, the most important discriminating feature is lexical density. While

there is no specific focus on lexical density in the course curriculum, this feature is a natural

extension of increasing sentence complexity. Davidson et al. [2019] shows that as students progress

through the Spanish course sequence, lexical density tends to decrease due to the increased use of

function words in more complex sentences. Additionally, one of the final items covered in the SPA

1 curriculum is the use of the prepositions “por” and “para”. Also, at all three beginning levels

students are taught to use prepositions in constructing more complex sentence structures. This may

explain why preposition usage (upos ADP) is a key discriminating feature between essays written in

SPA 1 and SPA2, as well as between SPA 1 and SPA 3. The prominence of this feature indicates

that students are learning to more confidently use prepositions as their writing skills develop. The
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fact that (upos ADP) is not a key discriminating feature between SPA 2 and SPA3 indicates that

these changes are occurring primarily at the SPA 2 level, which accords with the course curriculum.

In spite of the still reasonable accuracy in discriminating more advanced levels, making a

direct connection between the features used by the SVM and the course curriculum becomes more

difficult. At these more advanced levels students have developed an individual writing style which

results in a more complex relationship between the curriculum and the syntax used by students.

At the SPA 3 - SPA 21 interval, the only three features which vary in a statistically significant

way are the distributions of nominal subjects (dep nsubj ), adverbs (upos ADV ), and coordinating

conjunctions (dep cc). While the increased use of adverbs may be seen as a general sign of increased

writing complexity, coordinating conjunctions are taught explicitly during SPA 3. Conjunctions

are also practiced intensively during both SPA 21 and SPA 22 explaining their importance as a

discriminating feature between these levels.

One of the clearest connections between curriculum and the features used by the LinearSVM

occurs at the Heritage levels SPA 31 and SPA 32. Heritage learners of Spanish raised in an

English-dominant country are known to use “English-like” prepositions in Spanish. For example,

Pascual y Cabo and Soler [2015] report on preposition stranding (which is grammatical in English

but ungrammatical in Spanish) among Heritage speakers of Spanish in the United States. We find

that distributional differences in the use of prepositions, represented by the features upos ADP and

dep case, is the key distinguishing feature between essays written by the same student during SPA

31 and SPA 32. This difference indicates that students are learning to use prepositions in a more

“Spanish-like” manner, which is one of the major areas of feedback which instructors provide to

Heritage students.

6.6. Discussion

This chapter presents a first study aimed at modeling the evolution of written language

competence in Spanish as a Second and Heritage Language, using data from the COWS-L2H Corpus.

We have described a rich set of linguistic features automatically extracted from student writing, and

have demonstrated that it is possible to automatically predict the relative order of two essays written

by the same student at different course levels using these features, especially when considering

students enrolled in beginner-level Spanish courses. Finally, we have shown that the linguistic
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features most important in predicting essay order often reflect the explicit instruction that students

receive during each course.

This work can help instructors and language researchers better understand the specific linguistic

factors which contribute to improved writing proficiency. Additionally, the appearance of features in

the LinearSVM ranking helps clarify the effect of instruction on writing performance, specifically on

effects such as the known delay between students being taught a concept and that concept appearing

in the students’ writing. We also believe that this work may contribute to the development of

better language assessment and placement tools. Finally, the findings in this work contribute to an

understanding of the longitudinal development of Spanish learner syntax, thereby informing the

types of errors that an AWCF system for learners of Spanish should focus on a different proficiency

levels.
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CHAPTER 7

COWS-L2H Study III: Errors by demographic group

Having presented studies related to both lexical and syntactic development, I now present a

study which examines variation among Heritage, L3, and L2 learners of Spanish using error rates

calculated using annotated and corrected parallel text.

7.1. Error annotation

One of the goals of the COWS-L2H project is to annotate grammatical errors in the corpus in a

way that writing patterns typical of Spanish as a foreign language produced by student participants

can be identified, catalogued, and easily utilized by researchers who use the corpus. To that end,

we have begun the process of error-tagging the corpus based on specific error types; the first two

error types for which we have completed annotation are gender and number agreement, and usage

of the Spanish a personal. We chose to annotate these specific error types based on research

questions we wished to explore, but we intend to expand our error annotations in the future, as our

annotation scheme can be readily adapted to additional error types we choose to annotate. Further,

we encourage other researchers to adapt the annotation scheme to the annotation of other error

types and contribute their work to the COWS-L2H project.

Our current team of annotators consists of four graduate-level Spanish instructors who have

native or near-native fluency in Spanish. As previously mentioned, we are expanding our error

annotation project through a collaboration with a Spanish university, which will allow us to

significantly expand both the number of annotators and the scope of our error annotation project in

the near future.

Our in-text error-tagging scheme is as follows:

[error]{edit}<annotation>.

Consider the example error in (1), and its annotation in (2):
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Error type α F0.5

Gender-Number 0.780 0.784
“a personal” 0.741 0.730
Average 0.761 0.757

Table 7.1. Inter-annotator agreement: error annotations

(1) Yo vivo en el ciudad.

“I live in the city.”

(2) Yo vivo en [el]{la}<ga:fm:art> ciudad.

In (2), the first set of brackets encloses the words in the error in question, the curly brackets

that follow give the corrected edit, and the angle brackets house the error tags. In this case, the tags

indicate that the error was a gender agreement error (ga), that masculine gender was erroneously

produced in place of the correct feminine gender (fm), and that the error occurred on the article

(art). A full description of the error annotation scheme is provided with the dataset in the corpus

GitHub repository.

Each essay is annotated by at least two of our four annotators to ensure the accuracy of our

annotations and the suitability of our annotation scheme. Due to the open-ended nature of the

annotation task (any token can be considered a possible position of annotation), determining the best

measurement for inter-annotator agreement is challenging. In Table 7.1, we report Krippendorf’s α

[Krippendorff, 2011] considering every token as an annotation position. Thus, if both annotators

choose to not annotate a token, indicating that the token is correct, we treat this lack of annotation as

agreement. This choice makes sense because, by not making an explicit annotation on a given token,

the annotators are implicitly labeling the token as correct. An alternative method of calculating

agreement would be to consider only positions where at least one annotator indicated an error;

however, this choice would ignore all positions at which both annotators agreed that no error exists,

which is itself a form of agreement. To put our agreement values in more familiar context, we also

report the F0.5 score, commonly used in GEC, using one annotator as ground-truth. In terms of

both Krippendorf’s α and F0.5, our annotators show strong agreement.

7.2. Parallel corrected text

Unfortunately, manual error annotation, while accurate and reproducible, is an extremely time

consuming process. We therefore, supplement our error annotation with parallel corrected text, from
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Course Level Essays Tokens Errors
Beginner 1,566 35,980 432,290
Intermediate 356 7,537 110,490
Composition 438 8,598 141,353
Heritage 337 5,487 110,313
Other 225 4,112 68,393
Total 2,922 61,714 862,839

Table 7.2. Summary of corrected essays in the updated corpus. Note that these
numbers do not count both of the double-corrected essays, hence the discrepancy
between the previously mentioned 70,397 sentence count and the numbers in this
table.

which we are able to extract a much larger set of proposed errors based on instructor corrections of

student essays. Currently, the compositions collected in this project are corrected by two doctoral

student associate instructors of Spanish. Both have native or near-native command of Spanish, have

previously taught the Spanish courses from which the students have been recruited to participate in

this project, and thus are accustomed to recognizing, interpreting, and correcting errors made by

students of L2 Spanish. Of course, one must note that the goal of instructors is to teach students

to write a standardized dialect of Spanish, thus all instructor corrections may not be identifying

actual “errors”, but rather dialectical usage which diverges from the proscribed standard; this is

especially true for Heritage learners whose prior knowledge of Spanish may not conform to the

academic standard used in classroom instruction. Thus, throughout this section of the dissertation,

the term “error” is used to refer to corrections made by instructors to students’ submitted writing;

whether or not these are all true errors in production is not investigated in detail.

To date, instructors have corrected approximately one-fifth of the essays in the COWS-L2H

corpus, for 61,714 sentences (862,839 tokens) of corrected text. The distribution of corrected essays

is shown in Table 7.2. Unlike the error annotations, which target specific errors, the corrections

made to this set of essays are more holistic in the manner of an instructor correcting a student’s

work. The result of the correction process is a parallel version of the text, from which corrections

can be extracted using NLP tools such as ERRANT [Bryant et al., 2017]. This aligned set of original

and corrected sentences can be used for training NLP systems such as grammatical error correction.

To our knowledge, our corpus represents the first parallel dataset of holistically corrected Spanish

text available to researchers.
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As with our error annotations, we are in the process of completing additional corrections and

anonymization, and will make more data publicly available as soon as practical. As can be seen in

Table 7.2, the largest portion of our currently annotated corpus comes from beginning students;

completing additional corrections will allow us to present a larger number of errors from students at

more advanced levels. Given the wide variety of ways a sentence can be corrected, our goal is to

have each essay corrected by three individuals. Multiple corrections will increase error coverage in

our training data and will provide additional test references for NLP researchers who are trying to

build automated error identification and correction models.

7.3. ERRANT

To determine how the error patterns of students vary by level and L1, I conduct a detailed

analysis of error patterns in the COWS-L2H corpus. An effective analysis of error distribution in

language learner writing requires error annotations which include the location and type of each

error. The manual annotation of errors is a time-consuming and labor-intensive process which

requires extensive training on the annotation scheme to ensure consistent and accurate annotations.

Currently, the COWS-L2H corpus contains manual error annotations for two specific error types,

gender and number agreement and usage of the personal “a”. However, because I wish to use error

data from the corpus to conduct an analysis across a wide variety of grammatical and stylistic errors,

I must conduct a broader evaluation of the errors contained in student writing.

Given that the COWS-L2H corpus contains 3,516 essays which have been fully corrected by

graduate instructors of Spanish, I am able to automatically extract and tag a diverse set of errors

for analysis. While this method tends to be less accurate than manual error annotation by skilled

annotators, it allows for the rapid analysis of multiple types of errors. The corrections made by

instructors include both strictly grammatical corrections, such as replacing an erroneously selected

article with its correct counterpart, spelling and orthographic corrections, and stylistic corrections

such as word choice. See Table 7.3 for examples of the types of errors identified and corrected by

instructors in the COWS-L2H corpus, as well as the resulting automatic annotations.

To automatically annotate the errors identified by the instructors, I align sentences from

the original and error-corrected subset of the COWS-L2H corpus to create a parallel sentence

dataset containing approximately 12,000 sentence pairs. Because the corrections can include both
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Original: Stephen King escribió muchos libros .
Corrected: Stephen King ha escrito muchos libros .

A 2 2 ||| M:VERB:TENSE ||| ha ||| REQUIRED ||| -NONE- ||| 0
A 2 3 ||| R:VERB |||escrito ||| REQUIRED ||| -NONE- ||| 0

Table 7.3. Example of ERRANT automated annotation

splitting run-on sentences and merging sentence fragments, I include both individual sentences and

concatenated consecutive sentences in the search space for sentence alignment. Additionally, due to

sentence reordering and merger during correction, sentences in the parallel original and corrected

essays cannot be aligned based on sentence order. Rather, I calculate the Levenshtein edit distance

between each original sentence and each sentence and concatenated sentence pair in the corrected

text. I then align the sentences with the lowest Levenshtein distance. While this method does not

account for merging sentence fragments, I found that splitting of run-on sentences was far more

common in the correction process. This method also does not account for the well-known issue of

linguistically nonsensical word-level alignments which result from the Levenshtein algorithm [Xue

and Hwa, 2014]. For example, as shown by Xue and Hwa [2014], because the Levenshtein algorithm

seeks only to minimize the number of edits, it is likely to align words like “repair” and “reparations”.

However, the sentence-level alignment at this stage is meant only to identify which two sentences

correspond to one another in the parallel texts; word-level alignment to extract specific errors is

completed after sentence-level alignment.

Once aligned, extracting error corrections from sentence pairs is a matter of aligning words and

identifying all edits made to transform the original sentence into its corrected version. This process

is achieved using the ERRor ANnotation Toolkit (ERRANT) [Bryant et al., 2017], which locates,

categorizes and annotates corrections in parallel original and corrected sentences. ERRANT uses a

modified version of Damerau-Levenshtein distance [Damerau, 1964] developed by Felice et al. [2016]

to align words in parallel texts. Specifically, Felice et al. [2016]’s word alignment method seeks to

introduce linguistic information into the alignment algorithm by creating a substitution cost function

which considers differences in lemma form and part-of-speech, in addition to the character-level

differences used by the original Damerau-Levenshtein algorithm. Substitutions in which the aligned

words share the same lemma form and/or part of speech (as determined by SpaCy [Honnibal and

Montani, 2017]) cost less than do linguistically unrelated substitutions. As a result, words which
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have similar spelling and linguistic function are more likely to be aligned. Felice et al. [2016] argues

that the resulting alignments are more natural and human-like than alignments generated by simple

character-level alignment used by the Damerau-Levenshtein algorithm.

Once word-level alignment is completed, errors can be readily identified by comparing the

differences between the original and corrected versions of the parallel text. ERRANT uses a set of

approximately fifty ordered rules to classify each identified error into one of three operations and

one of seventeen general error classes based on the dependency label and part of speech of both the

original and corrected word form. The full errant tagset, including the seventeen basic categories

and subdivisions thereof, is shown in Figure 7.1. Words removed during correction are tagged with

the operation label “U” for “unnecessary”. For those words inserted during correction, the operation

label is “M” for “missing”, while the operation label for replacements is “R”. Most errors identified

by ERRANT correspond to part of speech tags, such as Noun and Verb. However, the system also

includes specific tags for word order, morphological, spelling, and orthographic errors. For example,

two words with the same lemma are tagged as morphological variants (“MORPH”). Aligned words

which are not identical but which have at least half of their characters in common are tagged as

“SPELL”, while words which differ only in capitalization are tagged “ORTH”. Additionally, two

adjacent words whose order is swapped by correction are tagged “WO” for “word order”. See

Table 7.3 for examples of these error types. A detailed explanation of the ERRANT system’s

rule-based error tagging method can be found in Bryant et al. [2017].

Although ERRANT was originally designed for error analysis of English texts, I have modified

the system to process and tag Spanish parallel texts. To achieve this modification, I set the SpaCy

library settings used by ERRANT to the “es core news sm” Spanish model, allowing the system to

utilize SpaCy’s Spanish dependency parser and part-of-speech tagger. Because ERRANT’s rules

are largely based on part of speech and dependency tag analysis, many of the required changes

can be achieved simply by switching to an effective Spanish dependency and POS tagger. I also

provide the system with a Spanish word list generated from the Spanish HunSpell dictionary so

that it may identify spelling errors in Spanish text. Finally, I remove and replace English-specific

error-tagging rules, such as the use of “to” to indicate infinitive verbs. My modified ERRANT code

is available on GitHub6. It should be noted that the Spanish version of Errant is not as fine-grained

6https://github.com/ucdaviscl/cowsl2h
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Figure 7.1. ERRANT tagset, including both basic part-of-speech categories and
subdivisions thereof. Taken from Bryant et al. [2017].

in its classification of verb errors due to need to write many additional rules to account for the

relatively complex verbal morphology of Spanish; rather, the system classifies the large majority of

verbal morphology errors simply as “MORPH” indicating that the two tokens in question share the

same lemma but different surface forms. Where possible, the system is more specific, for example, it

correctly identifies substitutions of a verb with an infinitive as a “VERB:FORM” error. For the

purposes of this study, I condense all related verb errors into a single “VERB” category; future

work in developing more fine-grained automated analysis of Spanish verbal morphology is warranted

to improve future iterations of the proposed method and to obtain a more detailed understanding

of the development of verbal morphology in Spanish learner writing.
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7.4. Method and implementation

Given the amount of data and demographic information collected from various students sub-

populations in the COWS-L2H corpus, it is possible to conduct a fine-grained analysis of student

errors across a wide-range of variables. However, in order to limit the scope of this study, I investigate

the error rates across two paired groups of students.

The first pair consists of Heritage learners and advanced English-dominant L2 learners of Spanish.

Various studies (Montrul [2005], Lynch [2008], Montrul [2012]) argue that, in many aspects, Heritage

learners are more similar intermediate-to-advanced L2 learners than they are to native-dominant

speakers of the target language. For example, past work has observed non-native-like performance

among Heritage learners in inflectional morphology (such as verb and gender agreement) [Polinsky,

2008a, Montrul, 2012], determiner usage [Montrul and Ionin, 2012], and lexical access [Hulsen et al.,

2002]. Therefore, I wish to investigate error rate variation between these two sub-populations of

students.

The second pair consists of lower-level English-dominant L2 learners and Mandarin-dominant

L3 learners of Spanish. As previously mentioned, L3 learners of Spanish in the context of American

universities are, by necessity, also L2 learners of English. As all such students can be assumed

to have passed the TOEFL exam prior to admission at an American university, their level of

English proficiency can be assumed to be rather high. This raises important questions about how

these students linguistic background affects their acquisition of Spanish, if at all, compared to the

acquisition patters of English-dominant L2 learners. Several previous studies have argued that

the learning of an L2, especially one which is typologically more similar to the target L3 than the

learner’s L1, effectively blocks syntactic and lexical transfer in L3 acquisition [Rothman, 2011, Foote,

2009]. If one were to accept Rothman’s “typological primacy model”, one would expect to find

little difference between the error rates of L2 and L3 learners of Spanish. To further investigate

this hypothesis, I conduct a statistical analysis of the error rates, as extracted from Errant, of

English-dominant L2 learners of Spanish and their Mandarin-dominant L3 leaner peers.

In order to identify meaningful differences in error rates across student populations, I first

extract all errors (as identified by instructor corrections) from the entire sub-corpus of parallel

corrected data using the modified ERRANT tool. I then iterate through the identified errors in each

essay and group these errors by both part of speech and operation type (for example, determiner
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replacements) to obtain a set of error counts for each student essay. I simultaneously track the

count of each part of speech and the overall token count for later use in calculating error rates.

Once these counts are obtained, I group the essays by L1 and course level so I can segregate the

target groups for analysis. Finally, calculate the mean and standard deviation for each L1-course

grouping. For example, I identify all students who are L1 speakers of English enrolled in Spanish

1, and calculate the mean and standard deviation for this group of students across 14 of the error

classes used by ERRANT, with three classes omitted due to low error counts.

7.5. Statistical analysis

For my introductory level English and Mandarin students, I aggregate the students based on

demographic data indicates that indicates that they are enrolled in either SPA1, SPA2, or SPA3,

and who report either English or Mandarin as their primary language. I also include students who

report L1 proficiency in English and another language, such as Hindi, in the English group.

Similarly, I aggregate all students enrolled in either SPA21, SPA22, SPA23, or SPA24 and

who report English as one of their L1s into the English group (there are a handful of students

enrolled in these courses who report both English and Spanish as co-dominant L1s; I exclude these

students from my analysis as their experience with Spanish would likely classify them as Heritage

learners). Finally, I group all students enrolled in SPA31, SPA32, and SPA33 into the Heritage

learner category.

Because the student groups I am comparing are independent (there is no overlap between

the members of the populations), I am able to conduct a straightforward analysis for statistical

significance using the two-sided t-test for each of the error categories, and for each of the sub-

population pairings. In each case, the research hypothesis is that there is a difference between the

error rate of the two populations, while the null hypothesis is simply that there is no difference

in error rate between the target populations. I implement the statistical tests in Python using

the SciPy package. Prior to running the t-tests, I remove outliers from the data using the “IQR

method”, wherein any values which fall 1.5 times the interquartile range above the third quartile

or below the first quartile (that is, 2.7 standard deviations above or below the mean) are removed

from the dataset. Because Student’s t-test [Student, 1908] assumes homogeneity of variance, I must

first use Levene’s test [Levene, 1961] to ensure that the variance between my two populations for
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Category 1-3 English 1-3 Mandarin p-val 21-24 English Heritage p-val
mean std mean std mean std mean std

ADJ 0.078 0.078 0.068 0.078 0.235 0.098 0.072 0.077 0.084 0.062
ADP 0.195 0.135 0.147 0.102 <0.001 0.183 0.112 0.107 0.074 <0.001
ADV 0.035 0.057 - - - 0.085 0.093 0.027 0.045 <0.001
AUX 0.104 0.111 0.035 0.049 <0.001 0.108 0.086 0.083 0.100 0.049
CCONJ 0.054 0.066 0.067 0.094 0.462 0.057 0.061 0.063 0.077 0.553
DET 0.170 0.125 0.139 0.100 0.004 0.175 0.126 0.100 0.073 <0.001
NOUN 0.155 0.105 0.119 0.066 <0.001 0.114 0.077 0.099 0.073 0.131
ORTH 0.012 0.011 0.008 0.008 <0.001 0.007 0.006 0.009 0.007 0.015
OTHER 0.020 0.015 0.015 0.010 <0.001 0.016 0.010 0.017 0.011 0.475
PRON 0.163 0.151 0.131 0.137 0.035 0.219 0.155 0.089 0.083 <0.001
SCONJ 0.078 0.122 0.018 0.047 <0.001 0.060 0.075 0.076 0.101 0.228
SPELL 0.012 0.014 0.002 0.003 <0.001 0.003 0.004 0.003 0.004 0.222
VERB 0.162 0.109 0.163 0.125 0.970 0.210 0.122 0.097 0.068 <0.001

Table 7.4. Mean error rate, standard deviation, and p-value for comparison between
1) lower-proficiency English- and Mandarin-dominant students, and 2) Intermediate-
to-advanced proficiency English-dominant and Heritage students. Numerator is count
of each error type. Denominator is token count for ORTH, OTHER, and SPELL;
otherwise, count of target POS. NOTE: ADV figures are not included for Mandarin
students due to insufficient data.

the target error type is homogeneous. If the p-value for Levene’s test shows no significant difference

between the variance of the two populations (that is, a p-value greater than or equal to 0.05) I use

Student’s t-test; otherwise, I use Welch’s t-test [Welch, 1947], a generalization of Student’s t-test

which does not assume homogeneity of variance. I report the mean, standard deviation, and p-value

for each error category across my two comparison groups in Table 7.4.

7.6. Key differences and findings

At this stage, I am not seeking to draw any specific conclusions regarding the differences observed

between my defined learner groups. Rather, I conduct an exploratory analysis to understand what

differences in error rates between these groups may warrant further investigation using both more

fine-grained classification and more powerful statistical analysis techniques. To that end, I describe

below my preliminary findings and discuss next steps in clarifying the extent of and possible reasons

for the differences observed.
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7.7. Lower proficiency learners

As previously discussed, the two largest populations represented in introductory level (that

is, SPA 1-3) of the COWS-L2H corpus are English-dominant L2 learners and Mandarin-dominant

L3 learners of Spanish. As shown in Table 7.4, the error rates seen in texts written by these two

groups are similar in many respects. For example, the two groups are nearly identical in their

error rates related to verb choice and morphology. This is an interesting finding given that both

Spanish and Mandarin have verbal systems which clearly mark aspect in a manner that is more

complex than English. Thus, I would expect Mandarin students to more readily acquire Spanish

verbal morphology; however, this does not appear to be the case, at least from the error rate data

presented above. Given the fact that the the present analysis is based on data from students enrolled

in courses designed for lower-proficiency students, it is possible that neither the English nor the

Mandarin students are using more complex forms of verbal aspect marking at this early stage of

Spanish acquisition. Additionally, because of English’s relatively simply verbal morphology, the

Mandarin-dominant students in the corpus, who are all proficient in English, are receiving no transfer

benefit in acquiring Spanish verbal morphology from their knowledge of English. Conversely, L2

English-dominant learners appear to make more errors in noun choice and morphology than do L3

Mandarin-dominant students, despite the fact that neither language uses gender agreement on nouns,

which accounts for a large portion of the observed errors. Additionally, English modifies nouns for

number agreement, like Spanish, but unlike Mandarin; so if typological similarity of their dominant

language were the only factor involved in determining the difficulty for students in acquiring the

target form, English-dominant students should have an advantage over Mandarin-dominant learners.

This discrepancy highlights the possibility of transfer from the Mandarin-dominant students’ L2,

English, as hypothesized by several of the transfer models discussed in Section 2.1.3.

One of the most salient error rate distinctions between my two lower-proficiency groups is in

spelling and orthographic errors. ERRANT defines orthographic errors as simply errors in whitespace

usage and capitalization; I expand this definition slightly in my ERRANT-SP implementation to

include errors in use of accent marks (which are quite common in learner text). Spelling errors

are identified as those aligned tokens which share at least half of their characters, and which do

not fall into another category (such NOUN for cases of noun inflection). As can be seen in Table

7.4, Mandarin-dominant students enrolled in SPA 1-3 make far fewer spelling and orthographic
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errors than do their English-dominant peers. Without much more investigation, I cannot identify

the underlying cause for this discrepancy, but it may arise from pedagogical differences in writing

instruction in China and the United States. For example, Mohan and Lo [1985] reports that his

Chinese-speaking students (most of whom are from Hong Kong and therefore Cantonese speakers)

indicate that their previous study of writing in English focused on accuracy at the sentence level,

rather than larger organizational features of their writing. A more directly applicable study is

Hsiang and Graham [2016], who report on a large-scale survey of writing teachers in Chinese primary

schools. These surveys indicate that, on the whole, Chinese teachers use a “product-based model”

of writing instruction, which focuses on “correct production, with relatively little emphasis on

critical writing processes such as planning and revising” [Hsiang and Graham, 2016]. On the other

hand, surveys of teachers in the United States indicate that more time and attention is paid to

the development of writing planning and revision skills, with relatively less focus on accuracy at

word and sentence level [Gilbert and Graham, 2010, Graham, 2019]. Of course, these are broad

statements about trends which certainly vary depending on both regional, school, and individual

instructor practices. However, it is worth noting that, in all measures in which a statistically

significant difference was found between English- and Mandarin- dominant students in SPA 1-3, the

English-dominant learners show a higher error rate than their Mandarin-dominant counterparts.

Another interesting comparison which warrants further investigation is the difference in error

rates between Mandarin- and English- dominant students in the production of determiners. Unlike

English, which has the definite article “the” and indefinite article “a/an”, there is no definite or

indefinite article in Mandarin [Li and Thompson, 1989]. According to White [2008] “It has long

been observed that L2ers have problems with article acquisition, particularly if the L1 lacks articles.”

Thus, in the absence of transfer from L2 English, one would expect Mandarin-dominant students

to produce determiner errors at a higher rate than English-dominant students. However, in the

data examined for this study, I observe the opposite: Mandarin-dominant students make fewer

determiner errors than their English-dominant peers. This observation indicates that, in the context

of L3 acquisition, L1 transfer may not be as large a factor as some research, such as Schwartz and

Sprouse [1996], has previously argued. Thus, our findings do not support the simple L1 transfer

hypothesis, which states that language learners transfer the syntactic structures of their L1 to all

subsequently acquired languages. The fact that native English speakers do not perform markedly
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better than native Mandarin speakers in measures of grammatical determiner usage (which includes

gender and number agreement of articles) indicates that the Mandarin speakers, whose language

does not use articles and differs significantly in its number agreement system from both English

and Spanish, are not transferring these aspects of their L1 when learning Spanish as an L3. These

findings could support several of the transfer hypothesis discussed in Section 2.1.3: L2 transfer

[Williams and Hammarberg, 1998], the Cumulative Enhancement Model [Flynn et al., 2004], or

the Typological Primacy model [Rothman, 2011], among others. Further research is warranted to

determine which model best explains the data in COWS-L2H and other Spanish learner corpora,

and to garner a more complete understanding of the impact of L2 transfer in the acquisition of L3

Spanish.

7.8. Advanced L2 and Heritage learners

According to Montrul [2012], “identifying how L2 learners and heritage speakers differ in their

linguistic competence and processing abilities is a critical step towards developing efficient pedagogical

strategies in language teaching.” Previous research [Lynch, 2008, Rothman, 2009, Silva-Corvalán,

1994] has pointed out that the language proficiency of Heritage learners is not comparable to that of

speakers living in a country where the target language is dominant. Further, Montrul [2012] states

that Heritage learners are “’interrupted’ native speakers who retain a great deal of native abilities

but whose competence in the heritage language is comparable to the linguistic abilities achieved

by adult second language learners.” Additional studies of the language competence of L2 and

Heritage learners have found that while Heritage learners show more native-like performance in their

phonetics and phonology, Heritage and L2 learners perform similarly in measures of morphosyntactic

development [Au et al., 2002, Knightly et al., 2003]. However, the present study found that the

error rates of Heritage learners are significantly lower than those of advanced L2 learners in several

grammatical categories including pronoun, preposition, and determiner usage, as well as verb choice

and morphology errors. While the present study does not attempt to explain or account for these

differences in detail, the marked differences observed between advanced L2 students and the Heritage

learners indicates that the relationship between these two groups may be more subtle than previously

thought, and that further research is needed to understand the language competence of Heritage

learners, and how their abilities compare with those of both L2 and target-dominant individuals.
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For example, Montrul [2002] states that Heritage learners, whose experience with Spanish is likely

limited to speaking, produce more errors in written elicitation tasks relative to L2 learners. Given

the fact that the elicitation tasks in COWS-L2H are all written, we would expect to see higher error

rates among our Heritage population relative to the advanced L2 learners; however, we find the

opposite for all but one of the categories we investigated (orthographic errors), as shown in Table 7.4.

That said, one must also consider the fact that the Heritage learners in the Heritage course series of

COWS-L2H likely represent more proficient Heritage learners, as discussed in Section 2.1.1. Thus,

the statements of researchers like Montrul may not be entirely applicable to the group represented

in the present study.

The discrepancy in errors on verbs, which includes both verb choice and verbal morphology

errors, is a clear distinction between our Heritage learners and the advanced L2 population. As can

be seen in Table 7.4 and Table 7.5, advanced L2 learners make roughly twice the number of verb

errors as to their Heritage learner counterparts. This finding does not fully accord with reports in

previous work, such as Montrul [2002] and Potowski et al. [2009], who both report that Heritage

learners show similar distribution of usage of specific verbal morphology (in the case of Montrul

[2002], preterit-imperfect distinctions), but that Heritage learners produce more errors. Additional

investigation of specific aspects of verbal morphology is necessary to better understand which aspects

of verbal morphology are more sensitive to attrition and incomplete acquisition in Heritage learners.

Additional observations include the fact that Heritage learners produce fewer errors in the

production of determiners, prepositions and pronouns. These findings again do not fully accord with

previous studies comparing Heritage and L2 learners. For example, Montrul [2011] found that L2

learners significantly outperformed Heritage learners in a written task which required participants

to select the correctly inflected determiner form preceding a noun. However, the data related to

pronouns is not unexpected given previous research; Montrul [2010b] found on a task to correctly

assess the use of clitic pronouns that Heritage learners performance approximates that of native

speakers in several sub-categories. One possible difference between the previous studies and the

present research is the fact that most previous work has been based on acceptability judgment

tasks, short elicitation tasks, and comprehension tasks, which may not adequately simulate natural

language production. The present study, on the other hand, uses data drawn from a corpus of

relatively long (250+ token) written productions. Further investigation is needed to both confirm the
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preliminary observations presented here, as well as to further sub-categorize the broad part-of-speech

classes used in the present study. For example, are Heritage learners producing fewer errors than L2

learners on all types of pronoun or all types of determiners, or are specific types less error prone in

Heritage learners?

An additional interesting feature of this data is that the observed differences between advanced

L2 learners and Heritage learners appear stable across the Heritage series. That is, if we compare the

most advanced learners (those in Spanish 24 and upper division courses) with either the beginning

Heritage course (Spanish 31) or the advanced Heritage course (Spanish 33), the results do not

change drastically. This comparison is detailed in Table 7.5. Thus, it appears that Heritage learners

begin their study of Heritage Spanish with specific advantages over their L2 peers, rather than

developing these advantages over the course of their Heritage classroom experience. This finding

again casts doubt on much previous research which has highlighted the similarity between L2 and

Heritage learners. Of course, one must consider the possibility that the students who choose to

enroll in the Spanish 31-33 series are the more proficient among the Heritage learner population,

with less proficient students enrolling in the non-Heritage Spanish series. If the larger Heritage

learners population is self-segregating based on proficiency, one could expect those higher proficiency

students who choose to enroll in Spanish 31-33 to show more native-like performance than their

advanced L2 peers. Additional investigation of student demographics is needed to determine how

the Heritage learner population is distributed across the various course offerings represented in the

COWS-L2H data.

7.9. Discussion and implications

One consideration which should be addressed is differences in the correction methods used by

the graduate student instructors who corrected the essays in COWS-L2H from which the presented

errors rates are extracted. Clearly, “correcting” an essay is, at least partially, a subjective task, and

it is likely that two instructors would correct the same essay in different ways. A necessary next

step in the analysis of the data in COWS-L2H is to extract error rates by corrector, to ensure that

no significant differences in error rate can be attributed to corrector bias. The same issue arises

when attempting to make comparisons across different parallel corrected corpora. For example, in

an examination of the CATE corpus [Lu, 2010], I found that error rates were, in general, far higher
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Category 24+ English 31 Heritage p-val 33 Heritage p-val
mean std mean std mean std

ADJ 0.160 0.092 0.084 0.086 <0.001 0.074 0.083 <0.001
ADP 0.251 0.042 0.154 0.111 <0.001 0.183 0.112 0.107
ADV 0.075 0.081 0.041 0.053 0.043 0.020 0.039 0.001
AUX 0.129 0.090 0.059 0.074 <0.001 0.084 0.099 0.024
CCONJ 0.074 0.044 0.055 0.065 0.165 0.075 0.093 0.933
DET 0.195 0.090 0.104 0.066 <0.001 0.098 0.075 <0.001
NOUN 0.170 0.092 0.113 0.096 0.007 0.097 0.069 <0.001
ORTH 0.012 0.009 0.011 0.006 0.513 0.009 0.007 0.012
OTHER 0.018 0.010 0.022 0.018 0.203 0.016 0.011 0.362
PRON 0.268 0.075 0.165 0.160 <0.001 0.070 0.060 <0.001
SCONJ 0.067 0.069 0.090 0.097 0.277 0.069 0.102 0.921
SPELL 0.001 0.001 0.004 0.004 <0.001 0.003 0.004 <0.001
VERB 0.231 0.109 0.130 0.083 <0.001 0.091 0.071 <0.001

Table 7.5. Mean error rate, standard deviation, and p-value for comparison between
1) the study’s most advanced English-dominant L2 learners (Spanish 24 and upper
division), 2) Introductory Heritage learners (Spanish 31), and 3) Advanced Heritage
learners (Spanish 33). Numerator is count of each error type. Denominator is token
count for ORTH, OTHER, and SPELL; otherwise, count of target POS.

than those seen in even the lowest-proficiency students in COWS-L2H. In CATE, the mean error

rate on determiners was 35.6%, and the mean rate of verb errors was 40.7%. Thus, it appears that

the correction methods used in CATE are more expansive, though a more detailed analysis of the

CATE corpus is needed to confirm this observation.

As presented in Table 7.4 and Table 7.5, the student sub-populations represented in the COWS-

L2H make errors at different rates beyond those expected based on proficiency alone, indicating

potential effects of language transfer, writing methodology, and Heritage language experience. As

mentioned previously, the present study does not seek to draw specific conclusions about the

linguistic competence of one group relative to another. Rather, I present these findings in an effort

to understand where potential differences between learner sub-populations may exist which warrant

further investigation. Although preliminary, this study represents one of few large-scale corpus-based

investigations of discrepancies between Spanish learner groups. Additionally, if these preliminary

findings can be confirmed and expanded upon further analysis, they will contribute substantially

to the understanding of L1 and L2 transfer in L2 and L3 learners, and to language attrition and

(re)acquisition in Heritage learners.
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CHAPTER 8

GEC Approach & Implementation

As previously discussed, one of the key goals of the present dissertation is the development and

implementation of an AI-powered automated corrective feedback system for learners of Spanish that

is adaptable to learner proficiency, first language, and other individual learner attributes, and that

is able to deliver feedback in a manner that is supported by research in second language pedagogy.

The implementation of this system requires the development and testing of several components that

will be the topic of the following chapters, namely:

(1) A method for creation of realistic synthetic training data to supplement the real learner

data from the COWS-L2H corpus.

(2) Grammatical error correction (GEC) models trained on this data to identify and correct

errors in learner text.

(3) A system to classify identified and corrected errors into meaningful categories so that

appropriate feedback can be provided to students.

(4) Templates and generative language models to craft feedback to be presented to students.

(5) An application that pulls these components together so that students can input their

writing and receive automatically generated feedback in a near-real-time manner.

The studies presented in the preceding chapters demonstrate the large amount of variation

among L2 learners of Spanish with regard to lexical development, syntax acquisition, and frequency

and types of errors made. Given the demonstrated variation between student sub-populations, the

foregoing studies help motivate my hypothesis that an error correction and feedback model that

is tuned to specific learner attributes will be more effective in both correctly identifying student

grammatical and stylistic errors, and that such a model will facilitate presenting those errors in

ways that are most beneficial to individual students. The utility of learner data to train automated

feedback models is well established in the literature on GEC [Napoles and Callison-Burch, 2017,

Leacock et al., 2010, Zhao et al., 2019, Chollampatt and Ng, 2018, Junczys-Dowmunt et al., 2018].
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Additionally, the efficacy of augmenting sparse learner data with artificially generated parallel error

data has been clearly demonstrated [Junczys-Dowmunt et al., 2018, Grundkiewicz and Junczys-

Dowmunt, 2019, Stahlberg and Kumar, 2021]. But, in order to augment data in a way that more

accurately reflects the distributions of errors, syntactic structures, and lexical items seen in learner

data, we must first identify those structures and patterns. For example, as the error analysis

presented in Chapter 7 indicates, Heritage learners are less likely than their L2 learner peers to

make errors in production of pronouns; therefore, the error correction model should predict pronoun

errors less frequently for Heritage learners to more accurately reflect the distribution seen in student

writing and thereby reduce model error. To facilitate a model that will be able to effectively make

such predictions, I explore methods of generating synthetic training data that replicates error rates

observed in different student groups.

All models tested in the following experiments are evaluated using precision, recall, and the

F0.5 metric. Precision is the number of total model predictions that were correctly predicted. Recall

is the number of total members of the target class that were predicted by the model, and F0.5 is

the modified harmonic mean of precision and recall, which gives more weight to precision than to

recall. F0.5 is the standard evaluation metric used in GEC, as many researchers argue that reducing

false positives is more important than avoiding false negatives in the GEC task. That is, it is

more important that corrections presented to students be accurate rather than that all possible

corrections are caught by the model. Although previously discussed in Chapter 3, I provide the

definition of F0.5 in Formula 8.1 for context.

(8.1) F0.5 = ((1 + 0.52) ∗ Precision ∗Recall)/(0.52 ∗ Precision + Recall)

8.1. Initial tests of error correction using COWS-L2H

Before I begin exploring methods of synthetic data augmentation for Spanish GEC, I first must

establish the baseline performance of models trained only on real learner data from COWS-L2H. To

demonstrate the efficacy of the current version of the COWS-L2H corpus in the GEC domain, and

to further demonstrate the efficacy of using error corrected learner data in training GEC models, I

trained a baseline GEC model by fine-tuning mT5 [Xue et al., 2021], a multilingual text-to-text

transformer model, on parallel corrected corpus data from COWS-L2H. I also implement a BiLSTM
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GEC model as described in Davidson et al. [2020] as a baseline for comparison to previous Spanish

GEC projects. All of the above models cast GEC as a monolingual translation problem, an approach

which has proven fruitful in GEC applications (for example, Napoles and Callison-Burch [2017]).

For these baseline models, we do not augment our training data with synthetically generated error

data.

All experiments, with the exception of the Llama2 model described below, are run using

sentence-level correction; that is, each sentence from a source essay is paired with its counterpart

from the corrected essay, giving an input/output sentence training example. I choose to correct

learner writing at the sentence level rather than training a model to correct the entire essay at

once in order to make the real learner data compatible with the source data used for synthetic

data generation. Source data from Cañete et al. [2020] is provided as sentences rather than longer

texts, so I need my models to be trained to handle single sentence input and output. To preprocess

the parallel original and corrected essay pairs provided in COWS-L2H into suitable training data

for a sentence correction model, I first align sentences in the original and corrected essay texts.

Essays are first split into sentences using NLTK [Loper and Bird, 2002] and then aligned to create

parallel-corrected sentence pairs for training. Given the fact that the correction process may result

in the removal or reordering of sentences, I must use string matching to ensure that sentences are

correctly aligned. I use The Fuzz7 string matching package in Python and align each sentence in

the original essay with the most similar sentence in its corrected counterpart essay. We train and

evaluate our models using a 70/15/15 train/test/validation split. I implement the mT5 model in

Python using Huggingface Transfomers8 and PyTorch Lightning9, using the 1.2 billion parameter

mt5-large variant of the model. During fine-tuning we use a batch size of 16 and a maximum

sequence length of 64, and fine-tune for 2 epochs.

In order to compare to results reported in previous Spanish GEC work [Yadav, 2022, Davidson

et al., 2020], I train the BiLSTM and fine-tune the mT5 models on a previously released version

of COWS-L2H, which contains 12,678 parallel corrected sentence pairs, as well as on the updated,

larger version of corpus that contains approximately 70,397 sentence pairs (giving a 70% training set

of approximately 49,000 sentences). As expected, I find that the increased size of the updated version

7https://github.com/seatgeek/thefuzz
8https://huggingface.co/docs/transformers
9https://lightning.ai/docs/pytorch
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Model Recall Precision F0.5

Previous corpus w/o data augmentation
BiLSTM 0.094 0.139 0.101
mT5-large 0.30 0.102 0.216
Updated corpus w/o data augmentation
BiLSTM 0.254 0.153 0.224
mT5-large 0.619 0.326 0.525

Table 8.1. GEC results demonstrating the marked improvement in model perfor-
mance when trained using the updated version of the corpus.

of the COWS-L2H corpus markedly improves Spanish GEC performance, even with no synthetic

data augmentation. Training mT5-large on our current 49,277 sentence pair training set more

than doubles the F0.5 score as compared to training the same model on our previously released set

of 12,678 sentence pairs. Our results when training on the previously released version of our dataset

are comparable to those achieved by Davidson et al. [2020] and Yadav [2022], who used a BiLSTM

and mT5, respectively. Results are shown in Table 8.1. These results clearly demonstrate the utility

of the parallel original-corrected essays pairs provided in COWS-L2H for the GEC domain, and

show that the recently released expanded COWS-L2H greatly increases potential value of the corpus

to GEC researchers. These results also serve as a useful starting point for the further research on

training GEC models using data from COWS-L2H that will follow in this chapter.

8.2. Synthetic data generation

In an effort to further improve the GEC results reported above, I now explore the use of

additional synthetically generated parallel error data for initial finetuning of a GEC model for

Spanish learners. Much work in GEC in recent years has focused on developing methods to generate

synthetic training data to augment the learner writing used for training large neural GEC models.

For example, Zhao et al. [2019] uses random insertion and shuffling operations to add noise to

error-free text, while Grundkiewicz et al. [2019] uses spell-checkers to create confusion sets of similar

words to corrupt source data. More recently, Ye et al. [2023] propose a method of generating

synthetic data without the need of a source monolingual corpus. The synthetic datasets proposed

in these works are used to pretrain neural encoder-decoder models (modeled after those used for

machine translation), that are then further fine-tuned on real annotated learner data. Recently,

much work in data augmentation for GEC has focused on developing methods to replicate the
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distribution of learner errors in synthetic training data, resulting in improved end-model performance

[Takahashi et al., 2020, Lichtarge et al., 2020, Stahlberg and Kumar, 2021]. The data augmentation

method I propose for my dissertation draws heavily from that of Stahlberg and Kumar [2021],

who proposes the use of sentence corruption models that condition the generation of an “errorful”

sentence on a “correct” version of the sentence along with one or more error tags. Because the

error tags are explicitly passed to the generation model, replicating an error distribution seen in

real learner data becomes relatively straightforward. In their work, Stahlberg and Kumar [2021]

demonstrate that the use of synthetic training data that replicates the error distribution extracted

from a large corpus of learner text significantly improves model performance. Further, Stahlberg

and Kumar [2021] propose a method of adapting GEC models to writer proficiency by modifying the

error distribution used to create their synthetic training data. While Stahlberg and Kumar [2021] do

not find this method effective for building models adapted to three different CEFR levels, their work

is limited to English learner data from the BEA 2019 corpus [Bryant et al., 2019] that was collected

from numerous educational settings and not controlled for topic. Further, Stahlberg and Kumar

[2021] does not account for learner L1 or language education experience when developing their

CEFR-level targeted models. Building on their work, I developed a data augmentation technique

that as-closely-as-possible replicates the error distribution seen in Spanish learner data from the

COWS-L2H corpus across various levels of proficiency, L1, and linguistic experience.

In my approach, the generation of synthetic data for model training begins with collecting a

large quantity of error-free text that can be corrupted to provide additional training data without

the need for costly and time-consuming human annotation. However, identifying and corrupting

error-free text from a large Spanish corpus, such as the Corpus del Español [Davies, 2016], is not

sufficient to create data that “looks like” learner data. While the method proposed by Stahlberg

and Kumar [2021] seeks to replicate the error distribution seen in real-world data when generating

synthetic training data, they make no effort to ensure that the underlying sentence structure and

lexicon is similar to that of language learner writing. To put this in simpler terms, inserting errors

into Moby Dick will not result in data that resembles learner writing, even if the distribution of

inserted errors is roughly the same. I hypothesize that, like the benefits seen from replicating

error rates, finding data with similar lexical density and diversity, as well with similar indicators of

syntactic complexity such as parse depth, will result in synthetic training data that more closely
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resembles real learner data, thus resulting in better performing GEC models. Alternatively, given

recent improvements in the field of machine translation, automated translation of learner data

written by students learning other languages (for example, learners of English) to Spanish can

potentially be used a source of data that replicates the syntactic complexity and lexical diversity of

Spanish learner writing.

To generate the necessary synthetic training data, I collected a set of well-formed sentences

that I then corrupted to create my synthetic training data for a given proficiency and L1 pair. I

insert errors into the data using the method described in Stahlberg and Kumar [2021]. Specifically,

I fine-tuned an mT5 encoder-decoder model [Stahlberg and Kumar, 2020] conditioned on an input

sentence and an error tag; the fine-tuned model takes as input a well-formed sentence and a target

error tag, and outputs a rewritten version of the same sentence that includes an error of the target

type.

8.2.1. Data sources. While there is a lot of Spanish text available online, such as texts

from Project Gutenberg and Spanish Wikipedia, that could potentially be used as sources for

synthetic data generation, we run into a potential issue of the linguistic misalignment between these

well-formed texts, most likely written by native or highly proficient speakers of Spanish, with the

linguistic characteristics of L2 learner writing. Particularly, when considering data drawn from

Wikipedia and news articles, the texts likely contain a much more formal style than our target

student writing. Additionally, such data sources are known to contain far fewer examples of certain

grammatical forms; for example, Wikipedia and news data is likely to contain fewer instances of

first- and second-person construction than we see in student texts. However, the availability of L2

student-written Spanish language texts is far more limited than general Spanish language text. As

such, I develop two different synthetic errorful datasets using my proposed approach that I use to

fine-tune language models using several different setups.

First, I extract a large (5 million sentences) dataset of general Spanish text, drawn at random

from the Spanish BERT training dataset of approximately 300 million sentences made available

by Cañete et al. [2020]. This data comes from fifteen different sources, including Spanish Wikis,

ParaCrawl [Bañón et al., 2020], and OpenSubtitles, to name a few. Details of the dataset sources

can be found at https://github.com/josecannete/spanish-corpora. I preprocessed the data

to remove URLs and multi-spaces, but retain casing. I also removed sentences that begin with
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symbols or numbers, as I found that these tend not to contain grammatical text, as well as those

sentences containing non-Latin characters and those identified as containing non-Spanish text using

the Python langdetect package. This preprocessing and filtering results in an initial dataset of

approximately 4.3 million sentences.

Second, I source L2 Spanish learner essays from two primary sources: the uncorrected portion of

the COWS-L2H corpus (2461 essays containing 51,976 sentences), and the L2 Spanish subcorpora of

CEDEL2 [Lozano, 2022] (4,399 essays containing 92,906 sentences). The resulting dataset, containing

approximately 145,000 sentences, is far smaller than the general Spanish text dataset mentioned

above. However, given that these are actual learner-written essays elicited using prompts, these

texts allow me to generate additional synthetic training data that aligns closely with the linguistic

properties of the L2 learners targeted by my proposed error feedback system. Given that these

texts are uncorrected, they may contain errors that will remain once synthetic errors are added.

Therefore, it is important to test whether or not including this data as part of the fine-tuning of my

GEC model actually improves the error correction capabilities of the model or not.

8.2.2. Alignment with linguistic properties of L2 Spanish writing. Creating a synthetic

training corpus that as closely as possible reflects the linguistic properties of L2 Spanish is an

important aspect of the present project. Measuring these properties, such a lexical density, lexical

complexity, and syntactic complexity, is difficult when faced with single sentences, as found in the

Cañete et al. [2020] dataset, rather than full texts. However, given the well known correlation

between syntactic complexity and sentence length [Ortega, 2003, Kyle and Crossley, 2018], I chose

to test applying an additional filter to my augmentation source data. To that end, I calculated the

average number of tokens per sentence and the average number of characters per non-stop word

token for each level in the COWS-L2H corpus, as shown in Table 8.2. Stop words are commonly

used function words (such as ’de’, ’la’, ’que’, ’el’, ’en’, ’y’, ’a’, and ’los’) and auxiliary verbs that

are considered to contribute relatively little to the semantic content of a given sentence, and that,

in text processing, are considered to provide minimal value for purposes of sentence classification

[Wilbur and Sirotkin, 1992]. In the current context, removing stop words helps me get a better

view of the length, and hence perceived complexity, of words used by students in their writing. I

use the stop word list defined for Spanish in the NLTK corpus package [Bird, 2006].
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Proficiency Level Sentence count
Avg. sentence length

(in tokens)
Avg. token length
(in characters)

Beginner 44,921 12.134 5.759
Intermediate 7,404 14.787 5.926
Composition 8,491 16.684 5.980
Heritage 6,934 19.401 6.165
Weighted total 67,750 13.834 5.848

Table 8.2. Average sentence length and average token length by clustered level
from a 67k sample of COWS-L2H. This data shows a clear increase in the sentence
and token length as one would expect as students progress in their acquisition of
Spanish.

As an initial effort to ensure that highly complex sentences are excluded from the source data

for synthetic augmentation, I calculate the outlier sentence lengths for the student cohort with the

longest average sentence length (the Heritage cohort), using the interquartile range (IQR) method.

This approach identifies as an outlier any value that is more than 1.5 times the IQR greater than

the Q3 value, or 1.5 times the IQR less than the Q1 value. This method gives me a maximum

sentence length of 40.5 tokens in length; the calculated lower bound is negative, so I do not set a

lower bound. Thus, when filtering the data drawn from the Cañete et al. [2020] corpus, I remove

any sentences whose token count exceeds 41 tokens, as tokenized by NLTK. I use the student cohort

with the highest average token count so that the overall length of the selected source sentences is

not more than the longest sentences in the corrected COWS-L2H dataset.

As for the average token length of non-stop words in each sentence, I identified an outlier range

of average token length greater than 8.6 tokens, again calculated using the IQR method. To test the

necessity of removing sentences whose average token length exceeds this threshold, I sampled 10,000

sentences from my dataset and checked the average token length. I found only 3 sentences in this

set of 10,000 that have an average token length greater than 8.6 tokens. This finding aligns with

the known Zipfian distribution of word length relative to frequency [Sigurd et al., 2004], indicating

that it would be quite unlikely to have a large number of sentences with such a high average token

length. Therefore, I chose to forego further filtering of the dataset based on this metric, given that

it would result in very little change to the overall dataset.

8.2.3. Synthetic errorful sentence generation. Generation of synthetic training data for

grammatical error correction models can be achieved using a number of approaches, ranging from
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random noise insertion [Xie et al., 2018] or using a reverse spell-checker to inject errors [Grundkiewicz

and Junczys-Dowmunt, 2019] to injecting specific error types (such as verb conjugation errors)

based on a distribution drawn from real data [Takahashi et al., 2020]. As shown in Takahashi et al.

[2020] and Stahlberg and Kumar [2020], injecting errors that align with the error rates observed in

real-world learner data results in better downstream system performance, potentially allowing one

to generate sufficient training data to fine-tune an LLM model given a relatively small number of

learner texts from which to extract error rate data and examples. Given this observation, I modify

the Tagged Corruption Models approach proposed by Stahlberg and Kumar [2021], in which they

train a sequence-to-sequence model to output a corrupted sentence given an original sentence and

a target error tag, with the goal that “the tag distribution in the synthetic data can be made to

match the distribution of a specific target domain” [Stahlberg and Kumar, 2021]. That is, given the

known error rates observed in a dataset, one can select conditioning error tags at similar rates to

create synthetic data that more closely resembles the real-world data in terms of error distribution.

Training this type of model is relatively straightforward, as one need only generate a set of error

tags of a size equal to the number of sentences to be corrupted with the same error tag rates as

observed in real-world data, and then randomly select an error tag to condition the generation of

each synthetic errorful sentence from a source sentence. This approach is similar to the “online”

synthetic data generation approach described in Stahlberg and Kumar [2021]. That is, for every

example sentence xn in a source data set N , I draw an error tag t∗n from P∗, a known distribution of

Errant error tags (extracted from parallel real data). I then condition the generation of an errorful

sentence yn on the original sentence xn and the error tag t∗n. In order to create a synthetic dataset

that more closely resembles learner data, I maintain a separate error tag distribution, P∗level,L1

for each level and L1 combination observed in the leaner data from which I source the error tag

distribution. I retain the L1 and level information so that, during GEC model training, I can

condition generation on the errorful sentence along with the L1 and level, resulting in a model that

considers L1 and level when making its correction predictions. Thus, the final generated synthetic

dataset contains the following items for each synthetic errorful sentence: original sentence, level, L1,

and the generated synthetic errorful sentence.

Given the relatively small size of the available error-corrected Spanish leaner data in the

COWS-L2H corpus relative to the English data used by Stahlberg and Kumar [2021] to train their
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error generation model, as well as advances in large language models since their original paper

was published, I do not attempt to train a transformer model from scratch on learner data as

done by Stahlberg and Kumar [2021]. Rather, I fine-tune an mT5 model [Xue et al., 2021] to

generate errorful sentences from my source data. Specifically, I fine-tune the model using real-world

instructor-corrected data drawn from the COWS-L2H corpus, with the corrected sentence as the

input and the original error-containing sentence as the output. To conduct this training, I first

filter sentences from corrected sub-corpus of COWS-L2H that do not contain errors, such that I

have a set of sentence that contain errors and a set that does not contain errors. Given that I

want my final model to be conditioned on only one error tag per input, and the fact that many

sentences in COWS-L2H contain multiple errors, I convert sentences in COWS-L2H that contain

more than one error into multiple single-error examples. This is done by running ERRANT on the

original-corrected sentence pair in reverse order (that is, with the corrected sentence as the original

and the errorful sentence at the target in ERRANT); the resulting M2 file contains the individual

edits necessary to convert the corrected sentence back into the original errorful sentence one edit at

a time. I then apply these edits individually, creating a training sentence pair for each tagged edit,

thus giving me a single error tag and a single error edit per example sentence pair.

Using this approach, I generate a synthetic training dataset of 3 million synthetic parallel

corrected sentences from the source data drawn from the Cañete et al. [2020] dataset, as discussed

in Section 8.2.1. Additionally, I use the same approach to generate 144,882 synthetic sentence pairs

using the data drawn from CEDEL2 and the uncorrected portion of COWS-L2H. I use this synthetic

training data for Stage 1 finetuning of my GEC model, as discussed in Section 8.4.1 below.

8.3. Synthetic data generation with LLM models

It should be noted that recent developments in generative large language models (LLMs) may

make the separate training of a synthetic error generation model, as described in this section,

unnecessary. Initial experiments with GPT-4 reveal that, with relatively simple prompting, the

model is capable of effectively rewriting sentences to include specific error types, given a correct

sentence and a description of the target error type. Future work in domain is likely to focus on

the use of generative LLMs to generate synthetic training data for GEC models. Unfortunately,

as shown by limited testing on data from COWS-L2H, as well as related work [Fang et al., 2023,
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Bryant et al., 2023], these same models have shown strong tendency to over-correct learner writing,

resulting in major rewrites when only targeted corrections are desired. An example of this type of

over-correction is shown below:

Model: GPT-4 (w/ 10-shot in-context learning).

Input Sentence: Él es un ex estudiante de Davis.

GPT-4 Correction: Fue estudiante en Davis.

GPT-4 Explanation: The correct verb is “fue” (was) as it’s talking about a

past condition.

Instructor: No change needed.

Thus, until more controllable models or better prompting strategies are developed, it is likely

that LLMs will be useful in dataset generation, but that their role in actual GEC tasks will remain

limited. Of course, given the rapid progress being made in this domain, my predictions may be

shown incorrect in short order. As an initial test of the efficacy of using GPT-4 to generate synthetic

data for the GEC task, I use the model to create a small dataset of 500,000 synthetic sentence pairs,

with source sentences taken from the Cañete et al. [2020] corpus as described in Section 8.2.1 above.

Errorful sentences are generated using a simple prompting strategy as shown in Figure 8.1. As with

the synthetic data generation method outlined above, my approach for generating data with GPT-4

again involves drawing error tags from the known error tag distribution for the various student

proficiency levels and L1s studied in Chapter 7. These error tags are then converted into plain text

descriptions that I wrote or this purpose; for example, a R:VERB:SVA tag from ERRANT is

translated to plain English as “subject-verb agreement error”. Finally, I select a sentence from

the 500,000 sentence set, pair the sentence with an error type, and use this information to prompt

GPT-4. Similar to the synthetic data generated following the method outlined in Section 8.2.3,

I test the utility of the data generated by GPT-4 by using it as stage 1 fine-tuning data for an

mT5-based GEC model.

8.4. Model development and adaptation

In order to build an error feedback tool that can be used by students learning Spanish, I need a

GEC system that is effectively able to correct a large cross-section of errors in Spanish learners’

writing. Given that the probability of different types of errors varies significantly by L1 and level, as
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Figure 8.1. Example of simple LLM prompt used to generate synthetic error data
using GPT-4.

discussed in Chapter 7, I hypothesize that a model trained using synthetic data that is aligned with

the error distributions observed in learner text and that is able to consider L1 and level when making

its predictions will be more effective in correcting student writing. To investigate this hypothesis, as

well as to test the effectiveness of the synthetic data generation approach discussed in Section 8.2,

I train several models using variations of synthetic data and L1 and level information, using two

different pretrained LLMs as the starting point. The primary model I use in this research is mT5

[Xue et al., 2021] with additional testing done using Meta’s Llama 2 [Touvron et al., 2023].

8.4.1. Primary model training. mT5 [Xue et al., 2021] is a multilingual version of the

open-source T5 language model presented in the paper “Exploring the limits of transfer learning

with a unified text-to-text transformer” [Raffel et al., 2020b]. As the title implies, the T5 and

mT5 models take a sequence as input and generate an output sequence using an encoder-decoder

architecture [Sutskever et al., 2014]. As is common with a large majority of current state-of-the-art

models in NLP, T5 is built using the Transformer model architecture [Vaswani et al., 2017], with one

transformer serving as the encoder and a second as the decoder. This architecture itself is not novel,

as the encoder-decoder architecture using transformers is outlined in the original transformers paper

[Vaswani et al., 2017]. While T5, and subsequently mT5, makes relatively minor changes in the

architecture introduced by Vaswani et al. [2017], such as modifying the method of adding positional

embeddings, the overall architecture remains largely unchanged. The key innovation of the T5
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family of models is its use of large-scale, well cleaned pretraining data and an increased number of

trainable parameters. The mT5-large model (the primary model used in the experiments reported

below) has 1.2 billion parameters that have been pretrained using a masked language modelling

task on a approximately 27TB of cleaned data (drawn from web crawl, books, and other openly

available sources) in 101 source languages. T5 and mT5 are both designed as tools for transfer

learning; that is, the model is intended to be first fine-tuned on large amounts of textual data using

a language modelling objective, to create a general model capable of “understanding” language. To

be applied to a specific task (in the present case, GEC), one must fine-tune the pretrained model

on paired input and output sequences that represent the expected input and desired output of the

target task. This task could be, for example, machine translation in which case the model would be

fine-tuned on parallel translation data between languages. Considering that GEC is often framed

as a monolingual machine translation task, as discussed in Chapter 3, the T5 family of models is

well suited to the GEC task, and has been used widely for that purpose (see, for example, Rothe

et al. [2021], Fang et al. [2023], and Qorib et al. [2022]). This choice further follows recent research

in using mT5 fine-tuning for GEC in lower-resourced languages [Gomez et al., 2023, Pajkak and

Pajkak, 2022, Korre and Pavlopoulos, 2022].

To fine-tune a pretrained mT5 model for task of correcting grammatical errors for second

language learners of Spanish, I start with the mT5-large model, available on the Huggingface hub 9.

Our fine-tuning training data consists of:

(1) 3 million sentences of synthetic parallel error data generated using source data from the

Cañete et al. [2020] corpus.

(2) 145,000 synthetic parallel sentences generated using data taken from CEDEL2 and uncor-

rected portion of COWS-L2H.

(3) 2,922 instructor-corrected essays from the COWS-L2H project, containing approximately

71,000 parallel training sentences (of which 70% are used for training).

To first test the efficacy of using synthetic data to fine-tune the proposed language model, I

trained multiple versions of the fine-tuned model using various combinations of synthetic and real

data. I first divided the real learner data into a 70/15/15 train/test/validation split. I then tested

fine-tuning the model on 70% train split of real COWS-L2H learner data only - approximately 49,000

9https://huggingface.co/google/mt5-large
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parallel sentences from COWS-L2H, as discussed in Section 8.1. This resulted in a surprisingly

effective GEC model that was able to achieve an F0.5 score of 0.525 on the held-out test set, a not

unimpressive score given the limited amount of training data and the complexity of the GEC task.

I then proceeded to train a series of fine-tuned models to test the importance of including synthetic

training data in the LLM finetuning process, and various methods of incorporating that data. I

fine-tune mT5 using the following combinations of training data and approaches; all fine-tuning

uses a batch size of 16 and a maximum sequence length of 64, and I fine-tune each model version

for 2 epochs on the stated dataset:

• Fine-tuning on various amounts of synthetic data only. Beginning with 500,000 randomly

selected sentence pairs of synthetically generated error data, I fine-tune multiple models

with progressively increasing amounts of synthetic data, increasing by 500,000 sentence

pairs for each successive model (1 million, 1.5 million, 2 million, 2.5 million, 3 million).

This experiment allows me to investigate how increasingly large amounts of synthetic

training data affects fine-tuned model performance. Additionally, I train a baseline model

for comparison that uses the reverse spell-checker technique [Grundkiewicz and Junczys-

Dowmunt, 2019] to insert errors.

• Starting with the models trained in the previous step, I further fine-tune each model using

the 49k training set of real learner data from COWS-L2H. This experiment investigates the

effect of a two-stage fine-tuning process that first fine-tunes on synthetic data, and then

fine-tunes on real learner data as a separate step. This approach facilitates the retraining

of new GEC models with different small datasets of real learner data, effectively allowing

end-users to train a GEC model better suited to their specific learner community.

• Combining synthetic and learner data for a single fine-tuning stage. In this experiment, for

each of the dataset sizes outlined in step 1 above, I add the full 49k COWS-L2H training

data and randomly sort the combined data for training. This experiment is designed to

ascertain if the two-stage fine-tuning approach is better at aligning the resultant model

with the target learner group, as I hypothesize it will be.

• Finally, as an initial test of the efficacy of generating training data with GPT-4, I first

fine-tune an mT5 model on the 500,000 sentence-pair synthetic dataset generated using

GPT-4. I then proceed to stage-2 fine-tuning on the 49k COWS-L2H training dataset.
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8.4.2. L1 and proficiency level informed model training. In the next model training

experiment, I test if providing the model with explicit information about proficiency level and

native language of the learner writing the input sentence will improve model performance as

hypothesized by allowing the model to better align its predictions with the error rates of various

learner sub-populations. To conduct this experiment, I retrain an mT5-large model using the

dataset configuration of my best-performing model from the dataset experiments above, namely the

two-stage fine-tuning model first fine-tuned on 2 million synthetic sentence pairs and then fine-tuned

on 49k sentence pairs of real learner data. However, during training and inference, I add explicit

information about learner L1 and level by appending two additional special tokens to each input

sentence that provide the model with information about L1 and level (this includes the artificial

L1 and level information inserted into inputs during synthetic data generation, as discussed in

Section 8.2.3. The method of adding these special tokens to the tokenizer vocabulary in PyTorch

and HuggingFace Transformers is shown in Figure 8.2. I hypothesize that providing this information

to the model at training time will allow the model to more accurately align its correction predictions

with the error distributions seen in learner data for students with different L1s and proficiency

levels.

Figure 8.2. PyTorch code for adding special tokens to tokenizer vocabulary

8.4.3. Alternate models tested. I addition to the primary GEC model testing using mT5

and synthetic data augmentation, I conducted limited experiments using a fine-tuned version of

Meta’s Llama2 [Touvron et al., 2023]. Specifically, I fine-tune the Huggingface’s pretrained version

of the Llama2-7b variant that contains 7 billion parameters and is pretrained using a language

modeling objective, but is not fine-tuned for chat-type interactions. Unlike the sentence-by-sentence

corrections used in training the mT5 model (necessitated by the format of available source data

used for synthetic data generation), I fine-tuned the Llama2 model to correct entire essays, hoping

to capitalize on the additional context to improve output corrections. I fine-tuned the model using

a 2-shot prompting approach; that is, for each fine-tuning example, I provided the model with

two example original-corrected essays pairs, a source original essay, and an output target. A full
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example prompt is shown in Appendix A. I fine-tune the model using LORA [Hu et al., 2021] to

reduce the number of trainable parameters and 4-bit quantization to reduce the model’s memory

footprint. I fine-tune the model with 2045 corrected essays from COWS-L2H. I then test the model’s

performance in the GEC task by using the model to correct a held-out test set of 438 corrected

essays, splitting and aligning the input and output sentences into sentence pairs as required for

ERRANT, and evaluating the F0.5 using ERRANT.

8.5. Results

I report overall results from my primary model variants in Table 8.3. As can be seen, my best

performing model is the two-stage fine-tuned mT5-large, first fine-tuned on 2 million sentences

of synthetic data generated using the approach described in Section 8.2.3, using error rate data

extracted from error-corrected COWS-L2H data to create a synthetic dataset that reflects the error

distribution seen in our real learner data. These results confirm my hypothesis that an error-informed

method of generating synthetic data is a well-motivated approach that significantly improves model

performance relative to simpler data augmentation approaches. A very similar approach is used

in Stahlberg and Kumar [2021] to generate a massive (500 millions sentence) synthetic dataset

for English GEC; they demonstrate that at such a large scale, synthetic data may even be able

to replace real error-corrected training data entirely for languages where error corrected data is

unavailable.

Additionally, providing the model information about L1 and level, as described in Section 8.4.2,

results in a small, but consistent, improvement in model performance across all models tested, as

compared to the corresponding model trained with no L1 and level information. This improvement,

while modest, still supports the provision of L1 and Level information to the GEC model at training

time, especially since providing this information is straightforward and does not increase required

resources for model training. Of course, further testing with additional languages and possibly larger

datasets would help clarify if the improvement seen with this particular dataset can be generalized

to other languages and datasets.

Next, to understand the impact of synthetic training data size on model performance, I report

the F1 score for the “Both (ERB, two-stage) w/ L1 and Level” condition trained with increasingly

large amounts of synthetic data. This is the variant in which I first fine tune on the error-rate based
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Training data Precision Recall F0.5

Artificial only (3 mil) - reverse ASpell 0.047 0.024 0.039
Artificial only (3 mil) - error rate based (ERB) 0.205 0.263 0.214
Artificial only (500k) - GPT-4 generated ERB 0.394 0.293 0.369
COWS-L2H only (12k sents) 0.216 0.131 0.191
COWS-L2H only (49k sents) w/o L1 and Level 0.608 0.311 0.510
COWS-L2H only (49k sents) w/ L1 and Level 0.619 0.326 0.525
Both (ASpell, single-stage) w/o L1 and Level 0.572 0.313 0.491
Both (ERB, single-stage) w/o L1 and Level 0.671 0.381 0.582
Both (ERB, single-stage) w/ L1 and Level 0.692 0.397 0.602
Both (GPT-4, single-stage) w/o L1 and Level 0.695 0.478 0.637
Both (GPT-4, single-stage) w/ L1 and Level 0.715 0.491 0.655
Both (ASpell, two-stage) w/o L1 and Level 0.596 0.339 0.518
Both (ERB, two-stage) w/o L1 and Level 0.684 0.372 0.586
Both (ERB, two-stage) w/ L1 and Level 0.696 0.394 0.603
Both (GPT-4, two-stage) w/o L1 and Level 0.699 0.514 0.652
Both (GPT-4, two-stage) w/ L1 and Level 0.737 0.505 0.675
Llama2 finetuned on COWS-L2H 0.663 0.502 0.623

Table 8.3. Precision, Recall and F0.5 scores for primary mT5 model variants, along
with limited results from fine-tuned Llama2. ERB refers to error rate based synthetic
data generation. GPT-4 refers to synthetic data generated using a simple prompting
approach with GPT-4. Single-stage refers to a single training stage with both
synthetic and real learner data combined. Two-stage refers to first fine-tuning on
synthetic data, then fine-tuning on learner data. All models (other than Llama2)
are fine-tuned mT5-large.

synthetically generated data, then fine-tune on COWS-L2H data in a two-stage fine-tuning process.

These results, shown in Figure 8.3, demonstrate that model improvement garnered from increasingly

large amounts of synthetic training data begins to level-off after 2 million synthetic sentences used.

All of my reported models in Table 8.3 are trained on 3 million synthetic sentence pairs (with the

exception of GPT-4 generated synthetic data, which I only tested at 500,000 sentence pairs), as that

was the best performing quantity in my experiments. However, it seems that, given computational

or time constraints, one could likely limit the quantity of synthetic data to 2 million sentences or less

with little effect on overall model performance, as additional synthetic data provides diminishing

returns after this point.

To further compare the GEC performance of these models, particularly when comparing

synthetic training data approaches, it is important to consider the precision and recall by error type.

Specifically, Table 8.4 and Table 8.5 show the model precision, recall and F0.5 for the COWS-L2H

only (49k sents) w/ L1 and Level and Both (GPT-4, two-stage) w/ L1 and Level model conditions,

101



Figure 8.3. Model performance changes with increasing quantities of synthetic
data. The Y-axis is F0.5 score, while the X-axis is the number of synthetic sentence
pairs used in stage 1 of the 2-stage model training process.

respectively. As can be seen in these tables, while the latter model (the best performing model in

the experiments I conducted) outperforms the former model trained on real learner data only (as

expected given the additional training data), improvements are not even. Although I do observe

improvement in nearly every category, some show much more improvement than others. Specifically,

the most improvement is observed in the ADJ (adjective), ADV (adverb), PREP (preposition)

and VERB (verb) categories. Likewise, the least improvement (among the categories with more

than an handful of examples in the test set) is seen in the NOUN, PRON (pronoun) and SPELL

(spelling error) categories. The fact that nouns are among the least improved categories is not

terribly surprising given that lexical (word-choice) errors are notoriously difficult to correct, given

the large number of potential replacement targets that exist. That is, since there are a large number

of other nouns that can be valid substitutes for an erroneous noun, it is challenging for the language

model to select the same replacement as the human corrector in many cases. Spelling errors are

likewise difficult because, given a greater edit distance between the misspelled word and the intended

target word, it may be difficult for the language model to select the intended target depending on
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Category TP FP FN P R F0.5
ADJ 26 18 71 0.591 0.268 0.476
ADV 5 3 38 0.625 0.116 0.333
CONJ 1 0 1 1 0.5 0.833
DET 313 161 412 0.660 0.432 0.597
MORPH 42 22 58 0.656 0.42 0.59
NOUN 2917 1922 6135 0.603 0.322 0.513
NOUN:INFL 5 7 21 0.417 0.192 0.338
NOUN:NUM 3 4 5 0.429 0.375 0.417
NOUN:POSS 0 0 1 1 0 0
ORTH 242 143 235 0.629 0.507 0.6
OTHER 471 427 2249 0.525 0.173 0.373
PART 3 0 8 1 0.273 0.652
PREP 27 25 113 0.519 0.193 0.388
PRON 125 79 105 0.613 0.544 0.598
PUNCT 14 15 48 0.483 0.226 0.393
SPELL 1805 868 2803 0.675 0.392 0.59
VERB 68 43 237 0.613 0.223 0.454
VERB:INFL 0 3 0 0 1 0
VERB:SVA 1 1 1 0.5 0.5 0.5
VERB:TENSE 0 1 1 0 0 0
WO 31 13 84 0.705 0.27 0.533
TOTAL 6099 3755 12626 0.62 0.326 0.525

Table 8.4. Precision, Recall and F0.5 scores by error type for the COWS-L2H only
(49k sents) w/ L1 and Level model condition.

context. Additionally, the classification rules used in ERRANT can result in some changes being

classified as spelling errors that may more appropriately fall into another category, such as verbal

morphology errors, potentially resulting in an over-representation of this particular class in the

evaluation scoring. Regardless of these imbalances in performance between different error classes,

the key takeaway of these tables is that we observe improvement in nearly every category, thus

further demonstrating the efficacy of data augmentation for this task.

One further observation worth noting from the experiments reported in Table 8.3 is the fact

that the fine-tuned Llama2 model, which I fine-tuned on COWS-L2H parallel learner data only,

significantly outperforms the mT5 model trained on the same dataset (COWS-L2H only (49k sents)

w/ L1 and Level). Thus, it is quite possible that fine-tuning Llama2 on the combined synthetic and

learner data may result in a model that outperforms its mT5 counterpart. However, given that my

primary goal with the present project is to implement an effective GEC model that can be used at

scale as part of an automated written corrective feedback application for learners of Spanish, I chose
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Category TP FP FN P R F0.5
ADJ 54 12 43 0.818 0.557 0.748
ADV 22 7 22 0.759 0.5 0.688
CONJ 1 0 1 1.000 0.5 0.833
DET 336 128 389 0.724 0.463 0.651
MORPH 47 20 53 0.701 0.47 0.639
NOUN 4629 1795 4423 0.721 0.511 0.666
NOUN:INFL 12 9 14 0.571 0.462 0.545
NOUN:NUM 6 5 2 0.545 0.75 0.577
NOUN:POSS 0 0 1 0 0 0
ORTH 276 121 201 0.695 0.579 0.668
OTHER 1076 424 1644 0.717 0.396 0.617
PART 5 0 6 1 0.455 0.806
PREP 67 17 73 0.798 0.479 0.704
PRON 177 64 53 0.734 0.77 0.741
PUNCT 28 12 34 0.7 0.452 0.631
SPELL 2526 713 2082 0.78 0.548 0.719
VERB 139 31 166 0.818 0.456 0.706
VERB:INFL 0 2 0 0 0 0
VERB:SVA 1 1 1 0.5 0.5 0.5
VERB:TENSE 0 1 1 0 0 0
WO 53 12 62 0.815 0.461 0.707
TOTAL 9450 3376 9276 0.737 0.505 0.675

Table 8.5. Precision, Recall and F0.5 scores by error type for the Both (GPT-4,
two-stage) w/ L1 and Level model condition.

to focus my attention on improving the mT5 models rather than further exploring the capabilities of

Llama2. Given Llama2’s much larger size (7 billion parameters) compared to mT5-large (1.2 billion

parameters), training and running the model is much more computationally demanding than mT5.

As a result, deploying the Llama2 model is markedly more expensive, especially when used at scale,

such as when deployed for use by a language class. Thus, all further system development reported

in the following chapters utilizes the best-performing mT5 model, (Both (GPT-4, two-stage) w/ L1

and Level), as the method of correcting errors in student input text.
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CHAPTER 9

Feedback Generation

The next step in developing CorreGram, my proposed AWCF tool for learners of Spanish,

is to develop an effective method of turning automatically rewritten sentences containing error

corrections into pedagogically motivated feedback for learners. As mentioned in Chapter 2, direct

error feedback (feedback that simply tells a learner what their error is and how to fix it) is viewed

by many researchers as a less-than-ideal manner of providing writing feedback to language learners.

While the benefits of direct versus indirect feedback remain a matter of debate in language pedagogy

research, many L2 writing instructors argue for the primary use of indirect feedback as “a means to

engage student writers in guided problem-solving and to encourage them to take more responsibility

for their own progress” [Ferris, 2010]. According to [Heift and Hegelheimer, 2017], the “usefulness

of computer-generated corrective feedback largely lies in enabling learner self-study and practice

of the target language by identifying and explaining error sources”. Previous work had shown

that providing metalinguistic explanations without explicit corrections, which I term guided self-

correction, tends to result in better student engagement and immediate gains in target-form usage

[Sauro, 2021] and may improve long-term learning outcomes in writing tasks [Gao and Ma, 2019,

Barrot, 2021]. Given this evidence for the benefits of self-guided correction, this dissertation will

focus on a means of providing indirect feedback to language learners based on corrections made by

the grammatical error correction model discussed in Chapter 8. Specifically, I modify an approach

to error feedback presentation proposed in Liang et al. [2023]. In this approach, corrections made

by the GEC model to student input are extracted and tagged for error type using ERRANT. Errors

to be presented to students are then prioritized based on a set of priority rules that can be modified

by instructors, and feedback is generated in according to one of two primary strategies. If the

error is of a type that has a hand-written feedback template available, the feedback template is

populated with specific information from the input text [Woodworth and Barkaoui, 2020]. If the

error type does not have a corresponding template defined in the feedback generation script, then

the application uses GPT-4 to generate an appropriate feedback message to be presented to the
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student. These strategies and methods of adapting them based on instructor and student needs are

outlined in detail below.

9.1. Adaptability and Error Prioritization

One of the key features of the AWCF system I propose for students learning Spanish is its

adaptability to student proficiency level. Not only does the GEC model consider L1 and proficiency

when generating its corrections, but how and which of those errors are presented to students can be

readily adapted to learner proficiency by instructors whose students are using the system. Currently,

the system simply has a list of error presentation priorities that are hard-coded and are used for

all students regardless of proficiency level. For example, the current system design first presents

students with feedback on subject-verb agreement errors, if any are found, followed by other verb

inflection errors, followed by preposition choice errors, and so forth. However, this “priority list” is

easily modified by system users, particularly instructors whose students are using the system, to

prioritize different errors, or to prioritize them in a different order, according to the pedagogical

goals of the course and/or student proficiency level. For example, if one of the course objectives is

inculcating correct use of prepositions, an instructor may want to prioritize preposition omission

and choice errors over, for example, adjective agreement errors. Setting an appropriate priority for

error presentation is important, as the system also allows instructors to set a maximum number of

errors to be presented to students. The purpose of the maximum number of errors to be presented,

and the ranking of errors based on perceived pedagogical impact, is based on the “less is more”

approach discussed in Lee [2019]; while this study focused on feedback provided by instructors,

rather than automated feedback, the underlying principle is that focused feedback, designed to target

the specific forms that are appropriate to a student’s proficiency level and course objectives, is both

more engaging to students and results in better learning outcomes than comprehensive feedback

that attempts to correct every error in a student submission [Lee, 2019]. This idea aligns with

studies such as Ranalli [2018] and Bitchener and Ferris [2012], who discuss the fact that presenting

students with corrections that exceed their expected knowledge of the language may do more harm

than good. For example, it may be detrimental to present a Spanish 1 student with a correction

indicating that a verb should be in the subjunctive mood, given that this correction is likely to cause

confusion rather than helping the student to understand and internalize the underlying grammar.
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As previously mentioned, instructors are unlikely to correct every error in a student text, either

because they wish to target particular learning objectives or to avoid overwhelming students with

corrections [Hendrickson, 1980]. Similarly, the proposed error feedback system should be able to

adjust the error output based on learning objectives and number of errors, as providing feedback

that is too advanced or proposing too many corrections may overwhelm or confuse the student user.

While it does not make sense to set aside all errors except those which are the target of the current

curriculum, it is possible to prioritize those errors that are most relevant to the current course

objectives. Additionally, if the system detects a number of errors above a set threshold (that can be

adjusted depending on student proficiency and preferences), the system should begin removing errors

from its output starting with those of the lowest priority, again to avoid overwhelming students

with an excessive number of presented suggestions. The tolerable number of corrections offered

in a single task is a pedagogical question that needs to be decided in consultation with language

educators and through feedback from student users. Currently, CorreGram defaults to presenting a

maximum of three errors per student essay submitted, and does not vary this number based on

proficiency. This default system setting is arbitrary and may not reflect a reasonable number of

errors that students can effectively engage with. Also it will likely be useful to vary maximum

correction counts by proficiency level; this modification may be useful in avoiding overwhelming

lower-proficiency students with too many corrections while providing more advanced learners more

comprehensive feedback.

9.2. Template-based feedback generation

As mentioned in Section 3.4, many existing AWCF systems use pre-written templates to provide

feedback to learners. Template-generated feedback is often grouped into two basic types: specific

and generic [Woodworth and Barkaoui, 2020]. Generic feedback, the easier of the two to generate,

provides the same generic text whenever an error of a specific class is detected. Woodworth and

Barkaoui [2020] use the sentence fragment template from Criterion [Ramineni and Deane, 2016] as

an example; when Criterion detects a sentence fragment, it informs the user that “This sentence

may be a fragment. Proofread it to be sure that it has at least one independent clause with a

complete subject and predicate.” Specific feedback, on the other hand, may be easier to students to

understand and internalize, as it puts the proposed correction in context Woodworth and Barkaoui
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[2020]. In CorreGram, I use specific feedback for all template-based feedback provided to students.

For example, if a student wrote “Fui en la tienda”, and the system identified a R:PREP:WC error

(that is, replacement, preposition, word choice), CorreGram’s first feedback message to the student

would be “In this sentence ’Fui en la tienda.’ you made a mistake on the preposition ’en’, which

doesn’t sound natural. What other preposition should you have used? Please rewrite the sentence

with the correct preposition.” Thus, the student is provided with context and a brief explanation of

the error type, but is then asked to correct the error themselves.

Another important feature of the template-based feedback provided by CorreGram is the fact

that it provides the student with at least two opportunities to self-correct before revealing the

full text of the proposed correction. Returning to the example above, if the student is unable to

identify the replacement preposition needed to correct the error, the student will be presented with

the following follow-up feedback “That still seems a bit off. Think about common prepositions

and what might sound better here. Try one more time”, and asked once again to rewrite the

sentence with the correct preposition. Only if the student is still unable to correct the error, will

then be provided with the full text of the corrected sentence: “I still don’t think that’s right. I’d

recommend using ’a’ in this case. Here’s the corrected sentence: ’Fui a la tienda’.” As can be seen

from the progression of feedback, the goal of CorreGram’s template-based feedback is designed to

encourage student self-correction as a means of improving student learning outcomes. However,

given the debate in the second language teaching community surrounding the use and benefits

of direct versus indirect feedback, CorreGram also generates a single feedback example that can

be utilized instead of the self-correction templates. In the example above, the system would also

generate the following feedback message, which is stored but not shown to students under default

settings: “In this sentence ’Fui en la tienda’ you made a mistake on the preposition ’en’, which

doesn’t sound natural. I’d recommend using ’a’ in this case. Here’s the corrected sentence: ’Fui a la

tienda’.”. While the system defaults to using the “self-correction” setting for those error types for

which feedback templates have been written (currently 10 common error types that were chosen in

consultation with instructors from the UC Davis Department of Spanish & Portuguese), instructors

can set a flag in the server script for CorreGram to turn the system on “direct feedback” mode.

In “direct feedback” mode, a single feedback text is provided to students for each error. All of

the templates (the three templates comprosing the “self-correction” mode, as well as the single
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“direct feedback” text) are generated simultaneously by the feedback generation script and returned

to the application. CorreGram then presents the individual feedback texts to the user as needed

depending on the user’s ability to self-correct, or in the case of “direct feedback”, the single direct

feedback text is presented to the user. This ability to choose between “self-correction” and “direct

feedback” modes provides flexibility to instructors to adapt the proposed system to their pedagogical

approaches, as well as for conducting experiments comparing direct and indirect feedback approaches

in AWCF systems. An example of the Python code for generating feedback for a single error type is

shown in Figure 9.1 below.

Figure 9.1. Python code defining the set of template texts for presenting subject-
verb agreement errors to CorreGram users.

Although template-based feedback is brittle when faced with unexpected student input or more

complex errors, using templates offers several specific advantages over using generative LLMs to

generate feedback presented to students. First, templates are controllable, allowing an instructor

or system designer to know exactly what feedback will be presented to a student given a specific

error type. This control makes it easier for instructors to ensure that the feedback being provided

to students is level-appropriate and aligned to course learning objectives. Additionally, because

templates are clearly defined in the CorreGram code, adding new templates or modifying existing

templates to better suit student needs and course goals is a straightforward process.

9.3. LLM generated feedback

Given the relatively large number of possible error tags in ERRANT (see Figure 7.1, which are

multiplied given that many can be either substitution, insertion, or deletion operations, writing a

template for every possible error type is a challenging proposition. Rather than simply ignoring
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errors for which I have not written a feedback template, as is done by many template-based AWCF

systems such as Criterion [Ramineni and Deane, 2016], I wish to provide feedback for as many

errors as possible. Given recent advances in the language generation capabilities of LLMs such as

GPT-4, I conducted extensive tests with GPT-3.5, GPT-4, and, most recently, GPT-4o, to test their

ability to provide meaningful feedback given an original sentence and its error corrected counterpart

(generated by the GEC model). As mentioned previously, GPT-4 is not an effective tool for the

GEC task, as it tends to significantly rewrite student text to make it more “natural sounding”

rather than providing only those corrections deemed necessary to make the text grammatical and

comprehensible. However, my tests with the GPT family of LLMs revealed that these models are

quite effective at providing explanations of why sentences have been rewritten the way they were,

either by instructors or by a GEC model. That is, given an original errorful sentence written by

a student and a corrected version of the same sentence, GPT-3.5 and GPT-4 can usually provide

a reasonable explanation of the reasons for the differences between the two sentences. In this

procedure, I crafted a prompt for the GPT models as shown in Figure 9.2. This figure shows the

zero-shot setting, in which no explicit examples of the desired output type are provided to the model

for in-context learning. I also tested using a three-shot setup, in which the model was provided

with three examples of original and corrected sentences and their respective feedback prior to the

target original and corrected sentence. While I have not conducted an extensive review of the

feedback generated by GPT-4 for this task, I did conduct a qualitative review of 100 generated

feedback examples for each setting. I found that 88% of the zero-shot and 90% of the three-shot

feedback generation provided a reasonable explanation of the target error. Thus, while the three-shot

setting does perform slightly better, at least in my limited test, its improvement may not justify the

additional cost incurred by prompting the model with a significantly longer context.

Below is an example of the type of feedback generated by GPT-4o in the zero-shot setting using

the prompt shown in Figure 9.2.
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Input: Ella es una feminista y habla mucho de las problemas en la sociedad.

Output: Ella es feminista y habla mucho sobre los problemas en la sociedad.

Explanation from GPT-4 (w/ 3-shot in-context learning):

This sentence has a couple of errors. The first is that “feminista” is typically used without an

indefinite article, so it should be “Ella es feminista.” Additionally, there’s a prepositional error.

Instead of “de las problemas,” it should be “sobre los problemas” to properly convey “talking about”

or “discussing” the issues.

Figure 9.2. Python code defining the zero-shot GPT-4 prompt for generating
feedback to present to CorreGram users. This setting is used when a hand-written
template is not available for the error type in question.

Given the quite reasonable performance by GPT-4 and GPT-4o in generating feedback given an

original text and its corrected counterpart as context, I adopt this approach for use in CorreGram

to provide feedback to learners for error types for which a hand-written template has not been

created. As previously discussed, the LLM-generated feedback allows me to provide feedback to

students on errors beyond the relatively constrained set for which I have written custom templates.

As the CorreGram system matures and is implemented in the classroom setting, and as generative

LLM technology improves and becomes less costly, I will need to continue to examine the balance

between the controllability and predictability provided by hand-written templates and the flexibility,

specificity, and novelty provided by LLM-generated feedback explanations. Given a good LLM and

a well-crafted prompt, one could potentially prompt the model to generate multi-stage feedback in

a manner similar to the feedback provided by my hand-crafted feedback templates. As an example,

see the prompt and feedback generated by Claude shown in Appendix B. Clearly generating this

type of complex, multi-turn feedback is possible with an LLM; however, in a small-scale test of

20 sentences containing various errors from COWS-L2H, this approach proved unreliable and the

output alignment with the target errors was inconsistent. While the LLM would often generate
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correct feedback for one error, it would incorrectly classify others, or leave them our entirely. This

lack of control of output and potential for hallucination when generating text with LLMs is a known

issue (see, for example, Lee et al. [2024]. Clearly, using an LLM to generate the type of multi-stage

feedback described in this chapter is worth further exploration, as careful prompt design, improved

LLM training, and the use of methods to better control output (such as constrained decoding) may

improve the quality of LLM output for the present task. However, I leave further exploration of this

subject to future work, as the required experiments are outside the scope of the present work. It is

also worth noting that running an LLM at scale can become quite costly, especially when requesting

relatively lengthy outputs as required by multi-stage feedback, which could severely hamper the

utility of the proposed AWCF system to Spanish language educators. As such, although I explore

the use of LLMs for generation of feedback to students, CorreGram primarily relies on templates

(supplemented with LLM generation when needed) to generate feedback at this time.
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CHAPTER 10

AWCF Implementation and Use

Finally, I turn to integrating the previously discussed components - the grammatical error

correction model outlined in Chapter 8, fine-tuned with both synthetic and real leaner data and

trained to consider student proficiency level and L1 when generating error corrections, and the

feedback-generation methods outlined in Chapter 9 - into a single automated written corrective

feedback system that can be used by students learning Spanish to receive near-real-time feedback

on grammatical and major stylistic errors in their writing, with the goal of approximating the types

of corrections and feedback that an instructor might provide. The resulting web-based system is

CorreGram, a tool that can be used on-demand by learners of Spanish, or that can be modified and

hosted by individual instructors or language programs to provide error feedback to their students.

A prototype of the system is currently available as a web app for use by students in target courses

at UC Davis. Of course, we are still some ways from replacing the error correction, feedback

provision, and pedagogical skills of a trained educator. I argue, however, that the proposed system,

CorreGram, has potential application in reducing instructor workload and providing students with

useful feedback on their writing in a near-real-time manner that is simply impossible for an instructor

to achieve. The current iteration of the system is offered as a preliminary demonstration of how

the various components discussed in previous chapters can be combined into a working interface

usable by students. More work is needed to ensure that the feedback provided by the system is

useful to students at scale; even if the current feedback approach is not deemed effective by language

educators, the error correction and feedback methods proposed should be sufficiently adaptable to

allow future researchers and language educators to modify the system to better suit the needs to

their students.

10.1. Web App Design and Implementation

The web app for CorreGram is implemented in using the Streamlit open source web application

development tool for Python (github.com/streamlit/streamlit). Using Streamlit to build the web
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application allows for rapid prototyping and deployment of CorreGram, an important feature given

that the app is designed primarily as a proof-of-concept at this stage of development. The use of

Streamlit also makes it as straightforward as possible for instructors and language programs to

modify and update CorreGram to fit their specific needs, including using alternate language models

to handle different languages and to keep up with the rapid development of LLM technology.

The initial design of CorreGram is quite simple. Students input their first language; currently,

the underlying model is trained using “English”, “Spanish”, “Mandarin Chinese”, and “Other”

as the available languages, so these are the current language selections available in CorreGram.

Next, students input their proficiency level; again, the underlying model is trained using three

proficiency classes, “Beginner”, “Intermediate”, and “Advanced”, so these are the choices available

in CorreGram. The choices related to proficiency and L1 were made based on the most common

characteristics of the student population represented in COWS-L2H. However, given the modular

nature of CorreGram’s design, these categories can be changed by retraining the GEC model to

accept different categories and by updating the CorreGram web app script. The front page of the

CorreGram web application is shown in Figure 10.1.

Once the student has entered their L1 and proficiency level, the student may proceed to inputting

text to be analyzed by CorreGram, as shown in Figure 10.2. Once received, the input text is split into

sentences, which are then sent one-at-a-time to the fine-tuned T5 GEC model, the goal of which is

to rewrite sentences if needed to correct any grammatical or major stylistic errors present in the text,

as described in Chapter 8. The output of the GEC model (the “corrected” sentence) and the input

(the “original” sentence) are then aligned and compared using a modified version of the ERRANT

[Bryant et al., 2017] error annotation toolkit, ERRANT-SP [Davidson et al., 2020]. The set of

corrections to be presented to the student are then selected based on a set of heuristic rules; which

errors will be presented is determined by a priority list that selects errors of a given type first. For

example, if the priority list begins with [’R:VERB:SVA’, ’R:VERB:INFL’, ’R:PREP:WC’, ...],

the system will first search the tagged errors from the student essay to determine if there are any

subject-verb agreement errors (’R:VERB:SVA’); if it finds such an error, it will generate feedback

for that error and add it to the JSON file (generated by the feedback generation.py script)

containing the feedback to be presented to the student, and then proceed to searching for the

next-highest priority error type. If the system finds more than one example of any type of error,
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Figure 10.1. Web app layout as shown when accessing CorreGram online. Note the
two drop downs and text box allowing students to provide demographic information
and to submit text to CorreGram. The system provides a word count to students
for reference, but no minimum word count is requried. CorreGram operates on
a sentence-by-sentence basis, so students can provide as little or as much text as
desired.

it will generate feedback for only the first such error identified. If there are no errors of a given

type present in the student’s essay, the system will proceed to search for the next error type in the

priority list, in this case verb inflection errors (’R:VERB:INFL’). Only error types present in the
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priority list are presented to students; thus the priority list also serves as an exclusion list with

which instructors can effectively prevent specific error types from being presented to students. The

error priority list is defined by default in the current implementation of CorreGram based on an

consultation with Spanish language instructors, and is currently targeted primarily to less advanced

learners (that is the error types prioritized are ones that a less proficient learner is more likely to

make, such as subject-verb agreement errors). However, as mentioned previously, the priority list is

readily modifiable by instructors or others using CorreGram for language instruction. This feature

makes it easy for instructors to define what types of errors they want the system to focus on during

its feedback generation process; they can also instruct the system to completely ignore specific error

types as they see fit to meet their pedagogical goals. For example, it would likely not be useful

for a student in Spanish 1 to be presented with feedback instructing them to use the subjunctive

mood, as that aspect of the language has not yet been taught. This control over the types of errors

shown to students is pedagogically useful as it allows instructors to decide what types of errors to

prioritize based on current course objectives, and which types to ignore to avoid confusing students.

Additionally, while only one priority list is currently defined in the present prototype version of

CorreGram, I intend to create separate priority lists for different proficiency levels, allowing the

system to be deployed for use by students of varying levels of proficiency simultaneously (for example,

when deployed for use by an instructor teaching multiple different classes, or for a language program

as a whole).

An additional parameter that is configurable by system administrators is the number of errors

in a given submission for which the system will present feedback. The purpose of this error cap is

to avoid overwhelming students with too many edits; presenting an excessive number of edits can

lead to confusion and feelings of discouragement in second language learners [Hendrickson, 1980],

both in teacher provided and automatically generated feedback settings. By default, the system is

configured to provide at most three error corrections on a given text input. However, in testing

with students this limit seems to be a too-low error cap, especially for longer essays, resulting in

many errors not being presented to students. In future testing, I intend to configure the system

to have a flexible error presentation cap, for example allowing at most two errors to be presented

per input sentence, rather than having a global maximum. As previously mentioned, this error cap

is configurable by instructors and system administrators using CorreGram; they can modify the
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maximum error cap as they see fit based on their students’ pedagogical needs. Additionally, I am

planning to implement proficiency level based error caps in the next version of CorreGram, allowing

administrators using the system to set different numbers of errors to be presented for students with

different proficiency levels, given that students with lower proficiency are more likely to suffer from

the type of discouragement previously mentioned.

Figure 10.2. Processing of short essay written by a student in CorreGram.

10.2. Provision of feedback to students

Once feedback has been generated as described in Chapter 9 and Section 10.1 above, the

generated feedback is presented to students in a multi-step process that presents metalinguistic clues

about the error and allows for student self-correction. This style of feedback generation, termed

“implicit feedback” is based on work such as Ferris [2012], Ellis et al. [2006] and Barrot [2021], who

argue that providing students with direct explicit feedback, in which they are simply shown the

correction and possibly an explanation, is sub-optimal. As discussed in Chapter 2 and Chapter 9,

CorreGram primarily relies of “implicit” feedback, wherein students are told they made an error
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and provided clues about the error, such as pointing out where in the sentence the error is located.

Students are then asked to correct the error, allowing students to self-correct, which is arguably

more pedagogically valuable and results in better retention of the information provided [Barrot,

2021]. The ability to provide this type of multi-stage feedback in a near-real-time manner is one

of the primary advantages of an AWCF system like CorreGram. Instructors simply do not have

the bandwidth to provide this type of one-on-one, multi-step feedback to students, as doing so

would require an instructor to be present while the student is writing, to quickly make corrections,

and then to walk the student through each error and its correction. This may be possible in an

individual tutoring setting, but is certainly not possible for the average language instructor in a

classroom setting.

The feedback to be presented to students is generated using a combination of hand-crafted

templates and generative LLM technology, as discussed in detail in Chapter 9. Once feedback has

been generated and prioritized, errors are presented to the student one-at-a-time using a simple text

interface, as shown in Figure 10.3. Errors for which a custom feedback template has been written

are presented using the implicit feedback approach discussed above. First, the student is simply told

that they made an error on the target work type, for example, preposition, verb, etc. For example,

a student might be told “In this sentence, you made an error on the verb. What verb form should

you have used?” The student is then given an opportunity to correct the error. If the student is

able to self-correct, the system commends the student (as shown in Figure 10.4, and moves on to

the next error to be presented. If the student is not able to correct their mistake, then the system

provides a bit more information to help the student to self-correct; for example, “That’s not quite

right. Remember, in Spanish verbs have to agree with the subject of the sentence.” Once again, the

student is asked to self-correct. Only if the student is unable to self-correct after two attempts does

the system provide the actual correction to the student. This process is shown in Figure 10.5.

For error types that do not yet have a custom feedback template written, I use GPT-4 on the

OpenAI API to generate an explanation of the error and its correction that can be presented to the

student, as shown in Figure 10.6. However, as discussed in Chapter 9, I have recently experimented

with using LLMs to generate multi-stage feedback of the type generated using templates to date,

with impressive results (see Appendix B. Thus, in the next iteration of CorreGram, it is likely
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Figure 10.3. Presentation of an error using template-based feedback. Note that,
although this sentence contains multiple errors, CorreGram only addresses one error
at a time in order to avoid confusion.

Figure 10.4. Successful self-correction results in a simple Good job! message to
the student.

that these LLM-generated feedbacks will also take the multi-step implicit form preferred by many

language pedagogy experts.
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Figure 10.5. The student is provided with two opportunities to self-correct their
mistake, with slightly more information provided at each opportunity. Only if the
student is unable to self-correct is the correction and its explanation provided to the
student.

10.3. Initial Testing

As previously mentioned, the current implementation of CorreGram is intended as a preliminary

demonstration of a GEC-driven AWCF system for second language learners. As such, it has multiple

possible improvements, such as expanding the amount of feedback generated using LLMs, as well

as potential bugs that need to be thoroughly tested and resolved. Additionally, I am working to

reduce model size and improve inference speed to facilitate lower-cost usage of the system and

improve feedback response times. However, CorreGram is available for use, and it has been tested
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Figure 10.6. An example of further feedback provided to a student. In the first box,
the student successful self-corrects. The student is commended for self-correcting
their mistake and provided with a brief explanation. The second box is an example
of presentation of an error for which a custom template has not been written. In
this case, the feedback provided is generated using GPT-4.

by a handful of Spanish students, as well as instructors and others interested in the project. Initial

feedback has been quite positive; overall, users have been impressed with the system’s ability to

correctly identify many errors and craft meaningful feedback to guide self-correction. Of course,

the next step in the project is deploying the system at a larger scale; to that end, I have teamed
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up with instructors in the Department of Spanish and Portuguese at UC Davis to test the system

in an online introductory Spanish course, which will put the system in front of many students as

a means of stress-testing the system and exploring its pedagogical applications. These tests are

planned for Fall 2024. Our goal with these tests is to not only receive feedback from students in

terms of their perceived benefit from the system, but to also conduct pre- and post- usage writing

tests to determine if using CorreGram over the course of an academic term actually results in

demonstrable reductions in student error rates compared to students who receive traditional feedback

from instructors only. This test will also allow us to more thoroughly examine the pedagogical

assumptions that I made in implementing the system. For example, the choice to use implicit,

multi-stage feedback was made based on previous corrective feedback research. However, there has

been little research related to feedback modality in automated corrective feedback; thus the ability

to put the system in front of students affords the opportunity to test student preferences with regard

to feedback modality (implicit vs. explicit) as well as the impact of modality on the student error

rates, if any. I also expect that the use of the system by students in a real-world setting will expose

many bugs and other unforeseen issues, thus allowing me to improve the system in future iterations.

Ultimately, the current implementation of CorreGram is a prototype, and should be treated as such,

but with additional testing and refinement, most importantly, use by students in a classroom setting,

I look to create a writing feedback resource for Spanish language instructors and students that is,

at present, simply not available. Additionally, given that the methods used to create CorreGram

and its underlying GEC model rely on a reasonably-sized corpus of error-annotated Spanish text

(COWS-L2H), this approach should be adaptable to any language for which such a collection of

error-corrected text is available.
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CHAPTER 11

Conclusion

Much previous research argues that Automated Corrective Feedback (ACF) can serve an

important role in second language acquisition [Li et al., 2015, Tatawy, 2002, Ranalli, 2018]. However,

while several ACF systems are available for English learners, such as Grammarly, little work has

been done to develop similar systems for Spanish learners. This lack of research into developing

automated feedback tools for L2 Spanish is somewhat surprising given the fact that, as of 2016,

51% of students enrolled in university language courses in the United States were studying Spanish

[of Arts & Sciences, 2016]. Additionally, as of 2013, there were over 21 million students of L2

Spanish worldwide [de la Concha et al., 2013]. In this dissertation, I present findings on the linguistic

variation in the population of students enrolled in Spanish courses at a large US university. I

introduce a method for generating synthetic data for training and fine-tuning language models for

correcting errors in learner text that considers variations in error rates by L1 and proficiency level

when generating synthetic error data. I show that synthetic data generated using this approach

results in consistent improvements to a GEC model based on the T5 architecture. In order to better

understand the error rates present in real learner data, I also present three studies of student error

rates and syntactic development across different demographic and proficiency cohorts. These studies

further support the criticism of the “one-size-fits-all” approach to error correction and feedback.

Based on these studies, I proceed to train a GEC model that considers L1 and proficiency level

when generating error corrections, resulting in small by consistent improvements over a baseline

“one-size-fits-all” model. Finally, I present CorreGram, a new learning resource for students studying

Spanish as a second or Heritage language that integrates linguistic variation in it training and

generation processes, and provides near-real-time automated corrective feedback to students learning

Spanish. While the system is principally targeted at adults studying Spanish as a second or Heritage

language in a university setting, the proposed methods could be applied to any population of

language learners for which an error distribution can be established. The proposed system is

innovative in several ways. It is the first system that explicitly conditions generation of corrected
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output on L1 and proficiency, thus allowing the model to incorporate differences between student

groups into its learned representation. Second, my proposed system is, to my knowledge, the first

data-driven AWCF model proposed for use with L2 and Heritage learners of Spanish. Finally, my

proposed pipeline is the first AWCF system that allows instructors to modify system parameters

and feedback design to better fit specific pedagogical goals. To date I have conducted limited testing

with positive results in terms of perceived usability and usefulness of the system. However, in the

near future I and colleagues in the Spanish and Portuguese Department at UC Davis will deploy

the system for larger-scale use by students enrolled in Spanish language courses.

The primary contribution of this dissertation is establishing that “one-size-fits-all” systems

for error correction and feedback generation for L2 learners do not take into account important

attributes of learner linguistic variation. I show that by taking this variation into account when

training models and building systems to provide automated feedback to language learners, we stand

to create more effective systems that are better at correcting errors and presenting feedback, and

that provide a better learning experience for students.
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APPENDIX A

Llama 2 fine-tuning prompt

Instruction: Given an essay written by a student learning Spanish, rewrite the essay to correct

any grammatical or stylistic errors in the text. Your goal is not to heavily edit the essay, but rather

to lightly edit it in the manner of an instructor correcting a student’s writing for a class assignment.

Example 1:

### Original essay:

Hab́ıa una chica que no le gusta la pandemia. Cada manaña ella no quiere dejar su cama. Todos

los d́ıas son abburidos y van muy despacito. Ella solo juege con su telefóno, mira las peliculas de

Netflix, y come muchas comidas no sanos. Ella sueñe de va a la playa o los montañas para esquiar.

No va a los conciertos, no pasa tiempo con sus amigos. Ella no puede porque nada es abierto. Solo

hizo la tarea, duerme, y habla con su familia. Ella quiere grita mucho. Después una mesa, ella

tiene diez mas libras y ella quiere llorar. Ella llore para muchos horas cuando Netflix juege en el

antecedente. Ella quiere su vida tipicamente. Pero, en la manaña, despues una noche muy mal,

todos estaba differente. Ellla tiene un nueve mentalidad porque ella realiza la sola cosa que ella

tiene controlar de es su mentalidad. Ella no pasa muchos horas en la cama y fue corrando a la

parque. Despues, ella va al *PLACE* para pasa tiempo con su hermano y porque ellos le gustan

*PLACE*. Ella decide que no quiere pedir mas tiempo de su vida. Ella mire el bueno en todo de su

vida. Ella pasa mas tiempo con su familia, ella va a correr mas. Ella tiene nuevos habiladades de

yoga y organizado su diario. Ella llama los amigos del telefóno y habla mucho. Los amigos son muy

graciosos y quieren la vida tipicamente tambien. Ella hizo mas tarea y tiene mas motivación para

tener éxito en la vida. Ella no pido mas tiempo. Ella estaba contenta para pasar tiempo durante la

pandemia. Ella estaba mas paciente y solo tiene controlar de su mentalidad. En el fin ella pasa

mucho tiempo con sus amigos y van al playa. Es no una autobiograf́ıa, pero es una historia de

crecimiento personal y para mirar para el bueno en todo de su vida.
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### Corrected essay:

Hab́ıa una chica a la que no le gustaba la pandemia. Cada mañana no queŕıa salir de su cama.

Todos los d́ıas eran aburridos y pasaban muy despacito. Ella solo jugaba con su teléfono, véıa

peĺıculas de Netflix y comı́a mucha comida poco sana. Soñaba con ir a la playa o a las montañas

para esquiar. No iba a los conciertos, no pasaba tiempo con sus amigos. No pod́ıa porque nada

estaba abierto. Solo haćıa sus tareas, dormı́a y hablaba con su familia. Ella queŕıa gritar mucho.

Después de un mes, ella teńıa diez libras más y queŕıa llorar. lloraba durante muchas horas cuando

Netflix dejaba de funcionar. Ella queŕıa su vida normal. Pero, una mañana, después de una

noche muy mala, todo estaba diferente. Ella teńıa una nueva mentalidad porque se dio cuenta

de que la única cosa que teńıa que controlar era su mentalidad. No pasó muchas horas en la

cama y fue a correr en el parque. Después, fue al Chick-fil-a para pasar el rato con su hermano

y porque a ellos les gusta el Chick-fil-a. Ella decidió que no queŕıa perder más tiempo de su

vida. Miraba lo bueno de su vida. Pasaba más tiempo con su familia, iba a correr más. Teńıa

nuevas habilidades de yoga y hab́ıa organizado su agenda. Llamaba a los amigos por teléfono y

hablaba mucho. Los amigos eran muy graciosos y queŕıan la vida normal también. Ella haćıa

más tareas y teńıa más motivación para tener éxito en la vida. Ella no perdió más tiempo. Ella

estaba contenta en pasar el rato durante la pandemia. Estaba más paciente y solo teńıa que

controlar su mentalidad. Al final pasó mucho tiempo con sus amigos y fueron a la playa. No

es una autobiograf́ıa, sino una historia de crecimiento personal, para enseñar todo lo bueno de su vida.

Example 2:

### Original essay:

Me llamo NAME y tiene AGE AGE años. Tengo el pelo rubia, los ojos azules y soy un poco

alta para una mujer. Soy altética y me encantan todas las actividades en la naturaleza. Algunos

de mis favoritos son la escalada en roca, mochilero y montar a caballo. Llevo 18 años montando

caballos tanto en la competencia como entrenando caballos jóvenes. El viaje de mochilar más

reciente que hice fue en el desierto de la desolación en Tahoe. Mi novio y yo pasamos cinco

d́ıas y caminamos unas diez millas al d́ıa. Los lagos y las vistas eran espectaculares. Un vieje

de escalada en roca más reciente también fue en Tahoe. Estoy un estudiante de UNIVERSITY

UNIVERSITY en mi ultima año. Estoy estudiando psicoloǵıa y desarrollo humano y quiero ser
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un maestro de escuela elemental. En este momento trabajo como una ayuda de educación especial

en una escuela primaria y me encanta mucho. En nuestro aula tenemos cinco niños con autismo y

trabajamos con ellos individualmente durante la mayor parte del d́ıa. Mi parte favorita es cuando

nos reunimos por la mañana con ellos y bailan alrededor de las canciones que tocamos. Tengo

tres hermanos, sus nombres son NAME y NAME. NAME tiene diece nueve años y NAME tiene

viente dos años. Estamos muy cerca y nos gusta pasar tiempo juntos al menos una vez a la semana.

NAME y yo montamos caballos juntos mucho y a veces le doy lecciones, ya que he estado montando

más tiempo que su. Mi mamá creció montando caballos también, aśı que a veces cabalga con nosotros.

### Corrected essay:

Me llamo NAME y tiene AGE años. Tengo el pelo rubio, los ojos azules y soy un poco alta para

una mujer. Soy atlética y me encantan todas las actividades en la naturaleza. Algunas de mis

favoritos son la escalada en roca, ir de mochilera y montar a caballo. Llevo 18 años montando

a caballo, tanto en competiciones como entrenando caballos jóvenes. El viaje de mochilera más

reciente que hice fue en el desierto de la desolación en Tahoe. Mi novio y yo pasamos cinco d́ıas y

caminamos unas diez millas al d́ıa. Los lagos y las vistas eran espectaculares. El viaje de escalada

en roca más reciente también fue en Tahoe. Soy una estudiante de UNIVERSITY UNIVERSITY

en mi último año. Estoy estudiando psicoloǵıa y desarrollo humano y quiero ser una maestra de

escuela elemental. En este momento trabajo como ayudante de educación especial en una escuela

primaria y me encanta. En nuestra aula tenemos cinco niños con autismo y trabajamos con ellos

individualmente durante la mayor parte del d́ıa. Mi parte favorita es cuando nos reunimos por la

mañana con ellos y bailan las canciones que tocamos. Tengo tres hermanos, sus nombres son NAME

y NAME. NAME tiene diecinueve años y NAME tiene veintidós años. Estamos muy cerca y nos

gusta pasar tiempo juntos al menos una vez a la semana. NAME y yo montamos a caballo juntas

mucho y a veces le doy lecciones, ya que he estado montando más tiempo que ella. Mi mamá creció

montando a caballo también, aśı que a veces cabalga con nosotras.

Now it’s your turn:

### Original essay:

{data point[“original essay”]}
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### Corrected essay:

{data point[“cor essay”]}
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APPENDIX B

Claude multi-step feedback generation

Prompt:

You are a helpful assitant helping the teacher of a Spanish 1 course. You are writing

corrections for a student whose native language is English. You want to provide your

students with feedback about mistakes in their writing. Given an original sentence

written by a student, and a corrected version of the sentence written by you, explain

to the student why you made the corrections you made. Don’t change either sentence.

Just explain the differences between them in terms of grammar in a way a student can

understand.

Your goal is to provide feedback in a way that can be automatically presented to students

, and that gives the students an opportunity to correct their own mistakes. Please

format your response as in JSON format containing the following basic elements. Don’t

include these descriptions in your output, just use them as examples of what you

need to generate:

line_1 = The first text presented to the student. This should provide a hint as to what

the error is and ask the student to fix it.

response_1_correct = The text to be presented to students if they were able to

successfully correct the error. This should be encouraging and summarize the

correction.

response_1_incorrect = To be presented to student if they are unable to correct their

mistake the first time they try. This should provide a little more information about

the error in question and ask the student to correct it.
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response_2_correct = To be presented to student if they are able to correct the error on

their second try. Again, this should be encouraging and summarize the error and

correction.

response_2_incorrect = Used if the student still can’t correct the error themselves. This

should explain the error and the correction in detail.

The JSON you generate will be used by a script that presents feedback to students one

step at a time. The student will be asked to self-correct, then if unable to do so,

provided a bit more info and asked again to self-correct. If still unable to do so,

the full error and its correction will be explained to the student. So keep these

goals in mind when generating your output.

If there is more than one correction in the sentence, make sure to create a JSON

formatted dictionary for each correction you identify in the sentence pair.

Please provide your responses in English

Now, here are the sentences to be compared:

Original sentence: Ella es una feminista y habla mucho de las problemas en la sociedad.

Corrected sentence: Ella es feminista y habla mucho sobre los problemas en la sociedad.

Claude output:

‘‘‘json

[

{

"line_1": "Check the article used with ’feminista’. Remember that in Spanish,

professions don’t need an indefinite article when describing someone’s profession

.",

"response_1_correct": "Well done! You correctly removed ’una’ before ’feminista’.",

"response_1_incorrect": "Not quite. In Spanish, we don’t use an indefinite article

before a profession. Try removing ’una’ before ’feminista’.",
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"response_2_correct": "Great job on the second try! ’Ella es feminista’ is the

correct way to express someone’s profession.",

"response_2_incorrect": "The correct sentence is ’Ella es feminista’. In Spanish, we

do not use ’una’ before a profession when stating what someone is."

},

{

"line_1": "Look at the preposition used with ’habla mucho’. Is ’de’ the correct

preposition to talk about topics in Spanish?",

"response_1_correct": "Excellent! ’Sobre’ is the correct preposition to use when

talking about topics.",

"response_1_incorrect": "Not quite there. When discussing topics in Spanish, we use ’

sobre’. Try replacing ’de’ with ’sobre’.",

"response_2_correct": "You’ve got it now! ’Habla mucho sobre’ is the correct phrase

for discussing topics.",

"response_2_incorrect": "The correct phrase is ’habla mucho sobre’. In Spanish, ’

sobre’ is used to talk about topics, not ’de’."

},

{

"line_1": "Review the gender of the noun ’problemas’. Is the article ’las’ the

correct match for ’problemas’?",

"response_1_correct": "Correct! ’Los problemas’ matches the masculine noun ’problemas

’.",

"response_1_incorrect": "Almost there. Remember that ’problemas’ is a masculine noun,

so it needs a masculine article. Try ’los’ instead of ’las’.",

"response_2_correct": "Nice work! ’Los problemas’ is the correct usage for the

masculine noun ’problemas’.",

"response_2_incorrect": "The correct phrase is ’los problemas’. ’Problemas’ is

masculine, so we use ’los’ instead of ’las’."

}

]

‘‘‘
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Instituto Cervantes. El español una lengua viva-Informe 2019. 2019.
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Nick C Ellis, Rita Simpson-Vlach, Ute Römer, M O’Donnell, and Stefanie Wulff. Learner corpora

and formulaic language in SLA. Cambridge University Press, 2015.

Scott A Crossley, Stephen Skalicky, Mihai Dascalu, Danielle S McNamara, and Kristopher Kyle.

Predicting text comprehension, processing, and familiarity in adult readers: New approaches to

readability formulas. Discourse Processes, 54(5-6):340–359, 2017.

Magali Paquot and Sylviane Granger. Formulaic language in learner corpora. Annual Review of

Applied Linguistics, 32(32):130–149, 2012.

Carmen Gregori-Signes and Begoña Clavel-Arroitia. Analysing lexical density and lexical diversity

in university students’ written discourse. Procedia-Social and Behavioral Sciences, 198:546–556,

2015.

Victoria Johansson. Lexical diversity and lexical density in speech and writing: A developmental

perspective. Working papers/Lund University, Department of Linguistics and Phonetics, 53:61–79,

2008.

Philip M McCarthy and Scott Jarvis. Mtld, vocd-d, and hd-d: A validation study of sophisticated

approaches to lexical diversity assessment. Behavior research methods, 42(2):381–392, 2010.

Elizabeth Bates, Inge Bretherton, and Lynn Sebestyen Snyder. From first words to grammar:

Individual differences and dissociable mechanisms, volume 20. Cambridge University Press, 1991.

142



Mildred C Templin. Certain language skills in children; their development and interrelationships.

1957.

David D Malvern and Brian J Richards. A new measure of lexical diversity. British Studies in

Applied Linguistics, 12:58–71, 1997.

Peter Broeder, Guus Extra, and Roeland van Hout. Acquiring the linguistic devices for pronominal

reference to persons: A crosslinguistic perspective on complex tasks with small words. De Gruyter

Mouton, 1986.

Jean Ure. Lexical density and register differentiation. Applications of linguistics, 443452, 1971.

Michael Alexander Kirkwood Halliday Halliday and Michael Alexander Kirkwood Halliday. Spoken

and written language. Oxford University Press, USA, 1989.

Batia Laufer and Paul Nation. Vocabulary size and use: Lexical richness in L2 written production.

Applied linguistics, 16(3):307–322, 1995.

Kate Wolfe-Quintero, Shunji Inagaki, and Hae-Young Kim. Second language development in writing:

Measures of fluency, accuracy, & complexity. Number 17. University of Hawaii Press, 1998.

Averil Coxhead. A new academic word list. TESOL quarterly, 34(2):213–238, 2000.

Kristopher Kyle and Scott A Crossley. Automatically assessing lexical sophistication: Indices, tools,

findings, and application. Tesol Quarterly, 49(4):757–786, 2015.

HM Bell. Using frequency lists to assess L2 texts. PhD thesis, University of Wales Swansea, 2003.

Dieter A Waldvogel. An analysis of Spanish L2 lexical richness. Academic Exchange Quarterly, 18

(2):8, 2014.

Joan Bybee. Usage-based grammar and second language acquisition. Routledge, 2008.

Michael Tomasello and Hannes Rakoczy. What makes human cognition unique? from individual to

shared to collective intentionality. Mind & language, 18(2):121–147, 2003.

Timothy Merrick Hall. Learner chunks in second language acquisition. PhD thesis, Teachers College,

Columbia University, 2017.

Alison Wray. Identifying formulaic language: Persistent challenges and new opportunities. Formulaic

language, 1:27–51, 2009.

John Sinclair and Les Sinclair. Corpus, concordance, collocation. Oxford University Press, USA,

1991.

143



Kathy Conklin and Norbert Schmitt. The processing of formulaic language. Annual Review of

Applied Linguistics, 32:45–61, 2012.

Helen B Sorhus. To hear ourselves—implications for teaching english as a second language. ELT

Journal, 31(3):211–221, 1977.

Britt Erman and Beatrice Warren. The idiom principle and the open choice principle. Text & Talk,

20(1):29–62, 2000.

Pauline Foster. Rules and routines: A consideration of their role in the task-based language

production of native and non-native speakers. In Researching pedagogic tasks, pages 85–104.

Routledge, 2013.

Douglas Biber, Stig Johansson, Geoffrey Leech, Susan Conrad, and Edward Finegan. Longman

grammar of written and spoken english. Harlow: Longman, 1999.

Peter Howarth. Phraseology and second language proficiency. Applied linguistics, 19(1):24–44, 1998.

Paul Rayson. From key words to key semantic domains. International journal of corpus linguistics,

13(4):519–549, 2008.

Alex Housen and Folkert Kuiken. Complexity, accuracy, and fluency in second language acquisition.

Applied linguistics, 30(4):461–473, 2009.

Antoine Tremblay, Bruce Derwing, Gary Libben, and Chris Westbury. Processing advantages of

lexical bundles: Evidence from self-paced reading and sentence recall tasks. Language learning, 61

(2):569–613, 2011.

Nick C Ellis, RITA Simpson-Vlach, and Carson Maynard. Formulaic language in native and second

language speakers: Psycholinguistics, corpus linguistics, and tesol. TESOL quarterly, 42(3):

375–396, 2008.

Douglas Biber, Susan Conrad, and Viviana Cortes. Lexical bundles in speech and writing: An initial

taxonomy. na, 2003.

Yves Bestgen. Comparing lexical bundles across corpora of different sizes: The zipfian problem.

Journal of Quantitative Linguistics, 27(3):272–290, 2020.

Kenneth Church and Patrick Hanks. Word association norms, mutual information, and lexicography.

Computational linguistics, 16(1):22–29, 1990.

Keh-Yih Su, Ming-Wen Wu, and Jing-Shin Chang. A corpus-based approach to automatic compound

extraction. In 32nd Annual Meeting of the Association for Computational Linguistics, pages

144



242–247, 1994.

Guadalupe Valdés. The teaching of heritage languages: An introduction for Slavic-teaching

professionals. The Learning and Teaching of Slavic Languages and Cultures, 375:403, 2000.

Maria Polinsky. Gender under incomplete acquisition: Heritage speakers’ knowledge of noun

categorization. Heritage language journal, 2008a.

Silvina Montrul. Incomplete acquisition and attrition of Spanish tense/aspect distinctions in adult

bilinguals. Bilingualism: Language and cognition, 5(1):39–68, 2002.

Andrew Lynch. The relationship between second and heritage language acquisition: Notes on

research and theory building. Heritage Language Journal, 1(1):26–43, 2003.

Carmen Silva-Corvalán. Analyzing linguistic variation: Statistical models and methods. Journal of

Linguistic Anthropology, 16(2):295, 2006.

Maria Polinsky. Without aspect. Case and grammatical relations, pages 263–282, 2008b.

Minsun Song, William O’Grady, Sookeun Cho, Miseon Lee, and Yung-Hee Kim. Korean language

in america 2. 1997.

William O’Grady, Miseon Lee, and Miho Choo. The acquisition of relative clauses by heritage and

non-heritage learners of korean as a second language: A comparative study. Journal of Korean

Language Education, 12(2):283–294, 2001.

Hi-Sun Helen Kim. Processing strategies and transfer of heritage and non-heritage learners of

Korean. PhD thesis, 2005.

Agnes Bolonyai. (in) vulnerable agreement in incomplete bilingual L1 learners. International Journal

of Bilingualism, 11(1):3–23, 2007.

Ji-Hye Kim, Silvina Montrul, and James Yoon. Binding interpretations of anaphors by korean

heritage speakers. Language Acquisition, 16(1):3–35, 2009.

Silvina Montrul and Melissa Bowles. Back to basics: Differential object marking under incomplete

acquisition in Spanish heritage speakers. Bilingualism, 12(3):363–383, 2009.

Silvina Montrul. On knowledge and development of unaccusativity in Spanish L2 acquisition. 2005.

Silvina Montrul. Multiple interfaces and incomplete acquisition. Lingua, 121(4):591–604, 2011.

Annabelle David. A developmental perspective on productive lexical knowledge in L2 oral interlan-

guage1. Journal of French Language Studies, 18(3):315–331, 2008.

145



Nadja Nesselhauf. The use of collocations by advanced learners of english and some implications for

teaching. Applied linguistics, 24(2):223–242, 2003.

Jennifer Thewissen. The phraseological errors of French-, German-, and Spanish speaking EFL

learners: Evidence from an error-tagged learner corpus. In Proceedings from the 8th Teaching and

Language Corpora Conference (TaLC8), pages 300–306. Associação de Estudos e de Investigação

Cient́ıfica do ISLA-Lisboa Lisbon, 2008.

Pang Ping. A study on the use of four-word lexical bundles in argumentative essays by chinese

english: A comparative study based on weccl and locness. CELEA journal, 32(3):25–45, 2009.

Anna Vogel Sosa and James MacFarlane. Evidence for frequency-based constituents in the mental

lexicon: Collocations involving the word of. Brain and language, 83(2):227–236, 2002.

Anna Siyanova-Chanturia, Kathy Conklin, and Norbert Schmitt. Adding more fuel to the fire:

An eye-tracking study of idiom processing by native and non-native speakers. Second Language

Research, 27(2):251–272, 2011.

Inbal Arnon and Neal Snider. More than words: Frequency effects for multi-word phrases. Journal

of memory and language, 62(1):67–82, 2010.

Yuly Asención-Delaney and Joseph Collentine. A multidimensional analysis of a written L2 Spanish

corpus. Applied linguistics, 32(3):299–322, 2011.

Scott A Crossley and Stephen Skalicky. Examining lexical development in second language learners:

An approximate replication of Salsbury, Crossley & McNamara (2011). Language teaching, 52(3):

385–405, 2019.
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lengua viva. 2013.

153


	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Linguistic diversity in the language classroom
	1.2. Automated Corrective Feedback

	Chapter 2. Pedagogical Background 
	2.1. Learners studied
	2.2. Automated Written Corrective Feedback

	Chapter 3. Technical Background 
	3.1. NMT-based GEC
	3.2. Sequence tagging-based GEC
	3.3. Use of Augmented Learner Data
	3.4. Application of Generative LLMs to GEC

	Chapter 4. COWS-L2H Corpus 
	4.1. Current Spanish Learner Corpora
	4.2. COWS-L2H
	4.3. Longitudinal data
	4.4. Error Annotation
	4.5. Correction & Automated Error Tagging
	4.6. Additional corpora used
	4.7. Studies conducted using COWS-L2H

	Chapter 5. COWS-L2H Study I: Lexical development 
	5.1. Measuring lexical development
	5.2. Previous work
	5.3. Methods and implementation
	5.4. Discussion

	Chapter 6. COWS-L2H Study II: Syntactic development 
	6.1. Motivation and approach
	6.2. Linguistic Features
	6.3. Experiments
	6.4. Tracking Writing Skills' Evolution
	6.5. Understanding Linguistic Predictors
	6.6. Discussion

	Chapter 7. COWS-L2H Study III: Errors by demographic group 
	7.1. Error annotation
	7.2. Parallel corrected text
	7.3. ERRANT
	7.4. Method and implementation
	7.5. Statistical analysis
	7.6. Key differences and findings
	7.7. Lower proficiency learners
	7.8. Advanced L2 and Heritage learners
	7.9. Discussion and implications

	Chapter 8. GEC Approach & Implementation 
	8.1. Initial tests of error correction using COWS-L2H
	8.2. Synthetic data generation
	8.3. Synthetic data generation with LLM models
	8.4. Model development and adaptation
	8.5. Results

	Chapter 9. Feedback Generation 
	9.1. Adaptability and Error Prioritization
	9.2. Template-based feedback generation
	9.3. LLM generated feedback

	Chapter 10. AWCF Implementation and Use 
	10.1. Web App Design and Implementation
	10.2. Provision of feedback to students
	10.3. Initial Testing

	Chapter 11. Conclusion 
	Appendix A. Llama 2 fine-tuning prompt 
	Appendix B. Claude multi-step feedback generation 
	Bibliography



